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Abstract
The emerging field of Music Information Retrieval (MIR) has been influenced by neighboring
domains in signal processing and machine learning, including automatic speech recognition, image
processing and text information retrieval. In this contribution, we start with concrete examples
for methodology transfer between speech and music processing, oriented on the building blocks
of pattern recognition: preprocessing, feature extraction, and classification/decoding. We then
assume a higher level viewpoint when describing sources of mutual inspiration derived from text
and image information retrieval. We conclude that dealing with the peculiarities of music in MIR
research has contributed to advancing the state-of-the-art in other fields, and that many future
challenges in MIR are strikingly similar to those that other research areas have been facing.
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1 Introduction

Music Information Retrieval (MIR) still is a relatively young field: Its first dedicated
symposium, ISMIR, was held in 2000, and a formal society for practitioners in the field,
taking over the ISMIR acronym, was only established in 2008. This does not mean that all
work in MIR needs to be newly invented: Analogous or very similar topics and areas to those
currently of interest in MIR research may already have been researched for years, or even
decades, in neighboring fields. Reusing and transferring findings from neighboring fields,
MIR research can jump-start and stand on the shoulders of giants. At the same time, the
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nature of music data may pose constraints or peculiarities that press for solutions beyond
the trodden paths in MIR, and thus can be of inspiration the other way around too. Such
opportunities for methodology transfer, both to and from the MIR field, are the focus of this
chapter.

In engineering contexts, audio typically is considered to be the main modality of music.
From this perspective, an obvious neighboring field to look at is automatic speech recognition
(ASR), which just like MIR strives to extract information from audio signals. Section 2 will
discuss several methodology transfers from ASR to MIR, while Section 3 gives a detailed
example of one of the first successful transfers from MIR back to ASR. Section 4 focuses on
the topic of evaluation, in which current MIR practice has strong connections to classical
approaches in Text Information Retrieval (IR). Finally, in Section 5, we consider MIR from
a higher-level, more philosophical viewpoint, pointing out similarities in open challenges
between MIR and Content-Based Image and Multimedia Retrieval, and arguing that MIR
may be the field that can give a considerable push towards addressing these challenges.

2 Synergies between Speech and Music Analysis

As stated above, it is hardly surprising that audio-based MIR has been influenced by ASR
research—as obvious opportunities to transfer ASR technologies to MIR, lyrics transcription
[38] or keyword spotting in lyrics [17] can be named. Yet, there are more intrinsic synergies
between speech and music analysis, where similar methodologies can be applied to seemingly
different tasks. These will be the focus of the following section. We point out areas where
speech and music analysis have been sources of mutual inspiration in the past, and sketch
some opportunities for future methodology transfer.

2.1 Multi-Source Audio Analysis in Speech and Music

Generally, music signals are composed of multiple sources, which can correspond to instru-
ments, singer(s), or the voices in a polyphonic piano piece; thus, aspects of multi-source signal
processing can be considered as an integral part of MIR. Similarly, research on speech recog-
nition in the presence of interfering sources (environmental noise, or even other speakers) has
a long tradition, resulting in numerous studies on source separation and model-based robust
speech recognition. Many approaches for speech source separation deal with multi-channel
input from microphone arrays by beamforming, i. e., exploitation of spatial information. An
example of such beamforming in music signals is the well-known ‘karaoke effect’ to remove the
singing voice in commercial stereophonic recordings: Many popular songs are mixed with the
vocals being equally distributed to the left and right channels, which corresponds to a center
position of the the vocalist in the recording/playback environment. In that case, the vocals
can be simply eliminated by channel subtraction, which can be regarded as a trivial example
of integrating spatial information into source separation. However, to highlight the aspects
of methodology transfer, we restrict the following discussion to monaural (single-channel)
analysis methods: We argue that the constraints of music signal processing—where usually
no more than two input channels are available—have leveraged a great deal of research on
monaural source separation, which has been fruitful for speech signal processing in turn. In
this section, we attempt a unified view on monaural audio source separation in speech and
music, presenting a rough taxonomy of tasks and applications where synergies are evident.
This taxonomy is oriented on the general procedure depicted in Figure 1, depending on which
of the system components (source models, transcription/alignment, synthesis) are present.
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Figure 1 A unified view on monaural multi-source analysis of speech and music. Spectral
(short-time Fourier Transform, STFT) or cepstral features (MFCCs) are extracted from the audio
signal, yielding a transcription based on non-negative matrix factorization (NMF), graphical models
(GM), recurrent neural networks (RNN) or other machine learning algorithms. The transcription can
be used to synthesize signals corresponding to the sources or to enable (more robust) transcription
in turn.

Polyphonic transcription and multi-source decoding

The goal of these tasks is not primarily the synthesis of each source as a waveform signal,
but to gain a higher-level transcription of each source’s contributions, e. g., the notes played
by different instruments, or the transcription of the utterances by several speakers in a
cross-talk scenario (the ‘cocktail party problem’). Polyphonic transcription of monaural
music signals can be achieved by sparse coding through non-negative matrix factorization
(NMF) [64, 68], representing the spectrogram as the product of note spectra and a sparse
non-negative activation matrix. These sparse NMF techniques have successfully been ported
to the speech domain to reveal the phonetic content of utterances spoken in multi-source
environments [18]: Determining the individual notes played by various instruments and their
position in the spectrogram can be regarded as analogous to detecting individual phonemes
in the presence of interfering talkers or environmental noise. An important common feature
of these ‘joint decoding’ approaches for multi-source speech and music signals is the explicit
modeling of parallel occurrence of sources; this can also be done by a graphical model
representation of probabilistic dependencies between sources, as demonstrated in [69] for
multi-talker ASR. Furthermore, polyphonic transcription approaches that use discriminative
models for multiple note targets [46] or one-versus-all classification [50] seem to be partly
inspired by ‘multi-condition training’ in ASR, where speech overlaid with interfering sources
is presented to the system in the training stage, to learn to recognize speech in the presence of
other sources. Finally, to contrast transcription or joint decoding approaches to the methods
presented in the remainder of this section, we note that the former can principally be used
to resynthesize signals corresponding to each of the sources [69], yet this is not their primary
design goal; results are sometimes inferior to dedicated source separation approaches [19, 73].

Leading voice extraction and noise cancellation

For many MIR applications, the leading voice is of particular relevance, e. g., the voice of
the singer in a karaoke application. Similarly, in many speech-based human-human and
human-computer interaction scenarios, including automatic analysis of meetings, voice search
or mobile telephony, the extraction of the primary speech source, which delivers the relevant
content, is sufficient. This application requires modeling of the characteristics of the primary
source, and speech and music processing considerably differ in this respect; unifying the
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approaches will be an interesting question for future research. In music signal processing,
main melody extraction is often related to predominance: It is assumed that the singing
voice contributes the most to the signal energy1. Thus, extraction of the leading voice can be
achieved with little explicit knowledge, e. g., by fixing a basis of sung notes and estimating
the vocal tract impulse response in an extension of NMF to a source-filter model [14]. In
speech processing, one usually does not rely on the assumption that the wanted speech
is predominant in a recording, as signal-to-noise ratios can be negative in many realistic
scenarios [9]. Hence, one extends the previous approaches by rather precise modeling of
speech, often in a speaker-dependent scenario. Still, combining knowledge about the spectral
characteristics of the speech with unsupervised estimation of the noise signal, in analogy
to the unsupervised estimation of the accompaniment in [14], results in a semi-supervised
approach for speech extraction as, e. g., in [48]. In contrast, often a pre-defined model for
the background such as in [19,53,73] is used in a supervised source separation framework,
and this kind of background modeling can be applied to leading voice extraction as well:
Assuming the characteristics of the instrumental accompaniment of the singer are similar in
vocal and non-vocal parts, a model of the accompaniment can be built; this allows estimating
the contribution of the singing voice through semi-supervised NMF [21].

Instrument Separation and the Cocktail Party Problem

As laid out above, leading voice extraction or speech enhancement can be conceived as source
separation problems with two sources. A generalization of this problem to extraction of
multiple sources, or sources with large spectral similarity such as in instrument separation or
the ‘cocktail party’ scenario, from a monophonic recording generally requires more complex
source modeling. This can include temporal dependencies: In [45], NMF is extended to a
non-negative Hidden Markov Model for extraction of the individual speakers from a multi-
talker recording. Including temporal dependencies appears promising for music contexts as
well, e. g., for separation of (repetitive) percussive and (non-repetitive) harmonic sources;
furthermore, this approach is purely data-based and generalizes well to multiple sources.

In music signal processing, especially for classical music, higher-level knowledge can be
incorporated into signal separation by means of score information (score-informed source
separation) [15,24]. Not only does this allow to cope with large spectral similarity, but it also
enables separation by semantic aspects, which would be infeasible from an acoustic feature
representation, and/or allows for user guidance; for instance, the passages played by the left
and right hand in a piano recording can be retrieved [15]. Transferring this approach to
the speech domain, we argue that while in most speech-related applications availability of a
‘score’ (i. e., a ground truth speaker diarization including overlap and transcription) cannot
be assumed, score-informed separation techniques could be an inspiration to built iterative,
self-improving methods for cross-talk separation, speech enhancement and ASR, recognizing
what has been said by whom and exploiting that higher-level knowledge in the enhancement
algorithm.

2.2 Combined Acoustic and Language Modeling
Language modeling techniques are found in MIR, e. g., to model chord progressions [47,
58, 80] or playlists [36]. Conversely, the prevalent usage of language models in ASR is

1 Other common assumptions are that the singing voice is the highest voice among all instruments, or
that it is characterized by vibrato.
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Figure 2 Use of universal background models (UBM) in speech and music processing: A generic
speech/music model (UBM) is created from training audio. A speaker/piece model can be generated
directly from training audio (dashed-dotted curve) or from the UBM by MAP adaptation (dashed
lines). In the latter case, the parameters of the adapted model (e. g., the mean vector µ in case of
GM modeling) yield a fingerprint (supervector) of the speaker or the music piece.

to calculate combined acoustic-linguistic likelihoods for speech decoding: Informally, the
acoustic likelihood of a phoneme in an utterance is multiplied with a language model
likelihood of possible words containing the phoneme to integrate knowledge about word
usage frequencies (unigram probabilities) and temporal dependencies (n-grams) [82]. This
immediately translates to chord recognition: For instance, unigram probabilities can model
the fact that major and minor chords are most frequent in Western music, and there exist
typical chord progressions that can be modeled by n-grams [56]. Thus, accuracy of chord
recognition can be improved by combined acoustic and language modeling in analogy to
ASR [8, 29]. A different approach to combined acoustic and language modeling is taken
in [30] for genre classification: Music is encoded in a symbolic representation derived from
clustered acoustic features, which is then encoded in a language model for different genres.

2.3 Universal Background Models in Speech Analysis and Music
Retrieval

Recent developments in content-based music retrieval include methodologies that were
introduced for speaker recognition and verification. These include universal background
models (UBM)—trained from large amounts of data, and representing generic speech as
opposed to the speech characteristics of an individual—and Gaussian Mixture Model (GMM)
supervectors [4, 35,81]. GMM supervectors are equivalent to the parameters of a Gaussian
Mixture UBM adapted to the speech of a single speaker (usually only few utterances). Hence,
they allow for effective and efficient computation of a person’s speech ‘fingerprint’, i. e., its
representation in a concise feature space suitable for a discriminative classifier. The generic
approaches incorporating UBMs for speech and music classification are shown in Figure 2: A
basic speaker verification algorithm uses a UBM to represent the acoustic parameters of a
large set of speakers, while the speaker to be verified is modeled with a specialized GMM.
For an utterance to be verified, a likelihood ratio test is conducted to determine whether
the speaker model delivers sufficiently higher likelihood than the UBM. Translating this
paradigm to music retrieval, one can cope with out-of-set events—i. e., that the user may be
querying for a musical piece not contained in the database. Specific pieces in the database
are represented (‘fingerprinted’) by Gaussian mixture modeling of acoustic features, while the
UBM is a generic model of music. Then, the likelihoods of the query under the specialized
GMMs versus the UBM allow out-of-set classification [39].
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On the other hand, adapting the UBM to a specific music piece using maximum-a-
posteriori (MAP) adaptation yields an audio fingerprint in shape of the adapted model’s
mean (and possibly variance) vectors. These fingerprints can be classified by discriminative
models such as Support Vector Machines (SVMs), resulting in the GMM-SVM paradigm
which has become standard in speaker recognition in the last years. In [5], the GMM-
SVM approach was successfully applied to music tagging in the 2009 MIREX evaluation;
recent studies [6, 7] underline the suitability of the approach to analyze music similarity for
recommender systems.

2.4 Transfer from Paralinguistic Analysis
To elucidate a further opportunity for methodology transfer from the speech domain, we
consider the field of paralinguistic analysis (i. e., retrieving other information from speech
beyond the spoken text), which is believed to be important for natural human-machine
and computer mediated human-human communication. Particularly, we address synergies
between speech emotion recognition and music mood analysis: While relating to different
concepts of emotion (or mood), the overlap in the methodologies and the research challenges
are striking. At first, we would like to recall the subtle difference between those fields:
Speech emotion recognition aims to determine the emotion of the speaker, which is—for most
practical applications such as in dialog systems—the emotion perceived by the conversation
partner; conversely, music mood analysis does not primarily assess the (perceived) mood
of the singer, but rather the overall perceived mood in a musical piece—often, that is the
intended mood, i. e., the mood as intended by the composer (or songwriter). Despite these
differences, in the result, similar pattern recognition techniques have been proven useful in
practice.

For instance, in order to assess the emotion of a speaker, combining ‘what’ is said
with ‘how’ it is said, i. e., fusing acoustic with linguistic information, has been shown to
increase robustness [78]—and similar results have been obtained in music mood analysis when
considering lyrics and audio features [26,57]. Apart from low-level acoustic and linguistic
features, specific music features seem to contribute to music mood perception, and hence,
recognition performance, including the harmonic ‘language’ (chord progression) and rhythmic
structure [60], which necessitates efficient fusion methods as, e. g., for audio-visual emotion
recognition. Besides, similarly to emotion in speech [77], music mood classification is lately
often turned into a regression problem [60, 79] in target dimensions such as the arousal-
valence plane [55], in order to avoid ambiguities in categorical ‘tags’ and improve model
generalization.

Furthermore, when facing real-life applications, the issue of non-prototypical instances—
i. e., musical pieces that are not pre-selected by experts as being representative for a certain
mood—has to be addressed: It can be argued that a recommender system based on music
mood should retrieve instances associated with high degrees of, e. g., happiness or relaxation
from a large music archive. Here, music mood recognition can profit from the speech domain
as this task bears some similarity to applications of speech emotion recognition such as
anger detection, where emotional utterances have to be discriminated from a vast amount
of neutral speech [66]. Relatedly, whenever instances to be annotated with the associated
mood are not pre-selected by experts according to their prototypicality, the establishment
of a robust ground truth, i. e., consistent assessment of the music mood by multiple human
annotators, becomes non-trivial [27]. This might foster the development of quality control
and ‘noise cancellation’ methods for subjective music mood ratings [60], as developed for
speech emotion [20], in the future.
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Finally, in the future, we might see a shift towards recognizing the affective state of singers
themselves: First attempts have been made to estimate the ‘enthusiasm’ of the singer [10],
which is arguably positively correlated with both arousal and valence; hence, the task is
somewhat similar to recognition of level of interest from speech as in [78]. Another promising
research direction might be to investigate long-term singer traits instead of short-term states
such as emotion: Such traits include age, gender [59], body shape and race, all of which are
known to be correlated with acoustic parameters, and can be useful in category-based music
retrieval or identifying artists from a meta-database [74]. In a similar vein, the analysis of
voice quality and ‘likability’ [72] could be a valuable source of inspiration for research on
synthesis of singing voices.

3 From Music IR to Speech IR: An Example

Starting from the general overview above, we now discuss a particular example on how
technologies from both domains of music and speech IR interact with each other. In
particular, we start with the well known MFCC (Mel Frequency Cepstral Coefficients)
features from the speech domain which are used to analyze signals based on an auditory
filterbank. This results in representing a speech signal by a temporal feature sequence
correlating with certain properties of the speech signal. We then review corresponding
music features and their properties, with a particular interest on representing the harmonic
progression of a piece of music using chroma-type features. This, in turn, inspires a class of
speech features correlating with the phonetic progression of speech.

Concerning possible applications, chroma-type features can be used to identify fragments
of audio as being part of a musical work regardless of the particular interpretation. Having
sketched a suitable matching technique, we subsequently show how similar techniques can be
applied in the speech domain for the task of keyphrase spotting.

Whereas the latter matching techniques focus on local temporal regions of audio, more
global properties can be analyzed using self-similarity matrices. In music, such matrices
can be used to derive the general repetitive structure (related to the musical form) of an
audio recording. When dealing with two different interpretations of a piece of music, such
matrices can be used to derive a temporal alignment between the two versions. We discuss
possible analogies in speech processing and sketch an alternative approach to text-to-speech
alignment.

3.1 Feature Extraction
Many audio features are based on analyzing the spectral contents of subsequent short
temporal segments of a target signal by using either a Fourier transform or a filter-bank.
The resulting sequence of vectors is then further processed depending on the application. As
an example, the popular MFCC features which have been successfully applied in automatic
speech recognition (ASR) are obtained by applying an auditory filterbank based on log-scale
center frequencies, followed by converting subband energies to a dB- (log-) scale, and applying
a discrete cosine transform [51]. The logarithmic compression in both frequency and signal
power serves to weight the importance of events in both domains in a way a human perceives
them. Because of their ability to describe a short-time spectral envelope of an audio signal
in a compact form, MFCCs have been successfully applied to various speech processing
problems apart from ASR, such as keyword spotting and speaker recognition [54]. Also
in Music IR, MFCCs have been widely used, e. g., for representing the timbre of musical
instruments or speech-music discrimination [34].
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Figure 3 Chroma-based CENS features obtained from the first measures (20 seconds) of
Beethoven’s 5th Symphony in two interpretations by Bernstein (blue) and Sawallisch (red).

While MFCCs are mainly motivated by auditory perception, music analysis is frequently
performed based on features motivated by the process of sound generation. Chroma features
for example, which have received an increasing amount of attention during the last ten
years [2], rely on the fixed frequency (semitone) scale as used in Western music. To obtain a
chroma feature for a short segment of audio, a Fourier transform of that segment is performed.
Subsequently, the spectral coefficients corresponding to each of the twelve musical pitch
classes (the chroma) C, C], D,. . . , B are individually summed up to yield a 12-dimensional
chroma vector. In terms of a filterbank, this process can be seen as applying octave-spaced
comb-filters for each chroma.

From their construction, chroma features do well-represent the local harmonic content
of a segment of music. To describe the temporal harmonic progression of a piece of music,
it is beneficial to combine sequences of successive chroma features to form a new feature
type. CENS-features (chroma energy normalized statistics) [43] follow this approach and
involve calculating certain short-time statistics on the chroma features’ behaviour in time,
frequency, and energy. By adjusting the temporal size of the statistics window, CENS-feature
sequences of different temporal resolutions may be derived from an input signal. Figure 3
shows the resulting CENS feature sequences derived from two performances of Beethoven’s
5th Symphony.

In the speech domain, a possible analogy to the local harmonic progression of a piece of
music is the phonetic progression of a spoken sequence of words (a phrase). To model such
phonetic progressions, the concept of energy normalized statistics (ENS) has been transferred
to speech features [70]. This approach uses a modified version of MFCCs, called HFCCs
(human factor cepstral coefficients), where the widths of the mel-spaced filter bands are chosen
according to the bark scale of critical bands. After applying the above statistics computations,
the resuling features are called HFCC-ENS. Figure 6 (c) and (d) show sequences of HFCC-
ENS features for two spoken versions of the same phrase. Experiments show that due to
the process of calculating statistics, HFCC-ENS features are better adapted to the phonetic
progression in speech than MFCCs [70].
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3.2 Matching Techniques

In this section, we describe some matching techniques that use audio features in order to
automatically recognize audio signals. Current approaches to ASR or keyword spotting
employ suitable HMMs trained to individual words (or subword entities) to be recognized.
Usually, speaker-dependent training results in a significant improvement in recognition rates
and accuracy. Older approaches used dynamic time warping (DTW) which is simpler to
implement and bears the advantage of not requiring prior training. However, as the flexibility
of DTW in modeling speech properties is restricted, it is not as widely used in applications as
HMMs are [52]. In the context of music retrieval, DTW and variants thereof have, however,
regained considerable attention [40].

As particular example, we consider the task of audio matching: Given a short fragment
of a piece of audio, the goal is to identify the underlying musical work. A refined task
would be to additionally determine the position of the given fragment within the musical
work. This task can be cast into a database search: given a short audio fragment (the
query) and a collection of “known” pieces of music (the database), determine the piece in the
database the query is contained in (the match). Here a restricted task, widely known as audio
identification, only reports a match if the query and a match correspond to the same audio
recording [1, 71]. In general audio matching, however, a match is also reported if a query
and the database recording are different performances of the same piece of music. Whereas
audio identification can be very efficiently performed using low-level features describing the
physical waveform, audio matching has to use more abstract features in order to identify
different interpretations of the same musical work. In Western classical music, different
interpretations can exhibit significant differences, e. g., regarding tempo and instrumentation.
In popular music, different interpretations include cover songs that may exhibit changes in
musical style as well as mixing with other audio sources [62].

The introduced CENS features are particularly suitable to perform audio matching for
music that possess characteristic harmonic progressions. In a basic approach [43], the query
and database signals are converted to feature sequences q = (q1, . . . , qM ) and d = (d1, . . . , dN ),
where each of the qi and dj are 12-dimensional CENS vectors. Matching is then performed us-
ing a cross-correlation like approach, where a similarity function ∆(n) := 1

M

∑M
`=1〈q`, dn−1+`〉

gives the similarity of query and database at position n. Using normalized feature vectors,
values of ∆ in a range of [0, 1] can be enforced. Figure 4 (top) shows an example of a resulting
∆ when using the first 20 seconds of the Bernstein interpretation (see Figure 3) as a query
to a database containing, among other material, two different versions of Beethovens Fifth
by Bernstein and Sawallisch respectively. Positions corresponding to the seven best matches
are indicated in green. The first six matches correspond to the three occurrences of the
query (corresponding to the famous theme) within the two performances. Tolerance with
respect to different global tempi may be obtained in two ways: On the one hand, one may
calculate p time-scaled versions of the feature sequence q by simply changing the statistics
parameters (particularly window size and sampling rate) during extraction of the CENS
features. This process is then followed by p different evaluations of ∆. On the other hand,
the correlation-based approach to calculate a cost function may be replaced by a variant of
subsequence DTW. Experiments show that both variants perform comparably.

Coming back to the speech domain, the some audio matching approach can be applied to
detect short sequences of words or phrases within a speech recording. Compared to classical
keyword spotting [28,76], this kind of keyphrase spotting is particularly beneficial when the
target phrase consists of at least 3-4 words [70]. Advantages inherited from using the above
HFCC-ENS features for this task are speaker and also gender independence. More important,
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Figure 4 Top: Similarity function ∆ obtained in scenarios of audio matching for music. Bottom:
Similarity function ∆ obtained in keyphrase matching.

no prior training is required which makes this form of keyphrase spotting attractive for
scenarios with sparse resources. Figure 4 (bottom) shows an example where the German
phrase “Heute ist schönes Frühlingswetter” was used as a query to a database containing a
total of 40 phrases spoken by different speakers. Among those are four versions of the query
phrase each by a different speaker. All of them are identified as matches (indicated in green)
by applying a suitable peak picking strategy on the similarity function.

3.3 Similarity Matrices: Synchronization and Structure Extraction
To obtain the similarity of a query q and a particular position of a database document
d, a similarity function ∆ has been constructed by averaging M local comparisons 〈qi, dj〉
of features vectors qi and dj . In general, the similarity between two feature sequences
a = (a1, . . . , aK) and b = (b1, . . . , bL) can be characterized by calculating a similarity matrix
Sa,b := (〈ai, bj〉)1≤i≤K,1≤j≤L consisting of all pair-wise comparisons. Figure 5 (left) shows
an example of a similarity matrix. Color coding is chosen in a way such that dark regions
indicate a high local similarity and light regions correspond to a low local similarity. The
diagonal-like trajectory running from the lower left to the upper right thus expresses the
difference in the local tempo between the two underlying performances.

Based on such trajectories, similarity matrices can be used to temporally synchronize
musically corresponding positions of the two different interpretations [25,44]. Technically,
this amounts to finding a warping path p := (xi, yi)P

i=1 through the matrix, such that δ(p) :=∑P
i=1〈axi

, byi
〉 is minimized. Warping paths are restricted to start in the lower left corner,

(x1, y1) = (1, 1), end in the upper right, (xP , yP ) = (K,L), and obey certain step conditions,
(xi+1, yi+1) = (xi, yi) + σ. Two frequently used step conditions are σ ∈ {(0, 1), (1, 0), (1, 1)}
and σ ∈ {(2, 1), (1, 2), (1, 1)}. In Figure 5 (left) a calculated warping path is indicated in red
color.
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Figure 5 Left: Example of a similarity matrix with warping path indicated in red color. Right:
Self-similarity matrix for a version of Brahms Hungarian Dances no. 5. The extracted musical
structure A1A2B2CA3B3B4D is indicated. (Figures from [40].)

Besides synchronizing two audio recordings of the same piece, the latter methods can
be used to time-align musically corresponding events across different representations. As
a first example, consider a (symbolic) MIDI representations of the piece of music. In a
straightforward approach, an audio version of the MIDI can be created using a synthesizer.
Then, CENS features are obtained from the synthesized signal, thus allowing a subsequent
synchronization with another audio recording (in this context an audio recording obtained
from a real performance). Alternatively, CENS features may be generated directly from
the MIDI [25]. In a second example, scanned sheets of music (i. e., digital images) can
be synchronized to audio recordings, by first performing optical music recognition (OMR)
on the scanned images, producing a symbolic, MIDI-like, representation. In a second
step, the symbolic representation is then synchronized to the audio recording as described
before [16]. This process is illustrated in Figure 6 (left). Besides the illustrated task of audio
synchronization, the automatic alignment of audio and lyrics has also been studied [37],
suggesting the usability of synchronization techniques for human speech.

Transfered to the speech domain, such synchronization techniques can be used to time-
align speech signals with a corresponding textual transcript. Similarly to using a music
synthesizer on MIDI input to generate a music signal, a text-to-speech (TTS) system can be
used to create a speech signal. Subsequently, DTW-based synchronization can be performed
on HFCC-ENS feature sequences extracted from both speech signals [11], see Figure 6 (right).

Text-to-speech synchronization as decribed here may be applied for example to political
speeches or audio books. We note that a more classical way of performing this synchronization
consists of first performing ASR on the speech signal, resulting in an approximate textual
transcript. In a second step, both transcripts can then by synchronized by suitable text-based
DTW techniques [23].

ASR-based synchronization is advantageous in case of relatively good speech quality or
when a prior training to the speaker is possible. In this case, the textual transcript will be
of sufficiently high quality and a precise synchronization is possible. Due to the smoothing
process involved in the ENS calculation, TTS-based synchronization typically has a lower
temporal resolution which has an impact on the synchronization accuracy. However, in
scenarios with a high likelihood of ASR-errors, TTS-based synchronization can be beneficial.

Variants of the DTW-based music synchronization perform well if the musical structure
underlying a and b are the same. In case of structural differences, advanced synchronization
methods have to be used [41]. To analyze the structure of a music signal, the self-similarity
matrix Sa := Sa,a of the corresponding feature sequence a can be employed. As an example,
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Figure 6 Left: Score-Sheet to audio synchronization—(a) Score fragment, (b) Synthesized
Chroma features, (c) Chroma obtained from audio recording (d). Right: Text to audio
synchronization—(a) Text, (b) Synthesized speech, (c) HFCC-ENS features of synthesized speech,
(d) HFCC-ENS features of natural speech (e).

Figure 5 depicts the self-similarity matrix of an interpretation of Brahms Hungarian Dances
no. 5 by Ormandy. Darker trajectories on the side diagonals indicate repeating music passages.
Extraction of all such repetitions and systematic structuring can be used to deduce the
underlying musical form. In our example, the musical form A1A2B2CA3B3B4D is obtained
by following an approach to calculate a complete list of all repetitions [42].

Concluding, we discuss possible applications of structure analysis in the speech domain,
where one first has to ask for suitable analogies of structured speech. In contrast to music
analysis, where the target signal to be analyzed frequently corresponds to a complete piece
of music, in speech one frequently analyses unstructured speech fragments such as isolated
sequences of sentences or a dialog between two persons. Lower-level examples of speech
structure relevant for unstructured speech could be repeated words, phrases, or sentences.
More structure on a higher level could be expected from speech recorded in special contexts
such as TV shows, news, phone calls, or radio communication. An even closer analogy to
music analysis could be the analysis of recited poetry.

4 Evaluation: The Information Retrieval Legacy

We now move on to another field with considerable influences on MIR research: Information
Retrieval (IR). This field, after which the MIR field was named, deals with storing, extracting
and retrieving information from text documents. The information can be both syntactic and
semantic, and topics of interest cover a wide range, involving feature representations, full
database systems, and information-seeking behavior of users.

Evaluation in MIR work, especially in retrieval settings, has largely been influenced by
IR evaluation, with Precision, Recall and the F-measure as most stereotypical evaluation
criteria. However, already in the first years of the MIR community benchmark evaluation
endeavor, the Music Information Retrieval EXchange (MIREX), the need arose to find
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significance levels for system results. Earlier findings from the Text REtrieval Conference
(TREC) benchmarking efforts led to the adoption of Friedman’s ANOVA with Tukey-Kramer
“Honestly Significant Difference” post-hoc correction [13], which subsequently were widely
adopted in the presentation of MIREX results.

Not all of the IR practices were immediately transferable to MIR evaluation: many
MIREX tasks turned out to be specialized enough to a degree that they require task-specific
evaluation criteria. In addition, precision and recall have frequently been challenged for their
appropriateness. In cover song retrieval and audio matching settings, recall may be the most
appropriate, since the goal would be to retrieve as many matching items or fragments as
possible [61]. On the other hand, in web-scale environments, the amount of data will be so
huge that striving for recall will not make sense anymore. In addition, in multimedia settings
one can wonder if precision would be an appropriate measure at all, since user data suggests
that multimedia search is more of an entertaining browsing activity rather than a focused
information need with a concrete query and an establishable ground truth [63]. Exactly the
same will hold for music search.

Nonetheless, there still are existing IR evaluation findings that provide useful opportunities
for strengthening evaluation in MIR, an important area being that of meta-evaluation [67].
Through meta-evaluation, the experimental validity of (M)IR experiments can be assessed.
This validity can be assessed according to different subcategories, which are listed below
together with reflections on the way in which they are applicable to the MIR domain:

Construct validity

The extent to which the variables of an experiment correspond to the theoretical meaning of
the concept they are intended to measure. To give an example for MIR, it is tempting to try
to infer music ‘mood’ from features present in musical audio (e.g. presence of major/minor
chords and tonalities); however, the situation is often more complicated. Most importantly,
mood implies a human property, and is usually experienced due to a certain (multimodal)
context. Thus, in order to truly address mood, work related to music and mood should not
only look at audio features and take the user and this context into account.

Content validity

The extent to which the experimental units reflect and represent the elements of the domain
under study. For example, an experiment aimed at measuring ‘audio similarity’ between
songs cannot be (solely) based on item co-occurrences of these songs in a social network.

Convergent validity

The extent to which the results of an experiment agree with other results they should be
related with (both theoretical and experimental). As an example from the MIR domain, a
good tempo estimator should involve a good beat estimating component. Thus, this beat
estimating component would be expected to perform well on beat extraction tasks.

Criterion validity

The extent to which the results of an experiment are correlated with those of other experiments
already known to be valid. In the case of e.g. relevance assessments, if results from
crowdsourced ground truth turn out to correlate well with results from earlier expert-
established ground truth, the suitability of the corresponding crowdsourcing platform as a
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scalable and less time-consuming ground truthing platform is strenghtened. An investigation
like this has e.g. been done in [31] for the MIREX Audio Music Similarity and Retrieval task.

Internal validity

The extent to which the conclusions of an experiment can be rigorously drawn from the
experimental design followed, and not from other factors unaccounted for. An optimal
combination of musical attributes (e.g. good voice, catchy tune) will only partially explain
high sales numbers for an artist; next to this, contextual aspects (such as recent high-profile
appearances) will also play a role.

External validity

The extent to which the results of an experiment can be generalized to other populations
and experimental settings. Of all the validity types mentioned here, issues with external
validity may be the most concretely recognized in the MIR community at this moment. For
example, many mid-level feature representations and assumptions in the MIR field have
been modeled for Western popular music, but turn out not to be a good fit for other types
of music: e.g. many classical music pieces do not have a constant tempo or steady beat,
and an equal-tempered 12-tone chroma representation is not very well suited to capture the
traditional music of other cultures.

Conclusion validity

The extent to which the conclusions drawn from the results of an experiment are justified. A
notorious example is the claim that successful published work ‘closed or bridged the semantic
gap’ (which will be discussed in more detail in the following section) — while indeed, low-level
features often do not match high-level concepts, cases in which a better correspondence
between these two levels is found frequently deal with domain-specific cases, and do not
address any fundamental and generalized ‘understanding’ problems that a ‘semantic gap’
would imply. In addition, the whole metaphor of a semantic gap may not be appropriate;
this will be addressed in the following section as well.

As we showed, meta-evaluation principles can readily be applied to many realistic MIR
cases. By applying meta-evaluation principles, more insight can be gained into the scientific
solidness of evaluation results, and because of this, the true intricacies of proposed systems
will become clearer. This is very useful, since music data often is intangible data that is
difficult to be understood, as we will discuss in the following section.

5 Opportunities for MIR: Universal Open Challenges

So far, we discussed transfer opportunities for two domains that are closely connected to the
field of MIR. In this section, we will zoom out and take a higher-level perspective on open
issues in the MIR field, and demonstrate that these are very similar to open fundamental
issues as identified in the Content-Based Image Retrieval (CBIR) and Multimedia Information
Retrieval (MMIR) communities, suggesting bridging opportunities for these fields and MIR.
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5.1 The Nature of Music Data is Multifaceted and Intangible
Music is a peculiar data type. While it has communicative properties, it is not a natural
language with referential semantics that indicate physically tangible objects in the world.
One can argue that lyrics can contain such information, but these will not constitute music
when considered in isolation.

The typical main representation of music is usually assumed to be audio or symbolic
score notation. However, even such a representation in itself will not embody music as a
whole, but rather should be considered a ‘projection’ of a musical object [75]. The composer
Milton Babbitt proposed to categorize different music representations in three domains: 1)
the acoustic or physical domain, (2) the auditory or perceived domain, and (3) the graphemic
or notated domain. In [75], different transformations between these domains are mentioned:
for example, a transcription will transform a mental image of music in the auditory domain
to a notated representation in the graphemic domain, while a performance will transform
the same mental image into an acoustic domain representation. The interplay between the
three domains, in the presence of a human spectator, will establish experiences of the musical
object, but that musical object itself remains an intangible, abstract concept.

Due to the multifaceted nature of music, and the strong dependence of experiences of
music on largely black-boxed processes in the human auditory domain with strongly affective
reactions, it is a very hard data type to grasp from a fundamental point of view. In an
increasing amount of Music-IR tasks, we are typically not interested in precise (symbolic
or digital) music encoding, nor in its sound wave dispersion behavior, but exactly in this
difficult area of the effect music has on human beings, or the way humans interact with music.
This poses challenges to the evaluation of automated methods: a universal, uncompromising
and objective ground truth is often nonexistent, and if it is there, there still are no obvious
one-to-one mappings between signal aspects and perceived musical aspects. The best ground
truth one can get is literally grounded: established from empirical observations and somehow
agreed upon by multiple individuals.

Issues with nonexistent ground truth, multifaceted representations and subjective and
affective human responses are not new at all. In fact, they have been frequently mentioned
in the CBIR and MMIR communities — although no clear and satisfying solution to them
has been found yet.

5.2 Open Challenges are Shared Across Domains
In 2000 (incidentally, the year in which the first ISMIR conference was held), a seminal
review [65] on content-based image retrieval (CBIR) was published, touching upon the
state-of-the-art and outlining future directions. In this review, several trends and open issues
were mentioned by the authors. It is striking to see how natural the following phrases read if
transferred from the image to music processing domain, substituting ‘CBIR’ with ‘MIR’ and
‘computer vision’ with ‘signal processing’:

The wide availability of digital sensors, the Internet, and the falling price of storage
devices were considered as the driving forces for rapid developments in CBIR. However,
more precise foundations would be desired, indicating what problem exactly is to be
solved, and whether proposed methods would perform better than alternatives. A call was
made for classification of usage-types, aims and purposes for the man-machine interface,
domain knowledge, and database technology alike.
The heritage of computer vision, from which CBIR developed, was considered to be an
obstacle. CBIR is stronger about solving a general ‘image understanding’ problem and
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evaluating results in terms of a user-defined ground truth than about providing algorithms
with 100% segmentation accuracy according to a fully objective measure, which would
be more typical of fundamental computer vision. Thus, in certain cases, goals could not
exactly be taken over between these two related domains.
Different goals and requirements in CBIR actually had influence on computer vision and
(re)kindled interest in larger, dedicated datasets, weak segmentation and saliency, color
image processing, and attention for invariance.
It was argued that the notion of similarity should be considered from a human perspective.
In addition, learning would be necessary to extend knowledge from partially labeled data
to larger datasets.
Interaction was mentioned as a major difference between CBIR and computer vision.
Interaction and feedback mechanisms have been explored for a longer time in IR, but
there are some fundamental differences between the two retrieval areas, especially in terms
of query vs. result modalities. Visualization, so a move towards multimodal interfaces,
was suggested as an important means to deal with this.
Larger amounts of data increase the need for solid underlying database technology.
Database research and CBIR traditionally have been separate fields, but were suggested
to work together in this.
Evaluation is a major issue. Results can be biased towards dataset composition, and it is
hard to assess the ‘difficulty’ of a dataset. A call was made for reference standards such
as TREC in Text IR. Furthermore, it was suggested to borrow concepts from the fields of
psychological and social sciences.
This review became particularly famous for coining the term semantic gap to indicate
the mismatch between signal representations and analyses and the human assessments of
their success. The authors wrote about resolving the gap by including additional sources
of information. Here, insights from natural language processing and computer vision
could be beneficial.

Many of these points still have largely remained unsolved. Eight years later, a survey
in [12] still mentions user-focused (benchmark) evaluation as a future design goal, and
application-oriented, domain-specific solutions as necessary ways to go in order to serve
real-world needs.

With an increased interest in video data and multimodal approaches, part of the CBIR field
merged into the MMIR field, where once again similar fundamental questions are mentioned.
In [32], human-centered methods, multimedia-supported user-to-user collaboration, interactive
search and agent interfaces, neuroscience and new learning models and folksonomies are
pointed out as open future directions to study. The ‘Holy Grail of Multimedia Information
Retrieval’, getting the access to the content we like quickly and easily whenever we like it and
wherever we are [22], has not been found yet.

It is very striking to consider the open challenges mentioned above alongside the open
challenges as identified at the occasion of the 10th anniversary of the ISMIR conference:

Increased involvement of real end-users;
Deeper understanding of the music data and employment of musically motivated ap-
proaches;
Perspective broadening beyond 20th century Western popular music;
The investigation of musical information outside of the audio domain;
The creation of full-featured, multifaceted, robust and scalable Music-IR systems with
helpful user interfaces.
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In all cases, we identify a need for increased user involvement and interaction, understand-
ing of the data while avoiding dataset bias, and the inclusion of multiple available information
sources as main open challenges to pay attention to. Actually, even in the well-established
IR field, involving the user is no common practice yet [3].

In both MMIR and MIR, it already has been hypothesized [49,75] that a true semantic
gap that can be ‘crossed’ through rigid algorithmic approaches is an unrealistic metaphor, and
that human and cognitive approaches are necessary in any solution that is to be successful.
The intangible and abstract nature of music data has strong potential to urgently push
research into user-centered and multimodal approaches going towards this direction [33].
Thus, also in this area, we see opportunities, and even a potential flagship role, for MIR
work to become of inspirational value to work in neighboring domains.

6 Conclusions

In this chapter, we discussed several methodology transfer opportunities for MIR. We first
gave examples of MIR analogues to existing ASR tasks and discussed how MIR findings have
benefited ASR the other way around. Subsequently, we mentioned current and promising
influences from IR to MIR. Finally, we compared fundamental open challenges within MIR to
those that have been mentioned, but never satisfyingly solved yet, in the CBIR and MMIR
fields. Here, we argued that music data can be the key to finally address these challenges.

It is our intention that this chapter can serve as an inspirational guide, especially to
researchers that are situated on the interfaces between different domains. We hope that
increased bridge-building and knowledge exchanging between the domains will be capable of
pushing research within these domains beyond limits and boundaries encountered so far.
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