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Abstract
The temporal evolution of scientific data is of high relevance in many fields of application. Under-
standing the dynamics over time is a crucial step in understanding the underlying system. The
availability of large scale parallel computers has led to a finer and finer resolution of simulation
data, which makes it difficult to detect all relevant changes of the system by watching a video or
a set of snapshots. In recent years, algorithms for the automatic detection of coherent temporal
structures have been developed that allow for an identification of interesting areas and time steps
in unsteady data. With such techniques, the user can be guided to interesting subsets of the data
or a video can be automatically created that does not occlude relevant aspects of the simulation.
In this paper, we give an overview over the different techniques, show how their combination
helps to gain deeper insight and look at different directions for further improvement. Two CFD
simulations are used to illustrate the different techniques.
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1 Introduction

One of the big challenges in visualization is the depiction of data that changes over time.
Many interesting structures in fluid simulations owe their relevance to their temporal evo-
lution and the effects they have on a wider region of the system. Wake vortices that occur
behind aeroplanes, for example, originate from the aeroplanes wings and effect growing re-
gions behind the plane with increasing time. One way to investigate such evolution over
time is to watch a video of the data set or to take snapshots at relevant time steps. As many
applications are inherently three-dimensional, it is difficult to find a good camera position
to depict all relevant changes in an unsteady data set. A second problem is the fact that not
all relevant properties are known a priori. Hence, the movie might be perfect to investigate
large changing structures but smaller and more subtle phenomena might be overlooked or
occluded.

One way to ensure that relevant structures are depicted in the video, is to automati-
cally detect interesting phenomena beforehand using so called feature detection algorithms.
Many such algorithms use a predefined mathematical description of the phenomenon and
find corresponding structures in space and time. However, even for such basic structures
as vortices there exists no unique detection criterion but rather a large variety of vortex
measures. Structures so far unknown are likely to be missed as it is difficult to capture
anomalies by mathematical descriptions. Such structures might easily evolve in simulations
with conditions that did not exist before like abnormal weather patterns induced by climate
change.

In order to detect all these different relevant patterns, several approaches have been
recently proposed. Commonly, they identify coherent structures that are different from
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what would be considered ordinary in the given data set. Most such techniques are based
on concepts from information theory, a theory that is amongst other things concerned with
measures that quantify how much information a subset of data contains about the entire
system.

In the following we will give a brief overview over different techniques and use two dif-
ferent flow simulation data sets to show how they can be used in combination to explore
time-dependent data. As the different techniques are related to a large variety of applica-
tions, we refer the interested reader to the related work sections of the papers cited for each
technique.

2 Information-theoretic Data Analysis

Information theory is a vast field with a huge amount of measures to quantify information
contents. However, only few of them are applicable to structured time-dependent spatial
data. The concepts to come are based on the notion of causal states which can be thought
of as stochastic spatio-temporal patterns capturing the dynamics of a local neighborhood.
Hence, causal states are perfectly suited to investigate the dynamics in the applications
under consideration. Afterwards, we will investigate measures to quantify which causal
states feature unusual behavior, before we summarize the idea of ε-machines that can be
used to investigate the evolution of entire systems over longer time intervals.

2.1 Causal States
A powerful concept from information theory is the notion of causal states as introduced
by Crutchfield and Young [2]. A causal state is a stochastic spatio-temporal pattern that
describes a position’s or particle’s past and future (compare figure 1). The past comprises
all other positions that go directly or indirectly into the computation of the value at the
central position. The future is the set of positions whose value is influenced by the value
associated with the position or particle. A simulation’s set of causal states is computed from
the underlying data by dividing the occurring configurations into different classes according
to their past and future. Each resulting causal state is a set of past configurations along
with an associated distribution over possible futures that might occur after observing the
past. For more details on the theory and computational aspects of causal states, we refer
the interested reader to previous work [5]. In summary, the set of causal states summarizes
the dynamics in the data set and gives an overview over the short-term temporal evolutions
in it.

2.2 Eulerian vs. Lagrangian Frame of Reference
As shown in figure 1, the structural masks for past and future can be chosen differently.
If we choose these structures such that they are analog to the finite difference model used
in computational fluid dynamics (CFD), they have the shape of light cones as illustrated
in figure 1 (top) labeled EulerianLSC. This structure supports the Eulerian description of
motion, where the simulation domain is subdivided into cells and the evolution of values
at different cell positions is recorded over time. An alternative frame of reference is the
Lagrangian description of motion, where the flow is described using a number of particles that
change their position according to the velocity field. In the Lagrangian frame of reference,
the evolution of values associated with a certain particle is of interest. A simple example
of the two frames of reference is the investigation of a river. We can either observe a fixed
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Figure 1 Past and future configurations for the different measures of complexity.

position and monitor the velocity, temperature or pressure at this particular position or we
can put a small boat on the river and monitor the water properties beneath the boat that
follows the current. Both frames of reference are of high importance in CFD research and can
be supported by the causal states using different structures for past and future as illustrated
in figure 1. The light cone structures at top and center support the Eulerian frame of
reference and the one at the bottom the Lagrangian frame of reference. The cylinder shaped
structure depicted in the middle is a computationally faster version of the EulerianLSC,
which we found to give similar results as the full cone structure [4].

2.3 Local Statistical Complexity (LSC)
The goal of this work is to identify positions that form interesting structures in the data
set. The causal states we have identified so far subdivide the data set into different classes
of behavior. The next thing we need is a measure to quantify how interesting each class of
coherent behavior is. Commonly, it is very difficult to say what a user might be interested in.
If we assume that we are to show the user the unlikely events, the task becomes more feasible.
Local statistical complexity [7, 3] is an information-theoretic measure that tells for a given
causal state how much information from the past is required to predict the dynamics in the
local future. If we only need little information and it is very easy to predict the dynamics,
we found a pattern that is very common in the data set and the user probably knows that
it is in there anyway. However, if we detect a pattern that is hard to predict and therefore
unusual, it might be something that the user is interested in. Hence, by computing the local
information contents, local statistical complexity assigns each causal state and thus each
position in the (multivariate) data set a scalar value telling whether the local dynamics are
common or not. The resulting time-dependent scalarfield can easily be used to guide the
users attention or to compute a good position for the camera when generating a movie.

2.4 ε-Machines
In order to study the dynamics of the system as one, we need a depiction of the causal
states that provides information on how they interact with each other. Such a visualization
is provided by ε-machines [6]. ε-Machines can be thought of as directed graphs. The nodes
are the causal states of the system and the edges depict the transitions between them.
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Figure 2 Relevant structures in the delta wing data set: (left) Streamsurfaces indicating the
six vortices above the wing. (center) ε-machine of this data set with colored substructures. (right)
Physical positions corresponding to the colored subregions of the ε-machine.

For example, if a position in the data set changes from causal state A in time step t to
causal state B in time step t + 1, we add an edge linking causal states A and B in the
ε-machine and assign it weight 1. This procedure is repeated for all transitions in the entire
data set. The resulting structure can be thought of as a finite state machine capable of
simulating the dynamics in the given data set. Now that we have a model representing the
entire data, we can analyze its properties. For example, we can investigate strongly linked
components to detect coherent structures in space, find subsets with high LSC to identify
unusual formations or track features over time.

2.5 Areas of Application of the Different Techniques
In the preceding sections, we have summarized the concepts of causal states with their
application to Lagrangian and Eulerian flows, local statistical complexity and ε-machines.
Before we continue with the data analysis let us briefly look at the type of information the
different concepts can extract. Causal states form the building blocks of all the techniques.
They subdivide a given system into a set of stochastic spatio-temporal patterns. Based on
the structural mask of the causal state, we can decide if we want to investigate the data from
an Eulerian or Lagrangian point of view. The Eulerian view gives site specific information
and relates different positions to one another. The Lagrangian view supports the analysis
of particle evolution. Local statistical complexity can be used in both scenarios to identify
either positions or particles that feature extraordinary local dynamics and hence, indicate
interesting regions. When the dynamics of the entire system are of interest, ε-machines are a
useful tool. They depict all causal states occurring in a system and show how they interact.
Different enhancements can be used to focus on specific information such as the evolution
of coherent structures, stability of different phenomena or the interaction between different
structures in the domain.

3 Data Analysis

In the following we will apply the different analysis techniques to two different flow sim-
ulations and show how they can be used in combination to gain deeper insight into the
data.

3.1 Delta Wing
The Delta Wing data-set represents the airflow around a delta wing at low speeds with
an increasing angle of attack. Multiple vortex structures form on top of the wing due
to the rolling-up of the viscous shear layers that separate from the upper surface. These
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Figure 3 Evolution of the recirculating bubble in the delta wing data set: (left) ε-machine;
Selected nodes are colored in blue. (center) Corresponding positions in time step 650. The pink
frame indicates the area of the closeup. (right) Physical positions with corresponding causal states
in time steps 650, 670, 690, and 710.

formations of three vortices can be observed on either side of the wing (Fig. 2(left)). With
increasing angle of attack the intensity of the primary vortices (vortices nearest the symmetry
axis) increases until in time-step 700 a vortex breakdown occurs (bubbles at the end of the
vortices). The analysis of vortex breakdown is highly interesting, as it is one of the limiting
factors of extreme flight maneuvers. The grid consists of approximately 3.1 million positions.

Figure 2(center) shows the ε-machine of the data set. Several highly interconnected
structures were brushed and positions corresponding to these causal states are depicted
in figure 2(right) using isosurfaces of the same color. We can distinguish four different
structures: the causal states indicated by number one and colored in dark blue can be found
at the recirculating bubbles and at the tips of the wing, number two is the surrounding
domain, number three comprises positions forming an outer hull around the major vortices
and number four are the positions in the main vortex. If we follow the causal states in the
dark blue selection number one over time as depicted in figure 3, we see that the outline
perfectly follows the changing structures of the recirculating bubble. Hence, we are able to
detect and follow features without giving an a priori mathematical definition of the structure.
Moreover, as such structures consist of a set of connected causal states the description is
more flexible and we can easily adopt it to features whose values change over time, by
adapting the selection to strongly linked nodes in the graph.

Now that we have identified the different structures in the data set, we can look for
the unusual ones. Therefore, we can either color the nodes in the ε-machine according to
local statistical complexity as illustrated in figure 4(left) or we can render an isosurface
highlighting all positions with a LSC value above a given threshold. The colored ε-machines
reveals that the recirculating zones are the most complex structures. Additionally some
interesting formations occur in all other subparts but it is rather difficult to isolate additional
coherent structures. Looking at the isosurface in the LSC field (fig. 5), we can clearly
distinguish the minor vortices that are part of subset 2 in the ε-machine. Color coding the
ε-machine according to the number of edges per node, as shown in figure 4(right), reveals
that positions belonging to the major vortices and their hulls are very dynamic and often
change their state in a very unpredictable manner as there are many possible successors. To
investigate this behavior more closely, we will look at the Lagrangian representation of the
data.

Figures 6a and 6b show a number of pathlines started in front of the delta wing where
color indicates the norm of velocity or pressure at the given position. Comparing the two
color distributions, the images look very different. However, if we color the particle traces
using the LSC of the respective variables, the results become quite similar. This means that
particles feature an unusual evolution of values for velocity as well as for pressure. The two
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Figure 4 ε-Machine of the delta wing using different color codings: (left) local statistical com-
plexity of causal state and (right) number of edges per node.

(a) LSC > 10 (b) LSC > 14

Figure 5 Isosurfaces in the local statistical complexity field of the norm of velocity of the delta
wing data set.

close-ups focus on two different features. The left image depicts an area where particles
move from the area of influence of the major vortex into the one of the minor vortices. We
can see that the particle traces that first go underneath the spiralling major vortex feature
yellow color, i.e., high LSC, when close to the first vortex, go back to more usual temporal
dynamics when between both vortex structures and change to more unusual dynamics again
as they enter the minor vortices. The close-up on the right hand-side depicts particles that
change from the major vortex into the recirculating bubble. Here we see that the dynamics
are most unusual at the transition point and more predictable inside the structure.

In summary, we saw that ε-machines are well suited to identify major coherent structures
in a data set and their evolution over time. Moreover, they give an overview over the
distribution of different quantities such as LSC over the different structures. For a more
detailed analysis, we used the depictions of the Eulerian- and the LagrangianLSC. While the
EulerianLSC is good at giving holistic impressions of the relevant structure, LagrangianLSC
is better suited to investigate more subtle phenomena. Hence, all three techniques are a
powerful combination and can answer a large variety of questions.
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(a) Norm of velocity

(b) Pressure

Figure 6 Pathlines in the delta wing data set color-coded using (a) (left) norm of velocity, (right)
LagrangianLSC of norm of velocity and (b) (left) pressure and (right) LagrangianLSC of pressure.

3.2 Swirling Jet
The development of a recirculation zone in a swirling flow is investigated by numerical
simulation. This type of flow is relevant to several applications where residence time is
important to enable mixing and chemical reactions.

The unsteady flow in a swirling jet is simulated with an accurate finite-difference method.
The Navier-Stokes equations for an incompressible, Newtonian fluid are set up in cylindrical
coordinates assuming axi-symmetry in terms of streamfunction and azimuthal vorticity. All
equations are dimensionless containing the Reynolds number Re and the swirl number S as
defined by Billant et al. [1]

Re ≡ vz(0, z0)D
ν

S ≡ 2vθ(R/2, z0)
vz(0, z0) (1)

where z0 = 0.4D, D = 2R is the nozzle diameter and ν the kinematic viscosity, as dimen-
sionless parameters.

The flow domain is the meridional plane D = {(r, z) : 0 ≤ r ≤ R, 0 ≤ z ≤ L} with
R = 5D, L = 8D and D denoting the nozzle diameter at the entrance boundary. The flow
domain is mapped onto the unit rectangle which is discretized with constant spacing. The
mapping is separable and allows to a limited extent crowding of grid points in regions of
interest. The present simulation uses nr = 91 and nz = 175 grid points in radial and axial
directions. The boundary conditions are of Dirichlet type at the entrance section and the
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(a) LIC + EulerianLSC
(Cone)

(b) LIC + EulerianLSC
(Line)

(c) LIC + LagrangianLSC

Figure 7 Swirling jet: Relevant structures extracted using Eulerian- and LagrangianLSC.

outer boundary and at the exit convective conditions are imposed for the azimuthal vorticity.
The initial conditions are stagnant flow and the entrance conditions are smoothly ramped
up to their asymptotic values within four time units.

The depiction of time-dependent two-dimensional data is much easier than the visual-
ization of 3D data as it is free of occlusion. All structures can directly be presented using
texture-based techniques such as line integral convolution (LIC) and the movie approach.
However, these approaches have two disadvantages. Texture-based approaches do not dis-
tinguish between high relevance features and those that are induced by noise. Hence, subtle
irrelevant structures are overemphasized and it is difficult to distinguish between structures
and noise. An additional color-coding based on the norm of velocity or another field might
provide assistance in this direction, but the user has to know the relevant value ranges be-
forehand. Similar problems occur in the temporal domain, where no assistance on what is
relevant and what is not is provided. In the following, we will show how the previously
introduced methods can help detect interesting phenomena in space and time.

Figure 7 depicts the three different complexity measures applied to the swirling jet data.
In general the structures look very similar. This is due to the fact that they change little over
time and that the vortex structures remain at more or less fixed locations. Minor differences
are present at the central part of the jet and the region at the top of the image where water
leaves the domain. While the dynamics in the center are more unusual from an Eulerian
point of view, those at the upper parts feature higher LagrangianLSC. EulerianLSC (Cone)
marks large areas of the flow and the complexity slowly decreases at the boundaries. This
happens as the cones consider a large area of influence that gradually moves out of the
relevant structures at the boundaries. This more extended spatial pattern has its strengths
when it comes to the analysis of structures that are in itself not very interesting such as
vortex center, where the velocity is zero, but are relevant due to the surrounding flow. LSC
is perfectly able to capture vortex corelines as it takes neighboring values into account.
Hence, the unusual pattern is a stagnant center surrounded by stronger current. The two
line-based measures, EulerianLSC (Line) and LagrangianLSC are not able to capture such
structures, but nevertheless highlight the vortices as the surrounding flow is very unusual.
The more crisp boundaries of the last two measures are, however, better suited to detect
sharp boundaries than the conical shear region. Here the boundaries do not get washed out
as with EulerianLSC (Cone) but precisely mark the outer and inner boundary. In summary
we can say that all three techniques were able to detect the relevant structures and using
a combined presentation of LIC and LSC gives a better impression of the dynamics in the
data as relevant structures are immediately visible. Spatial patterns in the lower part of
the images that are close to noise are not highlighted by the LSC and hence, attract less
attention.
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Figure 8 Evolution of the ε-machine of the swirling jet (norm of vorticity): Time steps (0), 2,
(8), 56, 100.

Now that we have identified the unusual structures in space, we will focus on the temporal
component. To investigate the longterm evolution, we look at the ε-machine of a related
simulation as depicted in figure 8. The corresponding ε-machine depicted below looks like a
curling up snail-shell. We see a well pronounced outer arc and a lump-like inner set of nodes
that is highly interlinked. The color-coding of the nodes indicates the number of positions
per causal state in the different time steps.

An easier overview over the temporal dynamics can be gained when representing these
structures in a matrix view as depicted in figure 9. Nodes are aligned along the x-axis,
the y-axis encodes time and color indicates the number of physical positions that are in a
certain causal state at a given time. Two different features can be observed: First, some of
the nodes are present throughout almost the entire run and have quite constant intensity,
i.e., a stable number of corresponding positions. Second, around time steps 18 and 56 strong
fluctuations occur and many of the otherwise unused causal states appear.

When we look at the rendering of the data set at these noticeable time steps, we can
relate certain formations in the matrix to physical events. The flow starts with a resting
fluid and all positions feature a single causal state, the dark red node at the spirals end in
the machine and the corresponding dark red line in the matrix view. With increasing time,
the velocity increases and larger parts of the domain leave the steady causal state. During
this process (first eight time steps), the nodes in the outer arc of the machine become used
more frequently. In the matrix view, this corresponds to the lower part of the matrix where
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Figure 9 Transition probability in matrix view with logarithmic scaling.

the different vertical lines start, each representing a node in the outer arc of the ε-machine.
After this initial period, the flow becomes more dynamic and nodes in the center of the
machine are activated as well. Strongest dynamics can be observed around time step 56
(fig. 8(center)) when almost the entire inner part of the machine is active. Up to this time
step, a strong conical shear region has formed and ring-like vortex structures evolved. Both
the matrix view and the ε-machine show that the dynamics during this period are hard to
predict. The matrix view contains many fluctuations and in the ε-machine the inner lump
is active that is highly connected with transitions of very low probabilities. In time step 75
the flow becomes more predictable again. The inner lump is no longer active and only stable
patterns with few transitions in the outer arc occur in the flow. This stable evolution lasts
until the end of the simulation and time step 100 is given exemplarily in figure 8(right).

The LSC analysis in the first part revealed the different relevant structures in the data
set, namely the conical shear region and the ring-like vortex structures. However, the mea-
sures provided little information about the temporal distribution of the structures and their
evolution. This part can be better analyzed using the ε-machine and the representation
of the causal states. Thus, we can easily go to time steps in the simulation that features
an unusual formation in the matrix view of the causal state distribution, render the data
using a standard texture-based visualization algorithm such as LIC and highlight relevant
components using LSC. If the features are more dynamic, a similar analysis as used with
the delta wing based on the LagrangianLSC is possible to investigate the local temporal
evolution more closely. However, in this example we found the application of the ε-machine
combined with any of the LSC measures sufficient to extract all relevant structures over
time.

4 Conclusion

In this paper we gave a summarizing overview over recently introduced visualization tech-
niques that aim at the extraction of coherent structures based on information theory. So far,
causal states, local statistical complexity and ε-machines have always been introduced as
independent techniques. While LSC is a measure to extract coherent structures in a time-
dependent data set, ε-machines are applied to study the longterm behavior in unsteady
dynamics. In this paper we showed how the different techniques can be used in combination
to gain deeper insight into the data than can be provided by the individual approaches.

In the future we would like to extend the set of methods towards better investigation
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concepts for long-term correlations and effects. Moreover, the feature tracking ability of the
information-theoretic concepts requires more attention to uncover its full ability.
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