
Framework for Comprehensive Size and
Resolution Utilization of Arbitrary Displays
Taimur Khan, Daniel Schneider, Yasmin I. Al-Zokari, Dirk Zeckzer,
and Hans Hagen1

1 University of Kaiserslautern
67653 Kaiserslautern, Germany
{tkhan,d_schnei,alzokari,zeckzer,hagen}@informatik.uni-kl.de

Abstract
Scalable large high-resolution displays such as tiled displays are imperative for the visualization
of large and complex datasets. In recent times, the relatively low costs for setting up large display
systems have led to an highly increased usage of such devices. However, it is equally vital to
optimally utilize their size and resolution to effectively explore such data through a combination of
diverse visualizations, views, and interaction mechanisms. In this paper, we present a lightweight
dispatcher framework which facilitates input management, focus management, and the execution
of several interrelated yet independent visualizations. The approach is deliberately kept flexible to
not only tackle different hardware configurations but also the amount of visualization applications
to be implemented. This is demonstrated through a scenario that executes four interrelated
visualizations equally well on both a 5 PC tiled-wall and a single desktop. The key contribution
of this work is the ability to extend the tiled-wall to work with multiple applications for enhanced
size and resolution utilization of such displays.

1998 ACM Subject Classification I.3 Computer graphics, I.3.3 Picture and Image Generation

Keywords and phrases Large and High res Displays, Coordinated and Multiple Views, Human
Computer Interaction

Digital Object Identifier 10.4230/DFU.Vol2.SciViz.2011.144

1 Introduction

Innovations in large wall-sized displays have been yielding benefits to visualizations in industry
and academia: to cater to a larger audience, for more efficient collaborative work, to further
immerse the client in virtual reality applications, and to facilitate the visualization of large
and complex datasets by maintaining both overview and detail views simultaneously [5]. It
is these improvements that have led to the growth of large display implementations despite
the limitations in size of a single such display and the costs associated with them. The single
most influential factor in this progression has been the advent of tiled display systems - a
large display consisting of tiled smaller ones driven by clusters of off-the-shelf PC systems.
This leads to complete physical scalability over the eventual size of the display while keeping
the costs relatively low. These facts have led to a number of research projects that have
incorporated tiled displays and made it amongst the top ten visualization research topics in
recent times [15].

Effective exploration of truly large complex datasets is a quandary that researchers are
constantly trying to tackle in a number of domains. In the recent past various solutions
have been employed including multiple views, data aggregation, and filter techniques. There
is no single solution to this problem, as it varies depending on the nature of the domain,

© Taimur Khan, Daniel Schneider, Yasmin I. Al-Zokari, Dirk Zeckzer, and Hans Hagen;
licensed under Creative Commons License NC-ND

Scientific Visualization: Interactions, Features, Metaphors. Dagstuhl Follow-Ups, Vol. 2.
Editor: Hans Hagen; pp. 144–159

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz Zentrum für, Germany

http://dx.doi.org/10.4230/DFU.Vol2.SciViz.2011.144
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-26-2


T. Khan, D. Schneider, Y.I. Al-Zokari, D. Zeckzer, and H. Hagen 145

the dataset, and the experts involved. However, the work presented in this paper proposes
the use of coordinated multiple applications / views on tiled-wall displays as a means to
efficiently explore such datasets irrespective of the domain. The core idea is to divide the
tiled-wall into a large work area that utilizes a distributed rendering framework and several
other subsections that run coordinated applications. The emphasis of this work has been
on the management of different concurrent applications running on a tiled-wall through a
dispatcher framework that handles coordination and input management.

There are a number of tiled-display rendering frameworks available that vary in their
sophistication and as a consequence in their complexity and functionality as well [16, 22].
However, these choices were significantly reduced while imposing the following requisites: to
hide the display setup from the developer, to have the flexibility to execute on several display
configurations, and to keep the implementation relatively simple. These rationales assisted us
in choosing TileRenderer [5] as an appropriate rendering framework, as the other frameworks
examined (CAVELib [14], VRjuggler [3], Syzygy [19], Jinx [21], Chromium [9], NAVER
[11], and CGLX [6]) were quite heavy-weight with extensive APIs. The common theme
amongst the frameworks mentioned is that they provide extensive libraries for interactions,
interfaces, and virtual contents for virtual reality environments. It is due to the various
libraries required and the sheer quantity of modules involved that makes their usage highly
complex and heavy-weight. In comparison, Deller et al. formed TileRenderer with a small
and easy to use library that allows developers to shape or alter existing OpenGL applications
through the use of a few callback functions.

TileRenderer much like most existing such frameworks distributes the geometry and
material data to render a single applications graphics database on multiple rendering clients
while we aim to tackle multiple applications. This left three vital tasks for our dispatcher
framework to perform: inter-application communication, interaction, and focus management.
The only other viable solution would be to have a single scene with various viewports;
however, we choose to refrain from this approach to eliminate the possibility of artifacts
from one model appearing in the background of another and to a larger extent due to the
interaction limitations within these viewports.

The organization of this paper is as follows: examine related work (Section 2), discuss
the proposed dispatcher framework (Section 3), demonstrate it using a visualization case
study (Section 4), and lastly look at possible future work (Section 5). In the case study,
a visualization scenario is presented on two distinct hardware configurations that utilizes
our framework in order to execute four visualization applications simultaneously, handle
interactions between them, and manage input and focus remotely.

2 Related Work

In order to obtain a working prototype of the dispatcher framework, the following issue
needed to be addressed: distribute and synchronize input devices and applications over
the network. In this section, software solutions aimed at distributing input devices and
applications are examined for comparison.

2.1 Distributed Device Data
In the related context of collaborative environments, co-located and synchronous interactions
lead to a query of how a specific form of input supports an application realized on a shared
display [8]. APIs such as CAVELib [14], Syzygy [19], and VR Juggler [3] have embedded
support for collaborative interaction between remote applications. In the case of the latter,

Chapte r 11



146 Framework for Comprehensive Size and Resolution Utilization of Arbitrary Displays

this is in the form of a module called Gadgeteer, which distributes device data across machines
and clusters.

Instead of integrating such a heavy-weight architecture, producing our own streamlined
mechanism was preferred: switching the virtual focus and passing encoded/decoded Simple
DirectMedia Layer (SDL) [20] messages - see Section 3.4.

2.2 Distributed Applications
There are a few standards or technologies that are designed towards application integration.
Common Object Request Broker Architecture (CORBA) was a revelation in allowing devel-
opers to undertake distributed object-oriented programming to integrate diverse applications
into heterogeneous distributed systems [24]. Similarly, the High Level Architecture (HLA) [4]
has been instrumental in linking disparate simulations. Such frameworks provide rich func-
tionality at the expense of API complexity, so we crafted our own method: each application
registering for a message type with the dispatcher and processing it accordingly.

3 Framework Overview

The dispatcher framework presented in this paper works in conjunction with TileRenderer,
however, it can be quite easily ported to any distributed rendering software such as the ones
mentioned in Section 1.

First, TileRenderer was modified to work with Coin3D [12], an open source Open Inventor
API, instead of pure OpenGL. With the incorporation of scene graphs the environment
immediately improved significantly, providing two distinct advantages:
1. Improved rendering performance and optimal use of available hardware resources. Scene

graphs by nature maintain a "retained" model of the virtual world allowing additional
optimizations such as processing culling and drawing in parallel, and state sorting [18].

2. Introducing a high-level programming interface to eliminate low-level OpenGL commands
such as primitive drawing commands, state settings, and matrix manipulations [18].

The next vital step towards our goal of enhanced tiled wall utilization required the
ability to handle multiple applications. This led to the development of the dispatcher
framework that is explored further in the next sections. Its main functionality is to act as a
centralized message center where all messages are received and forwarded as needed. The
main components of this framework are depicted in the figure below and described thereafter.

NetMessages (see Section 3.1) are created by the applications and connected to the
Dispatcher via the MessageHandler (see Section 3.3).
Individual applications register for a message type at the Dispatcher (see Section 3.2).
Appropriate messages are forwarded by the Dispatcher only to the subscribers (see Section
3.2).
Input is fed directly to the application running TileRenderer, for all others we incorporate
the concept of Virtual Input - a special type of message that is an encoded SDL event
(see Section 3.4).

Figure 1 depicts the logical system structure of the dispatcher framework. The developer
may add several disjoint applications to the framework, however these applications need
to interface with the common MessageHandler for both interaction and communication
purposes. It is through the MessageHandler that the different applications are able to
communicate with the Dispatcher. Here, a particular communiqué is worth mentioning:



T. Khan, D. Schneider, Y.I. Al-Zokari, D. Zeckzer, and H. Hagen 147

MessageHandler

Application 1

MessageHandler

Application n

MessageHandler

Application 2

Dispatcher

...

...

Figure 1 Logical System Structure.

encoded SDL events that are used to pass the virtual focus, hence providing the ability to
interact with applications that may be running on a remote PC.

A centralized message center that is referred to as the Dispatcher is responsible for
receiving and forwarding messages if necessary. The communication itself is realized by using
sockets that are represented as black and white boxes in Figure 1. The distinction here is
in the communication direction: a black box stands for an output socket while a white box
stands for an input socket.

3.1 NetMessage
To be able to distinguish between different NetMessages, enumerated message types are used.
Alternatively, one might have encoded the message type in the text message itself leading to
a more complex process. Depending on the type of message, the processing of the message
text varies:

INVALID: An invalid message can not be processed. Non-blocking socket reading
may return NULL, if there is no value to read. To avoid NULL references, this type is
introduced.
DISPATCHER_REGISTRATION: To take part in the communication process, the
applications have to register at the Dispatcher by using this type of message.
DISPATCHER_MESSAGE_SUBSCRIPTION: To be informed when a certain type of
message is received at the Dispatcher, a client has to subscribe for it. This is done to
avoid passing all messages to all the clients - flooding.
DISPATCHER_VIRTUALFOCUSCHANGE: To force a change in which application
has the virtual focus, this type of message has to be sent.
VIRTUALFOCUS_RECEIVED: If an application receives this type of message, it has
received the virtual focus. In case of TileRenderer this implies processing the SDL_Events
captured by the input devices locally.
VIRTUALFOCUS_LOST: If an application receives this type of message, it has lost the
virtual focus. In case of TileRenderer this means to forward the SDL_Events captured
by the input devices to the Dispatcher.
SDLEVENT: This type of message signals that an SDL_Event is encoded in the
NetMessage. This is described further in Section 3.4.
QUIT: An application has to finish its current task and shut down.

There are a number of other application specific messages that can be added to exchange
specific information as required by the developer, examples of these are presented later in
the case study.

Chapte r 11



148 Framework for Comprehensive Size and Resolution Utilization of Arbitrary Displays

3.2 Dispatcher
In this section, we examine the logical structure of the Dispatcher (see Figure 2a) and the
flow of its main loop (see Figure 2b). The DispacherThread is at the heart of the logical
structure: it periodically invokes the main loop, polls the InputSocket, and maintains the
VirtualFocus and the Registry.

The DispatcherThread is an asynchronous thread that implements a non-blocking read by
continuously polling the InputSocket for an encoded character stream. This encoded stream
is used to fill a NetMessage data structure, where a key field is the enumerated message
type that determines how to process such a message. If the received message is of type
INVALID this means there is no data available and the next NetMessage is polled. This
action continues until there is valid data available on the socket - any message that is not of
type INVALID.

As soon as a valid message is received, it is checked at the Registry whether there are
subscribers for this type of message. If this is the case, the NetMessage is forwarded via the
OutputSocket of the corresponding registry entry. Depending on the message type, further
processing may be required:

DISPATCHER_REGISTRATION: If the received message is of this type, a new applica-
tion has to be registered. This is accomplished through a new application entry created
at the Registry that contains the OutputSocket connection to the remote application.
DISPATCHER_MESSAGE_SUBSCRIPTION: If such a message is received, it implies
that an application has subscribed for a new type of message at the Dispatcher. Whenever
a message with the corresponding type is received by the Dispatcher, it will be forwarded
to all its subscribers.
DISPATCHER_VIRTUALFOCUSCHANGE: This type of message forces the virtual
focus to switch to another application. The switching process is faciliated by the Virtual-
FocusServer, responsible for the release of the virtual focus from the previous application
and for setting it to a new one. In other words, input device data captured by SDL is
forwarded to the appropriate subscribing application.
QUIT: If a message of type QUIT is received, it is distributed to all registered applications
in order to initiate their respective shutdown.

If some other type of message is received by the Dispatcher, it is simply ignored as it
holds no significance for the Dispatcher itself.

3.3 MessageHandler
It has been shown earlier in Figure 1 that all applications or views use the MessageHandler
component to communicate with the Dispatcher. Here it is important to note that the current
configuration utilizes TCP for both input and output sockets, thus ensuring that events are
received in the same order as they occur. In this section we shall further examine the logical
structure of the MessageHandler as shown in Figure 3a and the typical behavior of a view as
in Figure 3b.

When a new application or view starts up, it initializes the MessageHandler. It is
the MessageHandler that communicates backwards to the registered applications or views,
through the use of callbacks. Thus, the first step is to register all callbacks at the Message-
Handler, which in turn registers itself automatically for the corresponding message types
at the Dispatcher. Once these callbacks are registered, both the InputThread as well as the
OutputThread are started.



T. Khan, D. Schneider, Y.I. Al-Zokari, D. Zeckzer, and H. Hagen 149

polls 

NetMessages

periodically

maintains

Registry

DispatcherThread

VirtualFocus 

Server

uses

InputSocket

Dispatcher

Application

pushes

NetMessages

OutputSocket

pushes NetMessages

(a) Logical structure of the Dispatcher

Dispatcher

Poll Message

[type ==

INVALID]

Forward message

to all subscribers

[type ==

DISPATCHER_

REGISTRATION]

[type ==

DISPATCHER_

MESSAGE_

SUBSCRIPTION]

Add an entry for

the Application at

 the Registry

true

Add a subscription for

 the Application for a

 given message type

true

[type ==

DISPATCHER_

VIRTUALFOCUS

CHANGE]

Release virtual focus

from previously 

focussed Application

true
Set virtual focus

to new Application

[type ==

QUIT]

Quit Dispatcher

true

false

true

false

(b) Main loop of the Dispatcher

Figure 2 Structure and flow of the Dispatcher.

The original thread continues with the execution of the applications main program loop.
While this program loop is in operation, some NetMessages may be put into the SendQueue.
Similarly, the InputThread continuously receives messages in a non-blocking way. Much
like the dispatcher functionality described in Section 3.2, as long as no valid messages are
received the InputThread simply waits. On the other hand, a valid message is pushed to the
CallbackManager as soon as it is received. If there are callbacks registered for this type of
message, the corresponding callback function is executed.

The VirtualFocusClient registers callbacks at the CallbackManager by default when
it starts up. Further, if a received message is of the type VirtualFocusChange then the
VirtualFocusClient is called and the virtual focus is handled automatically - by either grabbing
or releasing the virtual focus in question.

The OutputThread continuously polls the SendQueue. If there are messages available,
they are pushed to the OutputSocket and transmitted.

Input devices are physically connected only to the TileRenderer application, the extension
point in Figure 3b for this application is refined further in Figure 4. The TileRenderer
based application continuously captures input data from all its connected input devices as
SDL_Events. If an SDL_Event representing a special menu key is pressed, a message is put
into the SendQueue to switch the focus to the Menu View. If the SDL_Event represents the

Chapte r 11



150 Framework for Comprehensive Size and Resolution Utilization of Arbitrary Displays

Application

pushes NetMessages calls

pushes

 NetMessages Callback 

Manager

InputThread

SendQueue

VirtualFocus

Client

InputSocketOutputSocket

MessageHandler

polls

NetMessages

maintains

polls

NetMessages

pushes

NetMessages

OutputThread

initializes and 

starts threads registers

(a) Logical structure of the MessageHandler

Initialize

MessageHandlerApplication

Start up Register Callbacks

Receive 

NetMessage

Send 

NetMessage

Start InputThread 

and OutputThread

Put NetMessage 

into SendQueue

Execute 

callback functions

[received a message]

Program Loop

Extension Point

(b) Typical behavior of a view during runtime

Figure 3 Structure and behavior of the MessageHandler.

special quit key, in this case the ESC key, a message of type Quit is put into the SendQueue. If
the TileRenderer holds the virtual focus, it processes these SDL_Events locally. Alternatively,
if it does not hold the virtual focus then the SDL_Events are encoded and put into the
SendQueue, so that the remote application with the virtual focus can process it.

3.4 Virtual Input: Encoding/Decoding of SDL Events
The structure of an SDL_Event is shown in Figure 5. This is a streamlined structure as only
the SDL_Event types which are used by our system are listed, further general SDL details
are found on their Wiki documentation [20]. It is prominent from the above-mentioned
diagram that each SDL_Event type has its own specific structure:

SDL_MouseButtonEvent: this SDL event type signalizes a mouse button event and
is followed by the fields: button, state, x, and y. These fields encode the following
information: button encodes the mouse button index, state is either set to SDL_PRESSED
or SDL_RELEASED indicating if the button is pressed or released, x holds the x
coordinate relative to the window, and y holds the y coordinate relative to the window.
SDL_MouseMotionEvent: this field signalizes a mouse motion event and is followed by
the fields: state, x, y, xrel, and yrel. These fields encode the following information: for
state, x, and y refer above, whereas xrel and yrel hold the relative motion in the x and y
screen directions respectively.



T. Khan, D. Schneider, Y.I. Al-Zokari, D. Zeckzer, and H. Hagen 151

TileRenderer

Execute

Program Steps

[MenuKey

 pressed]

[QuitKey

 pressed]

Put into SendQueue:

Reset virtual focus

to Menu

true

Handle Input

Capture SDL

Events from

Input Devices

Put into SendQueue:

QUIT Message

true

[Has Virtual

 Focus]
true

Encode SDL Event

Put into SendQueue:

Encoded SDL Event

false

MessageHandler

Figure 4 Local and remote processing of SDL_Events.

SDL_MouseButtonEvent

SDL_MouseMotionEvent

SDL_UserEvent

SDL_KeyboardEvent

scancode: Uint8 sym: SDLKey mod: SDLMod unicode: Uint16

SDL Event Type 

Name

SDL Event Type

Structure

button: Uint8 state: Uint8 x: Uint16 y: Uint16

state: Uint8 x: Uint16 y: Uint16 xrel: Sint16 yrel: Sint16

code: int data1: void* data2: void*

state: Uint8 keysym: SDL_keysym

Figure 5 Structure of an SDL_Event.

SDL_UserEvent: this field refers to a user defined input device and is followed by the
fields: code, data1, and data2. These fields encode the following information: code is a
user defined event code, whereas data1 and data2 are user defined data pointers that
may be utilized as required.
SDL_KeyboardEvent: this field refers to a keyboard event and is followed by the fields:
state and SDL_keysym. The state field can hold either the value SDL_PRESSED or
SDL_RELEASED indicating if a key is pressed or released. The SDL_keysym structure
on the other hand is composed of several further fields: scancode, sym, mod, and unicode.
The scancode field is normally not utilized; it contains a hardware-dependent scan-code
returned by the keyboard. The sym field is the SDL-defined constant that represents the
selected key and is often used while programming to inquire if a certain key has been
pressed or released. The field mod stores the current state of the keyboard modifiers and
unicode stores the unicode character corresponding to the key if it is enabled.

In the case of TileRenderer having virtual focus, these SDL events are processed locally.
On the other hand, when another application has the virtual focus we encode these SDL
events into a character string and send them to that application via the Dispatcher. It is
possible to encode and then later decode these SDL events as knowledge of its datastructure
is known beforehand. Once decoded, a new SDL event is created with the received values
and pushed into the SDL event queue of the receiving application, hence the concept of

Chapte r 11



152 Framework for Comprehensive Size and Resolution Utilization of Arbitrary Displays

Virtual Input. The only exception to the above process was the SDL_UserEvent, where
data1 and data2 are user defined data pointers. In our scenario (see Section 4), a space
mouse was added as a user defined device. Here, knowledge of the Rotation and Translation
datastructures utilized by the space mouse handler assisted in encoding and decoding data1
and data2 respectively.

4 Case Study: Safety and Security Analysis using CakES

The framework presented in this paper has been used to produce a safety visualization
called CakES [1] that was designed to assist software engineers in the safety and security of
embedded systems. This visualization system consists of multiple applications or views that
visualize the physical model, the minimal cutsets, and the basic events of the fault tree. Our
framework facilitates interaction amongst these different views, allowing the user to have
different levels of focus and context simultaneously.

A brief introduction to these safety analysis topics is listed below with references for
further readings:

Fault Trees (FTs) are tools in system safety, reliability, and availability studies [13].
Basic Events (BEs) are the lowest-level influence factors in the FT and they are repre-
sented as the leaves. The hazard that is examined in the fault tree is called the top event
which is at its root [10].
Minimal Cut Sets (MCSs) are unique combinations of BEs that can cause the top event
to occur [2].

In addition to the NetMessages described in section 3.1, the following application specific
messages were added to the framework:

MCS_SELECTION: A minimal cut set was selected.
MCS_BE_PROBABILITY: A basic event’s probability is sent.
HOLDER_BOUNDS_CHANGED: Min and Max bounds changed.
HOLDER_VALUES_CHANGED: Value of a holder changed.

4.1 Multiple Applications

The CakES system utilizes four distinct applications or views interconnected through the
framework presented in this paper. The reason to employ these views as independent
applications is two-folds: 1) give programming freedom to the developer, and 2) avoid
different viewports in the same scene to avoid artifacts and interaction limitations. These
views are described further in the following subsections.

4.1.1 Menu View

The menu (see Figure 6) functions as the primary interface between the other views that are
discussed further in Sections 4.1.2, 4.1.3, and 4.1.4. It allows the user to switch the virtual
focus between these different views. Additionally, it displays vital statistical data about the
selected MCS : size, probability, and details of its BEs. Further, the user may reorganize the
MCSs in the MCS View according to his preferred criteria by using either the sliders or radio
buttons provided.



T. Khan, D. Schneider, Y.I. Al-Zokari, D. Zeckzer, and H. Hagen 153

Figure 6 Menu View.

4.1.2 Model View

This view is employed to exhibit the physical parts of the RAVON model as shown in Figure
7a. The model depicted is of the Robot RAVON (Robust Autonomous Vehicle for Off-road
Navigation); further details can be found on the AG Robotersysteme website [17]. The
TileRenderer application drives this view as it is to be displayed on a stereo monitor in
the configuration described in Section 4.2.1 and on the larger area of the tiled wall as in
the configuration described in Section 4.2.2. Interaction mechanisms that allow the user to
explore the model further are zooming, rotation, and translation. Further, it utilizes the
framework by registering for an MCS_SELECTION, so that once an MCS is selected in the
MCS View (see Section 4.1.3) appropriate data is received. As a consequence of this data
exchange, the RAVON model is rendered transparent and the relevant BEs are rendered
opaque (see Figure 7b).

4.1.3 MCS View

This view uses a Cake metaphor [1] to visualize the MCSs, their probabilities, and their BEs
(see Figure 8). A text file containing information about the BE distribution is generated

Chapte r 11



154 Framework for Comprehensive Size and Resolution Utilization of Arbitrary Displays

(a) Before (no MCS selected) (b) After (MCS selected)

Figure 7 Model View: Before and after receiving MCS data through Dispatcher.

(a) Before Virtual Picking (b) After Virtual Picking

Figure 8 MCS View: Before and after Virtual picking.

using the ESSaRel tool [7] and is used in the intial formation of the Cake (see Figure 8a).
The Cake consists of three separate levels depicted by red, yellow, and blue cylinders. Each
cylinder represents an MCS and within each MCS there are a certain number of BEs. These
three levels correspond to a range of fault probabilities that may also be adjusted via the
Menu sliders. Further, each level uses saturation to distinguish between probabilities that lie
in the same range.

The user is provided interaction mechanisms quite similar to the Model View 4.1.2. In
addition, the concept of Virtual Picking was utilized to handle virtual interactions within this
view, as there was no real focus available - the user interacts through remote devices that send
relevant data through our framework. Virtual Picking is accomplished by tracking relative
mouse movements, drawing a ray through the current mouse position and the far clipping
plane, and selecting the intersecting shape. When invoked, it makes an MCS transparent
and one can see the BEs within (see Figure 8b). Information regarding the selected MCS
and its BEs are then sent to the other views interested in them through the Dispatcher.

4.1.4 BEs View
The BEs View (see Figure 9) is directly related to the Model and MCS Views of Sections
4.1.2 and 4.1.3. In this view, the hardware components related to the BEs within the selected
MCS in the MCS View (Figure 8b) are displayed in more detail. Currently, there are no
interaction mechanisms in this view.



T. Khan, D. Schneider, Y.I. Al-Zokari, D. Zeckzer, and H. Hagen 155

Figure 9 BEs View.

Node

TileRenderer

Thread

Input 

Processing

Input DeviceInput DeviceInput DeviceInput Device

PC 1

Dispatcher

Cake View

BE View

Menu View

Virtual Input 

Processing

Other 

Threads

PC 1
Stereo

Display
Display

Figure 10 Desktop Configuration.

4.2 Hardware Configurations
The framework presented in this paper is highly flexible in terms of hardware configurations.
A text file holds key information for each application such as: the name of the application,
the port number associated to it, the PC host name, and a keyword indicating whether it is
virtually focussable. Depending on the desired configuration, the developer would need to
carry out the following two tasks for each application:
1. Provide the correct host name in the configuration file
2. Supply appropriate orientation and dimension for each view

For the CakES visualization, two different configurations were employed. The first is
a two-monitor single-PC solution (see Section 4.2.1), while the second is a nine-monitor
five-PC tiled-display solution (see Section 4.2.2).

4.2.1 Desktop
This configuration consisted of a standard monitor with 1920x1200 pixels and a Zalman
Trimon passive-stereo monitor with a resolution of 1600x1050. The desktop PC ran on a
Windows XP operating system and had the following key components: 2.60 GHz AMD
Phenom™ 9950 Quad-Core Processor, 3.25 GB of RAM, and an NVIDIA GeForce GTX
280 graphics card. An additional user defined interaction device, the 3Dconnexion Space
Navigator was added. This system was mainly used for development purposes and its physical
layout is depicted in Figure 10.

The stereo monitor was used to display the physical parts of the RAVON model as shown
in Figure 7. On the other hand, the standard monitor was used to tile the Menu, BEs, and
Cake Views next to each other as in Figure 11.

Chapte r 11



156 Framework for Comprehensive Size and Resolution Utilization of Arbitrary Displays

Figure 11 Menu, BEs, and MCS Views tiled on a standard PC.

TileRenderer

Display Display Display

DisplayDisplayDisplay

Display Display Display

Node

Node

Anyscreen 

Master PC

Input 

Processing

Input DeviceInput DeviceInput DeviceInput Device

Node

Node

Anyscreen 

Slave PC 2

Node

Node

Anyscreen 

Slave PC 1

Dispatcher

Menu View

PC 1

Virtual Input 

Processing

Cake View

BE View

PC 2

Virtual Input 

Processing

Figure 12 Tiled Wall Configuration.

4.2.2 Tiled Wall
A 3x3 tiled wall with five computers was implemented as depicted in Figure 12. This image
is based on the ‘schematic view on a typical 3x3 tiled display’ figure presented by Deller et al.
[5], it is modified to incorporate our dispatcher framework. As shown, the tiled wall consists
of nine displays controlled by five network-connected PCs. Each computer ran on Windows
XP and had the following hardware configuration: Intel® Core™ Dual Core @ 2.4 GHz, 4
GB of RAM, and two GeForce 7950 GX2 graphics cards. Each screen of the tiled wall has a
resolution of 2500x1600 pixel, making the total resolution of the wall 7500x4800. Further,
there is an upper and a lower separation of the Tiled-Wall:

The upper six displays are managed by TileRenderer - it uses three PCs for this task,
where one of them acts as the Master-PC and controls the other two Slave-PCs via the
network.
The lower three displays are controlled by the remaining two PCs. One of them runs
the Dispatcher framework and displays the Menu View on the lower-left screen of the
Tiled-Wall. The other is used to visualize the BEs and MCS Views on the remaining two
screens.

All the above mentioned applications are controlled by the same input devices, which
are physically connected to the Master-PC of the TileRenderer. This configuration allows
the Master-PC to process input events locally when the Model View application has the
virtual focus. On the other hand, it forwards input data via the network to PC1 and PC2



T. Khan, D. Schneider, Y.I. Al-Zokari, D. Zeckzer, and H. Hagen 157

Figure 13 Real-Time Tiled-Wall Scenario.

when one of those two applications has the virtual focus. A screen shot of these applications
interacting with one another is illustrated in Figure 13.

5 Conclusion and Future Work

In this paper we have presented a light-weight yet flexible Dispatcher framework that
facilitates the simultaneous execution of multiple inter-communicative visualizations built on
Open Inventor scene graphs.

TileRenderer was the preferred tiled-display-rendering framework due to its simple yet
robust rendering framework. As seen in the case study, it was responsible for rendering
the Model View across a large section of the display area. However, the approach was kept
flexible enough to let developers employ their own preferred distributed rendering framework.
Additional stand-alone visualizations such as the Menu, the BEs View, and the MCS View
were rendered separately on three of the tiled-wall displays. All of the above-mentioned visual
applications had to be registered with the Dispatcher in order to effectively communicate
with one another and to appropriately handle the remote input devices via our Virtual Input
implementation.

Through the CakES case study that has been realized using our framework, we tackled
our primary goal of efficient tiled-display size and resolution utilization by rendering four
different applications and interacting between them. Further, we have been able to develop a
system to assist model designers and safety analysts in the context of analyzing embedded
system. These applications are highly adaptive, as the developer can easily switch the scene
graph database files and still use all our interaction mechanisms. Additionally, there is
complete freedom to the number of applications that may be incorporated - it is a simple
matter of adding them to the configuration file and providing appropriate display parameters.

The resulting CakES solution worked remarkably well, with the exception of an initial
minor glitch - once blending was triggered in the Model View, interaction with the applications
through the Dispatcher slowed down significantly. After studying this issue further we realized
that this was an Open Inventor performance issue due to inadequate volatile memory. Once
we increased the RAM from one gigabyte to four, interaction through the Dispatcher became
virtually real-time.

In the future, we plan to extract input capture from Model View and have device capturing

Chapte r 11



158 Framework for Comprehensive Size and Resolution Utilization of Arbitrary Displays

modules independent of the applications themselves. This would provide us with the ability
to easily integrate suitable virtual reality interaction devices and for all the applications
to handle interaction via our virtual input mechanism. Currently, only one application is
integrated with a distributed rendering framework, we would like to add it to all of them,
providing the operator a choice of which application he would like to be tiled. Alternatively,
the MCS View may be tiled across a larger area and elements of the BEs View may be
explored interactively. Also, projecting a low resolution image onto the bezels of the model
view would improve the presentation of the model and the distinction between the different
applications (see [5]).

Finally, another possible enhancement is to implement the Message Handler via interrupts
or callbacks instead of polling threads to save CPU cycles. It is planned to conduct a
quantitative measure of the framework’s performance, once the Dispatcher is improved.

Acknowledgements
I would like to thank the members of both the Computer Graphics and Visualization Group
and the Robotics Research Lab in Kaiserslautern, as well as the members of the International
Research Training Group (IRTG) for their cooperation. The IRTG is supported by the
German Research Foundation (DFG) under contract DFG GK 1131. Furthermore, the
authors wish to acknowledge Daniel Steffen from the German Research Center for Artificial
Intelligence for his constructive comments and assistance with the TileRenderer framework.
This work was supported by the German Federal Ministry of Education and Research
(BMBF), under contract number 01 IM 08003, through project ViERforES [23].

References

1 Y. Al-Zokari, T. Khan, D. Schneider, D. Zeckzer, and H. Hagen. CakES: Cake Metaphor
for Analyzing Safety Issues of Embedded Systems. In Hans Hagen, editor, Scientific Vi-
sualization: Interactions, Features, Metaphors., volume 2 of Dagstuhl Follow-Ups, pages
1–16, Wadern, Germany, 2011. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
http://dx.doi.org/10.4230/DFU.Vol2.SciViz.2011.1.

2 T. Bedford and P. Gelder. Safety and Reliability : Proceedings of the ESREL 2003 Confer-
ence, Maastricht the Netherlands, 15-18 June 2003. Taylor & Francis, 2003.

3 Allen Bierbaum, Christopher Just, Patrick Hartling, Kevin Meinert, Albert Baker, and
Carolina Cruz-Neira. VR Juggler: A Virtual Platform for Virtual Reality Application
Development. In VR ’01: Proceedings of the Virtual Reality 2001 Conference (VR’01),
page 89, Washington, DC, USA, 2001. IEEE Computer Society.

4 Judith S. Dahmann, Frederick S. Kuhl, and Richard M. Weatherly. Standards for Simula-
tion: As Simple As Possible But Not Simpler The High Level Architecture For Simulation.
Simulation, 71(6):378–387, 1998.

5 Matthias Deller, Sebastian Thelen, Daniel Steffen, Peter-Scott Olech, Achim Ebert, Jan
Malburg, and Jörg Meyer. A Highly Scalable Rendering Framework for Arbitrary Display
and Display-in-Display Configurations. In Hamid R. Arabnia and Leonidas Deligiannidis,
editors, CGVR, pages 164–170. CSREA Press, 2009.

6 Kai-Uwe Doerr and Falko Kuester. CGLX: A Cross-Platform Cluster Graphics Library.
http://vis.ucsd.edu/mediawiki/index.php/Research_Projects:_CGLX; Online; Ac-
cessed 23-January-2010.

7 ESSaRel. Background information — ESSaRel, 2002. http://www.essarel.de/
background/background.html; Online; Accessed 30-December-2009.

http://dx.doi.org/10.4230/DFU.Vol2.SciViz.2011.1
http://vis.ucsd.edu/mediawiki/index.php/Research_Projects:_CGLX
http://www.essarel.de/background/background.html
http://www.essarel.de/background/background.html


T. Khan, D. Schneider, Y.I. Al-Zokari, D. Zeckzer, and H. Hagen 159

8 Otmar Hilliges, Lucia Terrenghi, Sebastian Boring, David Kim, Hendrik Richter, and An-
dreas Butz. Designing for collaborative creative problem solving. In C&C ’07: Proceedings
of the 6th ACM SIGCHI conference on Creativity & cognition, pages 137–146, New York,
NY, USA, 2007. ACM.

9 Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D. Kirch-
ner, and James T. Klosowski. Chromium: a stream-processing framework for interactive
rendering on clusters. ACM Trans. Graph., 21(3):693–702, 2002.

10 B. Kaiser, C. Gramlich, and M. Foerster. State/event fault trees - safety analysis model for
software-controlled systems. Reliability engineering & systems safety, 92:1521–1537, 2007.

11 KIST Imaging Media Research. IMRC Wiki: The NAVER framework. http://www.imrc.
kist.re.kr/wiki/NAVER_Framework; Online; accessed 23-January-2010.

12 Kongsberg SIM AS. Coin3D: 3D Graphics Developer Kit. http://www.coin3d.org/;
Online; Accessed 27-January-2010.

13 N. Limnios. Fault Trees (Control Systems, Robotics & Manufacturing Series). Wiley, John
& Sons, 2007.

14 Mechdyne. CAVELib Application programmer interface (API). http://www.
mechdyne.com/integratedSolutions/software/products/CAVELib/CAVELib.htm; On-
line; Accessed 23-January-2010.

15 Tao Ni, Greg S. Schmidt, Oliver G. Staadt, Mark A. Livingston, Robert Ball, and Richard
May. A Survey of Large High-Resolution Display Technologies, Techniques, and Applica-
tions. In VR ’06: Proceedings of the IEEE conference on Virtual Reality, pages 223–236,
Washington, DC, USA, 2006. IEEE Computer Society.

16 Bruno Raffin and Luciano Soares. PC Clusters for Virtual Reality. In VR ’06: Proceedings
of the IEEE conference on Virtual Reality, pages 215–222, Washington, DC, USA, 2006.
IEEE Computer Society.

17 RAVON. AG Robotersysteme: Ravon, 2009. http://agrosy.informatik.uni-kl.de/
en/robots/ravon/; Online; Accessed 30-December-2009.

18 RealityPrime. Scenegraphs: Past, present, and future. http://www.realityprime.com/
articles/scenegraphs-past-present-and-future; Online; Accessed 29-January-2010.

19 Benjamin Schaeffer and Camille Goudeseune. Syzygy: Native PC Cluster VR. Virtual
Reality Conference, IEEE, 0:15, 2003.

20 SDL: Simple DirectMedia Layer. A cross-platform multimedia library. http://www.libsdl.
org/cgi/docwiki.cgi/; Online; Accessed 15-December-2009.

21 Luciano P. Soares and Marcelo K. Zuffo. JINX: an X3D browser for VR immersive simu-
lation based on clusters of commodity computers. In Web3D ’04: Proceedings of the ninth
international conference on 3D Web technology, pages 79–86, New York, NY, USA, 2004.
ACM.

22 Munjae Song, Seongwon Park, and Yongbin Kang. A Survey on Projector-Based PC Cluster
Distributed Large Screen Displays and Shader Technologies. In Hamid R. Arabnia, editor,
CGVR, pages 153–159. CSREA Press, 2007.

23 ViERforES. Virtuelle und Erweiterte Realität für höchste Sicherheit und Zuverlässigkeit
von Eingebetteten Systemen, 2009. http://www.vierfores.de/; Online; Accessed 02-
February-2010.

24 S. Vinoski. CORBA: integrating diverse applications within distributed heterogeneous
environments. Communications Magazine, IEEE, 35(2):46–55, Feb 1997.

Chapte r 11

http://www.imrc.kist.re.kr/wiki/NAVER_Framework
http://www.imrc.kist.re.kr/wiki/NAVER_Framework
http://www.coin3d.org/
http://www.mechdyne.com/integratedSolutions/software/products/CAVELib/CAVELib.htm
http://www.mechdyne.com/integratedSolutions/software/products/CAVELib/CAVELib.htm
http://agrosy.informatik.uni-kl.de/en/robots/ravon/
http://agrosy.informatik.uni-kl.de/en/robots/ravon/
http://www.realityprime.com/articles/scenegraphs-past-present-and-future
http://www.realityprime.com/articles/scenegraphs-past-present-and-future
http://www.libsdl.org/cgi/docwiki.cgi/
http://www.libsdl.org/cgi/docwiki.cgi/
http://www.vierfores.de/

	Introduction
	Related Work
	Distributed Device Data
	Distributed Applications

	Framework Overview
	NetMessage
	Dispatcher
	MessageHandler
	Virtual Input: Encoding/Decoding of SDL Events

	Case Study: Safety and Security Analysis using CakES
	Multiple Applications
	Menu View
	Model View
	MCS View
	BEs View

	Hardware Configurations
	Desktop
	Tiled Wall


	Conclusion and Future Work

