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Abstract
We introduce a novel method for the generation of fully adaptive streak surfaces in time-varying
flow fields based on particle advection and adaptive mesh refinement. Moving least squares
approximation plays an important role in multiple stages of the proposed algorithm, which adap-
tively refines the surface based on curvature approximation and circumradius properties of the
underlying Delaunay mesh. We utilize the grid-less Moving Least Squares approximation method
for both curvature and surface estimation as well as vector field evaluation during particle advec-
tion. Delaunay properties of the surface triangulation are guaranteed by edge flipping operations
on the progressive surface mesh. The results of this work illustrate the benefit of adaptivity
techniques to streak surface generation and provide the means for a qualitative analysis of the
presented approach.
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1 Introduction

Providing data for the evaluation of aerospace prototypes, industrial mixing processes, and
many other applications of flowing liquids or gases is the result of more and more accurate
simulations in Computational Fluid Dynamics (CFD). Analysis of the vector fields of these
flow simulations is heavily dependent on the range of available visualization methods, as
the information gathered from standard methods like direct volume rendering is limited
and of neglectable expressive power when applied globally. This emphasizes the need for
sophisticated feature-based visualization techniques, which has been the topic of active
research for a number of years, leading to the definition of integral curves and surfaces.
Generation and rendering of these surfaces in simulated flow fields is a well-established
technique in the field of vector field visualization, whose homogeneous visual properties
allow an in-depth analysis of the behavior of connected components of flow fields. While
efficient methods to adaptively generate such surfaces in stationary vector fields and some
generalizations like adaptive time surfaces are state-of-the-art, there are no known methods for
fully adaptive streak surface generation as presented in this work. An important application
of surface feature extraction is the visualization of separation topology in three-dimensional
data sets what, due to the absence of adaptive streak surfaces, has been limited to the
stationary vector field case so far. In comparison to surface definitions where merely the trace
of a specific single particle or curve is tracked, as is the case in path surfaces, the definition
of streak surfaces is capable of visualizing phenomena such as smoke and dye-advection,
efficiently showing the movements of distinct, continuously seeded regions over time. In
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practice, they may be used to visualize material boundaries in mixing processes or, more
general, a time-varying analogon of the stationary three-dimensional separatrix definition,
leading to a non-stationary form of three-dimensional vector field topology. Therefore, streak
surfaces form the basis for topological volume segmentation in time-dependent vector fields.
The major challenge of adaptive streak surface construction is the high complexity of
mesh refinement arising from the new time dimension of the well-known advancing front
definition introduced by Hultquist [11]. In every time step of a time-varying velocity field,
not only a front of a few stream lines or particle traces needs to be examined, but the whole
surface has to be analyzed with respect to adaptivity measures. In this work, we solve the
problem of adaptive streak surface integration with the help of Moving Least Squares (MLS)
approximation for particle advection as well as surface estimation and refinement based on
Delaunay meshes. MLS facilitates accurate surface integration independent of any underlying
computational meshes that may be created by the specific tool used for CFD simulation. In
fact, the presented test data sets are mesh-less and obtained from a grid-less Finite Pointset
Method (FPM) [18], whose interpolant is also based on MLS. Delaunay meshing helps to
approximate surface particle densities and provides a basic triangulation for visualization.
The challenge of time coherent surface generation and rendering is overcome by surface
particle integration, adaptive particle tracing, and look back methods.
The work presented in this paper has the following main contributions to the community of
vector field visualization:

Fully adaptive grid-less streak surface generation
Introduction of MLS into the generation of time-varying integral surfaces
Integral surface refinement by time-dependent Delaunay based particle density adaptation

In section 2 we give an overview of the related work that has been published in the field
of surface generation and Delaunay meshing. We present the concept of streak surfaces in
section 3. The mathematical definition of the Moving Least Squares approximation method
is given in section 4. Section 5 describes the steps of our algorithm for adaptive streak surface
generation in detail. Numerical examples are provided in section 6. Section 7 concludes this
paper and gives an outlook on future work.

2 Related Work

Adaptive (stream-) surface generation in stationary flow fields was introduced by the work of
Hultquist [11] in 1992, whose well-known advancing-front concept has led, among other things,
to the development of sophisticated methods for path surface integration in time-varying
flow fields [9, 17]. The work by Krüger et al. [13] represents the most direct way of streak
generation and visualization, namely by the use of large particle systems being influenced by
the surrounding flow field. The absence of a triangulated mesh does however limit these point
sets to discontinuous representations. Operations such as surface intersections are not possible
without further effort. Funck et al. [8], Cuntz et al. [6], and Weiskopf et al. [19] introduced
work on smoke surfaces and particle level set advection, focusing on the visualization of
non-adaptive streak surface like structures. The first of these papers triangulates the particle
system for visualization purposes and is therefore closer to our method, as far as visualization
techniques are concerned.
Examples for MLS based surface approximation in the context of surface mesh reconstruction
and refinement from point clouds are given by the work of Alexa et al. [1] and Mederos et al.
[14].
Delaunay type mesh refinement of static point sets has been the topic of multiple papers such
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Figure 1 Triangulations of a non-adaptive streak surface in three consecutive time steps.

as the work of Chew et al. [5] and Chen et al. [4]. Both approaches use incremental mesh
construction by either building a constrained Delaunay triangulation or by transforming
common Delaunay algorithms to a new parametric space. Contrary to this work, the nature of
our problem allows us to make use of an existing time-varying triangulation, thus eliminating
the need for complete mesh reconstruction and facilitating the incorporation of multiple
Delaunay triangulations into the particle insertion process, as discussed in section 5.4.

3 Streak Surface Definition

A streak surface is the locus of a set of (connected) particles that are advected by a time-
dependent flow field f : R3 × R→ R3. The integral surface (1) defines a streak surface S at
time t with particles emerging from points c(s) at an univariate seeding curve c : [0, 1]→ R3.
Individual instances of particles are identified by their age parameter r ∈ [0, t].

S(r, s, t) = c(s) +
∫ t

t−r

f(S(r − (t− x), s, x), x)dx . (1)

In contrast to stream surfaces, streak surfaces are generally no longer tangential to the flow
field and need to be updated or refined at their whole range during integration. Due to
the additional parameter r, streak surfaces describe a truly three-dimensional complex in
time and space, whereas stream surfaces are only two-dimensional in space. This increase of
complexity prevents the use of classic approaches to adaptivity such as the concept introduced
by Hultquist.
Figure 1 illustrates a simple example of (1) with a sequence of triangulations of three
consecutive time steps of a streak surface. At the curve c shown in blue, 15 particles are
seeded at equidistant positions. The problem exhibited by non-adaptive approaches can be
identified as the far too uniform particle distribution, preventing the accurate and smooth
representation of folds. One has to note, that in the discrete case a single streak surface
consists of a number of consecutive static surfaces obtained in different time steps of the
surface. Depending of the time resolution of the data set, coherency between consecutive
surfaces might be low, producing a rough, jagged animation during rendering of the streak
surface.

4 Moving Least Squares Approximation

Least Squares fitting is a common approach to data approximation, providing a method
to construct functions that minimize the squared distance to a given set of data points
(xi, fi). If a local approximation of the data is desired, the classic Least Squares scheme may
be generalized to the Weighted Least Squares method by the introduction of a weighting
function ω, see [16]. A polynomial function f with given degree at a point of evaluation x in
a Weighted Least Squares sense is defined by (2).∑

i

ω(x, xi)||f(xi)− fi||2 → min . (2)
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The scheme obtained from moving the Weighted Least Squares over the domain of the
data set to yield a continuous approximation of the field, is called Moving Least Squares
approximation. Solving (2) for the coefficient vector ax of a polynomial f(x) = aT

x · b(x)
with a given base vector b(x) leads to a linear system of equations (LSE). For a linear,
two-dimensional base vector b(x) = (1 x y)T it takes the following form:∑

i

ω(x, xi)

1 x y
x x2 xy
y xy y2

 · ax =
∑

i

ω(x, xi)

1
x
y

 fi . (3)

Computational complexity of this LSE is drastically increased by degree or dimension elevation
of domain or range of the data set. So does quadratic three-dimensional approximation
already require solving a 10× 10 system once per dimension of fi.
Accuracy and level of detail in the reconstructions created by MLS are strongly dependent
on the properties of the weighting function used. Common exponential weighting functions
of the general form

ω(x, xi) = a · e
||x−xi||

2

r2 + b

for example, yield different results for a varying smoothing length r. Hereby, an increased
smoothing length leads to less detailed but smoother reconstructions. The appropriate choice
of r is detailed in the following sections whenever we make use of MLS.

5 Surface Generation

5.1 Algorithm Outline
Our algorithm to generate adaptive streak surfaces consists of five basic stages that are
repeated for every time step of surface integration:
1. Generate new particles at the rake and insert them into the existing mesh
2. Concurrently advect all particles of the surface to their new positions
3. Restore the Delaunay property of the surface mesh by edge flipping
4. Determine curvature of the surface at every surface particle by MLS approximation
5. Adapt resolution by insertion and advection of new particles in current and previous time

steps

These steps are described in detail in the following.

5.2 Particle Birth
Let t ∈ [t0, t1] be the current time step. The basic representation of a streak surface usually
consists of a set of particles that are advected through the flow field, being seeded at a
predefined curve known as rake. Based on a user-defined resolution, we release a set of
particles at equidistant positions along the rake. While the given resolution does directly
influence the number of seed positions at the rake, the magnitude of the velocity field
indirectly governs the number of particle rows that are generated and advected at the rake.
If n particles with a seed distance of d are seeded at the rake, where the distance traveled
in one time step at an arbitrary position on the rake is l := ||f(.)|| ·∆t, we release m = l

d

particles at every seeding position, leading to a total of n×m new particles.
Let T be a given triangulation in time step t of the particles released in [t0, t). We link the
n×m new particles based on their neighborhood in parameter space (s, t) and connect this
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Figure 2 The triangulation of the recently seeded particles is linked to the old mesh. Note
that the old mesh is still located at its position in time step i− 1 until corresponding particles are
advected.

new triangulation to the first row of particles in T , as shown in Figure 2.
Consequently we obtain a fully connected particle-based streak surface, whose triangular mesh
is used for surface approximation, refinement and visualization of the surface, as explained
in the following sections. As a result, particles on a streak surface do not only carry spatial
information, but provide data about the (s, t) parametrization of the surface, that can be used
for the generation of texture coordinates, as well as normal and neighborhood information. It
is important to point out, that the basic definition, computation and visualization of a streak
surface does not require the availability of connectivity information between particles. As
described in the next sections, the triangulation created during particle birth is an auxiliary
construct to reduce the computational effort for surface approximation and particle density
calculations. While it only represents a linear approximation of the true streak surface, it
can additionally be used for basic surface visualization.

5.3 Particle Advection
Particle data of time step t− 1 has to be propagated to the new time step t and particles
need to be advected to their respective new positions in t according to the appropriate
velocity values obtained from vector field evaluation. To compensate possible artifacts in
poorly time resolved data sets or data that has a high curvature in time, we take special
care during vector field approximation. While adaptive Runge-Kutta approximation schemes
can determine the step size or order of integration k used during particle advection, the
necessary interpolation between adjacent time steps that needs to be performed, if k > 1
often introduces artifacts if the degree of interpolation is too low, as in (4). Higher order
integration such as cubic Hermite interpolation, taking into account f(p, t− 2), f(p, t− 1),
f(p, t), and f(p, t+ 1) for particle advection from t− 1 to t double the number of required
field evaluations but tend to yield more accurate surfaces.

f(p, t− 1 + j

k
) =

(
1− j

k

)
f(p, t− 1) + j

k
f(p, t) (4)

where f(p, t − 1 + j
k ) is the velocity of a particle with position p and integration order k

during the j-th step of advection from t− 1 to t. This scheme subdivides the time interval
[t− 1, t] into k time intervals with linearly interpolated velocity fields. To reach a sufficient
accuracy, we determine k for every particle individually by comparison of angular deviation
between velocity vectors resulting from consecutive vector field evaluations. This particle
advection scheme reduces path deviations in data sets with large time steps and improves
visual coherence. A mapping of the order of integration k onto a streak surface is shown in
Figure 3. As individual particles from surfaces of consecutive time steps are matched in our
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Figure 3 A simple streak surface is color-mapped with the integration order k ∈ [1, 16]. Order of
integration is mapped to the hue spectrum from 0◦ to 240◦, with red being the maximum. As can
be seen, even adjacent particles might need a highly different number of vector field evaluations.

data structure, storing not only the final position of an advected particle, but reusing the k
intermediate ones obtained from field integration during streak surface visualization facilitates
the rendering of smooth surface animations even in data sets with low time resolution. In
these computations, the magnitude of the smoothing length r of the weighting function used
in MLS during vector field evaluation is inversely related to the point density of the data set.
This point density is usually either an output value of the CFD simulation itself, or has to
be determined on the fly by k-nearest neighbor computations or similar methods. We use
MLS for vector field approximation because of its independence of a computational grid and
because it is used as interpolant by the simulation that generated our test data sets.
To speed up the advection process, particle locality is used for efficient data set caching and
parallel particle advection. We impose a rectangular grid on the surface clustering particles
into independent sets and delegate the according computations from (4) to different CPU
cores.
If a particle of the surface leaves the boundaries of the data set during advection, the particle
itself and adjacent mesh elements are deleted, efficiently trimming the streak surface.

5.4 Delaunay Meshing
As mentioned before, the increased dimensionality of streak surfaces has a direct influence on
the adaptivity methods that can be used. Hultquist’s approach of inserting stream lines at a
single curve-like consistent front cannot be generalized to the insertion of streak lines at a
one-dimensional front of the streak surface. The two-dimensional character of the generalized
front definition for streak lines requires the insertion of refinement structures on arbitrary
positions of the surface. This fact virtually rules out the exclusive refinement along time-
and streak lines of the surface, as most interior refinement points would miss these grid lines.
Thus, we use a Delaunay type progressive mesh to define criteria for particle insertion.
Various work on the construction of Delaunay type surfaces from point clouds has been
published over the years. For example, Gopi et al. [10] use a projective local Delaunay mesh
for surface reconstruction. The underlying particle concept of streak surfaces suggests the
use of point cloud reconstruction methods to obtain a surface mesh. However, the evolving
property of the streak-surface mesh facilitates topologically correct (re-) meshing in a certain
time step based on connectivity information given by prior time steps as well as triangle,
edge, and node matching over multiple time steps.
The mesh structure of the previous time step generally loses its Delaunay properties as
particles are advected, if corners of adjacent triangles describe different paths through the
flow field, as illustrated in Figure 4. Since we want to estimate particle distributions using
circumcircle properties for mesh refinement in a later step of the algorithm, it is important
to have a well conditioned triangulation avoiding skinny triangles. Therefore, we choose
to impose Delaunay’s mesh properties on the triangulation of our surface, as the minimal
circumradius property is a direct indicator of particle density. The availability of a mesh
on the current particle set greatly simplifies construction of a curved Delaunay mesh, since
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Figure 4 A uniform grid of a non-adaptive streak surface gets deformed, producing ill-conditioned
triangles of bad aspect ratios.

Figure 5 Edges of a tetrahedral structure on the curved surface mesh cannot be flipped without
changing the underlying topology and creating holes.

this fact makes it possible to use local edge flipping instead of global mesh construction
algorithms such as line-sweep. Moreover, reusing the previous particle connectivity allows
matching of non-flipped edges as well as triangles of different time steps.

An edge of a mesh is flippable, if it is shared by two triangles and its flipped counterpart
is not already part of the mesh , see also [7]. Let e = (b, c) be a flippable edge shared by
the two triangles ∆1 = (a, b, c) and ∆2 = (d, c, b). We flip e, if the sum of the angles α at a
and β at d exceeds π, resulting in ∆′1 = (a, d, b) and ∆′2 = (c, d, a), satisfying local Delaunay
properties. This flipping procedure, having been shown to converge for curved surfaces by
Dyer et al. [7], is repeated until the mesh contains no more flippable edges. If non-flippable
edges of tetrahedral structures of the curved triangle mesh remain after all flippable edges
have been swapped, see Figure 5, we collapse the corresponding tetrahedra by removing the
particle at its tip. Such tetrahedra generally represent noise in the form that they indicate a
particle that evades the path of the streak surface and has earlier been inserted at a wrong
position. After this step, our surface mesh is usually Delaunay conform, with exceptions to
rare special cases of non-flippable edges. We avoid insertion of additional particles on the
surface to obtain a mesh that fully satisfies Delaunay properties as proposed in [7] to reduce
the resulting computational overhead that is needed to advect the new particles through the
vector field. In these special cases we allow our mesh to be locally non Delaunay, as the
according triangles are commonly not badly shaped due to the fact of mesh deformation of
large parts of the surface in every step of integration.

5.5 Curvature Approximation

We determine local geometric complexity of the streak surface by measuring its local curvature.
Curvature at a point p of a bivariate surface S is described by the maximal and minimal
curvature of the curves on S that result from intersecting S with planes through p containing
the surface-normal vector at p. These curvature values are called principal curvatures and
will be used in the following as an indicator of whether to refine the mesh of the surface.
For adaptive particle insertion we need to know both a parametric form of the surface, as
well as its local curvature at every particle of the surface. Instead of handling these tasks by
two different approximation techniques, we use one weighted Least Squares approximation
to both obtain a valid surface representation as well as to calculate the according local
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Figure 6 Two-dimensional illustration of a MLS curve approximation, MLS curve is shown in
red (left) and three-dimensional analogon with a particle neighborhood-level of one (right).

Figure 7 Maximum absolute curvature as hue color-map on a streak surface. Red color shows
regions of high curvature, blue indicates planar sections.

curvature. We compute local surface approximation at a particle p based on particle offsets
from a local tangential plane with vertex normal np as shown in Figure 6, resulting in a
new set of projected data points (p′i = (xi, yi), di) that are approximated by a scalar-valued
bivariate quadratic MLS. If the surface is to be approximated at a particle p, we assemble
surrounding particles pi by a neighborhood search along the edges of the mesh up to a
neighborhood distance of two, as the bivariate quadratic LSE that has to be solved for a
MLS approximation requires the data of at least six non-collinear points. The smoothing
length r of the weighting function used during MLS approximation is chosen in a way, such
that w(p, p′j) = ε with p′j being the neighboring particle that is farthest away from p. This
MLS surface representation defines every point on a surface by its orthogonal distance to the
tangential plane.
The eigenvalues of the Hessian of this polynomial approximation represent the principal
curvatures c1 and c2. The Hessian of a bivariate scalar function takes the form of a 2× 2
matrix, which can easily be calculated using a parametric form of the approximating MLS
polynomial [12]. We use the maximum absolute curvature c = max(||c1||, ||c2||) as a measure
of local feature size, which has proven to lead to good results in other applications, see [2].
Figure 7 shows a simple streak surface colored according to maximum absolute curvature.
While Moving Least Squares for surface approximation is computationally more expensive
than to simply use the piecewise linear representation of the surface described by the mesh
itself, it both reduces errors in the particle insertion step, as explained in the next section
and gives a more accurate notion of the surface curvature, by filtering small noise due to its
approximating behavior.

5.6 Particle Insertion
The general notion of adaptivity is to sample a surface according to its geometric complexity,
meaning that regions of high curvature need more samples to be represented accurately than
regions that are almost planar. In the context of parametric or implicit surface modeling,
curvature-dependent particle density control is often handled by minimization of an energy
function [15]. In our case the availability of a correct coarse mesh as well as the absence of a
gradient-definition requires different adaptivity measures.
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The crucial step of streak surface adaptivity is the correct insertion of new particles at
positions throughout the surface. The most accurate way of adaptively inserting particles is
the insertion of a particle in the appropriate first time-step t0, whenever an ill-conditioned
particle-density is detected at an arbitrary later time step t1. This method does however
require the computationally inefficient advection of all newly inserted particles from t0 til t1.
We therefore prefer to insert new particles directly into the evaluated time step or few of its
predecessors.
Given the computed curvature at a particle p, see section 5.5, we are able to decide whether
to insert new particles in the immediate neighborhood of p. Figure 4 demonstrates, why
refinement purely along time- and path lines is not desired in the context of streak surfaces,
since right angles between such lines are not maintained over time and such a skewed global
coordinate frame is not suitable for balanced control of particle densities. We therefore use
the local feature size in form of the curvature at a position p to directly describe the desired
maximal allowed distance between two neighboring particles:

rc = b

max(||c1||, ||c2||)

where b controls the impact of curvature on the degree of mesh refinement and is commonly
chosen be a value between zero and one. Circumradii of all triangles adjacent to p are
compared to rc, if a circumradius exceeds this threshold, and is larger than a pre-defined
minimum triangle size, a new particle is inserted on the according triangle. We commonly
limit the minimum triangle size to a size a few magnitudes smaller than the data set
resolution to avoid numerical instabilities and oversampling. As our underlying mesh is
mostly Delaunay conform and therefore satisfies the smallest circumcircle property, the
circumradius of triangles is a valid measurement of particle density at a specific region.
Particle insertion itself poses the question of how to find the optimal position of insertion.
On planar Delaunay meshes, one would choose the circumcenter of a triangle as location
and handle point insertion in a simple way: Remove all triangles, whose current circumcircle
includes the newly placed point and connect vertices of the resulting polygon with the new
point. The resulting mesh again satisfies the Delaunay property. However, on curved surfaces
this method yields several problems. Location of the circumcenter of obtuse triangles is
not trivial, as the circumcenter is located outside of the triangle, thus requiring a search
on neighboring triangles and even performing intersection operations, if the surface bends.
Moreover, the point-in-circumcircle property does not work as expected from the planar
case for both the common projected-circumcircle and the circumsphere definition on curved
surfaces, if the point is not inserted on the piecewise linear representation of the surface.
These considerations motivate our approach of particle insertion.
Once a triangle with a too large circumradius is detected, the according new particle is
either inserted at the centroid of this triangle or on one of its edges. More precisely, we
subdivide the longest edge of the triangle if the circumcenter is located outside of the triangle
or the triangle itself is a boundary element of the surface. The problem caused by an invalid
insertion of particles at the centroid of a boundary triangle is depicted in Figure 8, where
the quality of the aspect-ratio of the boundary triangle is degraded significantly. These two
types of particle insertion lead to well conditioned triangles with smaller circumcircle size as
soon as the Delaunay property of the mesh is restored in the mesh at the next time step.
This insertion scheme yields adaptive streak surfaces but tends to introduce errors in

the particle insertion positions that lead to further surface deviations during advection,
even if newly inserted particles are offset according to the local MLS approximation of the
surface as computed in the previous step of our algorithm. To avoid these artifacts, we



H. Obermaier, M. Hering-Bertram, J. Kuhnert, and H. Hagen 269

Figure 8 Circumradius of the triangle adjacent to the boundary edge (red) increases after particle
insertion, as the boundary edge cannot be flipped to produce better conditioned triangles. Such
cases are avoided by splitting of boundary edges.

introduce the concept of looking back at a history of lb > 0 previous instances of concerned
triangles or edges. If a triangle (edge) tri1 is bound to be refined in time step t1, we find
matching triangles (edges) in time steps ti ∈ [t1 − lb + 1, t1 − 1] and insert particles into
according triangles in ti, until either step t1 − lb+ 1 is reached, the curvature of the surface
at the corresponding position in ti falls below a given minimum, or no matched preceding
triangle exists and cannot be created by edge flips. These m newly inserted particles describe
an ordered sequential set of points [p0, pm−1] located on the linear representation of the
individual surfaces [St1−m, St1 ]. As these particles need to lie on the same path line, positions
of particles pi, with 0 < i <= m− 1 are offset according to the position of pi−1 after one full
time step of particle advection.
Our tests have shown, that this leads to a great reduction of noise artifacts in later time steps,
that are caused by deviating paths of particles that were inserted at poorly approximated
positions.
Curvature as well as circumradius properties can be used for the removal of particles as well.
In the case, that a particle p has a sufficiently small curvature, i.e. the surface is almost
planar, and all adjacent triangles have small circumradii, it is valid to remove the concerned
particle without losing any details in the surface representation. In realistic applications
such as the test data sets shown in section 6 such situations do hardly occur.

6 Results

In the following we present numerical examples of adaptive streak surface integration in
different data sets generated by a point based, grid-less CFD simulation [18]. The first
data set consists of about 25.000 particles simulating flow around a cylindrical obstacle
with ellipsoidal profile. Dimensions of the obstacle as well as velocity of the fluid were
chosen specifically to yield a high Reynolds number, leading to a three-dimensional Von
Kármán vortex street and a low time resolution. The resulting disturbed flow structures have
optimal properties to observe the quality of our adaptive streak surface integration approach.
Figure 10 depicts six non-consecutive time steps of adaptive streak surface integration in this
first data set. Near the vortex structures, the surface mesh has a high curvature and needs
to be sampled accordingly, as described in sections 5.5 and 5.6. Highly twisted and folded
surface structures in the Von Kármán vortex street demonstrate the robust refinement of
our approach. The surface in the last time step shown consists of around 110.000 particles.
The second data set contains a spherical obstacle, approx. 26.000 flow particles and fluid
flow with a Reynolds number close to the one from data set one. Both data sets have a
low resolution in the time dimension to demonstrate the robustness of artifact avoidance
by utilization of our look back strategy. In contrast to the first data set, absence of a
distinguished direction on the obstacle leads to aperiodic, intensively folded flow structures,
see Figure 11. To give an impression of how accurately surfaces generated by the adaptive
integration scheme and the Delaunay mesh refinement method introduced in this work
represent the "real" surface, we show comparisons between high-resolution non-adaptive
meshes and adaptive surfaces in the two Figures 14 and 15. The former illustrates how the
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(a) (b)

Figure 9 (a) Error statistics for different levels of adaptivity and look back. (b) Chart of the
number of triangles (in multiples of 1.000) in the first 22 time steps of the streak surface shown in
Figure 10. Dark blue refers to the adaptive streak surface, light blue to the non-adaptive streak
surface, that has an approximately identical number of triangles at step 22.

Table 1 Exemplary measurements of total streak surface generation times in milliseconds for 25
time steps of data set one with 20× parallel particle advection. Final particle number is approx
40.000 for both approaches.

Method Advection Delaunay Adaptivity
non-adaptive 1.768.470 2.865 0

adaptive, 0.002, 2 lb 790.890 1.155 9.081

folds of a high-resolution mesh are correctly refined and represented by an adaptive surface
with only half as many triangles as an equivalent non-adaptive surface. Efficient distribution
of particle densities can be observed in Figure 15, where the adaptive version of a streak
surface clearly has a particle distribution of better quality than a non-adaptive surface with
an equal number of points.
Statistical error measurements are shown in Figure 9a. The measured two-sided surface mesh
error is computed with respect to (5).

E(S1, S2) = 1
|P1|+ |P2|

∑
p∈P1

d(p, S2) +
∑
q∈P2

d(q, S1)

 (5)

where S1 and S2 are the meshes of two streak surfaces at the same time step with according
point sets P1 and P2. It is important to note that, as d computes the minimal distance of
a point to a surface mesh, error values for the same point sets usually differ if the mesh
is changed. While small features in the error curves of Figure 9a may therefore be caused
by flipped edges, the overall benefit gained from reducing the minimal surface resolution
and increasing the number of look back steps is clearly visible. The plotted exemplary
measurements were taken at different time steps of a data set that was scaled to fit into a unit
cube and represent absolute per particle error when comparing the according surface to a high
resolution ground truth streak surface. The shown measurements represent 15 consecutive
time-steps of a surface evolving under extreme stretching and turbulence conditions - a
representative scenario that requires reliable surface reconstruction techniques to produce
accurate streak surfaces.
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Figure 10 A sequence of six time steps in a three-dimensional Von Kármán vortex street produced
by test data set number one. The extracted surface is colored with respect to time, with purple
showing the particles generated at time t0 and red being used for new particles. Details of twisting
folding, and stretching are visible.

In addition to the direct impact of our adaptivity approach on particle counts and
distributions, the reduced number of particles does influence the computation times of
surfaces as well. We show a representative graph of particle number development in a surface
generated in the ellipsoidal data set in Figure 9b. The triangle count for the adaptive surface
shows exponential growth as long as the surface is completely inside the domain of the
data set and is not trimmed. Exponential growth is stopped as soon as parts of the surface
leave the data set. Integrals of the depicted curves are directly proportional to the time
spent for total particle advection. From the given graph, it is clearly visible that adaptive
streak surfaces require the advection of a larger number of particles to reach the same final
number. Due to better distribution of particle densities, an adaptive surface with the same
number of particles generally represents a better approximation of the real surface. The
previously mentioned assumption about particle advection time is verified by measurements
during surface integration. The total time spent for adaptivity measures is a combination of
computation times for surface and curvature approximation as well as particle insertion. In
our tests only a percentage of less than 2% of the total surface generation time was consumed
by the adaptivity method, even if particle advection was performed 20 times in parallel.
As the adaptive integration scheme discussed in section 5.3 commonly requires multiple
evaluations of the vector field for every particle, the amount of time dedicated to particle
advection is much higher than the one used up by mesh refinement, thus noticeably speeding
up the integration process. Further improvements on this performance can be made by
parallelization of the mesh refinement algorithm. While in our tests generation of adaptive
surfaces was in average 4 times faster than creation of equivalent higher resolved surfaces,
when using 10× parallel particle advection, it is difficult to obtain meaningful absolute time
comparisons (cf. Table 1), as speed-up is highly dependent on the method of vector field
approximation and flow complexity. In general, the relative speed-up gained by adaptive
surface generation is proportional to the complexity of flow and field evaluation methods.
For insightful visualization of generated surfaces, we utilize several known visualization

techniques. Four of these techniques are displayed in Figure 12. While the first picture
showing a standard particle based visualization of the surface is not capable of conveying the
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Figure 11 Transparent rendering of a non-adaptive and an adaptive streak surface with the
same seeding resolution extracted from test data set number two. The spherical obstacle produces
aperiodic disturbances.

Figure 12 One time step of streak surface integration shown in four different visualization
techniques for surface rendering. Techniques are: Surface particles rendered as shaded points,
wire-frame triangulation, solid transparent triangulation, and texture mapping showing streak line
structures.

impression of a homogeneous surface, it gives an insight into adaptive particle distributions.
Particle density and connectivity information are shown by a direct wire-frame representation
of the Delaunay construct as used in the second frame. Shading and texturing techniques
are applied to the solid Delaunay triangulation based surface visualizations. We use a simple
axis-based triangle pre-sorting approach for transparent surface rendering as shown in the
last two frames. Texturing allows the rendering of streak- or time-line like parts of the
surface, former is shown in frame four.
These renderings of streak surfaces have in common, that the Delaunay construct used for
density estimation is used directly for surface visualization, leading to a simple and fast
visualization allowing the analysis of adaptivity properties. For high quality surface rendering,
one would typically use a smooth interpolation of the surface point set and a much finer
resolved triangle grid to get rid of fine discontinuities of the simple linear representation.
To illustrate the use of the methods introduced in this paper in a real application, we present
an example of an adaptive evolving mesh being equivalent to a streak surface without a
seeding rake in Figure 13. The application is concerned with stirring of a fluid at high
temperature and consists of a cylindrical barrel and two rotating wheels with four attached
mixing poles. The extracted mesh segments the fluid in a stirring simulation into two separate
volumes, giving an impression of how our approach to adaptive streak surfaces can be used
to separate regions of different flow as done in vector field topology.
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Figure 13 Refinement mesh in a stirring simulation.

Figure 14 Triangulations of an adaptive (top) and a high-resolution non-adaptive streak surface
passing a spherical obstacle. Triangle counts in the time step shown evaluate to approximately
20.000 and 45.000. The adaptive surface yields a highly diverse particle density, while accurately
representing fold-like features.

Figure 15 Triangulations of an adaptive (top) and a non-adaptive streak surface with approxi-
mately 110.000 triangles each. The non-adaptive version shows less optimal particle distributions
and regions with low mesh resolution.
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7 Conclusion

In this paper we have introduced an approach to fully adaptive streak surface integration.
Our method is based on MLS approximation for the evaluation of the vector field and surface
as well as curvature approximation. For particle insertion we utilized the circumradius
properties of a Delaunay type evolving mesh, which is restructured after every time step to
restore Delaunay properties. The distinction between two types of particle location during
insertion avoid the generation of triangles with bad aspect ratios. A look back strategy
during particle insertion further reduces approximation errors.
The results shown in section 6 demonstrate the accurate, robust, and fast integration of
adaptive streak surfaces generated by our method. Moreover we have presented results in
a real world application of a mixing process, illustrating the suitability for practical flow
analysis and topology-based visualization.
The methods introduced in this work are portable to other fields of visualization where
moving or evolving meshes are concerned, such as the concept of unsteady flow volumes
presented by Becker et al. [3]. Common approaches to the extraction of vector field topology
of fluid flows [20] based on the use of stream surfaces as three-dimensional separatrices in
the stationary case can be generalized to vector field topology methods in non-stationary
fields by the application of streak surfaces for segmentation of time-varying volumes.
Future work on the topic of adaptive streak surface construction may include the utilization
of improved spatial clustering for further parallelization of the surface generation process as
well as the integration of vector field singularities into the streak surface generation process.
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