
The Chase Procedure and its Applications
in Data Exchange
Adrian Onet

Concordia University
Montreal, Canada
adrian_onet@yahoo.com

Abstract
The initial and basic role of the chase procedure was to test logical implication between sets of
dependencies in order to determine equivalence of database instances known to satisfy a given
set of dependencies and to determine query equivalence under database constrains. Recently the
chase procedure has experienced a revival due to its application in data exchange. In this chapter
we review the chase algorithm and its properties as well as its application in data exchange.

1998 ACM Subject Classification H.2.5 [Heterogeneous Databases]: Data translation

Keywords and phrases chase, chase termination, data exchange, incomplete information

Digital Object Identifier 10.4230/DFU.Vol5.10452.1

1 Introduction

The main focus of this chapter is an introduction to the chase procedure and its importance
in data exchange, as it is already announced in the title. A retrospective look at the
evolution of the chase procedure proves with no doubt its importance and effectiveness in
solving several data related problems. Originally, the chase was developed for testing logical
implication between sets of embedded dependencies [36]. In fact, the logical implication
problem tests whether all databases satisfying a set of dependencies must also satisfy another
given dependency. Later, the chase was reformulated for other types of dependencies such
as functional, join and multivalued dependencies [37, 49]. Beeri and Vardi [10] proposed a
unified treatment for the implication problem by introducing the chase for tuple-generating
and equality-generating dependencies, classes of dependencies large enough to express all the
previous classes. Moreover, the chase procedure was also shown to be useful for determining
if two database instances (that may contain nulls) represent the same set of possible instances
under a set of dependencies [43]. Finally, the chase was also used for testing query equivalence
and containment under database constraints [3, 31].

More recently, the chase procedure has gained a lot of attention due to its usefulness
in: data integration [33, 11], ontologies [14, 13], inconsistent databases and data repairs
[5, 2, 23], data exchange [19], query optimization [17, 42], peer data exchange [9], and
data correspondence [23]. In this chapter we will focus on the advantages of using the
chase procedure in data exchange. We will show that the chase can be used to compute
representative target solutions in data exchange. Intuitively, the data exchange problem
consists of transforming a source database into a target one according to a set of source
to target dependencies describing the mapping between the source and the target. The set
of dependencies may also include target dependencies, that is constraints over the target
database. It is important to mention that the source and the target schemata are considered
to be distinct. To be more precise: given a source instance I and a set Σ of source-to-target

© Adrian Onet;
licensed under Creative Commons License CC-BY

Data Exchange, Integration, and Streams. Dagstuhl Follow-Ups, Volume 5, ISBN 978-3-939897-61-3.
Editors: Phokion G. Kolaitis, Maurizio Lenzerini, and Nicole Schweikardt; pp. 1–37

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol5.10452.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-61-3

2 The Chase Procedure and its Applications in Data Exchange

and target dependencies, an instance J over the target schema is said to be a data-exchange
solution (or simply solution) for I and Σ, if I ∪ J satisfies all dependencies in Σ. One of the
most important representation for this (usually infinite) set of solutions was introduced by
Fagin et al. [19]. They considered the finite instance obtained by chasing the initial source
instance with the set of dependencies. Such an instance, if it exists, was called a universal
solution. In their paper, Fagin et al. showed that the universal solution is a good candidate
to be materialized on the target. In particular, the universal solution can be used to compute
certain answers to (unions of) conjunctive queries over the target instance.

Even though not exhaustive, this chapter investigates the chase procedure when applied
against a set of tuple-generating and equality generating dependencies. We also investigate
different chase variations proposed for data exchange and review their properties. Section 3
is devoted to the chase procedure and to some of its variations when the constraints are
specified by sets of tuple-generating and equality generating dependencies. This section it
is not only focused on mapping constraints (i.e. source-to-target and target dependencies)
but also general constraints giving us a full picture for the chase termination problem. In
the same Section 3, we will also see that each of the chase variation presented computes
instances that are homomorphically equivalent and thus any of this chase variations can be
used in computing universal solutions. Even more, to the best of our knowledge, there exists
only one chase variation which is complete in finding universal solutions. It is known that
the chase procedure might not terminate for some input instances; even more, it was shown
that it is undecidable to test if a chase procedure terminates for a given set of dependencies
and a given input instance. Given this, there was tremendous work in finding classes of
dependencies that ensure the chase termination for all input instances. Section 4 presents
some of the main such classes and reviews the subset relationship and complexity of testing
the membership problem for these classes. In Section 5 we review the role played by the
chase procedure in data exchange. Finally, Section 6 presents an extension of the chase
process that deals with larger classes of dependencies including inequalities, disjunctions and
negations. All the proofs presented in this chapter are only sketches, the complete proofs
can be found in the mentioned literature.

2 Preliminaries

For basic definitions and concepts we refer to [1]. We will consider the complexity classes
PTIME, NP, coNP, DP, RE, coRE, and first few levels of the polynomial hierarchy. For
definitions of these classes we refer to [45].

Let us start with some preliminary notions. A schema R is a finite set {R1, . . . , Rn} of
relation names, each Ri having a fixed arity, arity(Ri). Let Const be a countably infinite set
of constants, Null be a countably infinite set of labeled nulls and Var be a countable infinite
set of variables, such that the sets are pairwise disjoint. From the domain Dom = Const∪Null
and the finite set R we build up a Herbrand structure consisting of all expressions of the
form R(a1, a2, . . . , ak), where R is a k-ary relation name from R and ai’s are values in Dom.
Such an expression is called a tuple. A database instance I is then simply a finite set of
tuples. We denote the set of values occurring in an instance I by dom(I). An instance I,
such that dom(I) ⊆ Const, is called a ground instance.

Let then I and J be instances over a schema R. A homomorphism h from I to J is a
function on Const∪Null, that is identity on Const, extended to tuples, relations and instances
in the natural way, such that h(I) ⊆ J . We write I → J in case there exists a homomorphism
from I to J . By I ↔ J we denote the fact that I → J and J → I. A homomorphism from I

A. Onet 3

to J is said to be full if h(I) = J . A full injective homomorphism is called embedding. A
homomorphism h from I to J is said to be a retraction if h is identity on dom(J). In this
case J is called a retract of I. An instance J is said to be a proper retract of instance I, if J
is a retract of I and J ⊂ I. An instance I is said to be a core if it does not have any proper
retract. An instance J is said to be a core of I if J is a retract of I and it is also a core. The
cores of an instance I are unique up to isomorphism and therefore we can talk about the
core of an instance I and denote it core(I).

A relational atom is an expression of the form R(x̄), where R is a relational symbol from a
schema R and x̄ ∈ (Const∪Var)arity(R). For an easier representation, by x̄ we also represent
the sets of elements in x̄ and we denote by |x̄| the cardinality of such set. A conjunctive
query ϕ(x̄) over a schema R is a conjunction of relational atoms from R, where x̄ denotes
the variables of the atoms in ϕ. CQ identifies the class of conjunctive queries and UCQ
the class of unions of conjunctive queries. The class CQ 6= denotes all conjunctive queries
that also allow the inequality atom (similarly is defined the class UCQ 6=). The extension
of previous classes by allowing negation gives CQ¬,UCQ¬, CQ¬, 6= and UCQ¬,6=. Given a
formula α : R1(x̄1)∧R2(x̄2)∧ . . .∧Rn(x̄n) and a mapping h : (Const∪Var)→ (Const∪Null),
identity on Const, by h(α) we denote the instance {R1(h(x̄1)), R2(h(x̄2)), . . . , Rn(h(x̄n))}.

Finally, a tuple generating dependency (tgd) is a first order sentence ξ of the form:
∀x̄, ȳ

(
α(x̄, ȳ)→ ∃z̄ β(x̄, z̄)

)
, where α (the body) and β (the head) are conjunctive queries,

x̄ and ȳ denote the universally quantified variables, and z̄ the existentially quantified ones.
We denote by body(ξ) the set of all atoms in the body and by head(ξ) the set of all atoms in
the head. An equality generating dependency (egd) is a first order sentence ξ of the form
∀x̄
(
α(x̄) → x1 = x2

)
. An egd is like a tgd, except that the consequent is an equality

between the variables x1 and x2 that also are part of x̄. For simplicity for these types of
formulae, we will omit the universal quantifiers; also the conjunction between atoms will
be denoted by comma. Thus, the tgd ∀x, y

(
R(x, y) ∧ R(y, x) → ∃z T (x, z) ∧ S(z)

)
will

be simply denoted as R(x, y), R(y, x) → ∃z T (x, z), S(z). A full tgd is a tgd that has no
existentially quantified variables. A LAV tgd is a tgd with only one atom in the body. Let
ξ be a tgd of the form α(x̄, ȳ)→ ∃z̄ β(x̄, z̄), and ā ∈ (Const)|x̄|+|ȳ|. We denote by ξ(ā) the
first order sentence obtained from ξ by replacing the universal quantified variables with the
corresponding constants in ā. An instance I is said to satisfy a set of dependencies, denoted
I |= Σ, if I satisfies Σ in the theoretic standard model sense.

3 The chase procedure

The importance of the chase procedure in data exchange was first brought to the forefront
by Fagin, Kolaitis, Miller and Popa in their seminal paper [19], where the chase was used as
a tool for constructing a "general" solution to the data-exchange problem. In their approach
the chase procedure applies at each iteration a chase step, that either adds a new tuple
or changes the instance to model some equality generating dependency, or fails when the
instance could not be changed to satisfy an equality generating dependency. Based on this
chase procedure, several variations were proposed [12, 16, 38, 24]. To differentiate them,
we will call the chase procedure presented by Fagin et al. [19] the standard chase. Since
most of the practical database constraints (such as key and inclusion dependencies) can be
represented as sets of tuple generating (tgd) and equality generating (egd) dependencies, in
this section we will present the chase procedure applied on such dependencies. Later on,
more precisely in Section 6, we will introduce a variation of the chase procedure that also
deals with dependencies containing inequalities and disjunctions. For an ease of notation,

Chapte r 01

4 The Chase Procedure and its Applications in Data Exchange

through this section if not mentioned otherwise, we will use the notation I to represent an
arbitrary instance over a given schema and Σ to refer to an arbitrary set of tgds and egds
over a schema explicitly mentioned if it does not follow directly from the context.

3.1 The chase step
The chase procedure is a repetitive application of a chase step. Each chase step “applies” a
tgd or egd, on a subset of the instance.

The tgd chase step. Let I be an instance and ξ be the tgd α(x̄, ȳ) → ∃z̄ β(x̄, z̄) both
over a schema R. A pair (ξ, h) is said to be a trigger for I, if h is a homomorphism such that
h(α(x̄, ȳ)) ⊆ I. In case we also have that there is no extension h̃ of h such that h̃(β(x̄, z̄)) ⊆ I,
then (ξ, h) is said to be an active trigger for I. The tgd ξ is said to be applicable to I with
homomorphism h if (ξ, h) is a trigger (active or not) for I.

To fire the trigger (ξ, h) means to transform I into the instance J = I ∪ h̃(β(x̄, z̄)),
where h̃ is a distinct extension of h, i.e. an extension of h that assigns new fresh nulls to
the existential variables in β. By “new fresh” we mean the next unused element in some
fixed enumeration of the nulls. We call this transformation as an oblivious-chase step and
denote it I ∗,(ξ,h)−−−−→ J . In case (ξ, h) is an active trigger for I, the transformation is called
standard-chase step and is denoted I (ξ,h)−−−→ J . Clearly any standard-chase step is also an
oblivious-chase step but the converse does not always hold.

I Example 1. Let us consider instance I = {R(a, b), R(b, a), S(b, c)} and tgd ξ:

R(x, y), R(y, x)→ ∃z S(x, z).

Homomorphism h = {x/a, y/b} maps the body of ξ to I and there is no extension of h that
maps the head of ξ into I. That is, the trigger (ξ, h) is active for I and I (ξ,h)−−−→ J , where
J = I ∪{S(a,X)} and h̃(z) = X. On the other hand, for the homomorphism h′ = {x/b, y/a}
the pair (ξ, h′) is a trigger for I, but it is not an active trigger. In this case I ∗,(ξ,h

′)−−−−−→ J ′,
where J ′ = I ∪ {S(b,X)}.

The complexity of testing if there exists a trigger (active trigger) for a given instance I
and a fixed (or given) tgd ξ is given by the following theorem:

I Theorem 2. [26] Let ξ be a tgd and I an instance. Then
1. for a fixed ξ, testing whether there exists a trigger or an active trigger on a given I is

polynomial;
2. testing whether there exists a trigger for a given ξ on a given I is NP-complete;
3. testing whether there exists an active trigger for a given ξ and a given I is Σp2-complete.

Proof. Let us consider ξ to be a tgd of the form α(x̄, ȳ)→ ∃z̄ β(z̄). The polynomial cases
can be verified by checking all homomorphisms from the body of the dependency into the
instance. We also need to consider for the active trigger problem if it has for each such
homomorphism an extension that maps the head of the dependency into the instance. These
tasks can be carried out in O(n|α|) and O(n|α|+|β|) time, respectively.

It is easy to see that the trigger existence problem is NP-complete in combined complexity,
as the problem is equivalent to testing whether there exists a homomorphism between two
instances (in our case α and I); a problem known to be NP-complete.

A. Onet 5

Regarding the combined complexity of the active trigger existence problem, we observe
that it is in ΣP2 , since one may guess a homomorphism h from α into I, and then use an NP
oracle to verify that there is no extension h′ of h, such that h′(β) ⊆ I. In the case of the
lower bound, we will reduce the following problem to the active trigger existence problem.
Let φ(x̄, ȳ) be a Boolean formula in 3CNF over the variables in x̄ and ȳ. Is the formula
∃x̄ ¬

(
∃ȳ φ(x̄, ȳ)

)
true? The problem is a variation of the standard ∃∀-QBF problem [48] and

known to be ΣP2 -complete [46].
For the reduction, let φ be given. We construct an instance Iφ and a tgd ξφ. The instance

Iφ is:

F

1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

N

0 1
1 0

The tgd ξφ = α→β is constructed as follows: for each variable x ∈ x̄ in φ(x̄, ȳ), the body
α will contain the atom N(x, x′) (x′ is used to represent ¬x). The head β is existentially
quantified over that set

⋃
y∈ȳ{y, y′} of variables. For each conjunct C of φ, we place an

atom F (x, y, z) in β, where x, y and z are the variables in C, with the convention that if the
variable x is negated in C, then x′ is used in the atom. Finally, for each y ∈ ȳ, we place in β
the atom N(y, y′), denoting that y and y′ should not have the same truth assignment. It is
easy to note that ∃x̄ ¬

(
∃ȳ φ(x̄, ȳ)

)
is true, if and only if there exists an active trigger (ξφ, h)

for Iφ. J

The egd chase step. Let I be an instance and ξ the egd α(x̄)→ xi = xj , where xi, xj ∈ x̄.
We say that ξ is applicable to I with the homomorphism h, if the following holds:
1. h maps the atoms of α(x̄) to tuples of I,
2. h(xi) 6= h(xj).

The pair (ξ, h) is called an egd active trigger for I, or simply a trigger. Let (ξ, h) be an egd
trigger for I. In case h maps both variables xi and xj to constants, then we say that the egd
chase step fails, and represent this by I (ξ,h)−−−→ ⊥. Otherwise, we say that the egd chase step
does not fail and denote this by I (ξ,h)−−−→ J , where instance J is computed as follows:
1. if both h(xi) and h(xj) are labeled nulls, then J is obtained from I by replacing all

occurrences of h(xi) with h(xj), considering that there is an enumeration of the variables
such that i < j.

2. if either h(xi) or h(xj) is a constant and the other is a labeled null, then J is obtained
from I by replacing all occurrences of the labeled null with the constant.

I Example 3. Consider instance I = {R(a, b), R(c,X), R(X,Y)} and ξ: R(x, y) → x = y.
There are three distinct homomorphisms that map the body of ξ into I: h1 = {x/a, y/b},
h2 = {x/c, y/X} and h3 = {x/X, y/Y }. As h1(x) and h1(y) are distinct constants, it follows
that I (ξ,h1)−−−−→ ⊥. On the other hand, h2(x) is a constant and h2(y) is a null. Thus, we have
I

(ξ,h2)−−−−→ J , where J = {R(a, b), R(c, c), R(c, Y)} is obtained by replacing all occurrences
of null X with constant c in I. Finally, h3 maps both variables x and y to distinct nulls,

Chapte r 01

6 The Chase Procedure and its Applications in Data Exchange

making the egd ξ applicable on I with the homomorphism h3. Hence I (ξ,h3)−−−−→ J ′, where
J ′ = {R(a, b), R(c, Y), R(Y, Y)} is obtained from I by replacing X with Y , considering that
y follows x in the variable enumeration.

Similarly to the tgd chase step, we have the following complexity results for the egd
trigger-existence problem. Note that for egds the trigger and active trigger notions coincide.

I Theorem 4. Let ξ be an egd and I an instance. Then
1. for a fixed ξ, testing whether there exists a trigger on a given I is polynomial, and
2. testing whether there exists a trigger for a given ξ on a given I is NP-complete.

Proof. Similar with the proof of Theorem 2. J

3.2 The chase algorithm
Using the previously introduced chase steps, we are now ready to present the standard-chase
algorithm. This algorithm can be described as an iterative application of the standard-chase
steps. In case one of the egd chase steps fails, then the algorithm will fail. If the algorithm
does not fail, it nondeterministically chooses another active trigger, tgd or egd, and proceeds
with the corresponding standard-chase step. The algorithm terminates when either one
of the egd chase step fails or when there are no other active triggers. More formally, the
standard-chase algorithm can be described as follows:

STANDARD-CHASE(I,Σ)
1 I0 := I; i := 0;
2 if exists active trigger (ξ, h) for Ii
3 then
4 if Ii

(ξ,h)−−−→ ⊥
5 then return FAIL
6 else Ii

(ξ,h)−−−→ Ii+1; i := i+ 1
7 else return Ii
8 goto 2

Note that the previous algorithm introduces a nondeterministic step at line 2, induced
by the trigger choice. This makes the chase process to be viewed as a tree, where level
i in the tree represents the i-th step in the chase algorithm, and where to each node a
new edge is added for each of the applicable active trigger. Each path from the root of
the tree to a leaf node represents an execution branch, or simply a branch, similarly to
the nondeterministic finite automata. Thus the algorithm may return different instances
depending on the considered branch. There are cases when, for some branches, the algorithm
fails while it does not fail for other branches, as it is shown in Example 6. This happens by
exhaustively choosing the same dependencies in the nondeterministic step.

Moreover, the standard-chase algorithm stops if it either fails, due to an egd trigger at
step 4, or there are no other active triggers to be applied. As the tgds are adding new tuples
to the instance, it may be that the chase algorithm never terminates as in Example 5.

Fagin et al. [19] showed that in case the standard-chase algorithm fails on one execution
branch, then it will fail on all finite branches.

For the branches for which the algorithm does not fail, a standard-chase sequence is
a finite or infinite sequence (I0, I1, I2, . . . , In, . . .) such that I0 = I and Ii

(ξ,h)−−−→ Ii+1, for

A. Onet 7

some i ≥ 0 and some active trigger (ξ, h). If for some branch the algorithm terminates in
the finite, then there exists a positive integer n such that for the standard-chase sequence
(I0, I1, I2, . . . , In) there is no active trigger for In.

As shown in the following example, a standard chase sequence may be finite or infinite,
for the same set of tgds and the for same input instance.

I Example 5. Consider instance I = {R(a, b)} and tgds:

ξ1 = R(x, y)→ R(y, x), and
ξ2 = R(x, y)→ ∃z R(y, z).

If first we chose the tgd trigger (ξ1, {x/a, y/b}), the tuple R(b, a) is added to the instance
I forming an instance I ′ = I ∪{R(b, a)}. It can be easily noticed that there is no other active
trigger on I ′ involving either ξ1 or ξ2. From this it follows that the sequence (I, I ′) is a finite
standard-chase sequence. On the other hand, if in the standard-chase algorithm we chose
first the active trigger (ξ2, {x/a, y/b}), and from there on only chose active triggers over ξ2,
we get the following infinite chase sequence:

I0 = I

R

a b

(ξ2,h1)−−−−→ I1

R

a b

b X1

(ξ2,h2)−−−−→ . . .
(ξ2,hn)−−−−→ In

R

a b

b X1

X1 X2

. . .

Xn−1 Xn

(ξ2,hn+1)−−−−−−→ . . .

The next example shows a case when the standard-chase algorithm fails on some branches
and does not terminate (implicitly does not fail) on others.

I Example 6. Let us now consider a slightly changed set of dependencies from the previous
example:

ξ1 = R(x, y)→ T (y, x);
ξ2 = T (x, y)→ x = y; and
ξ3 = R(x, y)→ ∃z R(y, z).

Consider the instance I = {R(a, b)}. If applying an active trigger (ξ1, {x/a, y/b}), it will
add the tuple T (a, b) to I. Next, when applying the active trigger (ξ2, {x/a, y/b}) the
standard-chase algorithm will fail. However, if the chosen branch uses only the triggers over
ξ3, the standard-chase algorithm will not terminate, as previously shown.

In the previous example the standard-chase algorithm did not fail because we exhaustively
applied active triggers over the same dependency. To avoid such cases, the chase algorithm
is required to be fair, defined as follows:

I Definition 7. Let I0 be an instance and Σ a set of tgds and egds. A standard-chase
sequence (I0, I1, . . .) is said to be fair if for all i and for all active triggers (ξ, h) for Ii, where
ξ ∈ Σ, there exists j such that either Ij

(ξ,h)−−−→ Ij+1 or the trigger (ξ, h) is not active for Ij .
A standard-chase algorithm is said to be fair, if it only produces fair chase sequences.

In the rest of this chapter we will consider, if not mentioned otherwise, all the chase
algorithms to be fair.

Chapte r 01

8 The Chase Procedure and its Applications in Data Exchange

Let us now turn our attention to standard-chase algorithms that terminate in a finite
number of steps. The following proposition shows the relationship between the finite instances
returned by the algorithm.
I Proposition 8. [19] If K and J are two finite instances returned by the standard-chase
algorithm on two distinct execution branches, with input I and Σ, then K and J are
homomorphically equivalent, that is K ↔ J .

Based on the homomorphic equivalence class, if there exists an execution branch for
which the standard-chase algorithm with input I and Σ terminates in the finite and does
not fail, then we denote by chasestd

Σ(I) one representative of the equivalence class for the
resulting finite instances. If the standard chase fails or if it does not terminate in the finite
on all branches, then we set chasestd

Σ(I) = ⊥. With the instance I and the dependencies Σ
defined in Example 5, we have chasestd

Σ(I) = {R(a, b), R(b, a)}. On the other hand, with
the input instance and the dependencies defined in Example 6 we have chasestd

Σ(I) = ⊥.
The following theorem, developed by Fagin et. al, states one of the main properties of the
standard-chase algorithm. As seen later in this section, this property also holds for the other
chase variations.

I Theorem 9. [19] If chasestd
Σ(I) 6= ⊥, then chasestd

Σ(I) |= Σ and I → chasestd
Σ(I).

Let us now turn our attention to the problem defined as the termination of standard-chase
algorithm. It is easy to see that the cause of non-termination lies in the existentially quantified
variables in the head of tgds. Thus, for simplicity, for the following classes we omitted egds.

I Definition 10. Given an instance I, by CTstd
I,∀ we denote the class of tgd sets such that

Σ ∈ CTstd
I,∀ iff all standard-chase sequences for I and Σ are finite. We denote by CTstd

I,∃ the
class of tgd sets such that Σ ∈ CTstd

I,∃ iff there exist some standard-chase sequences for I and
Σ that are finite.

The previous notations are extended to classes of tgd sets for which the standard chase
terminates on all input instances as follows:

I Definition 11. We denote by CTstd
∀∀ the class of tgd sets such that Σ ∈ CTstd

∀∀ iff for all
instances I all standard-chase sequences of I with Σ are finite. We denote by CTstd

∀∃ the class
of tgd sets such that Σ ∈ CTstd

∀∃ iff for all instances I there exists at least one standard-chase
sequence of I and Σ that is finite.

From the termination classes definition it is clear that CTstd
∀∀ ⊆ CTstd

∀∃. Also from the set
of dependencies presented in Example 5, it follows that the inclusion is strict.

Deutsch, Nash and Remmel in [16] showed that, given I and Σ, the problems of testing
whether Σ ∈ CTstd

I,∀ or Σ ∈ CTstd
I,∃ are undecidable in general. More recently, Grahne

and O. [26] extended this undecidability result to the CTstd
∀∃ class too. That is for a given

Σ, the problem of testing if Σ ∈ CTstd
∀∃ is coRE-complete. In case we allow a single denial

constraint, then the class CTstd
∀∀ is coRE-complete as well. Where a denial constraint is a tgd

of the form α(x̄)→ ⊥, which is satisfied by an instance I only if there is no homomorphism
h such that h(α(ā)) ⊆ I,

Given the previous result, the next best hope is to find large decidable classes of de-
pendencies included in CTstd

∀∀. One such class is the one of full tgds, that is tgds without
existential quantifiers. In Section 4 we review other decidable classes of dependency sets that
are known to be in CTstd

∀∀.
Before ending this section we need to reiterate that the termination classes are defined

over tgds. Even if the egds do not introduce new nulls, they still may play an important
role in the standard-chase termination problem, as shown in the next example.

A. Onet 9

I Example 12. Let Σ = {ξ1, ξ2, ξ3}, where:

ξ1 = R(x, y)→ ∃z S(y, z);
ξ2 = S(x, x)→ ∃z R(x, z); and
ξ3 = S(x, y)→ x = y.

Let I = {R(a, b)}. It is easy to see that the standard-chase algorithm converges to the infinite
instance J = {R(a, b), R(b,X1), . . . , R(Xn−1, Xn), . . . , S(b, b), S(X1, X1), . . . , S(Xn, Xn), . . .}.
On the other hand, Σ′ = {ξ1, ξ2} ∈ CTstd

∀∀, that is without the egd ξ3 the standard chase
algorithm terminates on all execution branches with any input instance.

3.3 Chase variations
After the standard chase was presented as a method of computing "general" solutions in
data exchange [19], many variations of the standard-chase algorithm were proposed in the
literature [12, 16, 38, 24] . In the remaining part of this section, dedicated to the chase
algorithm, we try to differentiate between the main chase variations by highlighting their
termination properties.

3.3.1 The oblivious chase
This focuses on one of the simplest variations of the standard chase named the oblivious
chase (also known as naïve chase). This procedure is based on the relaxation of the chase
step. The oblivious chase presented here differs from the one described by Cali et al. [12] by
not relying on any order. As we will see, this does not affect the finite instance returned by
the chase algorithm.

The oblivious-chase algorithm is an iterative application of the oblivious-chase step, that
is at each iteration all triggers are considered, and not only the active ones as in the standard-
chase algorithm. Recall that for the trigger (ξ, h) and the instance I the oblivious-chase
step is denoted as I ∗,(ξ,h)−−−−→ J , where instance J is constructed the same way as in the
standard-chase step. Note that if (ξ, h) is a trigger for I, then (ξ, h) will also be a trigger for
J , where I ∗,(ξ,h)−−−−→ J . To avoid such infinite loops, the oblivious-chase algorithm applies each
trigger only once.

I Example 13. Consider the instance I = {R(a, b), R(b, a), S(b, c)} and the tgd ξ defined as
R(x, y), R(y, x)→ ∃z S(x, z) as in Example 1. The homomorphism h = {x/a, y/b} maps the
body of ξ to I, and there is no extension of h that maps the head of ξ into I. This makes (ξ, h)
both a standard and an oblivious-chase trigger. However, the homomorphism h1 = {x/b, y/a}
also maps the body of ξ to I, but there exists the extension h̃1 = {x/b, y/a, z/c} of h1,
such that h̃1 maps the head of ξ into I. Hence (ξ, h1) is a trigger but not an active trigger
for I. The instance J is obtained by applying the oblivious-chase step I ∗,(ξ,h1)−−−−−→ J , where
J = I ∪ {S(b, Y)} and Y is a new labeled null.

Because of the nondeterministic way the oblivious-chase algorithm selects the triggers
at each iteration, we may have different execution branches. Similarly to the termination
classes defined for the standard chase, we introduce corresponding termination classes of tgd
sets for the oblivious chase: CTobl

I,∃, CTobl
I,∀, CTobl

∀∀ and CTobl
∀∃.

The following proposition shows that the termination classes are not affected by the
nondeterministic nature of the algorithm.

Chapte r 01

10 The Chase Procedure and its Applications in Data Exchange

I Proposition 14. Let I be an instance. Then CTobl
I,∀ = CTobl

I,∃ and CTobl
∀∀ = CTobl

∀∃.

Proof. The proof follows from the observation that for the oblivious-chase algorithm, when
the input set of dependencies are only tgds, the set of triggers applied on each branch is the
same, up to isomorphism. Thus, if the oblivious chase terminates on one execution branch,
then it will terminate on all branches. J

From the previous proof it also follows that in case the oblivious chase terminates for
instance I and set of tgds Σ, then the returned on all execution branches are isomorphically
equivalent. As we will see in the following example, if we allow egds, the instances returned
are not guaranteed to be isomorphically equivalent. Still, using the same proof techniques as
the one used to prove Theorem 9, it can be shown that in this case, if the chase terminates
and does not fail, the instances returned are homomorphically equivalent. Thus, if the
oblivious chase terminates with input I and Σ (containing both tgds and egds), then we
denote by chaseobl

Σ(I) one representative instance of the homomorphic equivalence class. If
the oblivious chase fails or if it does not terminate, we set chaseobl

Σ(I) = ⊥.

I Example 15. Let Σ = {ξ1, ξ2, ξ3}, where:

ξ1 = S(x)→ ∃y R(x, y);
ξ2 = R(x, y)→ ∃z T (y, z); and
ξ3 = R(x, y)→ x = y.

Let us now consider the instance I = {S(a)}. If we apply the dependencies in the order ξ1,
ξ2, ξ3 and then ξ2 again, we get the following instance J0 = {S(a), R(a, a), T (a,X1), T (a,X2)}.
But, if we apply the dependencies in the order ξ1, ξ3 and finally ξ2, the instance returned
by the oblivious-chase algorithm is J1 = {S(a), R(a, a), T (a, Y1)}. Clearly J0 and J1 are not
isomorphically equivalent but they are homomorphically equivalent.

From the observation that all active triggers are also triggers, it follows that:
I Proposition 16. CTobl

∀∀ ⊂ CTstd
∀∀.

Proof. The inclusion follows directly from the definition of the trigger and the active trigger.
For the strict inclusion part consider dependency set from Example 17. J

I Example 17. Consider Σ = {R(x, y)→ ∃z R(x, z)}. Clearly there is no active trigger on
Σ for any instance I. On the other hand, for I = {R(a, b)} the oblivious-chase algorithm will
create the following infinite chase sequence:

I0 = I

R

a b

∗,(ξ,h1)−−−−−→ I1

R

a b

a X1

∗,(ξ,h2)−−−−−→ . . .
∗,(ξ,hn)−−−−−→ In

R

a b

a X1

a X2

. . .

a Xn

∗,(ξ,hn+1)−−−−−−−→ . . .

In order to relate termination of the standard and the oblivious algorithms, we introduce
a transformation called enrichment that takes a tgd ξ = α(x̄, ȳ)→ ∃z̄ β(x̄, z̄) over a schema
R̄, and converts it into the tgd ξ̂ = α(x̄, ȳ)→ ∃z̄ β(x̄, z̄), H(x̄, ȳ), where H is a new relational
symbol that does not appear in R. For a set Σ of tgds defined on schema R, the transformed
set is Σ̂ = {ξ̂ : ξ ∈ Σ}. Using the enrichment notion, we can present the relation between the
standard and oblivious-chase terminations.

A. Onet 11

I Theorem 18. [25] Let Σ be a set of tgds and I an instance. Then we have:
1. Σ ∈ CTobl

I,∀ if and only if Σ̂ ∈ CTstd
I,∀, and

2. Σ ∈ CTobl
∀∀ if and only if Σ̂ ∈ CTstd

∀∀.

Proof. It follows from the observation that for any instance I if (ξ, h) is a trigger for I, then
(ξ̂, h) is also an active trigger for I. J

Cali et al. showed in [12] that it is undecidable if the oblivious chase terminates for a
given input I and given set of tgds Σ. The same result applies for the class CTobl

∀∀ if we allow
at least one denial constraint [26]. It remains an open problem if the class CTobl

∀∀ remains
undecidable when considering only sets of tgds.

We close the presentation of the oblivious-chase algorithm by linking together the finite
instances resulting from both chase algorithms.

I Theorem 19. [12] Let I be an instance and let Σ be a set of tgds and egds, such that
chaseobl

Σ(I) 6= ⊥. Then chasestd
Σ(I)↔ chaseobl

Σ(I) and chaseobl
Σ(I) |= Σ.

3.3.2 The semi-oblivious chase
The semi-oblivious-chase method was first introduced by Marnette in [38]. For this, let ξ be
a tgd α(x̄, ȳ) → ∃z̄ β(x̄, z̄); then the triggers (ξ, h) and (ξ, g) are considered equivalent if
h(x̄) = g(x̄). The semi-oblivious chase works as the oblivious one, except that exactly one
trigger from each such equivalence class is fired in a branch.

For a better differentiation between the chase algorithms presented so far consider the
following example:

I Example 20. Let Σ = {ξ} contain the tgd ∀x, y R(x, y)→ ∃z T (x, z), and consider the
instance I = {R(a, b), R(a, c), R(d, e), T (a, a)}. In this case there exist only three triggers
τ1 = (ξ, {x/a, y/b}), τ2 = (ξ, {x/a, y/c}) and τ3 = (ξ, {x/d, y/e}). From these triggers only
τ3 is an active trigger for I. Thus, there is only one step to be executed for the standard
chase: I τ3−→ Jstd, where Jstd = I ∪{T (d,X1)}. Because the homomorphism from the trigger
τ1 maps x to value a as the homomorphism from the trigger τ2, it follows that τ1 is equivalent
with τ2. That is in the semi-oblivious chase only two triggers are applied: the active trigger
τ3 and the representative of the equivalence class for τ1 and τ2. Hence, the resulted instance
is Jsobl = I ∪ {T (d,X2)} ∪ {T (a,X3)}. Finally, the oblivious chase will apply all triggers
returning instance Jobl. Bellow are the tabular representations of the instances resulted
by applying the standard, semi-oblivious and oblivious-chase algorithms. The instances are
restricted to relation T :

Jstd

T

a a

d X1

Jsobl

T

a a

d X2

a X3

Jobl

T

a a

d X4

a X5

a X6

Similarly to the previous chase algorithms, we define termination classes over sets of tgds:
CTsobl

I,∃ ,CTsobl
I,∀ , CTsobl

∀∃ and CTsobl
∀∀ for the semi-oblivious algorithm. The following proposition

shows that the nondeterministic behavior of the semi-oblivious-chase algorithm does not
influence the termination for different execution branches.

Chapte r 01

12 The Chase Procedure and its Applications in Data Exchange

I Proposition 21. Let I be an instance. Then CTsobl
I,∀ = CTsobl

I,∃ and CTsobl
∀∀ = CTsobl

∀∃ .

Proof. It follows from the observation that the set of representative trigger for each equival-
ence classes is the same for all execution branches. J

Similarly to the oblivious chase case, it can be shown that in case the semi-oblivious-chase
algorithm terminates and not fails with the input instance I and the set of tgds Σ, then
the instances returned by each execution branch are isomorphically equivalent. In case we
allow egds in Σ, then the returned instances will be homomorphically equivalent. In this
case we denote by chasesobl

Σ(I) one representative instance of the homomorphic equivalence
class for the instances computed on each execution branch. In case the semi-oblivious-chase
algorithm fails or it is non-terminating, we set chasesobl

Σ(I) = ⊥.
The same as for the oblivious chase case, we can find a rewriting of the dependencies such

that we can relate the termination of the semi-oblivious-chase algorithm to the termination
of the standard-chase algorithm. We introduce a transformation, called semi-enrichment,
that takes a tgd ξ = α(x̄, ȳ) → ∃z̄ β(x̄, z̄) over a schema R, and converts it into the tgd
ξ̃ = α(x̄, ȳ) → ∃z̄ β(x̄, z̄), H(x̄), where H is a new relational symbol that does not appear
in R. For a set Σ of tgds defined on schema R, the transformed set is Σ̃ = {ξ̃ : ξ ∈ Σ}. Using
the semi-enrichment notion, the relation between the standard and semi-oblivious-chase
terminations can be presented as follows.

I Theorem 22. [26] Let Σ be a set of tgds and I an instance. Then we have:
1. Σ ∈ CTsobl

I,∀ if and only if Σ̃ ∈ CTstd
I,∀, and

2. Σ ∈ CTsobl
∀∀ if and only if Σ̃ ∈ CTstd

∀∀.

The following theorem relates the instances returned by the semi-oblivious chase and the
instances returned by the standard-chase algorithm.

I Theorem 23. [38] Let I be and instance and let Σ be a set of tgds and egds, such that
chasesobl

Σ(I) 6= ⊥. Then chasestd
Σ(I)↔ chasesobl

Σ(I) and chasesobl
Σ(I) |= Σ.

Similarly to the standard chase algorithm, the problem of testing if the semi-oblivious
chase is terminating for a given instance and a given set of tgds is undecidable [38]. The
same result applies for the class CTsobl

∀∀ , if we allow at least one denial constraint [26]. It
remains an open problem if the class CTsobl

∀∀ remains undecidable when considering only sets
of tgds.

The proposition below shows the set relationship between termination classes for the
chase variations presented so far.

I Proposition 24. [26] CTobl
∀∀ ⊂ CTsobl

∀∀ ⊂ CTstd
∀∀ ⊂ CTstd

∀∃.

Proof. The inclusions are clear from the definition of the corresponding chase steps. For the
first strict inclusion consider Σ1 = {R(x, y)→ ∃z R(x, z)}. From Example 17, we know that
Σ1 /∈ CTobl

∀∀. On the other hand, it is easy to see that for any instance I only a maximum of
|I| triggers will be applied on each execution branch by the semi-oblivious chase. For the
second strict inclusion consider Σ2 = {ξ1, ξ2}, where:

ξ1 = R(x)→ ∃z S(z), T (z, x), and
ξ2 = S(x)→ ∃z R(z), T (x, z).

It is easy to check that the standard chase terminates for Σ2 with any input instance I.
Additionally, the semi-oblivious chase does not terminate for Σ2 and instance I = {R(a)}. J

A. Onet 13

3.3.3 The core chase
The class of chase algorithms is enriched by the core chase algorithm introduced by Deutsch
et al. in [16]. We need to clarify from the very beginning that the core chase differs from
the other variations by executing in parallel all applicable standard tgd chase steps and
also computing the core of the unified instance. Note that we may only apply the standard
tgd chase steps in parallel but not the egd chase steps, as the latter may modify the given
instance by equating existing labeled nulls to constants or to other labeled nulls.

For a better understanding, we slightly changed the algorithm from [16] by applying all
the egd triggers before applying in parallel all the active tgd triggers. This modification
does not change however the result or the complexity of the given algorithm.

CORE-CHASE(I,Σ)
1 I0 := I; i := 0;
2 if exists a standard egd trigger (ξ, h) for Ii
3 then
4 if Ii

(ξ,h)−−−→ ⊥
5 then return FAIL
6 else Ii

(ξ,h)−−−→ Ii+1; i := i+ 1 goto 2
7 if exists a standard tgd trigger for Ii
8 then
9 For all active trigger (ξ, h) for Ii, compute in parallel Ii

ξ,h−−→ Jj
10 Ii+1 := Core(

⋃
j Jj); i := i+ 1

11 else
12 return Ii
13 goto 2

By applying all the triggers in parallel, the core-chase algorithm eliminates the non-
deterministic part introduced by the standard-chase algorithm. In case the core-chase
algorithm terminates in the finite and does not fail for input I and Σ, we denote the returned
instance by chasecore

Σ(I) . In case the core chase fails or it is non-terminating, we set
chasecore

Σ(I) = ⊥.
Similarly to the other chase variations, for the core chase we introduce classes of tgd

sets CTcore
I,∀ , CTcore

I,∃ , CTcore
∀∀ and CTcore

∀∃ . Because the core chase is deterministic, it follows that
CTcore

I,∀ = CTcore
I,∃ for any instance I and that CTcore

∀∀ = CTcore
∀∃ .

I Theorem 25. [16] Let I be an instance. Then CTstd
I,∃ ⊂ CTcore

I,∀ and CTstd
∀∃ ⊂ CTcore

∀∀ .

Proof. For the second strict inclusion consider Σ = {R(x) → ∃y R(y), S(x)}. Clearly the
standard chase does not terminate on any branch with I = {R(a)} and Σ, that is Σ /∈ CTstd

∀∃ .
On the other hand, for any instance I, the core chase will terminate in maximum |IR| steps,
where IR is instance I restricted to tuple over relation R. J

In [16] it is shown that the membership problem for the class CTcore
I,∀ for a given instance

I is RE-complete. To this, it was shown most recently [26] that the membership problem for
the class CTcore

∀∀ is coRE-complete.
It may be noted that at line 10 the core-chase algorithm does not simply compute the

union between all the instances computed at line 9, but it also computes its core. This gives
the following link between the core chase and standard-chase algorithms:

Chapte r 01

14 The Chase Procedure and its Applications in Data Exchange

Figure 1 Termination classes for different chase variations.

I Theorem 26. Let I be and instance and let Σ be a set of tgds and egds, such that
chasestd

Σ(I) 6= ⊥. Then chasestd
Σ(I) ↔ chasecore

Σ(I) and chasecore
Σ(I) |= Σ, even

more, Core(chasestd
Σ(I)) = chasecore

Σ(I).

Before ending this section about chase variations, let us summarize the differences between
the presented chase algorithms. First we saw that in case the algorithm terminates and
does not fail with input I and Σ, then the instances returned by all of the presented chase
variations are homomorphically equivalent. We also saw that the complexity of testing the
existence of a trigger is slightly easier than testing the existence of an active trigger. From
this it follows that the oblivious and semi-oblivious-chase steps are less expensive than the
standard-chase step that is also less expensive than the core-chase step. On the other hand,
a set of dependencies is more likely to terminate for the core chase than any of the other
chase variations. Figure 1 shows the set inclusion relationship between different termination
classes.

4 Sufficient conditions for the chase termination

In the previous section we saw that it is undecidable to test for all the chase variations if the
chase will terminate for a given instance and a given set of dependencies. This motivated
the research community to find large classes of tgd sets that ensure termination of the
standard-chase algorithm for all instances. In this section some of these classes of tgd sets
will be presented for which it is known that the standard chase terminates on all execution
branches for all input instances. We also investigate here if these classes are sufficient to
guarantee the chase termination for other chase variations beside the standard chase. For
this, we will say that a class of sets of tgds C is closed under enrichment if Σ ∈ C implies
Σ̂ ∈ C. Similarly, the class C is closed under semi-enrichment if Σ ∈ C implies Σ̃ ∈ C. From
Theorems 18 and 22 it directly follows:

I Corollary 27. Let C ⊆ CTstd
∀∀.

1. if C is closed under enrichment, then C ⊆ CTobl
∀∀.

2. if C is closed under semi-enrichment, then C ⊆ CTsobl
∀∀ .

We will use the previous corollary to show that the termination classes presented here
not only guarantee the termination for the standard-chase algorithm but also for the semi-
oblivious-chase algorithm.

A. Onet 15

Figure 2 Extended dependency graphs associated with dependencies from Example 30.

4.1 Rich acyclicity
The class of richly acyclic set of dependencies was introduced by Hernich and Schweikardt in
[30] in a different context, and it was shown in [25] that this class guarantees termination for
the oblivious chase on any input instance.

I Definition 28. [19, 12] For a given database schema R define a position in R to be a pair
(R, k), where R is a relation symbol in R and k a natural number with 1 ≤ k ≤ arity(R),
such that k identifies the k-th element in R.

The notion of extended-dependency graph is defined as follows:

I Definition 29. [30] Let Σ be a set of tgds over schema R. The extended-dependency
graph associated with Σ is a directed edge-labeled graph GEΣ = (V,E), such that each vertex
represents a position in R and ((R, i), (S, j)) ∈ E, if there exists a tgd ξ ∈ Σ of the form
α(x̄, ȳ)→ ∃z̄ β(x̄, z̄), and if one of the following holds:
1. x ∈ x̄ and x occurs in α on position (R, i) and in β on position (S, j). In this case the

edge is labeled as universal;
2. x ∈ x̄ ∪ ȳ and x occurs in α on position (R, i) and variable z ∈ z̄ that occurs in β on

position (S, j). In this case the edge is labeled as existential.

The following example illustrates the previous definitions:

I Example 30. Consider database schema R = {S,R}, with arity(S) = 1 and arity(R) = 2.
The set {(S, 1), (R, 1), (R, 2)} represents all positions in R. Let Σ1 contain the following
dependency over R:

ξ11 = S(x)→ ∃y R(x, y)

let Σ2 contain the following dependencies:

ξ21 = S(x)→ ∃y R(x, y), and
ξ22 = R(x, y)→ ∃z R(x, z)

and, finally, let Σ3 be a slight modification of Σ2:

ξ31 = S(x)→ ∃y R(x, y), and
ξ32 = R(x, y)→ ∃z R(y, z).

Figure 2 captures the extended dependency graphs associated with Σ1, Σ2 and Σ3 (note
that the existential edges are represented as dotted lines).

Chapte r 01

16 The Chase Procedure and its Applications in Data Exchange

I Definition 31. [30] A set of tgds Σ is said to be richly acyclic if its extended dependency
graph does not contain a cycle going through an existential edge. We denote by RA the class
of all richly acyclic tgd sets.

Note that the problem of testing if Σ ∈ RA is polynomial in size of Σ. Returning to
Example 30, Σ1 is richly acyclic because it does not contain any cycles. On the other hand,
neither Σ2 or Σ3 are richly acyclic. As we will see in the following subsection, the RA ensures
termination for the standard-chase algorithm on any input instance, that is RA ⊂ CTstd

∀∀ . The
next theorem follows directly from Corollary 27 and the observation that RA is closed under
enrichment.

I Theorem 32. [25] Let Σ ∈ RA and let I be an instance. Then there exists a polynomial
in size of I that bounds the length of every oblivious-chase sequence of I and Σ.

Mainly, the previous result states that RA ⊆ CTobl
∀∀ and based on the termination hierarchy

represented in Figure 1, it follows that any set of tgds from RA ensures termination of any
of the chase variation previously presented on any input instances.

4.2 Weak acyclicity
Fagin et al. [19] introduced the class of weakly acyclic dependencies as a class of sets of tgds
that ensures standard-chase termination on all execution branches for all input instances.
Intuitively weak acyclicity checks if the set of tgds does not have a cyclic condition such
that another new null value forces the adding of a new null value.

I Definition 33. [19] Let Σ be a set of tgds over schema R. The dependency graph
associated with Σ is a directed edge-labeled graph GΣ = (V,E), such that the set of vertexes
V represents the positions in R. There is an edge ((R, i), (S, j)) ∈ E, if there exists a
dependency ξ ∈ Σ of the form α(x̄, ȳ)→ ∃z̄ β(x̄, z̄). There exists x ∈ x̄ such that x occurs in
position (R, i) in α and if one of the following holds:
1. x occurs in β in position (S, j). In this case the edge is labeled as universal;
2. there exists variable z ∈ z̄ which occurs in position (S, j) in β. In this case the edge is

labeled as existential.

I Definition 34. [19] A set of tgds Σ is said to be weakly acyclic if the corresponding
dependency graph does not have any cycle going through an existential edge. By WA is
denoted the class of all weakly acyclic sets of tgds.

Note that the problem of testing if Σ ∈WA is polynomial in size of Σ. Figure 3 illustrates
the dependency graphs associated with the dependencies from Example 30. Based on the
previous definition, it follows that : Σ1 is weakly acyclic as the dependency graph does not
contain any cycles; Σ2 is weakly acyclic as its dependency graph has a cycle going only
through universal edges; Σ3 is not weakly acyclic as it has a cycle going through an existential
edge. From the definitions of the RA and WA classes, it follows that RA ⊆WA. Also because
Σ2 ∈WA and Σ2 /∈ RA, it follows that the inclusion is strict, that is RA ⊂WA.

I Theorem 35. [19] Let Σ ∈WA and let I be an instance. Then there exists a polynomial
in size of I that bounds the length of every standard-chase sequence of I and Σ.

From the chase termination hierarchy it follows that if Σ ∈ WA, then Σ ∈ CTstd
∀∃ and

Σ ∈ CTcore
∀∀ . Besides, even if CTobl

∀∀ ⊂ CTstd
∀∀ the classes CTobl

∀∀ and WA are incomparable. For
this consider the tgd set Σ from Example 17. It is easy to see that Σ ∈ (WA \ CTobl

∀∀). For
the other direction consider Σ′ = {S(y), R(x, y)→ ∃z R(y, z)}, clearly Σ′ ∈ (CTobl

∀∀ \WA).

A. Onet 17

Figure 3 Dependency graphs associated with dependencies from Example 30.

From the observation that the class WA is closed under semi-enrichment, Theorem 35
and Corollary 27, it follows:

I Theorem 36. WA ⊂ CTsobl
∀∀ .

Proof. For the strict inclusion part of this theorem consider the same set of dependencies
Σ′ = {S(y), R(x, y)→ ∃z R(y, z)}. J

4.3 Safe dependencies
Meier, Schmidt and Lausen [41] observed that the weak acyclicity condition takes into account
nulls that may not create infinite standard-chase sequences. For example, consider the set
Σ = {ξ} [41] where:

ξ = R(x, y, z), S(y)→ ∃w R(y, w, x).

Figure 4a) represents the corresponding dependency graph with cycles going through exist-
ential edges involving position (R, 2). Thus, the dependency is not weakly acyclic. On the
other hand, the newly created null in position (R, 2) may create new null values only if the
same null also appears in position (S, 1). Based on the given dependency, new nulls cannot
be generated in position the (S, 1). Hence, this dependency can not cyclically create new
nulls.

In order to introduce the notion of safe dependencies, we first need to define the following
concept.

I Definition 37. [12] The affected positions associated with a set of tgds Σ is the set aff (Σ)
defined as follows. For all positions (R, i) that occur in the head of some tgd ξ ∈ Σ, then
1. if an existential variable appears in position (R, i) in ξ, then (R, i) ∈ aff (Σ);
2. if universally quantified variable x appears in position (R, i) in the head and x appears

only in affected positions in the body, then (R, i) ∈ aff (Σ).

Intuitively, the affected positions are those where new null values can occur during
the chase process. For example, the set of affected positions associated with the set of
dependencies Σ = {R(x, y, z), S(y)→ ∃w R(y, w, x)} is aff (Σ) = {(R, 2)}.

I Definition 38. [41] The propagation graph for a set of tgds Σ is a directed edge labeled
graph PΣ = (aff (Σ), E). Where ((R, i), (S, j)) ∈ E if there exists a dependency ξ ∈ Σ of
the form α(x̄, ȳ)→ ∃z̄ β(x̄, z̄), there exists a variable x that occurs in α in position (R, i), x
occurs only in affected positions in α and one of the following holds:

Chapte r 01

18 The Chase Procedure and its Applications in Data Exchange

Figure 4 a) Dependency graph, b) Propagation graph for {R(x, y, z), S(y) → ∃w R(y, w, x)}.

1. x appears in β in affected position (S, j). In this case the edge is labeled as universal;
2. there exists variable z ∈ z̄ which occurs in position (S, j) in β. In this case the edge is

labeled existential.

Considering the same dependency set Σ = {R(x, y, z), S(y)→ ∃w R(y, w, x)}, Figure 4a)
represents the corresponding dependency graph and Figure 4b) the corresponding propagation
graph. Note that the propagation graph contains only one node, corresponding to the affected
position (R, 2). Because y appears in the head in a non-affected position (S, 1), it follows
that there are no edges in the propagation graph.

I Definition 39. [41] A set of tgds Σ is called safe if its propagation graph PΣ does not
have a cycle going through an existential edge. By SD is denoted the class of all safe sets of
tgds.

Note that the problem of testing if Σ ∈ SD is polynomial in size of Σ. In our example,
the dependency graph did not contain any edges (see Figure 4b)), hence Σ ∈ SD.

I Theorem 40. [41] Let Σ ∈ SD. Then there exists a polynomial in size of I that bounds
the length of every standard-chase sequence of I and Σ.

From our running example in this subsection and from the definition of the SD class, it
follows that WA ⊂ SD. Also, similarly to the weakly acyclic class it can be shown that SD is
closed under semi-enrichment. Thus, because the previous theorem states that SD ⊂ CTstd

∀∀,
it follows that actually SD ⊂ CTsobl

∀∀ ⊂ CTstd
∀∀. This means that given a set of tgds which is

safe, one may use the semi-oblivious chase to compute an instance which is (see previous
section) homomorphically equivalent to any instance returned by the standard chase with
the same input. Finally, it can be easily noted that, even if SD is bigger than WA, it does not
contain the termination class CTobl

∀∀. For this consider Σ = {R(x, x)→ ∃z R(x, y)}, clearly
Σ ∈ (CTobl

∀∀ \ SD).

4.4 Super weak acyclicity
The following class of sets of tgds properly extends the class of safe sets of tgds and
consequently the class of weakly acyclic and richly acyclic sets of tgds. The new class of
dependencies, introduced by Marnette [38], beside omitting the nulls that can’t generate
infinite chase sequences, as in the case of safe dependencies, also takes into account the
repeating variables. For a more uniform presentation of the sufficient classes, we will slightly
change the notations used in [38].

A. Onet 19

In this subsection we assume that the set of dependencies Σ has distinct variable names
in each tgd. We also assume that there exists a total order between the atoms in each
dependency. With this, we can now define the atom position to be a triple (ξ,R, i), where ξ
is a dependency in Σ, R is a relation name that occurs in ξ, i a positive integer i ≤ n, where
n is the maximum number of occurrences of R in ξ, given by the total order between the
atoms in the tgd. Clearly each atom position uniquely identifies an atom in Σ. Similarly
to the notion of position, a place can be defined to be a pair ((ξ,R, i), k), where (ξ,R, i) is
an atom position and 1 ≤ k ≤ arity(R). Intuitively, the place identifies the variable that
appears in the k-th attribute in the atom represented by (ξ,R, i).

Let V ar(ξ) denote the set of variables that occurs in dependency ξ. As mentioned, for any
two distinct dependencies ξ1 and ξ2 from Σ, we have V ar(ξ1) ∩ V ar(ξ2) = ∅. The mapping
V ar is extended in the natural way to a set of dependencies Σ, V ar(Σ) = ∪ξ∈Σ V ar(ξ).
Similarly, we define the mappings V ar∃ and V ar∀ that map each dependency ξ to the set
of existentially quantified variables in ξ and to the universally quantified variables in ξ,
respectively. Clearly for each dependency ξ, V ar∃(ξ) and V ar∀(ξ) represent a partition of
V ar(ξ).

Given a tgd ξ and y ∈ V ar∃(ξ), Out(ξ, y) is defined to be the set of places in the head of
ξ where y occurs. Given a set a tgd ξ and x ∈ V ar∀(ξ), In(ξ, x) is defined to be the set of
places in the body of ξ where x occurs. Intuitively, Out(ξ, y) represents the places where
variable y is “exported” when applying tgd ξ. Similarly, In(ξ, x) represents the places that
need to be “filled” for variable x in order for ξ to be applied.

Given an atom position (ξ,R, i), a substitution θ is a function that maps each variable x
that occurs in the atom (ξ,R, i) to a constant if x ∈ V ar∀(ξ) and to a fresh new constant,
if x ∈ V ar∃(ξ), where by “new fresh” we mean the next unused element in some fixed
enumeration of the constants. The atom resulted by replacing each variable in the atom
given by (ξ,R, i) with the substitution θ is denoted by θ(ξ,R, i). Two atoms (ξ1, R, i1)
and (ξ2, R, i2) are said to be unifiable if there exist substitutions θ1 and θ2 such that
θ1(ξ1, R, i1) = θ2(ξ2, R, i2). Two places p1 = ((ξ1, R, i1), k1) and p2 = ((ξ2, R, i2), k2) are said
to be unifiable if k1 = k2 and (ξ1, R, i1) is unifiable with (ξ2, R, i2). By p1 ∼ p2 it is denoted
that p1 and p2 are unifiable. Let us define ΓΣ to be a function that maps each variable x to
the set of places where x occurs in Σ. ΓHΣ represents the function that maps each variable
x to the set of places from the head of some dependency where x occurs. Similarly, the
function ΓBΣ maps each variable x to the set of places from the body of some dependency
where x occurs.

For a better understanding of the previous notions, let us consider the example:

I Example 41. [47] Let Σ = {ξ1, ξ2}, where:

ξ1 = R(x)→ ∃y, z S(x, y, z), and
ξ2 = S(v, w,w)→ R(w).

The atom positions for Σ are: (ξ1, R, 1), corresponding with the atom R(x); (ξ1, S, 1),
corresponding with the atom S(x, y, z); (ξ2, S, 1), corresponding with the atom S(v, w,w);
and (ξ2, R, 1), corresponding with the atom R(w). We have V ar∀(Σ) = {x, v, w} and
V ar∃(Σ) = {y, z}. Clearly (ξ1, R, 1) is unifiable with (ξ2, R, 1), consider for example unifiers
θ1 = {x/a} and θ2 = {w/a} where both variables x and w are in V ar∀(Σ). On the other hand,
the atom positions (ξ1, S, 1) and (ξ2, S, 1) are not unifiable because y and z are existentially
quantified variables and thus any unifier will map y and z to distinct constants (recall
that each existential variable is mapped to a new fresh constants). Hence, we only have

Chapte r 01

20 The Chase Procedure and its Applications in Data Exchange

((ξ1, R, 1), 1) ∼ ((ξ2, R, 1), 1). For variable x the set ΓΣ(x) = {((ξ1, R, 1), 1), ((ξ1, S, 1), 1)},
ΓBΣ (x) = {((ξ1, R, 1), 1)} and ΓHΣ (x) = {((ξ1, S, 1), 1)}.

Given two sets of places P and Q, we denote P v Q if for all p ∈ P there exists q ∈ Q
such p ∼ q. Let us now define mapping Move(Σ, Q) that gives the smallest set of places P
such that Q ⊆ P , and for all variables x that occurs in a body of some dependency ξ ∈ Σ if
ΓBΣ(x) v P then ΓHΣ (x) ⊆ P . Intuitively, the Move(Σ, Q) returns the smallest set of places
such that new atoms may be generated in those positions by chasing some atoms given by
the places in Q.

I Definition 42. [38] Given Σ a set of tgds and ξ1, ξ2 ∈ Σ, we say ξ1 triggers ξ2 in Σ, and
it is denoted by ξ1 ;Σ ξ2, iff there exist a variable y ∈ V ar∃(ξ1) and a variable x ∈ V ar∀(ξ2)
occurring in both the body and the head of ξ2 such that:

In(ξ2, x) v Move(Σ,Out(ξ1, y)).

I Definition 43. [38] A set of tgds Σ is said to be super-weakly acyclic iff the trigger
relation ;Σ is acyclic. We denote by SwA the set off all super-weakly acyclic tgd sets.

I Example 44. Let us consider the same set of dependencies Σ = {ξ1, ξ2} from Example 41.
The place ((ξ1, S, 1), 1) is not unifiable with ((ξ2, S, 1), 1), thus In(ξ2,w) 6v Move(Σ,Out(ξ1, y)),
that is ξ1 6;Σ ξ2. Similarly, ξ2 does not contain any existential variables and so it follows
that ξ2 6;Σ ξ1. As both dependencies do not share common relation names in the head and
body, it follows that ξ1 6;Σ ξ1 and ξ2 6;Σ ξ2. That is the relation ;Σ does not induce any
cycle, following that Σ is super-weakly acyclic. Moreover, it can be seen that Σ is not safe as
between the affected positions (R, 1) and (S, 2) there exists a cycle through an existential
edge in the corresponding propagation graph.

Marnette [38] showed that the membership problem Is Σ ∈ SwA? is polynomial in the
size of Σ. Spezzano and Greco [47] also proved that SD ⊂ SwA, that is the super-weak acyclic
class properly contains the safe dependencies. The class SwA is closed in adding atoms to the
body of dependencies. Thus given a set of tgds Σ, then any set of dependencies Σ′ obtained
from Σ by adding new atoms in the body of any dependency remains super-weakly acyclic.

I Theorem 45. [38] Let Σ ∈ SwA and let I be an instance. Then there exists a polynomial
in the size of I that bounds the length of every semi-oblivious-chase sequence of I and Σ.
Thus, Swa ⊂ CTsobl

∀∀ .

This concludes that the super-weakly acyclic class of tgd sets is sufficient for the
termination of the semi-oblivious, standard and core-chase algorithms for all input instances.

4.5 Stratification
The stratified model of dependencies was introduced by Deutsch et al. in [16]. This class
relaxes the condition imposed by weak acyclicity by stratifying the dependencies and check
for weak acyclicity on each of these strata instead of checking for the entire set.

I Definition 46. [16] Let ξ1 and ξ2 be two tgds , we write ξ1 ≺ ξ2, if there exist the instances
I, J and a vector ā ⊆ dom(J) such that:
1. I |= ξ2(ā), and
2. there exists an active trigger (ξ1, h), such that I (ξ1,h)−−−−→ J , and
3. J 6|= ξ2(ā).

A. Onet 21

I Example 47. Consider Σ = {ξ1, ξ2}, where:

ξ1 = R(x, y)→ S(x), and
ξ2 = S(x)→ R(x, x).

With the instance I = {R(a, b)} and the vector ā = (a) we have that I |= ξ2(a); and for
the homomorphism h = {x/a, y/b} we have I (ξ1,h)−−−−→ J , where J = {R(a, b), S(a)}. Because
J 6|= ξ2(a), it follows that ξ1 ≺ ξ2. On the other hand, ξ2 6≺ ξ1 because for any instance I
and vector of constants b̄ such that I |= ξ1(b̄) and I (ξ2,h)−−−−→ J , for some active trigger (ξ2, h),
it follows that J |= ξ2(b̄).

The authors of [16] claimed that testing if ξ1 ≺ ξ2 is in NP, as we will show next, this
cannot be true unless NP = coNP.

I Theorem 48. [26] Given two tgds ξ1 and ξ2, the problem of testing if ξ1 ≺ ξ2 is coNP-hard.

Proof. We will use a reduction from the graph 3-colorability problem that is known to be
NP-complete. It is also known that a graph G is 3-colorable if and only if there exists a
homomorphism from G to K3, where K3 is the complete graph with 3 vertices.

A graph G = (V,E), where V = n and E = m, is identified with the sequence
G(x1, . . . , xn) = E(xi1 , yi1), . . . , E(xim , yim) and treat the elements in V as variables. Simil-
arly, we identify the graph K3 with the sequence

K3(z1, z2, z3) = E(z1, z2), E(z2, z1), E(z1, z3), E(z3, z1), E(z2, z3), E(z3, z2)

where z1, z2, and z3 are variables. With these notations, given a graph G = (V,E), we
construct tgd’s ξ1 and ξ2 as follows:

ξ1 = R(z)→ ∃z1, z2, z3 K3(z1, z2, z3), and
ξ2 = E(x, y)→ ∃x1, . . . , xn G(x1, . . . , xn).

Clearly the reduction is polynomial in the size of G. We will now show that ξ1 ≺ ξ2 iff G
is not 3-colorable.

First, suppose that ξ1 ≺ ξ2. Then there exists an instance I and homomorphisms h1

and h2, such that I |= h2(ξ2). Consider J , where I (ξ1,h1)−−−−→ J . Thus RI had to contain at
least one tuple, and EI had to be empty, because otherwise the monotonicity property of
the chase we would imply that J |= h2(ξ2).

On the other hand, we have I (ξ1,h1)−−−−→ J , where J = I ∪ {K3(h′1(z1), h′1(z2), h′1(z3))},
and h′1 is a distinct extension of h1. Since EI = ∅, and we assumed that J 6|= h2(ξ2), it
follows that there is no homomorphism from G into J , i.e. there is no homomorphism from
G(h′2(x1), . . . , h′2(xn)) to K3(h′1(z1), h′1(z2), h′1(z3)), where h′2 is a distinct extension of h2.
Therefore the graph G is not 3-colorable.

For the other direction, let us suppose that graph G is not 3-colorable. This means that
clearly there is no homomorphism from G into K3. In fact, with these assumptions let us
consider I = {R(a)}, and the two homomorphisms h1 = {z/a} and h2 = {x/h′1(z1), y/h′1(z2)}.
It is easy to verify that I, h1 and h2 satisfy the three conditions for ξ1 ≺ ξ2. J

The obvious upper bound for the problem ξ1 ≺ ξ2 is ΣP
2 . In [26] it is shown that this

upper bound can be lowered to ∆P
2 . To the best of our knowledge these are the tidiest

bounds found so far for the given problem.
Given a set of tgds Σ, the chase graph associated with Σ is a directed graph G = (V,E),

where V = Σ and (ξ1, ξ2) ∈ E iff ξ1 ≺ ξ2.

Chapte r 01

22 The Chase Procedure and its Applications in Data Exchange

I Definition 49. [16] A set of tgds Σ is said to be stratified if the set of dependencies in
every simple cycle in the corresponding chase graph is weakly acyclic. The set of all stratified
tgd sets is denoted by Str.

In [26] it is shown that the complexity of testing if Σ ∈ Str, for a given Σ, is in ΠP
2 .

Meier et al. [41] shown that Str 6⊆ CTstd
∀∀ but actually Str ⊆ CTstd

∀∃, that is the stratification
guarantees the termination only on some standard-chase execution branches for all input
instances.

I Example 50. [41] Consider Σ = {ξ1, ξ2, ξ3, ξ4}, where:

ξ1 = R(x)→ S(x, x);
ξ2 = S(x, y)→ ∃z T (y, z);
ξ3 = S(x, y)→ T (x, y), T (y, z); and
ξ4 = T (x, y), T (x, z), T (z, x)→ R(y).

We have Σ ∈ Str is stratified since ξ1 ≺ ξ2, ξ1 ≺ ξ3 ≺ ξ4 ≺ ξ1, and the set {ξ1, ξ3, ξ4}
is weakly acyclic. Let I = {R(a)}. The standard-chase execution branch that triggers
repeatedly dependencies ξ1, ξ2, ξ3 and ξ4 never terminates. On the other hand, the chase
sequences that never trigger ξ2 will terminate.

Meier et al. [41] changed the stratification definition in order to guarantee termination
on all execution branches for all instances.

I Definition 51. [41] Let ξ1 and ξ2 be two tgds we write ξ1 ≺c ξ2, if there exist instances
I, J and tuple ā ⊆ dom(J), such that:
1. I |= ξ2(ā), and

2. there exists trigger (ξ1, h), such that I ∗,(ξ1,h)−−−−−→ J , and
3. J 6|= ξ2(ā).

Given a set of tgds Σ, the c-chase graph associated with Σ is a directed graph Gc = (V,E).
With V = Σ and (ξ1, ξ2) ∈ E iff ξ1 ≺c ξ2. A set of tgds Σ is said to be c-stratified if the set
of dependencies in every simple cycle in the c-chase graph is weakly acyclic. The set of all
c-stratified tgd sets is denoted by CStr.

I Theorem 52. [41] Let Σ ∈ CStr and let I be an instance. Then there exists a polynomial,
in size of I, that bounds the length of every standard chase sequence of I and Σ.

Using the same reduction as in Theorem 48, it can be shown that the problem of testing
if ξ1 ≺c ξ2 is coNP-hard and it is in ∆P

2 . Also the problem of testing if Σ ∈ CStr, for a given
Σ, it is in ΠP

2 .
Meier et al. [41] showed that WA ⊂ CStr and that SD ∦ CStr1. Also Spezzano and Greco

[47] proved that SwA ∦ CStr, that is the super-weakly acyclic class is not comparable with the
c-stratified class. Also based on the observation that CStr is closed under semi-enrichment,
it follows that CStr ⊂ CTsobl

∀∀ .

1 The notation A ∦ B is shorthand for A * B and A + B

A. Onet 23

4.6 Inductively restricted dependencies
Another class of dependencies that guarantees the standard-chase termination is the in-
ductively restricted set of tgds. Note that the stratification method lifts the weakly acyclic
class of dependencies to the class of c-stratified dependencies. The inductively restricted
class generalizes the stratification method while still keeping the termination property for
the standard-chase algorithm. This generalization is done using the so-called restriction
systems [41]. With the help of the restriction systems, Meier et al. [41] define the new
sufficient condition called inductive restriction that guarantees the standard-chase algorithm
termination on all execution branches for all instances. From this condition a new hier-
archy of classes of dependencies is revealed with the same termination property, called the
T-hierarchy. Note that the inductive restriction condition presented here is given from the
erratum (http://arxiv.org/abs/0906.4228) and not from [41], where the presented condition,
as mentioned in the erratum, does not guarantee the standard-chase termination on all
branches for all instances.

Let Σ be a set of tgds, I an instance and A a set of nulls. The set of all positions (R, i)
such that there exists a tuple in I that contains a variable from A in position (R, i) is denoted
by null-pos(A, I).

Similarly to relation "≺" for the stratified dependencies, the binary relation "≺P " is
defined for the inductive restriction condition, where P is a set of positions.

I Definition 53. [41] Let Σ be a set of tgds and P a set of positions. Let ξ1, ξ2 be two
dependencies in Σ. It is said that ξ1 ≺P ξ2 if there exist instances I,J and vector ā ⊆ dom(J),
such that:
1. I |= ξ2(ā), and
2. there exists a trigger (ξ1, h), such that I ∗,(ξ1,h)−−−−−→ J , and
3. J 6|= ξ2(ā), and
4. there exists X ∈ ā ∩ Null in the head of ξ2(ā), such that null-pos({X}, I) ⊆ P .

I Example 54. Consider Σ containing a single tgd ξ = R(x, y)→ ∃z R(y, z). In Section 3
we saw that there are instances I such that standard-chase algorithm does not terminate
on all branches for I and Σ. It is easy to see that with instances I = {R(a, b)} and
J = {R(a, b), R(b,X)}, and vector ā = (b,X), conditions 1,2 and 3 from the previous
definition are fulfilled. For the 4th condition, consider X ∈ ā, then we have ξ(ā) which
represents the formula R(a,X)→ ∃zR(X, z). Thus, X occurs in the head of ξ(ā). On the
other hand, null-pos({X}, I) = ∅, instance I does not contain any labeled nulls, hence for
any set P , null-pos({X}, I) ⊆ P . Thus, ξ ≺P ξ, for any set of positions P .

I Definition 55. [41] Let P be a set of positions and ξ a tgd. By aff-cl(ξ, P) is denoted the
set of positions (R, i) from the head of ξ such that one of the following holds:
1. for all x ∈ V ar∀(ξ)2, with x occurs in (R, i), x occurs in the body of ξ only in positions

from P , or
2. position (R, i) contains a variable x ∈ V ar∃(ξ).

For the tgd in Example 54, we have aff-cl(ξ, P) = {(R, 1), (R, 2)}, where P = {(R, 2)}.
Given a set of dependencies Σ, the set of all positions in Σ is written as pos(Σ).

2 Recall that by V ar∀(ξ) we denote the set of all universally quantified variables in ξ and by V ar∃(ξ) the
set of all existentially quantified variables in ξ.

Chapte r 01

24 The Chase Procedure and its Applications in Data Exchange

I Definition 56. [41] A 2-restriction system is a pair (G(Σ), P), where G(Σ) is a directed
graph (Σ, E) and P ⊆ pos(Σ) such that:
1. for all (ξ1, ξ2) ∈ E, aff-cl(ξ1, P) ∩ pos(Σ) ⊆ P and aff-cl(ξ2, P) ∩ pos(Σ) ⊆ P , and
2. for all ξ1 ≺P ξ2, (ξ1, ξ2) ∈ P .

A 2-restriction system is minimal if it is obtained from ((Σ, ∅), ∅) by a repeated application
of constraints 1 and 2, from the previous definition, such that P is extended only by those
positions that are required to satisfy condition 1. Let us denote by part(Σ, 2) the set that
contains the sets of all strongly connected components in a minimal 2-restriction system.

I Example 57. Returning to our dependency from Example 54, the minimal 2-restriction
system is computed as follows. Consider pair (({ξ}, ∅), ∅). Previously we showed that ξ ≺P ξ,
for any set of positions P , by particularization we have ξ ≺∅ ξ. Thus, we add edge (ξ, ξ) to E.
Using condition 1 from Definition 56 we have aff-cl(ξ, ∅) = {(R, 2)}. That is we add position
(R, 2) to P . By repeating this process once again with P = {(R, 2)}, we add to P the position
(R, 1) too. Hence, the minimal 2-restriction system is ((Σ, {(ξ, ξ)), {(R, 1), (R, 2)}}). The
only connected component in this restriction system is {ξ}.

In [41], Meier et al. provide a simple algorithm that computes the set part(Σ, 2).

I Definition 58. [41] A set Σ of tgds is called inductively restricted iff every Σ′ ∈ part(Σ, 2)
is safe. The set of all inductively restricted tgd sets is denoted by IR.

Using the same reduction from the proof of Theorem 48, it can be shown that the problem
of testing if ξ1 ≺P ξ2, for a given ξ1, ξ2 and P , is coNP-hard and it can be solved in ΣP

2 .
Similarly to the stratification case it can be shown that the complexity of testing if Σ ∈ IR is
in ΠP

3 . From the definition, it directly follows that SD ⊂ IR. To this Meier et al. [41] also
showed that Str ∦ IR and that CStr ⊂ IR. On the other hand, the classes SwA and IR are
incomparable [47], that is SwA ∦ IR.

I Example 59. [41] Consider the following set of tgds Σ:

ξ1 = S(x), E(x, y)→ E(y, x), and
ξ2 = S(x), E(x, y)→ ∃z E(y, z), E(z, x).

It can be easily observed that Σ is neither stratified nor safe, but it is inductively restricted.

I Theorem 60. [41] Let Σ ∈ IR and let I be an instance. Then there exists a polynomial, in
size of I, that bounds the length of every standard-chase sequence of I and Σ.

Meier, Schmidt and Lausen [41] observed that the inductive restriction criterion can be
extended to form a hierarchy of classes that ensure the standard-chase termination on all
branches for all instances. Intuitively, the lowest level of this hierarchy, noted T [2], is the
class of inductively restricted dependencies. Level T [k], k > 2 is obtained by extending the
binary relation ≺P to a k-ary relation ≺k,P . Intuitively, ≺k,P (ξ1, . . . , ξk) means that there
exists a standard-chase sequence such that firing ξ1 will also cause ξ2 to fire. This in turn
will cause ξ3 to fire and so on until ξk. Based on this new relation, the set part(Σ, k) is
computed similarly to part(Σ, 2). The algorithm that computes part(Σ, k) can be found in
[41]. For all k ≤ 2, it is shown that T [k] ⊂ T [k + 1].

It is easy to check that the previous hierarchy is closed under semi-enrichment, following
from Corollary 27 that for any k we have T [k] ⊂ CTsobl

∀∀ . Also in [44] it is shown that
T [k] ∦ CTobl

∀∀. More recently, the T [k] hierarchy of classes was extended by Meier et al. [42]

A. Onet 25

Figure 5 Relationship between chase termination classes.

to the ∀∃ − T [k] hierarchy of classes that ensures the standard-chase termination on at least
one execution branch and it showed that T [k] ⊂ ∀∃ − T [k], for any k > 1.

Figure 5 illustrates, as a Hasse diagram, the subset relationship between the termination
classes presented.

Before concluding this subsection, we need to mention that more recently Greco et al.
[27] extended the classes of dependencies that ensure the standard-chase termination to new
large classes based on a stratification based method called local stratification.

4.7 The rewriting approach
Spezzano and Greco [47] noticed that all the previous classes may be extended by using
a rewriting technique. Intuitively, if T is one of the classes {WA,SD,SwA,Str,CStr}, then
instead of directly checking if a set of dependencies Σ ∈ T, we check if Adn(Σ) ∈ T, where
Adn(Σ) is an adornment based rewriting of Σ such that, if Adn(Σ) ∈ CTstd

∀∀, then Σ ∈ CTstd
∀∀.

Where the adornment of a predicate p of arity m is a string of the length m over the alphabet
{b, f }. An adorned atom is of the form pα1,α2,...,αm(x1, x2, . . . , xm); if αi = b, then variable
xi is considered bounded, otherwise the variable is considered free.

Due to the space constraints we will present this method following a simple example.
Consider the following set of dependencies Σ = {ξ1, ξ2} [47]:

ξ1 = N(x)→ ∃y E(x, y), and
ξ2 = S(x), E(x, y)→ N(y).

The affected positions in Σ are (E, 1),(E, 2) and (N, 1). As the corresponding propagation
graph contains a cycle, through an existential edge, involving positions (N, 1) and (E, 2), it
follows that Σ /∈ SD. Construct the set of dependencies Adn(Σ) as follows:

Chapte r 01

26 The Chase Procedure and its Applications in Data Exchange

1. For all predicate symbols p of arity m in Σ add the tgd:

∀x1, x2, . . . , xm p(x1, x2, . . . , xm)→ pα1,α2,...,αm(x1, x2, . . . , xm)

where, for all positive i ≤ m, αi = b.
In our example Σ contains the following predicate symbols {E,S,N}, that is we add to
Adn(Σ) the following set of tgds:

ξ′1 = E(x, y)→ Eb b(x, y);

ξ′2 = N(x)→ Nb(x); and

ξ′3 = S(x)→ Sb(x).
2. Repeat to create new adornment predicate symbols based on the existing dependencies,

until none can be added. That is, if a variable in the head is marked as bounded (free)
and if it occurs only bounded (free) places in the body. All existential variables in the
head are marked as free.
Returning to our example and using ξ1 from Σ and the new adornment Nb, we add the
following dependency to Adn(Σ):

ξ′4 = Nb(x)→ ∃y Eb f (x, y).
Similarly, based on tgd ξ2 from Σ and new adornments Sb and Eb b, we add the following
dependency to Adn(Σ):

ξ′5 = Sb(x), Eb b(x, y)→ Nb(y).
Repeating this process, we add the following tgds to Adn(Σ):

ξ′6 = Sb(x), Eb f (x, y)→ N f (y), and

ξ′7 = N f (x)→ ∃y Ef f (x, y).
After this point no other adornments can be created.

3. Finally, for each of the adornment predicate pα in Adn(Σ), add a new dependency in
Adn(Σ) that "copies" pα to a new p̂ predicate symbol. In this example the following new
dependencies are added:

ξ′8 = Nb(x)→ N̂(x);

ξ′9 = N f (x)→ N̂(x);

ξ′10 = Sb(x)→ Ŝ(x);

ξ′11 = Eb b(x, y)→ Ê(x, y);

ξ′12 = Eb f (x, y)→ Ê(x, y); and

ξ′13 = Ef f (x, y)→ Ê(x, y).

In [47], it is proved that Σ ∈ CTstd
∀∀ if and only if Adn(Σ) ∈ CTstd

∀∀. Returning to our
example, it can be noted that the set Adn(Σ) is safe. Thus, using the previous observation, it
results that even if the set Σ was not safe, the standard chase will terminate on all branches
on Σ with any instances.

I Theorem 61. [41] Let T be one of the classes {WA,SD,SwA,Str,CStr}, let Σ be a set of
tgds and let I be an instance. Then, if Adn(Σ) ∈ T, there exists a polynomial, in size of I,
that bounds the length of every standard-chase sequences of I and Σ.

Even more, Spezzano and Greco [47] proved that these rewritings strictly extend the
classes of dependencies.

I Theorem 62. [41] Let T be one of the classes {WA,SD,SwA,Str,CStr} and let denote by
AdnT the set of all Σ such that Adn(Σ) ∈ T. Then, T ⊂ AdnT.

A. Onet 27

More recently, this rewriting method was further improved by Greco et al. [27] by indexing
the adornment used to specify the free positions. This method ensures that we may equate
only variables that have the adornment with the same index.

5 The chase and data exchange

The previous section was mainly focused on presenting different chase algorithms and their
termination criteria. This section is dedicated to the instance returned by the chase algorithm
and to how it can be used in the data-exchange problem. As we will see, the finite instance
returned by any chase variation is strongly related to the notion of universal model. Such
instances represent a good candidate to be materialized under the target schema in data
exchange. Beside computing a general solution for the data-exchange problem, the chase
procedure also plays an important role in some related problems as the inverse, recovery
[18, 22, 8], and composition of schema mappings [21, 6].

For a complete and coherent introduction to the application of the chase procedure in
data exchange, we first present the notion of universal models and its relation with the
chase algorithm. Need to mention that the notion universal models [16] was introduced as a
generalization of universal solutions [19] in data exchange. This first part will be followed
by a short review of the data-exchange problem and the link between universal models and
query answering in data exchange. In the final part of this section we will review the query
answering problem in case there are no universal models.

5.1 Universal models
Beside the data-exchange problem, universal models play an important role in many other
database problems as: testing for conjunctive query containment under functional and
inclusion dependencies [31], data integration [33], and query answering over ontologies [14].

I Definition 63. [16] Given an instance I and Σ a set of dependencies, a finite instance J is
said to be a model for I and Σ if J |= Σ, and I → J .

I Example 64. Consider I = {R(a, b), R(b, c)} and Σ = {R(x, y), R(y, z)→ R(x, z)}. The
instance J = {R(a, b), R(b, c), R(a, c)} is a model of I and Σ, so is instance J1 = J∪{R(a,X)},
with X a labeled null from Null. On the other hand, J2 = {R(a, b), R(a, c)} is not a model
of I and Σ, even if J2 |= Σ, since there is no homomorphism from I into J2.

The conclusion of this example is that, in general, there may be an infinite number of
models of I and Σ. Still, some of these models are more general than the others in the sense
that they have a homomorphism into all the other models. Such models are called, of course,
universal models.

I Definition 65. [16] A finite instance U is said to be a weak universal model of I and Σ
if U is a model of I and Σ, and if for any finite model J of I and Σ, it is that U → J . If
U → J . Also for all infinite models J of I and Σ, then U is said to be a strong universal
model or simply a universal model.

I Example 66. Considering the instance I and the dependency Σ from Example 64, it
is clear that both instances J and J1 are strong universal models. Moreover, the model
J3 = {R(a, b), R(b, c), R(a, c), R(a, a)} is neither a strong nor weak universal model as there
does not exist a homomorphism from J3 to model J .

Chapte r 01

28 The Chase Procedure and its Applications in Data Exchange

I Theorem 67. [19, 16] Let I be an instance and Σ a set of tgds and egds. Then any finite
instance returned by the standard-chase algorithm is a universal model of I and Σ.

Intuitively, the theorem says that whenever the standard chase terminates and it does
not fail, it gives a universal model of I and Σ. From this theorem, it follows that if
chasestd

Σ(I) 6= ⊥ then chasestd
Σ(I) is a universal model for I and Σ. In the finite case, the

instance returned by the standard-chase algorithm is homomorphically equivalent with the
finite result of any chase variations. It follows that for any of the previously presented chase
variations, when they terminate and do not fail, they return a universal model.

I Corollary 68. Let I be an instance, Σ a set of tgds and egds, and ∗ ∈ {obl, sobl, core}.
If chase∗Σ(I) 6= ⊥, then chase∗Σ(I) is a universal model of I and Σ.

This result ensures that the standard, oblivious, semi-oblivious and core chase are sound
in finding universal models. Naturally the following question raises: Are these algorithms
also complete in finding universal models? The following example shows that the standard,
oblivious and semi-oblivious-chase algorithms are not complete.

I Example 69. Let us consider the same instance I = {R(a, b)} and set Σ = {ξ1, ξ2}, where:

ξ1 = R(x, y)→ ∃z R(y, z), and
ξ2 = R(x, y), R(y, z)→ R(y, y).

It is easy to see that there is no terminating branch for the standard chase for Σ and I.
Similarly, the oblivious and semi-oblivious algorithms with the same input will not terminate.
On the other hand, there exists universal model J = {R(a, b), R(b, b)} of I and Σ. Thus the
standard chase is not complete in finding universal models.

The result below shows that the core chase is complete in finding universal models.

I Theorem 70. [16] Let I be an instance and Σ a set of tgds and egds. Then there exists a
universal model of I and Σ iff the core-chase algorithm terminates and does not fail on input
I and Σ.

We know from the definition of the universal models that all universal models are also
weak universal models. The following example shows that the converse does not hold.

I Example 71. [16] Let us consider instance I = {T (a)} and Σ = {ξ1, ξ2, ξ3}, where:

ξ1 = T (x)→ ∃y, z E(y, z);
ξ2 = E(x, y)→ ∃z E(y, z); and
ξ3 = E(x, y), E(y, z)→ E(x, z).

Consider the relation E to contain the edges of a graph. Clearly all models have an infinite
walk. From this it follows that every finite model has a cycle in the corresponding graph.
From this and ξ3, it also follows that any finite model has a self loop. Besides, the instance
J = {T (a), E(X,X)} is a model of I and Σ containing a self loop. Consequently, J is a weak
universal model of I and Σ. On the other hand, the transitive closure of an infinite path also
satisfies Σ, however no finite instance with cycle has a homomorphism into it. This means
that J is not a strong universal model of I and Σ.

Deutsch et al. [16] showed that it is undecidable to test if an instance U is a strong (weak)
universal model for a given instance I and Σ a set of tgds. Even more, they demonstrated
that there is no complete chase based procedures for finding weak universal models.

A. Onet 29

5.2 Data exchange
Data exchange is an old database problem that only recently earned more formal treatment.
More precisely, it is the problem of transforming data structured under a source schema
to data structured under a different target schema. Formally, a data-exchange setting is
a quadruple (S,T,Σst,Σt), where S represents the source schema, T represents the target
schema, Σst is a set of constraints representing the relationship between the source and target
schema, and Σt represents a set of constraints over the target schema. Given a data-exchange
setting (S,T,Σst,Σt) and the instance I over the source schema S, the data-exchange
problem is to find instances J over the target schema T, such that I ∪ J is a model for I and
Σst ∪Σt. An instance J with the previous properties is called a solution to the data-exchange
problem, or simply a solution. This problem was first formalized by Fagin et al. in [19].
Most of the data-exchange problems consider Σst to be a set of tgds and Σt to be a set of
tgds and egds. From now on, if not mentioned otherwise, we assume that the data-exchange
settings are of this format.

As there is an infinite number of solutions to the data-exchange problem, a natural
question raises: Which solution or finite set of solutions should be materialized on the target?
There is no simple answer to this question as there may be different representations of the
target depending on the semantics of the queries used over the target instance. The semantics
considered in this subsection, also most prominent in the literature, is the certain answer
semantics for union of conjunctive queries (UCQ) over the target instance. This can be
formalized by the following definition:

I Definition 72. Let σ = (S,T,Σst,Σt), let I be a source instance and Q a query in UCQ
over T. The certain answer of Q for I and σ is defined as

certσ(Q, I) =def ⋂
J, I∪J|=Σst∪Σt

Q(J).

Fagin et al. [19] showed that the universal solution is a good candidate to be materialized
in data-exchange problem under the certain UCQ answer semantics. Where the universal
solution for a data-exchange setting σ = (S,T,Σst,Σt) and the instance I is a universal
model for I and Σst ∪ Σt restricted to schema T. We need to mention that Fagin et al.
considered as solutions only finite instances which is the more important case in practice.
This means that all results specified in Subsection 5.1 also hold for universal solutions. In
particular, it means that the universal solution can be computed by the chase algorithms and
that it is undecidable if the universal solution exists for a given data-exchange setting and a
given source instance. Marnette [38] showed that it is undecidable to test if the oblivious
chase will terminate for a given data-exchange setting for all input instances. This result can
be enhanced to all chase variations, including core chase. Thus, it is undecidable to test if,
for a given data-exchange setting for all the input instances, there exists a universal solution.

In [19], Fagin et al. described a sufficient condition for the universal solution to not exist,
as the following theorem shows it:

I Theorem 73. [19] Let σ = (S,T,Σst,Σt) be a data-exchange setting and I a source
instance such that there is a failing branch for the standard chase with input I and Σst ∪ Σt.
Then there is no universal solution for I and σ.

In data exchange we may also have the case when there exists a solution but there is no
universal solution. Let us consider the next example:

Chapte r 01

30 The Chase Procedure and its Applications in Data Exchange

I Example 74. Consider the following data-exchange setting:

σ = ({S}, {R}, {S(x, y)→ R(x, y)}, {R(x, y)→ ∃z R(y, z)})

and the source instance I = {S(a, b)}. Clearly there is no universal solution for this setting,
but there exists solution J = {R(a, b), R(b, b)}.

As shown by Kolaitis et al. in [32], it is undecidable to check for a given instance I and a
data-exchange setting σ, if there exists a solution for I and σ.

Before presenting the computation of the certain answer for a data-exchange setting using
a universal model, we need to introduce the notion of naïve evaluation. Let I be an instance,
possible with null values, and Q be a query. The Qnaïve(I) is defined by evaluating Q on
I and by treating each null as a new distinct constants, and then by eliminating from the
result all the tuples with nulls.

I Theorem 75. [19] Let σ = (S,T,Σst,Σt) be a data-exchange setting and I an instance
over the source instance that does not contain nulls such that there exists a universal solution
J for I and σ. Then, certσ(Q, I) = Qnaïve(J) for any Q ∈ UCQ.

In [35] Libkin showed that UCQ is the largest class of queries with the property that the
certain answers may be computed using the naïve evaluation. We conclude this subsection by
reiterating the idea that within the infinite set of universal solutions there exists a universal
solution which is minimal in size. Such universal solution is called core and, as noted in [20],
it is unique up to variable renaming. Hence, in case there exists a universal solution, the
core chase will terminate and return the core.

5.3 Data exchange beyond universal solutions

For the data-exchange setting and the source instance presented in Example 74 we know
that there is no universal solution. On the other hand, when considering the query Q(x)←
∃y R(x, y), the certain answers is the set of tuples {(a), (b)}. In [12], Cali, Gottlob and Kifer
investigate the problem of conjunctive query answering when the universal solution is not
guaranteed to exist. For this, the authors unravel two classes of tgds , namely guarded tuple
generating dependencies (gtgd) and weakly guarded tuple generating dependencies (wgtgd),
for which the problem of conjunctive query evaluation is decidable. Intuitively, a tgd is
guarded if its body contains an atom called guard which covers all the variables in the body.
Clearly LAV tgds are gtgds. A set of tgds is weakly guarded, if for each tgd, its body
contains one atom which covers all the variables that appear in the affected position, that is,
predicate positions that may contain new labeled nulls generated during the chase process.

I Example 76. Let us consider the following dependencies:

ξ1 = S(x), R(x, y)→ ∃z R(y, z), and
ξ2 = R(x, z), R(z, y)→ R(y, x).

In ξ1, the atom R(x, y) covers all the variables in the body, meaning that it is a gtgd. Clearly,
ξ2 is not gtgd as there is no atom to cover all variables from the body. The affected position
in the set {ξ1, ξ2} is (R, 2), that is we may introduce new labeled nulls during the chase
process only in the second position of the predicate R. As in ξ2, the atom R(z, y) covers
both variables that appear in affected position in ξ2. It follows that ξ2 is a wgtgd.

A. Onet 31

Cali et al. [12] give complexity bounds for the conjunctive query answering problem, that
is: Does a tuple t belong to the certain answer? The complexity bounds discovered are the
following: (1) for a fixed set gtgds the conjunctive query answering problem is NP-complete;
(2) for atomic queries the problem becomes polynomial; (3) in case the fixed dependencies
are wgtgds, the conjunctive query answering problem becomes EXPTIME-complete. Need to
mention here that in [29] Hernich showed that if the data-exchange setting contains only
guarded tgds, it is decidable if for the given setting and a given instance there exists a
universal solution.

In the certain answer semantics for UCQ queries over the target schema a universal
solution is enough to compute certain answer for any UCQ query. Therefore another question
comes up naturally: Is this semantics also a good model for general queries? As shown in [4]
and [34], this semantics is not suitable for general queries, as it may give unintuitive answers
even for simple copying data-exchange settings.

I Example 77. Let us consider a data-exchange setting σ = ({R}, {R′},Σst, ∅), where Σst
simply copies the source into target: R(x, y) → R′(x, y). Consider the source instance
I = {R(a, b)} and the query over the target schema Q(x, y)← R′(x, y) ∧ ¬R′(x, x). As one
of the solution is the instance J = {R′(a, b), R′(a, a)}, it follows that certσ(Q, I) = ∅. Now,
when applying the same query on the source instance (by replacing relation name R′ with
R), it returns the set of tuples {(a, b)}. Clearly this is not the expected behavior as the
target instance is supposed to be a copy of the source instance.

To avoid such cases, Fagin et al. [20] proposed a new semantics for the certain answers
to existential queries. Where existential queries Q(x̄) is a formula of the form ∃ȳ ϕ(x̄, ȳ),
where ϕ is a safe quantifier-free formula. Under this semantics, instead of evaluating the
query on all solutions, the query is evaluated on universal solutions only.

I Definition 78. Let σ = (S,T,Σst,Σt), let I be a source instance and Q a query over the
schema T. The u-certain answer of Q for I and σ is defined as

u-certσ(Q, I) =def ⋂{Q(J) : J universal solution for I and σ}.

Clearly certσ(Q, I) ⊆ u-certσ(Q, I), for any data-exchange setting σ, instance I and
query Q. Also, as shown in [20], certσ(Q, I) = u-certσ(Q, I) whenever Q ∈ UCQ. The
u-certain semantics is shown [20] to be adequate for existential queries. Even more, it is
proved that in case J is a universal solution for data-exchange setting σ and instance I,
and Q is an existential query, then the answer under u-certain semantics can be computed
as: u-certσ(Q, I) = Qnaïve(core(J)). Returning to the previous example, the core universal
solution is J = {R(a, b)}, hence the certain answer to query Q will be the expected set of
tuples {(a, b)}.

Later on new closed world semantics was proposed in order to deal with general queries
for the data-exchange problem [34, 30, 28, 24]. Libkin [34] considered data-exchange settings
without target dependencies and computed CWA-solutions which are used afterwards to
compute certain answers for FO queries. Hernich and Schweikardt [30] introduced a new chase
based algorithm, called the α-chase, to compute CWA-solutions when the data-exchange
setting also contains target dependencies. In [24] Grahne and O. introduce a chase algorithm
on conditional tables in order to strongly represent a closed world semantics called the
constructible solutions. A similar chase process for conditional tables that considers only
source to target dependencies was also introduced in [7].

Chapte r 01

32 The Chase Procedure and its Applications in Data Exchange

6 Chase extensions

The chase algorithms presented in the previous sections considered only tgds and egds as
constraints. In this section we will describe extensions of the chase algorithms needed in
order to deal with negation disjunctive embedded dependencies (NDED). As we will see, the
chase procedure on NDEDs helps finding universal solution sets which are used afterwards in
computing certain answers to more general queries such as UCQ¬, 6=. Disjunctive dependencies
are also investigated by Marnette and Geerts in [40].

Before introducing the chase process for NDEDs, we need to extend the universal solution
notion to universal solution set. Given two instances I and J , we write I 99K J if there exists
an embedding from I to J . Let I, J be two sets of instances, we write I 99K J if for all
J ∈ J there exists I ∈ I such that I 99K J .

I Definition 79. [16] A set I of finite instances is an emb-universal model set for a set of
instances J if it satisfies the following conditions:
1. I 99K J .
2. I ⊆ J .
3. I is finite.
4. there is no I ′ ⊂ I such that I ′ 99K J .

Let us first review the extended chase step for disjunctive embedded dependencies. A
disjunctive embedded dependency (DED) [15] is a constraint of the form:

ξ : ∀x̄ α(x̄)→
∨

1≤i≤n
∃z̄i βi(x̄i, z̄i)

where, x̄i ⊆ x̄, for every 1 ≤ i ≤ n. Formulae α and each βi are conjunctions of relational
symbols and equality atoms. For each 1 ≤ i ≤ n, let us denote by ξi the dependency
∀x̄ α(x̄) → ∃z̄i βi(x̄i, z̄i). The extended chase step on DED is defined as follows [16]. Let
I be an instance and a homomorphism h such that h(α(x̄)) ⊆ I. If I (ξi,h)−−−→ ⊥, for all
1 ≤ i ≤ n, then we say that the extended chase step on I with (ξ, h) failed, and it is denoted
as I (ξ,h)−−−→ ⊥. Otherwise, let J be the set containing all instances Ji, such that I (ξi,h)−−−→ Ji.
If J is empty, it is said that the extended chase step on I with (ξ, h) is not applicable. For
convenience we write this as I (ξi,h)−−−→ I. Finally, if J 6= ∅, then J is said to be obtained from
I in one extended chase step with (ξ, h) and denoted as I (ξ,h)−−−→ J

I Example 80. Consider the following DED:

ξ = R(x, y), R(y, z)→ R(x, z) ∨ x = y ∨ ∃v R(v, z).

Let I = {R(a, b), R(b, c)}. Let h = {x/a, y/b, z/c} be the homomorphism that maps the
body of ξ to I. The three disjuncts from the head of ξ give the following dependencies:

ξ1 = R(x, y), R(y, z)→ R(x, z);
ξ2 = R(x, y), R(y, z)→ x = y; and
ξ3 = R(x, y), R(y, z)→ ∃v R(v, z).

For these dependencies, we have I (ξ1,h)−−−−→ J , where J = I ∪ {R(a, c)}, I (ξ2,h)−−−−→ ⊥ and I |= ξ3.
Thus I (ξ,h)−−−→ J , where J = {J}.

A. Onet 33

A dependency ξ of the form α(x̄) → ⊥, where α is a conjunction of atoms, is called
denial constraint or falsehood . If for an instance I there exists a homomorphism h, such that
h(α(x̄)) ⊆ I, then it is said that the extended chase failed on I with (ξ, h) and it is denoted
by I (ξ,h)−−−→ ⊥.

If we add inequalities to DEDs, we obtain DED6=s [15]. Let Σ be a set of DED 6=s over
the schema R. The set of dependencies Σ is replaced by Σ 6=, in which each inequality of
the from x 6= y from Σ is replaced by the atom N(x, y), where N is a new predicate which
does not appear in Σ. Also in Σ6= are added the following dependencies: → x = y ∨N(x, y),
and x = y ∧N(x, y)→ ⊥. It may be noticed that in the new schema, Σ6= contains one extra
predicate compared to the schema of Σ and also it contains two new dependencies.

Finally, by adding to DED 6=s negation we obtain NDEDs. Let Σ be a set of NDEDs over
the schema R. By Σ 6=,¬ is denoted the set of dependencies Σ 6= in which each negated literal
of the form ¬R(x̄) is replaced by a new literal R̂(x̄), and also for each predicate R ∈ R the
following two dependencies are added in Σ6=,¬: R(x̄) ∨ R̂(x̄), and R(x̄) ∧ R̂(x̄)→ ⊥. It can
be noted that for any set Σ of NDED, Σ 6=,¬ is a set of DED.

I Example 81. Consider the following set of dependencies Σ = {ξ1, ξ2}, where:

ξ1 = R(x, y)→ x 6= y, and
ξ2 = R(x, y), S(x)→ ¬S(y).

The corresponding Σ 6=,¬ will contain the dependencies:

ξ1 = R(x, y)→ N(x, y);
ξ2 = R(x, y), S(x)→ Ŝ(y);
ξ3 = x = y ∨N(x, y);
ξ4 = x = y ∧N(x, y)→ ⊥;
ξ3 = R(x, y) ∨ R̂(x, y);
ξ4 = R(x, y) ∧ R̂(x, y)→ ⊥;
ξ5 = S(x) ∨ Ŝ(x); and
ξ6 = S(x) ∧ Ŝ(x)→ ⊥.

Using the previous notations we are now ready to present the extended-core-chase al-
gorithm introduced by Deutsch, Nash and Remmel in [16] which has as input an instance I
and a set Σ of NDED.

EXTENDED-CORE-CHASE(I,Σ)
1 L0 = {I}; i := 0;
2 Compute in parallel for each instance J ∈ Li the set KJ

where K ∈ KJ iff J (ξ,h)−−−→ K for some ξ ∈ Σ 6=,¬ and homomorphism h

3 L′ =
⋃
J∈Li

⋃
K∈KJ

{core(K)}
4 compute Li+1 by removing from L′ all K such that ∃L ∈ L′, L→ K; i = i +1;
5 if Li = Li−1
6 then return the set of instances from Li restricted to the schema of I
7 else goto 2

I Example 82. Consider Σ = {T (x)→ R(x)} over the schema {R,S, T} and consider the
instance I = {T (a)} over the same schema. With this input, the value of L1 after executing
step 4 is L1 = {{T (a), R(a), S(a)}, {T (a), R(a), Ŝ(a)}}, thus the algorithm will return the
set {{T (a), R(a), S(a)}, {T (a), R(a)}}.

Chapte r 01

34 The Chase Procedure and its Applications in Data Exchange

Let us denote by Σ(I) the set of all models for I and Σ. The following theorem, due to
[16], ensures that the returned set of instances, if it terminates, is an emb-universal model
set for the set of all models of I and Σ.

I Theorem 83. [16] Let Σ be a set of NDEDs over the schema R and let I be an instance
over the same schema, such that the extended-core-chase algorithm terminates with the input
I and Σ returning the set of instances L. Then L is an emb-universal model set for Σ(I).

As shown in [16], emb-universal model sets can be used to compute the certain answers
to UCQ 6=,¬.

I Theorem 84. [16] Let U be a emb-universal model set for Σ(I), and let Q be a UCQ 6=,¬

query. Then certΣ(Q, I) =
⋂
J∈U Q(J).

Let us consider the dependencies and the instance from Example 82 and also consider the
query Q(x) ← R(x) ∧ ¬S(x). When computing query Q against the emb-universal model
set from Example 82, certΣ(Q, I) = ∅. The previous result does not hold for general FO
queries. For this consider the boolean query Q′ ← (∀x S(x)→ R(x)). In this case Q′(J) is
true for all instance J from the emb-universal model set. On the other hand, the instance
J = {T (a), R(a), S(b)} is a model for I and Q(J) = false, that is certΣ(Q, I) = false. In
order to cope with general FO queries in data exchange, several closed world semantics have
been proposed [34, 30, 28, 24].

7 Conclusion

This chapter was intended to be a review of the chase based algorithms and also to highlight
their use in data exchange. One of the main issues with the chase algorithms is the termination
problem, that is:

Is there a branch for which the algorithm terminates for a given input I and Σ?
Does the chase algorithm terminate on all branches for a given I and Σ?

As presented, both these problems are undecidable in general. We also saw that the problem
of testing if the core chase terminates for all input instances is undecidable in general. The
undecidability result holds for the standard chase as well, in case we allow at least one denial
constraint. Testing if the standard chase terminates for a given set of tgds on all instances
remains however an open problem. Note that this problem is not the same as testing if there
exists a universal solution for a given data-exchange setting with all input instances that is
known to be an RE-complete problem [39].

Section 4 was dedicated to presenting large decidable classes of tgds for which it is known
that the standard chase algorithm terminates on all branches for all input instances. As
shown, all these classes actually ensure the termination for the “less expensive“ (complexity
based) semi-oblivious-chase algorithm, making this chase variation a better choice when
dealing with sets of dependencies from those classes.

In case the chase based algorithm terminates, the instance computed is guaranteed to
be homomorphic equivalent to any instance computed by any other chase variations. This
property of the chase algorithms plays an important role in data exchange, especially in
choosing the right instance on the target which should be materialized. Under the certain
answers semantics for UCQ queries, the finite instances returned from any of the chase
algorithms presented in Section 3 are good candidates to be materialized on the target. These
instances, which are universal solutions, can be used together with the naïve evaluation to
obtain the certain answers to any UCQ query over the target schema. In case a universal

A. Onet 35

solution exists, the certain answers computation for UCQ queries is polynomial. In [12] it is
shown that for some special classes of tgds, even if the universal solution is not guaranteed
to exist, we may compute the certain answers to conjunctive queries. In these cases the
complexity of computing the certain answers may grow as high as EXPTIME-hard.

To the best of our knowledge, the only chase based algorithm known to be complete in
finding universal solutions for the data-exchange problem is the core chase. However, the
core chase is the most expensive, complexity wise. This is because at each step it involves
finding all the active triggers as well as computing the core of the produced instance. As
shown in [20], the core-identification problem (i.e. given instances I and J , Is I the core of
J?) is DP-complete. This leaves us with the open question if there exist other, less complex,
chase based algorithms which are complete in finding universal solutions.

In this chapter we only focused on the cases where the chase algorithms terminate. This
is mainly because in data exchange the infinite chase is not so important. If one is interested
in the infinite chase, a good starting point would be [12].

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995.
2 Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent databases: al-

gorithms and complexity. In ICDT, pages 31–41, 2009.
3 A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databases. ACM

Trans. Database Syst., 4(3):297–314, 1979.
4 Marcelo Arenas, Pablo Barceló, Ronald Fagin, and Leonid Libkin. Locally consistent trans-

formations and query answering in data exchange. In PODS, pages 229–240, 2004.
5 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers in

inconsistent databases. In PODS, pages 68–79, 1999.
6 Marcelo Arenas, Ronald Fagin, and Alan Nash. Composition with target constraints. In

ICDT, pages 129–142, 2010.
7 Marcelo Arenas, Jorge Pérez, and Juan L. Reutter. Data exchange beyond complete data.

In PODS, pages 83–94, 2011.
8 Marcelo Arenas, Jorge Pérez, and Cristian Riveros. The recovery of a schema mapping:

bringing exchanged data back. In PODS, pages 13–22, 2008.
9 Renée J. Miller Ariel Fuxman, Phokion G. Kolaitis and Wang Chiew Tan. Peer data

exchange. In PODS, pages 160–171, 2005.
10 Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies. J. ACM,

31(4):718–741, 1984.
11 Andrea Calì, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Data integ-

ration under integrity constraints. Inf. Syst., 29(2):147–163, 2004.
12 Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering

under expressive relational constraints. In KR, pages 70–80, 2008.
13 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. Datalog±: a unified approach to

ontologies and integrity constraints. In ICDT, pages 14–30, 2009.
14 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based framework

for tractable query answering over ontologies. In PODS, pages 77–86, 2009.
15 Alin Deutsch. Fol modeling of integrity constraints (dependencies). In Encyclopedia of

Database Systems, pages 1155–1161, 2009.
16 Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In PODS, pages

149–158, 2008.

Chapte r 01

36 The Chase Procedure and its Applications in Data Exchange

17 Alin Deutsch, Lucian Popa, and Val Tannen. Query reformulation with constraints. SIG-
MOD Record, 35(1):65–73, 2006.

18 Ronald Fagin. Inverting schema mappings. In PODS, pages 50–59, 2006.
19 Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:

Semantics and query answering. In ICDT, pages 207–224, 2003.
20 Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: getting to the core.

ACM Trans. Database Syst., 30(1):174–210, 2005.
21 Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Composing schema

mappings: Second-order dependencies to the rescue. In PODS, pages 83–94, 2004.
22 Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Quasi-inverses of

schema mappings. In PODS, pages 123–132, 2007.
23 Gösta Grahne and Adrian Onet. Data correspondence, exchange and repair. In ICDT,

pages 219–230, 2010.
24 Gösta Grahne and Adrian Onet. Closed world chasing. In LID, pages 7–14, 2011.
25 Gösta Grahne and Adrian Onet. On conditional chase termination. In AMW, 2011.
26 Gösta Grahne and Adrian Onet. Anatomy of the chase. In to appear, 2013.
27 Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. Stratification criteria and rewrit-

ing techniques for checking chase termination. PVLDB, 4(11):1158–1168, 2011.
28 André Hernich. Answering non-monotonic queries in relational data exchange. In ICDT,

pages 143–154, 2010.
29 André Hernich. Computing universal models under guarded tgds. In ICDT, pages 222–235,

2012.
30 André Hernich and Nicole Schweikardt. Cwa-solutions for data exchange settings with

target dependencies. In PODS, pages 113–122, 2007.
31 David S. Johnson and Anthony C. Klug. Testing containment of conjunctive queries under

functional and inclusion dependencies. J. Comput. Syst. Sci., 28(1):167–189, 1984.
32 Phokion G. Kolaitis, Jonathan Panttaja, and Wang Chiew Tan. The complexity of data

exchange. In PODS, pages 30–39, 2006.
33 Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246,

2002.
34 Leonid Libkin. Data exchange and incomplete information. In PODS, pages 60–69, 2006.
35 Leonid Libkin. Incomplete information and certain answers in general data models. In

PODS, pages 59–70, 2011.
36 David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing implications of data

dependencies. ACM Trans. Database Syst., 4(4):455–469, 1979.
37 David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing implications of data

dependencies (abstract). In SIGMOD Conference, page 152, 1979.
38 Bruno Marnette. Generalized schema-mappings: from termination to tractability. In PODS,

pages 13–22, 2009.
39 Bruno Marnette. Tractable Schema Mappings Under Oblivious Termination. PhD thesis,

University of Oxford, 2010.
40 Bruno Marnette and Floris Geerts. Static analysis of schema-mappings ensuring oblivious

termination. In ICDT, pages 183–195, 2010.
41 Michael Meier, Michael Schmidt, and Georg Lausen. On chase termination beyond strati-

fication. PVLDB, 2(1):970–981, 2009.
42 Michael Meier, Michael Schmidt, Fang Wei, and Georg Lausen. Semantic query optimiza-

tion in the presence of types. In PODS, pages 111–122, 2010.
43 Alberto O. Mendelzon. Database states and their tableaux. In XP2 Workshop on Relational

Database Theory, 1981.

A. Onet 37

44 Adrian Onet. The chase procedure and its applications. PhD thesis, Concordia University,
2012.

45 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
46 V Rutenberg. Complexity of generalized graph coloring. In Proceedings of the 12th sym-

posium on Mathematical foundations of computer science 1986, pages 537–581, New York,
NY, USA, 1986. Springer-Verlag New York, Inc.

47 Francesca Spezzano and Sergio Greco. Chase termination: A constraints rewriting approach.
PVLDB, 3(1):93–104, 2010.

48 Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–22, 1976.
49 Moshe Y. Vardi. Inferring multivalued dependencies from functional and join dependencies.

Acta Inf., 19:305–324, 1983.

Chapte r 01

	Introduction
	Preliminaries
	The chase procedure
	The chase step
	The chase algorithm
	Chase variations
	The oblivious chase
	The semi-oblivious chase
	The core chase

	Sufficient conditions for the chase termination
	Rich acyclicity
	Weak acyclicity
	Safe dependencies
	Super weak acyclicity
	Stratification
	Inductively restricted dependencies
	The rewriting approach

	The chase and data exchange
	Universal models
	Data exchange
	Data exchange beyond universal solutions

	Chase extensions
	Conclusion

