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Abstract
Background music is often used to generate a specific atmosphere or to draw our attention to
specific events. For example in movies or computer games it is often the accompanying music
that conveys the emotional state of a scene and plays an important role for immersing the
viewer or player into the virtual environment. In view of home-made videos, slide shows, and
other consumer-generated visual media streams, there is a need for computer-assisted tools that
allow users to generate aesthetically appealing music tracks in an easy and intuitive way. In
this contribution, we consider a data-driven scenario where the musical raw material is given
in form of a database containing a variety of audio recordings. Then, for a given visual media
stream, the task consists in identifying, manipulating, overlaying, concatenating, and blending
suitable music clips to generate a music stream that satisfies certain constraints imposed by
the visual data stream and by user specifications. It is our main goal to give an overview of
various content-based music processing and retrieval techniques that become important in data-
driven sound track generation. In particular, we sketch a general pipeline that highlights how
the various techniques act together and come into play when generating musically plausible
transitions between subsequent music clips.
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1 Introduction

The computer-assisted generation of sound tracks for given visual media streams has signific-
antly gained in importance. For example, video games of these days are often accompanied
by music of high artistic value and excellent sound quality coming close to sound tracks of
movies. However, opposed to film music, the sound track underlying a video game has to
constantly adapt to the respective scene of the game and to interactively react to the player’s
input.

When developing a high-quality computer game, composers are asked to create specific
music clips that not only match the various scenes and characters of the game, but also
account for transitions within and across different scenes. To this end, the music needs to
contain various transition points that allow for smoothly connecting and bridging different
passages at specified or even arbitrary points in time. Even though there may be no real
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Figure 1 Sound track generation by concatenating existing audio clips.

alternatives to manually creating music in particular when artistic aspects are given priority,
such compositional approaches to sound track generation are costly and labor extensive.
Furthermore, the resulting music is highly specialized, and the system has a slow response
time when transitions are possible only at specific pre-defined positions.

As an inexpensive alternative, one may revert to parametric approaches, where the
background music is synthesized based on parametric models. Here, the free parameters
allow for specifying, adjusting, and triggering sound events and may directly be controlled
by scene annotations, by the moving objects within the scene, or by a user’s input. However,
even though offering fast response times, such parametric approaches may be aesthetically
questionable from a musical point of view.

The main focus of this work follows a third approach. To obtain appealing sound
tracks, one strategy is to simply play back an existing music recording that is in line with
a given visual data stream. Reverting to an audio database comprising high-quality music
recordings, the idea of such a data-driven approach is to identify and play back music clips
that correspond well to the visual scenes while accounting for user specifications. However, a
simple concatenation of audio clips may result in unpleasant and abrupt transitions between
subsequent audio clips. Therefore, one main challenge consists in the creation of musically
smooth and euphonious transitions, which are as pleasant as possible to the listener’s ear,
see Figure 1.

In this contribution, our main goal is to describe a possible pipeline for such a data-driven
sound track generation system while giving an overview of the necessary data processing
and retrieval techniques, see Figure 2. In the following, we exemplarily consider an online
scenario, where a visual data stream, which consists of a sequence of changing scenes that
are associated to certain categories (e. g., moods), is given. Furthermore, a comprehensive
music database that contains audio recordings of various genres, styles and moods serves as
basis for the sound track to be generated. These recordings are assumed to be annotated
with respect to the same categories as used to describe the visual scenes. For the current
scene, a specific audio recording is played back. As soon as the next scene change is pending,
the category of the subsequent scene as well as the tolerable delay for the transition needs
to be known. The system then determines a suitable region in the current audio recording,
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Figure 2 Overview of different retrieval and processing components required for a data-driven
sound track generation system.

also referred to as transition region. The waveform corresponding to this region is then
used as query clip, and content-based retrieval is performed to identify a suitable audio clip
in the music database—referred to as target clip—satisfying the following two properties.
Firstly, the clip should be contained in an audio recording that reflects the category of the
subsequent scene. Secondly, the target clip should be similar to the query clip to allow
for a smooth (e. g., harmonically and rhythmically plausible) transition. To this end, one
particularly needs a clip that has a similar harmonic progression as the query clip. In the
next step, the two clips are temporally synchronized by first estimating the beat positions
and then applying suitable time-scale modifications (similar to what a DJ is doing). The
actual transition from the current recording (containing the query clip) to the next recording
(containing the target clip) is then realized by blending from the synchronized query clip to
the target clip. Finally, to further improve the quality of the transition, one needs intelligent
equalization techniques that can be used to attenuate possibly interfering sound components
or to amplifying certain voices, instruments or notes.

In the sketched approach, various challenges arise. First, one needs similarity measures
and content-based retrieval strategies to search for and identify suitable music clips that
satisfy the given constraints. These constraints may not only be imposed by the visual input
and user specifications, but also by algorithmic and aesthetic considerations. Furthermore,
one requires a number of signal processing techniques that allow for adjusting the audio
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material with respect to various musical aspects including harmony, rhythm, tempo, or
polyphony. In the following, we give an overview of these techniques and provide suitable
links to the literature. The remainder of this contribution is organized as follows. In
Section 2, we discuss previous work that is related to the problem of automated sound track
generation. Then, in Section 3, we give an overview of the involved data processing and
retrieval techniques while highlighting how these techniques act together and come into
play in a data-driven soundtrack generation scenario. Finally, we conclude with Section 4
discussing challenges, limitations, and future work.

2 Related Work

The idea of generating new music by concatenating existing music fragments based on
euphonious transitions has a long history. At the end of the 18th century, “Musikalische
Würfelspiele” (“Musical dice games”) were a popular pastime, where a piano player had to
create music by suitably concatenating measures from known pieces that were randomly
chosen by throwing a dice [32, 22].

Nowadays the generation of dynamically changing music by concatenating pre-rendered
music clips has become an important issue in particular in the context of video games. As
emphasized in [70], the generation of suitable music can add emotional depth and soul to the
various scenes leading to a highly immersive gaming experience. To this end, the music not
only has to loosely reflect the mood of the respective scene, but also has to constantly adapt
to, or even to anticipate the game’s events and the player’s actions. The term adaptive audio
(or adaptive music) has been used to describe audio and music that responds appropriately
to gameplay [70]. As one requirement, to support the game’s continuity, music transitions
that seamlessly connect the various moods and intensities are needed. To this end, one
needs techniques that go far beyond a simple concatenation or cross-fade between subsequent
audio clips. Instead, short building blocks of music, different layers (e. g., percussion loops,
super-imposable melody and instrument tracks), as well as transitional cues are required
for creating adaptive music. The composition of music that does not follow a linear flow
(as is for traditional music) but that can be reassembled in a flexible and smooth fashion
constitutes a hard problem—musically as well as technically. For a detailed discussion and
further links, we also refer to [66].

There are various approaches to automatically generate music streams on the basis of
symbolic music representations. For example, [11] describes an automated music generation
system that works on the basis of MIDI files. Opposed to waveform-based audio repres-
entations, symbolic representations offer more flexibility and direct control since musical
parameters such as note events, instrumentation, or tempo are given explicitly and can be
therefore altered easily. On the downside, synthesizing music from a symbolic representation
often leads to unsatisfying results, e. g., because of the artificiality of the used synthetic
instruments or the lacking of performance nuances. Furthermore, high-quality symbolic
representations are often not available or hard to generate from existing audio material.

The automated remixing and concatenation of existing audio material constitutes a
challenging area of research. A prominent application scenario is what a disc jockey (DJ) is
typically doing: he not only selects appropriate music for the audience, but also tries to mix
and blend recorded music to create a continuous playback. First systems to automate this
process are described, e. g., in [8, 37]. In the mixing process, DJs pay particular attention to
a good rhythmical transition, which requires an adjustment of the tempo and a matching of
the beats. A tool to automate the process of finding good rhythmical transitions is described



M. Müller and J. Driedger 179

in [39]. Harmonic similarity of the two audio clips to be connected usually plays a minor
role, even though professional DJs also often try to take the musical key into consideration.
In [49], the authors describe a first system for concatenating audio clips to form a single long
audio stream, where the recordings are ordered in such a way that euphonious transitions
between the clips are possible. The positions of the transitions are chosen to maximize the
local harmonic and rhythmic similarity of the two subsequent audio clips. This scenario is
similar to what we want to consider in our contribution. However, we want to focus more on
the underlying techniques that are need for realizing such a framework, whereas [49] describe
a first overall system. Finally, we want to mention the work by [69], where the goal is to
temporally rearrange a given music recording to fit certain user-specified constraints. In
particular, suitable transitions points are identified within the audio material that allow for
deleting, copying, and rearranging certain parts while keeping the flow of the music. This
not only allows for an automated adjustment of the duration of a given recording but also
for linking certain parts of the recording to specified key frames of the visual data stream.

3 Music Retrieval and Processing

We now give an overview of the various content-based music retrieval and processing techniques
that are important in view of the described data-driven sound track generation scenario, see
also Figure 12 for an overview. In particular, we have a focus on the creation of musically
plausible transitions between audio recordings that are to be concatenated. To this end, one
requires methods from audio signal analysis to capture harmonic and rhythmic properties of
music recordings. Such properties form the basis for designing musically meaningful similarity
measures needed to identify potential transition regions. Then, one requires manipulation
techniques that allow for temporally (e. g., time-scaling, clipping) and spectrally (e. g.,
modulation, harmonic-percussive separation, voice equalization) manipulating the audio
material. Furthermore, synthesis methods (e. g., blending, morphing) are needed to render
the final audio stream. Last but not least, in view of efficiency and online capability, data
structures are to be developed that facilitate fast content-based search and encode, for
example, plausible transitions between music clips.

3.1 Category-based Classification
As mentioned in the introduction, we assume that the visual scenes are associated to certain
categories that may refer to the emotional content or mood of the scene. For example, the
current scene may be associated with the attribute “Angry” whereas the subsequent scene
may by associated with the attribute “Happy.” Then one important step in the sound track
generation scenario is to find music recordings that reflect the categories of the given scenes,
see Figure 3.

Actually, the automated classification of music recordings with respect to a given set of
categories has been a central topic in the field of music information retrieval. Generally, such
categories refer to cultural or musicological aspects [16] including genre [59, 63] or rhythm
styles [26, 61]. In our scenario, we are particularly interested in categories that refer to
mood or emotions [36, 41, 62]. However, as noted in [41], when organizing music in terms of
emotional content, one is faced with the problem that there is a “considerable disagreement
regarding the perception and interpretation of the emotions of a song or ambiguity within
the piece itself.” In other words, the categories are often ill-defined and highly subjective
with the result that the automation of the classification problem is still in its early stages,
see [41] for an overview.
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Figure 3 Visual scenes and music database annotated with respect to mood categories of the
valence-arousal space [58].

In the following, we assume that the recordings of the database have been annotated
according to given mood categories. Such annotations may be obtained by manual expert
classification or may be derived from contextual text information (e. g., websites, tags, and
lyrics) and content-based approaches [41]. In the music context, the most prominent way
to organize emotional descriptors is the two-dimensional valence-arousal space as originally
introduced in [58], see Figure 3. Here, the mood categories are arranged on a plane with
two independent axes that encode arousal (intensity) ranging from low to high and valence
(appraisal of polarity) ranging from negative to positive [41]. However, the specific nature of
the descriptive labels and their organization is not in the scope of this contribution. In the
following, we only require that both the visual scenes as well as the database documents are
characterized based on the same set of categories.

3.2 Content-based Audio Retrieval
In our online scenario, we assume that a music recording is played back underlying the
current visual scene. Once a scene change is pending and the category of the subsequent
scene is known, the goal is to find a music recording which category fits the subsequent
scene. Assuming suitable annotations as discussed in Section 3.1, this simply requires a table
look-up to retrieve all music documents of the desired category. In addition, we want to
generate a smooth transition from the current recording to the next one. Here, a simple
cross-fade between two recordings may result in unpleasant listening experiences due to
harmonic, melodic and rhythmic incompatibilities in the transition phase. Instead, the
goal is to generate musically transitions that do not intercept the flow of the multimedia
presentation. One way to achieve this goal is to specify a suitable region in the current
audio recording, where the transition to the next recording is to be performed. Based on the
corresponding clip, one then needs to identify a recording that contains a semantically related
target clip allowing for a plausible transition. This is exactly the point, where content-based
audio retrieval comes into play. In the following, we summarize two prominent retrieval
scenarios and describe the techniques used in our pipeline.

Actually, in content-based audio retrieval, various levels of specificity can be considered.
At the highest specificity level, the retrieval task is often referred to as audio identification
or audio fingerprinting. Here, given a small audio fragment as query, the task consists in
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Figure 4 Chroma-based audio matching procedure. The red arrows indicate temporal corres-
pondences between the query clip and a local section of a given music recording.

identifying the fragment (i. e., retrieving the audio recording containing the fragment along
with the fragment’s position) within a large audio collection [1, 5, 46, 68]. Note that at this
level, the notion of similarity is rather close to the identity. Even though recent identification
algorithms show a significant degree of robustness towards noise, MP3 compression artifacts,
and uniform temporal distortions, existing algorithms for audio identification can not deal
with strong non-linear temporal distortions or with other musically motivated variations that
concern, for example, the articulation or instrumentation.

In sound track generation scenarios as described in [69], where the goal is to identify
possible transition points within the same music recording, such strict notions of similarity
may be meaningful. However, when changing from one music recording to a completely
different one, a much coarser notion of similarity to identify potential transition regions is
required. The identification of such regions can be accomplished by using audio matching
techniques, where the goal is to retrieve all audio clips that musically correspond to the
query [54, 50, 45]. In audio matching, opposed to traditional audio identification, one
allows variations in musical aspects such as tempo, instrumentation, loudness, timbre, or
accentuation.

In our proposed pipeline, we are specifically looking for audio clips that are harmonically
related. Therefore, we use a chroma-based audio matching procedure as originally described
in [54]. The general idea is to convert the audio material into mid-level representations
that show a high degree of robustness to variations that are to be left unconsidered in the
comparison. On the other hand, the feature representations should capture characteristic
information that musically relate the identified clips to facilitate a plausible transition. In this
context, chroma-based audio features have turned out to be a suitable mid-level representa-
tion [3, 24, 51]. Assuming the equal-tempered scale, the chroma attributes correspond to the
set {C, C], D, . . . , B} that consists of the twelve pitch spelling attributes as used in Western
music notation. Representing the short-time content of a music representation in each of
the 12 pitch classes, chroma features1 show a large degree of robustness to variations in
timbre and dynamics, while keeping sufficient information to characterize the rough harmonic

1 MATLAB implementations for some chroma variants are supplied by the Chroma Toolbox:
www.mpi-inf.mpg.de/resources/MIR/chromatoolbox, see also [53]
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Figure 5 Beat tracking result (indicated by the red vertical lines) for a given music recording.

progression of the underlying piece of music. Based on these feature representations, the
query clip is locally compared with clips that are contained in the target music recordings
using alignment techniques. In particular, we use a local variant of Dynamic Time Warping
(DTW) that can be used to find optimal temporal correspondences between the query clip
and a local section of a given music recording [51]. Intuitively, these correspondences can
be thought of a linking structure as indicated by the red arrows shown in Figure 4. These
arrows encode how the feature sequences are to be warped (in a non-linear fashion) to match
each other.

In [54], the main application of audio matching is to identify different versions of the same
piece of music irrespective of the performance, instrumentation, or arrangement. As reported
in [45, 29], using a query length of roughly 20 seconds (or more) leads to a high precision
for this task. Now, in the sound track generation scenario as tackled in this paper, one is
typically not interested in different versions of the same piece of music, but in harmonically
related passages contained in different pieces. Such passages can be obtained when using
query clips of shorter duration (less than 10 seconds). In other words, what is considered a
false positive match in [54], may be a desirable match in our scenario.

3.3 Tempo and Beat Tracking

The chroma-based audio matching procedure is used to identify a target audio clip that
shares a similar harmonic progression with the query clip. In view of a rhythmically plausible
transition, one also needs to temporally synchronize the two clips—similar to what a DJ
is doing when matching the beats of two recordings. This leads us to further central tasks
referred to as tempo estimation and beat tracking, where the objective is to automatically
locate the beat positions within a given music recording, see Figure 5.

Most approaches to tempo estimation and beat tracking proceed in two steps. In the first
step, positions of note onsets within the music signal are estimated. Here, most approaches
capture changes of the signal’s energy or spectrum and derive a so-called novelty curve. The
peaks of such a curve yield good indicators for note onset candidates [4, 9]. In the second
step, the novelty curve is analyzed to detect reoccurring patterns and quasi-periodic pulse
trains [12, 17, 28, 57, 60, 72].

Even though most humans are able to tap along the musical beat when listening to a piece
of music, transferring this cognitive process into an automated system that reliably works for
a large variety of musical styles is a challenging task. In particular, beat tracking becomes
hard in the case that a music recording reveals significant tempo changes. This typically
occurs in expressive performances of classical music as a result of ritardandi, accelerandi,
fermatas, and rubato [30]. Furthermore, the extraction problem is complicated by the fact
that the notions of tempo and beat may not be clearly defined due to a complex hierarchical
structure of the rhythm [56]. In particular, there are various levels that are presumed to
contribute to the human perception of tempo and beat. All these difficulties and ambiguities
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Figure 6 Waveforms and chroma representations using a fixed-size windowing strategy (left) and
an adaptive windowing strategy using beat-synchronized windows (right).

have to be kept in mind when using the beat tracking results obtained from automated
methods.

Knowing beat positions is not only necessary to temporally synchronize the query and
target clip, as will be explained in Section 3.4, but is also beneficial for the feature computation
and matching step as we now explain in more detail. When transforming a waveform into
some feature representation, one typically splits up the signal into frames using a window
function of fixed size and then applies the transform to each frame. Each feature value
represents a local property averaged over the respective time window, which may result in
“noisy” features when the signal’s changes occur within a given window. As an alternative
to fixed-size windowing, one can employ a musically more meaningful adaptive windowing
strategy, where window boundaries are induced by previously extracted onset and beat
positions. Since musical changes typically occur at onset positions, this often leads to an
increased homogeneity within the adaptively determined frames which often improves the
resulting feature representation, see Figure 6 for an illustration. One major advantage of
using beat-synchronized audio features is that tempo differences between musically related
audio clips are compensated [18]. This alleviates the requirement of using cost-intensive
alignment procedures in the retrieval step as discussed in Section 3.2. Furthermore, knowing
the beat positions allows for converting a physical time axis (given in seconds) into a musically
meaningful time axis (given in beats or measures), which has huge benefits for presenting and
comparing music analysis results [43]. However, when relying on beat-synchronous features,
one should keep in mind that the quality of automatically extracted beats may be rather
poor for certain types of music [30].

3.4 Time-Scale Modification
Once the beat positions are known in the query and target clip, one needs techniques that
allow for locally speeding up or slowing down a music recording without changing other
characteristics such as the pitch. Originally introduced for speech signals, there are numerous
time stretching or time-scale modification (TSM) procedures. Most of these procedures are
based on a fundamental technique referred to as Overlap-and-Add (OLA). The idea is to
generate local copies of audio segments, which are obtained by windowing the original audio
signal using suitably shifted Hann windows. These copies are then added up (using a constant
window overlap) to produce the time-scale modified signal, see Figure 7 for an illustration.
Generally, this simple procedure often results in severe noise-like phase distortions and
stuttering artifacts which strongly downgrade the quality of the music signal.
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Figure 7 Illustration of the Overlap-and-Add (OLA) technique with blue indicating the waveforms
and green indicating the windows.

Figure 8 Non-linear time-scale modification of a music recording to temporally adjust beat
positions.

Various time-scale modification algorithms have been proposed that try to attenuate
these distortions. In general, one can distinguish between time-domain and frequency-domain
approaches. A widely used time-domain procedure is known as WSOLA (waveform-similarity-
based overlap-add) algorithm [65]. Here, phase discontinuities in the fundamental frequency
are prevented by slightly adapting the window positions to obtain the local copies using
correlation measures before the accumulation step is applied. On the other side, the most
common frequency-domain approach is known as phase vocoder [13], where one first generates
local copies as in the OLA procedure. Next, the phases of each local copy are adjusted in the
Fourier domain to achieve a frequency-wise phase coherence in the subsequent accumulation
step. To cope with various kinds of artifacts, numerous variants and hybrid methods have
been proposed, see, e. g., [2, 14, 15, 25, 27, 40].

In our sound track generation scenario it is of particular importance that the used TSM
procedure is capable of performing non-linear time-scale modifications. This is for example
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Figure 9 Cross-fade between beat-synchronized query clip and target clip.

needed when adjusting the beat grid of a music recording as shown in Figure 8. Finally, we
note that the problem of pitch shifting with the objective to change the pitch of an input
signal without changing its duration is dual to the time stretching problem. Here, to shift
the pitch of a signal, one can first apply a time-scale modification procedure to stretch the
signal and then use a simple sample rate conversion.

3.5 Intelligent Equalization and Blending
After the harmonically related query and target clips have been rhythmically synchronized,
one can compute a transition by applying a simple cross-fade between these two clips. Then
the transit from the current recording to the subsequent recording can be accomplished
smoothly using this transition, see Figure 9.

So far, harmonic and rhythmic aspects were used for retrieving and adjusting the query
and target clips. There are many more musical aspects such as instrumentation, musical
voices or melodic structures one may want to consider in the transition. To this end, one
requires techniques that allow for manipulating the audio material with regard to such
aspects. This leads us to another fundamental and challenging area of signal processing
generally referred to as source separation, where the goal is to decompose a given mixed
audio signal into its individual sound sources.

In the musical context, source separation often deals with automatically extracting
individual tracks that correspond to different instruments or musical voices from a given
audio recording, see [10, 52, 67] for an overview. A related task is to parameterize an audio
recording of a piece of music, where the parameters encode musical aspects such as pitch,
onset positions, note durations, as well as tuning and timbre aspects corresponding to specific
instruments [33, 48]. Exploiting the availability of additional information such as musical
scores, various score-informed source separation strategies have been proposed [19, 20, 21,
31, 71]. Having an explicit control over the various sources allows for building musically
meaning equalizers (instead of simple frequency-based equalizer) that allow for amplifying or
attenuating certain voices (instead of frequency bands), see, e. g., [38, 42] and Figure 10.

Decomposing a monaural audio signal into musical voices is, in general, an extremely
difficult problem. A special case is the decomposition of a music signal into a harmonic
and a percussive component. Here, various methods have been proposed based on matrix
decompositions of a spectrogram representation using machine learning techniques [34, 23, 47,
64]. In [55], a simple and fast algorithm that does not require any training material is proposed.
This iterative approach relies on the assumption that harmonic components correspond to
horizontal and percussive components to vertical structures within a spectrogram.
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Figure 10 Instrument-wise equalization of a music recording (similar to [38, 42]).

In view of a sound track generation scenario, source separation and voice equalization
techniques are important building blocks for the blending and morphing stage. Here, for
example, one may want to suppress distracting voices or to amplify percussive components
while concealing harmonic inconsistency. Actually, such techniques are also applied by DJs,
who often amplify low-frequency bands while attenuating disturbing high-frequency bands in
transition regions.

3.6 Indexing and Data Structures

In view of online capability of an overall sound track generation system, the efficient
identification of suitable transition regions becomes an important issue. In the following, we
want to touch on indexing and data structure issues.

Various indexing techniques have been applied for content-based audio retrieval. In case
of audio identification, standard hashing techniques can be applied to obtain very efficient
systems, see, e. g., [68]. For retrieval tasks on a lower specificity level, indexing become much
harder because the temporal order of events, as also emphasized in [7], is of crucial importance
for building up musically meaningful entities such as melodies or harmonic progressions.
To account for temporal context, one often reverts to small chunks of audio also referred
to as audio shingles, which leads, however, to features of high dimensionality. To index
such high-dimensional shingles, techniques such as local sensitive hashing (LSH) have been
applied for tasks such as cover song identification [6]. Here, being a document-based retrieval
scenario, a bag-of-feature approach is applied with the features being the audio shingles. Such
bag-of-feature approaches are not directly applicable to fragment-based retrieval scenarios
such as audio matching. In [45], an indexing method is described based on inverted files
which, however, only scales to medium size datasets. The idea of applying shingling and
LSH-based indexing techniques to audio matching, where a single shingle corresponds to an
entire audio clip of 10 to 20 seconds of duration, is investigated in [29].

Another idea to speed up the identification of transition candidates is to build up a
graph-like data structure that explicitly encodes musical relations between audio clips. Such
a data structure can be constructed from the given audio database in an off-line preprocessing
step. As starting point, we want to take up an idea from the field of computer animation.
Here, analogous to our music scenario, one important task consists in creating realistic,
controllable motions from prerecorded motion capture sequences. In [44], a procedure is
presented where a directed graph, referred to as motion graph, is constructed from a given
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Figure 11 Music graph in analogy to the motion graph introduced in [44].

corpus of motion capture data. The edges of the graph contain either pieces of original
motion data or automatically generated transitions, and the nodes serve as choice points
where these small bits of motion join seamlessly. Motions can then be generated simply by
building walks on the graph. Figure 11 illustrates this idea transferred to the music domain,
see also [35] for a similar concept.

4 Conclusions and Future Work

The main goal of this contribution was to show how different aspects of music retrieval and
audio processing come into play when dealing with applications such as data-driven sound
track generation. Rather than presenting a concrete system, we sketched a possible pipeline
for an online approach while discussing the necessary “ingredients” such as category-based
music classification, content-based audio retrieval, beat tracking, time-scale modification,
instrument equalization, and audio indexing. The intertwining and interaction of the various
tasks is again summarized and illustrated by Figure 12. Each of the mentioned tasks
constitutes itself a challenging research area with many open issues, in particular when
dealing with various genre and styles of music—we have given numerous pointers to the
literature that represent the state-of-the-art for the respective tasks.

Of course, when it comes to an actual realization and implementation of a concrete
sound track generation system, many more challenges arise and a complete automatization
of all steps neither seems feasible nor meaningful. However, there are many variants and
more restricted sound track generation scenarios that come into reach. One such scenario is
described in [69], where the duration of a given music recording is to be adjusted by suitably
deleting, copying, and rearranging certain parts of the recording while keeping the flow of the
music. Extending this scenario, a user may want to add background music to a slide show,
where he specifies for each slide a desired music recording as well as a duration parameter.
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Figure 12 Possible pipeline for an automated sound track generation system.

Then, the task would be to automatically find and reassemble suitable parts of the recordings
that not only fulfill the user constraints but also allow for euphonious transitions. Here, when
the slide show is known in advance, an offline optimization procedure may be acceptable
and efficiency issues become less significant. Furthermore, there may be different types of
transitions a user may be interested in. For example, if there is a sudden event in the visual
data stream, one may also want to have a surprising element in the sound track. Here, an
abrupt change from one music clip to another may be acceptable or even desired. Instead
of “complete solutions” that have been computed in a fully automated fashion, a user may
rather need flexible tools that allow him to identify, modify, and assemble audio material in
an intuitive and interactive way. Finally, perceptual issues need to be taken into account
when it comes to the final assessment of the generated sound track. This itself constitutes
an extremely difficult and interdisciplinary research area.

We hope that with this contribution we not only have given a useful overview of various
tasks indicating challenges and future research directions, but could also give the reader an
impression of the richness, depth and relevance of the research conducted in fields of music
information retrieval and music processing.
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