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Abstract
Embedded systems are used everywhere. They are complex systems whose failure may cause
death or injury to people or may damage the environment are required to be safety safe. Therefore,
these systems need to be analyzed. Fault tree analysis is a common way for performing safety
analysis. It generates a large amount of interconnected data that itself needs to be analyzed to
help different domain experts (e.g., engineers and safety analysts) in their decisions for improving
the system’s safety. Additional difficulties occur for the experts in communication and in linking
the data (e.g., information of basic events or minimal cut sets) to the actual parts of the system
(model). Therefore, a large amount of time and effort is being spent on discussions, searching,
and navigating through the data. To overcome this, we present a new metaphor called “CakES”
consisting of multiple views visualizing the data generated by fault tree analysis and linking
them to the actual parts of the model by intuitive interaction. Using the interaction techniques
of CakES the user can directly explore the safety related data without navigating through the
fault tree while retaining an overview of all critical aspects in the model.
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1 Introduction

The size and complexity of embedded system’s increase steadily forcing users/experts of
different domains (e.g., safety analysts and engineers) to analyze a large amount of data.
However, not only the embedded systems grow but the data generated by safety analysis
grows too. Thus, obtaining total knowledge about the data in the different domains becomes
more and more important. In [29], the authors show that increasing human involvement in
tasks (understanding, exploring, navigating) through large and/or complex data sets leads to
slower and error prone results. Examples are: forgetting to explore a sub-tree, missing a BE,
or incorrectly combining the events of a MCS. In addition, the users/experts need to find the
interesting/useful data and link them to support in their decision making process (e.g., which
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2 CakES: Cake Metaphor for Analyzing Safety Issues of Embedded Systems

parts of a model should be improved or replaced given limited time and/or cost). Because
each user has a different domain background communication difficulties appear. Therefore,
there is a need for methods/tools to support users/experts during their analysis, exploration,
and comprehension of the data from both domains (generated from the safety analysis and
given by the engineers). To be able to deal with enormous data, we propose reducing the
complexity of the data being analyzed by first extracting the most important information
of the fault tree analysis and by then providing dynamic filtering to the user. Filtering
is used to ease and speedup understanding and exploration. We present a new metaphor,
“CakES”. CakES consists of multiple views visualizing the physical model (engineering data),
minimal cut sets, and basic events’ information generated from the fault tree analysis (safety
data). The views are linked in an interactive way to support exchanging and combining the
knowledge of the different domains. Providing different correlating environments for the
users [12] enables the analysts to explore data in one glance by four views: three visualizing
the data (minimal cut set, basic event, and model view) and one interaction view that also
shows the exact values (menu view). We applied an informal expert evaluation that provided
us with useful and productive feedback and criticism. The paper is structured as follows.
Section 2 provides the definitions of terms used in this work. Section 3 describes the related
work. Our approach, the visual metaphors and the interaction devices, are presented in
Section 4. Section 5 illustrates the use of our approach with a real world data set and Section
6 describes our design decisions. The setup and outcome of an informal evaluation performed
on this approach are described in Section 7. The future work is presented in Section 8. We
close this paper with the conclusions in Section 9.

2 Definitions

For an introduction into the topic of safety analysis and visualization, the relevant concepts
used in this paper are defined. In [14] pp. 74, risks are divided into three levels: Unacceptable,
Tolerable, and Broadly Acceptable. Figure 1b shows these levels [31], [19]. For both tolerable
and acceptable levels, risks have to be reduced until the cost is more than the risk “As Low
As Reasonably Practicable”(ALARP). Risk acceptance depends on many factors such as
applicable laws or public opinion [2]. A safety-critical system could cause different levels of
harm (hazard)(i.e., delay, injury, death, etc.) to living beings or/and to its environment [21].
A risk is a combination of the severity of the consequences of a hazard and the probability of
its occurrence [7]. Safety analysis is used to prove that the system’s risk is negligible [20] and
involves detecting hazards and their causes to reduce the likelihood of probable accidents
and their consequence. Fault Trees Analysis (FTA) is a traditional methodology in safety
analysis (hazard analysis in more detail) to asses systems’ safety [13], [18], [7] pp. 8. Fault
Trees (FTs) are usually constructed using conventional logic gate symbols. Figure 1a shows
an example of a FT. Basic Events (BEs) are the lowest-level influence factors (system faults)
in the FT that may cause (with a certain probability [11]) an undesired state in the system
(top level event or called hazard) [7]. The top level event is the root of the FT. In Figure
1a the BEs are BE1 through BE9. Minimal Cut Sets (MCSs) are a unique combination of
the BEs–so it contains BEs–, e.g., a system malfunction [4], [6]. When any BE of a MCS is
removed, the remaining BEs no longer form a cut set [10]. “A fault tree can be represented
as the collection of its minimal cut sets” [7]. To improve the safety of a system the MCSs
should be specified and isolated or removed [7]. In Figure 1a, the MCSs are the inputs
of the AND gates: MCS1 = {BE1, BE2, BE3}, MCS2= {BE4, BE5, BE6}, and MCS3 =
{BE7, BE8, BE9}. In safety analysis two factors are important [7]: First, the severity of the
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(a) An example of a Fault Tree. (b) The ALARP carrot dia-
gram.

Figure 1 Foundations.

hazard’s possible consequences. Second, the probability of the hazard occurrence, which is
our concern in this paper. This is done usually by adding redundancy and/or improving the
elements of the system.

3 Related Work

Visualization of safety and security data in embedded systems is an emerging research topic.
With the growth of embedded systems and the growth of the data generated by fault tree
analysis, visualization is becoming an important method to ease and speedup the developer’s
analysis. In this section a brief overview about the state of the art is given.

3.1 Fault Tree Analysis
We mention only some of safety analysis methods/tools, because others mainly follow the
same principles. With the ESSaRel tool [10], users –usually safety analysts– can easily create
FTs and generate MCSs analysis results (model generation and analysis). Here, component
fault trees, gates, and BEs are visualized in 2D representations. However, the data generated
by the MCS analysis –which is considered important for analysis– are not visualized and are
represented in an external text file. This file includes some information of the MCSs such as
their BEs, the BEs names, and their IDs (Figure 2). It is clear the user has to search for the
FP of the BE from view (B) by clicking it to get view (D). Additionally, the names of the
BEs in view (A) are not equal to the BEs names in views (C) and (D), which makes the
exploration difficult. Further, there is no information about the MCSs’ FPs the analysts can
begin their search from. Therefore, the analyst has to find the other BEs of the examined
MCS to compute its FP. As a result, the time and effort for exploring this small data set
increases. In summary, the user has to navigate through the views to get simple informations
such as which MCS is the most risky one, and still, no information about how the BEs look
like or where they locate in the system is provided (especially if the naming of the BEs
are inconsistent, which is usually the case when having different developers or engineers).
Other tools/methods in safety analysis represent MCSs analysis data either in textual files
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Figure 2 ESSaRel representations of a small sub-system containing 12 “minimal cut sets” with
text (left). Fault tree and basic events (right).

or tables with or without their FPs depending on the methods, such as FinPSA [24], RAM
Commander [1], FSAP/NuSMV-SA Safety Analysis Platform [6]. Relex Fault Tree Analysis
software [17] has a feature for highlighting minimal cut sets. However, some other do not
represent MCSs such as ISAAC [5] which is the new version of ”Enhanced Safety Assessment
for Complex Systems” (ESACS) [8]. In [15] the MCSs are represented as a subtree and in
[26] as textual notation.

3.2 Visualization

A 3D Carousel View design is presented in [23]. It takes the basic carousel model and
elaborates it to hold an arbitrary number of 2D items. Here, the interactions used are
spinning, zooming, and selection. Animation is included. Many video games use carousel
views for displaying menus. They are usually used to select an item from a small set of
items. The rotation begins slowly and the speed increases when the cursor gets close to
the edge of the screen. The placement of the items is given by logarithmic equations. To
avoid the problems caused by the clipping area, which causes difficulties for the users, they
made the far items transparent. This method is applied when performance efficiency is
not crucial. The Hierarchy based 3D Visualization of Large Software Structures ([3, 25])
presents a 3D visualization technique for the static structure of object-oriented software using
distributions of 3D objects on a 2D plane. They adjust the transparency of object surfaces
to the distance of the viewpoint to reduce the visual complexity. This method is used for
hierarchical data (software packages). These data are represented as nested hemispheres.
The TrustNeighborhoods: Visualizing Trust in Distributed File Sharing Systems in [9] is a
tool for visualizing document trust relationships in large scale distributed file sharing systems.
It uses a metaphor of a multilayered city to represent trust as geographic relations. It uses
a radial space-filling layout, with a 3D mode for exploration. The interactions applied are
dragging and dropping documents, overview and navigation, and smooth zooming (also called
“fly to”).
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3.3 Summary
In summary: almost all safety analysis methods/tools are powerful in creating FTs and
in generating the safety results (e.g., MCSs). However, analyzing the generated data
needs: -Navigation through the textual files (upwards and downwards) for comparisons, and
exploration. -Navigations through other views to compute or link the data together whenever
the information is not complete in the textual reports (e.g., ESSaRel). Additionally, there is
no information about the shapes and locations of the BEs. This implies that the user will
have difficulties finding the real world relation between the physical hardware components
and the fault trees and the MCS text representation. Finally, filtering these data according
to Failure Probabilities is cumbersome if not impossible. Therefore, we propose to visualize
the generated safety data to support the analysis.

4 Our Approach

In our approach both the benefits of the “Carousel View” [23] and the “Hierarchy 3D view”
[25] (Section 3) and a “simplified circle packing algorithm” [34] are combined and extended
to support our goal. In this work, the items are not only placed at the border of the table
as in [23] but also in the inner area of the circle for space efficiency. The transparency of
the containers (MCSs, Figure 5c in Section 4.3) depends on the user’s selection, not on his
distance as in [25]. Here, even though all the transformations are available, the users do not
need to navigate forward and backwards to explore the contents of the containers as in [25].
Additionally, the containers are placed in a symmetric fashion in the inner area of each level,
because the author in [28] pp. 192 shows that humans perceive symmetry as being important
and thus it provides a powerful organizing principle. In our case, a vertical view (2D view) is
sufficient to illustrate the MCSs that are the best candidates to be chosen first for analysis.
Additionally, a horizontal view (3D view) is used when the user selects a MCS to display the
physical parts related to the BEs in this MCS. Thus, the user is directly involved in the data
analysis process without the need to navigate through the system’s fault trees and text files.
The fault tree information is hierarchically structured, whereas the model information is flat.
Thus, we modified this data to get a hierarchical structure for the model information, because
naturally the model parts are in a hierarchical form. Then, we mapped the relationships of
both data domains, to get completely related data to work with. CakES is a multi-window,
or multi-screen system supporting different levels of focus and context at the same time.

4.1 Overview of CakES
In this section, the views and the interactions of CakES are be presented. There are four
views, one for interaction and switching the window focus and three for visualizing the data:
1. Model View: displays the system’s model being analyzed and its parts.
2. MCS View: displays the collection of MCSs, their probabilities, and the physical parts

related to their BEs, so this view contains the safety related data. Therefore, this view
contains the information of both the “text file” and the “Properties-Event” view of
ESSaRel as shown in Figure 2. Additionally, the shapes of the physical parts related to
the BEs and the overall FP of each MCS are shown. This information comes from the
model and is computed from the FT information. Finally, it also provides the overall
system’s safety.

3. Menu View: displays a menu and the safety data in values.
4. BE View: displays the physical parts related to the BEs that are contained in the selected

MCS, this is an auxiliary view for future usage.
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(a) RAVON robot in the
model view.

(b) Outside the model. (c) Inside the model.

Figure 3 Part of RAVON robot displayed in the Model view.

Table 1 Keyboard interaction.

Keyboard’s buttons
Key Function

y, Y Rotate in +y, -y
x, X Rotate in +x, -x
z, Z Rotate in +z, -z
→ Move right
← Move left
↑ Move up
↓ Move down
PgUp Zoom out
PgDn Zoom in
b, B Translucent, Opaque
a, A Animate, Stop Animation
o and O Return to default position
s, S Spotlight on, off
PrntScrn Snapshot of the model view
ctrl + 1 Switching between standard and stereo view

4.2 Model View
In this view the model of the system being analyzed is displayed. For example, we have a
robot model called RAVON (Robust Autonomous Vehicle for Off-road Navigation) shown in
Fig 3a. This model is given in OpenInventor format [30]. OpenInventor is a C++ Object
Oriented 3D graphics API providing higher layer programming of OpenGL that helps in
efficient and convenient programming [22], [32]. The user can interact with the model using
keyboard, mouse, and space-mouse. The interactions provided are rotation and translation
such as zooming(z axis) and panning (x, y axis). These interactions are shown in the Tables
1 and 2. Further, the user has the ability to explore the model not only from the outside but
also from the inside by placing the near clipping plane in a suitable position. Figure 3 shows
an example.

4.3 MCS View
The Cake is our metaphor to visualize the failure probability (FP) of MCSs and the shape
of the physical parts related to their BEs. Figure 5c shows the MCS view. All examples in
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Table 2 Mouse and space mouse interaction.

(a) Mouse.

Mouse
Button Function

Left rotate
Right moving left & right
Scroll zoom in/out
Middle Return to default position

(b) Space mouse.

Space Mouse
Action Function

Roll, Pitch,
Yaw

Rotate in (x, y, z)

Move in x, y, z directions
Left button Return to default position

(a) A 2D view
(top view).

(b) A 3D view. (c) Placing MCSs depending on
their failure probability.

Figure 4 Levels background and MCSs placement in the MCS view.

this section (only for the MCS view) are generated from artificial data for demonstration
purposes. Two examples with real data will be presented in Section 5. The cake consists of a
maximum of three levels that reflects FPs ranges shown in Section 2. There are four FP
values that influence the number of levels displayed and the placement of MCSs: minimum,
border between lowest and middle range (lower border), border between middle and highest
range (upper border), and maximum. The first level, the one in the center, corresponds
to the lowest range of FPs, those between the minimum and the lower border. This level
includes MCSs with small FPs (could be considered as low risk MCSs). The second level
corresponds to the middle range between lower and upper border. This level includes MCSs
with higher FPs (could be considered as risky MCSs). The third level, the outer most one,
corresponds to the highest range of FPs, those between the upper border and the maximum.
This level includes MCSs with the highest FPs (could be considered as very risky MCSs).
The first level has the darkest gray, the second level has a lighter gray, and the outer level has
the lightest gray background. Figures 4a and 4b show the background coloring of the levels.
The reason for giving the outer level the lighter gray color is that the user would then be able
to directly concentrate on the most important level, which has the highest FPs [28] p. 143.
Each level contains a number of MCSs (represented as cylinders) that have a FP within its
range (Figure 4c). If there are no MCSs within the boundaries, then the level is empty and
will not be displayed. Examples having only one or two levels are shown in Figure 5. Each
MCS contains a certain number of BEs. The FP of a MCS is computed as the product of the
FPs of its BEs. The user can manipulate the levels and the MCSs placements by changing
the FP values using the menu sliders (Figure 9) described in Section 4.4. We computed the
placements of MCSs using the following equations: The radius of the MCSs plus an empty
distance around each MCS Rs is computed as: Rs = 0.5 + 1

8 . The radius of the ring holding
the MCS Rc is Rc = Rs · RingNo. The level radius Rh is Rh = Rs + Rc. The number of the
MCSs in a ring is given by mr = max(NoMCS) = π

arcsin Rs
Rc

. The number of MCSs in the
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(a) One level. (b) Two levels. (c) Three levels.

Figure 5 3D MCS view while interacting with the menu sliders.

Figure 6 CakES: the MCS view. MCS view in 2D: With rings (left), With no rings (right).

level is mh =
∑
r∈ring mr. The number of MCSs in the cake is m =

∑
h∈levels mh Around

each group of MCSs a black ring is placed to improve the distinguishability and to reduce
any errors that could be caused by color contrast [28] p. 143. Figure 6 shows the view with
and without rings, respectively. Table 3 shows the coloring of the MCSs in each level. The
color vision deficiency entries work for Protanopia, Deuteranopia, and Tritanopia. Since the
cyan has a level of green and blue, the blue-yellow problem of the Tritanopia type is avoided.
Further, the red-green problem of the Protanopia and Deuteranopia type is solved, because
red and green are not neighbors in the visualization (Figure 7). We added two different
saturation levels to the MCSs colors, to provide more visualized details about the FPs of
the MCSs to the users. These saturation levels are computed using the logarithmic mean
of the range. High saturation is assigned to the upper part and low saturation is assigned
to the lower part of this division. Figure 8 (right) shows MCSs of the second level of the
cake (yellow) having different saturation values, where the MCSs having less saturation are
the ones with less importance than the others in the same level. The MCSs of the first level
are fully saturated blue and the ones of the third level (that contains red MCSs) are less
saturated. The BEs of a MCS relate to both hardware and software parts. The physical
parts related to the BEs of the fault tree are visualized inside each MCS to give the user
the relationship between the cake’s view and the BE view. Figure 8 shows two parts of
the control box of RAVON in the selected MCS. The positioning of the BEs in the MCSs
depends on the number of the BEs in a MCS. From our safety experts we know that the most
important MCSs are the ones having 1-3 BEs. For example, for a single point of failure there
will be a MCS with only one BE. This case is the most risky one, because the possibility
for this MCS to occur is higher than the MCS that has two or more BEs, etc. However, we
visualized a maximum of six BEs of MCSs that have six BEs or above to provide tolerability.
Let x, y, z be the coordinates, h be the height of the MCS’s cylinder in y direction, and n be
the number of the BEs in a MCS. Then, the following equations are used for the placement
of BEs depending of their number of BEs. If n = 1, then it will be placed in the center of the
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Table 3 Coloring.

Risk level Normal vision Color vision deficiency

Low Blue Cyan
Medium Yellow Yellow
High Red Orange

Figure 7 Cake using colors adapted to Protanopia, Deuteranopia, and Tritanopia.

MCS (x, y, z). If n = 2, they will be placed in a straight line, on points (x, y ± 1
4 · h, z). If

n = 3, they will be placed in a triangle, on points (x − 1
2 · r, y ± 1

4 · h, z) and (x + 1
2 · r, y, z). If

n = 4, they will be placed on a polygon, on points (x∓ 1
2 ·r, y ± 1

4 ·h, z). If n = 5, they will be
placed in the form of a cross, on points (x ∓ 1

2 · r, y ± 1
3 · h, z) and (x, y, z). If n = 6, they will

be placed on the six corner points of a polyhedron (x ∓ 1
2 · r, y ± 1

3 · h, z) and (x, y, z ± 1
2 · r).

The most common approach for an analysis is to start with an overview and then to zoom
into details as needed. The cake can be rotated using the same interactions as the model
interaction. Two types of zooming are available in this view: spatial and semantic zooming.
This approach is supported by providing the data at different levels of granularity. Using
spatial zooming, the cake can be enlarged to pick the required MCS. Picking is done by (ctrl
+ left mouse button) and invokes a semantic zooming. When this is done, the MCS becomes
transparent, the inner contents of the MCS will appear (BEs), the BEs are also displayed in
the BE view, and the related parts in the model are highlighted.

4.4 Menu View

The menu view is primarily used for interaction. There are three interaction areas in the
menu. The first area ((A) in Figure 9) consists of four buttons. Three of them can be used to
select the views in focus and one terminates the application. The second area ((B) in Figure
9) consists of four range sliders with logarithmic scale. They determine the minimum, lower
border, upper border, and maximum probabilities of the levels (Section 4.3). The sliders act
as filters allowing to select FP ranges dynamically depending of the standard of the system
being analyzed. Changing the values removes those MCSs from the view that are below the
minimum or above the maximum FP. Further, MCSs are assigned to different levels when
the borders are changed. Finally, two radio buttons in the third area determine whether to
use normal coloring or colors adapted to a certain color vision deficiency type. We reduced
the size of the menu in the figure for demonstration purposes. The second function of the
menu is to display additional information. Statistical quantitative information of the safety
file is provided, such as the number of MCSs and the number of BEs in the system. Further,
if the user selects a MCS, its size (number of BEs it contains), its FP, and information about
its BEs are displayed. The information about the BEs includes their ID, name, and FP.
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10 CakES: Cake Metaphor for Analyzing Safety Issues of Embedded Systems

Figure 8 MCS view. (right) Saturation difference in the second level. (middle and left) Two
parts of the controller box related to the BEs shown in the selected MCS.

4.5 BE View

The BE view has a direct relation to the cake and to the model view. In this view, the
hardware parts related to the BEs of the selected MCS in the MCS view are displayed. This
view shows these parts in more detail. As in the MCS view, a maximum of six BEs are
displayed. This view is an auxiliary view for future requirements. The interaction is the
same as in the MCS and the model view.

5 Example using Real World Data

We applied our method to a real model in the context of the ViERforES project [27] funded
by the German Federal Ministry of Education and Research (BMBF). It aims at optimizing
the analysis of safety, security, and reliability aspects of embedded systems. The Robotics
Research Lab of the University of Kaiserslautern, Germany [33] provides the Robot RAVON
(Robust Autonomous Vehicle for Off-road Navigation) [16]. This complex embedded system
is analyzed and tested using fault tree analysis (FTA) by safety analysts in the software
engineering department. The results were fault trees containing basic events and additionally,
after applying a MCS analysis, a list of minimal cut sets (540 MCSs) and their BEs. We
adapted the system to two different environments. The first consists of a standard monitor
and a stereo monitor (Section 5.1). The second is a tiled wall display (Section 5.2).

5.1 Standard and Stereo Monitor

This configuration consists of a standard monitor with 1920×1200 pixels and a Zalman
Trimon passive stereo monitor with a resolution of 1600×1050. The computer has an AMD
Phenom™ Quad-Core Processor with 2.60GHz, 3.25 GB of RAM, and an NVIDA GeForce
GTX 280 graphics card. A 3Dconnexion Space Navigator is used for interaction. The multiple
window system is used in an environment with two monitors (two standard or one standard
and one stereo). The model view is displayed on the second monitor that is either a standard
or a stereo monitor, and the three other views are displayed side-by-side on the standard
monitor as shown in Figure 10. Here, a yellow MCS is selected in the MCS view as shown
in Figure 10a (right). The hardware components associated with these BEs are displayed
in the BE view (middle). Information about the BEs in the selected MCS is displayed in
the menu view (left). Additionally, the consequence of this selection is shown in the model
view automatically (Figure 10b). Here, the Ravon model is displayed on the second monitor,
either in normal or in stereoscopic view. The BEs from the MCS that was selected in the
MCS view (Figure 10a) are opaque, while the rest of the model is transparent.
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Figure 9 Menu view.

5.2 Tiled Wall
The 3 × 3 tiled wall consists of 9 displays that are connected to 5 computers. It is a multi-
screen environment shown in Figure 11. The top 6 screens display the model view and the
bottom 3 screens display the menu view, the BE view, and the MCS view (from left to right)
as shown in Figure 11. As a result, this visualization can work in any environment having
different views, windows, or screens.

6 Reasons for Some Choices

Our choices for the visualization metaphors are based on the following considerations. Having
MCSs in different sizes, i.e., if a MCS has more BEs then it is larger, is better to be avoided.
Large MCSs will have mostly a lower importance, since the probability of a MCS is calculated
as the product of its BEs probabilities. Therefore, even though they have larger sizes, they
are less critical. Assigning a small size to a MCS having a large number of BEs and vice
versa causes a counter-intuitive visualization, that we wanted to avoid. Having only six
BEs visualized in a MCS is sufficient, for the same reason described above. Whenever a
MCS has more than six BEs, it is most probably not critical. In addition, when visualizing
more than six BEs, the sizes of these elements will decrease too much and will no longer
be distinguishable. Finally, MCSs having more than six BEs are crowded. Having MCSs
visualized as cylinders avoids lines crossing on the surfaces of polygonal shapes that will
partially occlude the shape of the BEs inside the selected MCS. Additionally, spherical shapes
limit scalability and waste the surface area that could be used in the case of cylinders with the
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12 CakES: Cake Metaphor for Analyzing Safety Issues of Embedded Systems

(a) The menu (left), the BE (middle), and the
MCS view (right).

(b) The Ravon model on a standard monitor.

Figure 10 CakES on standard monitors.

Figure 11 The CakES system on a tiled wall.

same radius. Having spaces between the cylinders enables the user to move freely inside the
cake, reduces over crowdedness of MCSs, and eases the user’s ability to distinguish between
the BEs in the MCSs, when a MCS is selected. According to the risk acceptance diagram
(Section 2, Figure 1b, [19]) there are three levels: Negligible, Tolerable, and Unacceptable.
Therefore, we prefer having three levels of risks in the cake. Using different saturations for
the same level increases the granularity inside each safety level. This helps the user to find
the most critical MCSs. Neither 2D nor 3D text is used to avoid the drawbacks of text in
3D environments. For example, having text on top of the MCSs is only clearly visible to
the user, when the scene is vertical, however, when the scene is not vertical, the text is less
readable. Additionally, if we repeat the text many times or if we hang the text close to the
MCSs, the scene will get crowded, even if the number of MCSs that are visualized is small.
Finally, when zooming out, the text and textures become unreadable and the exploration
will become difficult. As we will analyze systems having a large number of MCSs (normally,
more than a hundred), having a unique color for each MCS is not feasible. According to [28],
the amount of colors being easily distinguishable lies between five and ten different colors.
For the same reason, textures are also not used.
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Figure 12 MCS view needs ordering.

7 Informal Expert Evaluation

An informal expert evaluation was performed on this approach by a group consisting
of specialists from the domains software engineering, interaction, engineering (robotics
department), and safety analysis, as well as information visualization. The aim of this
evaluation was to get as much feedback as possible to improve our approach for the need
and the questions of the experts of the different fields. The final feedback from this group
was used to enhance the visualization in various aspects. They observed and suggested the
following:

The cylinders are not smooth.
There are occlusions in the MCS view, because of the distortion.
The most important MCSs should be in the first level, so the placement of the important
and less important MCSs in the MCS view should be exchanged.
It is better to have the MCSs in order from inside to outside, so the user can get a feeling
about the importance degrees between them.
The MCSs should be sorted depending on their probabilities.
The color of the least important MCS should be green instead of blue in agreement with
standard dependability requirements.
Show clearly the connection between BEs and physical parts.
Have a bigger, clearer text font in the menu.
The interaction with the sliders are difficult.

As a conclusion, we should enhance our method based on this feedback.

8 Future Work

We plan to improve CaKES by taking the recommendations of the informal expert evaluation
into account. Especially, ordering the MCSs by their probabilities in each level level would
be beneficial. Figures 11 and 12 show the problem of unordered data. This would even
increase more, if the data is large. Further, we would like to apply our approach to other
display configurations, e.g., CAVE environments. Additionally, we will perform a user
study and examine the usefulness of CakES. improve the sliders usability. Because the
transparency caused delay in the interaction we need to change it to another function or
by using a transparency node. Therefore, we changed to the SORTED_OBJECT_BLEND

Chapte r 1
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transparency type. Finally, we want to test our approach using other examples from
ViERforES and related projects.

9 Conclusion

From the related work, we found that it is necessary to come up with new approaches and/or
visualizations to explore the results of safety analysis, because these results are complex
and/or large in nature. Additionally, the information about the geometrical location of
the events that cause failures to the system and that are most significant to the embedded
system is important. The CakES metaphor provides the user with the ability to explore
data with more than five different levels of focus and context: the model, a combination of
the MCSs’ Failure Probability, the components of each MCS, the BEs’ Failure Probability,
and the shape and the locations of the BEs in the model. Linking the views shows the
relationship of the data in a realistic interactive approach. This work draws immediate
attention to the most important MCSs of the embedded system that cause its failure. The
user (a safety analyst and/or an engineer) can apply this solution in different environments
such as standard monitor configurations, tiled wall, and the combination of standard and
stereo monitors [12]. To our knowledge, we introduced the first 3D representation for safety
analysis features, linking the existing knowledge of this domain with the engineering domain’s
knowledge reducing the time of searching for relevant information, and leading to a reduction
of human errors, effort, and cost. Additionally, CakES provides the ability of collaboration
between specialists in different domains (e.g., safety analyst and robotics engineer). Finally,
after gaining experience in either domain the specialists could efficiently work alone exploring
and judging how to choose the parts to maintain and the parts to replace depending on their
importance.
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