
Algorithmic Techniques for Processing Data
Streams ∗

Elena Ikonomovska1 and Mariano Zelke2

1 Jožef Stefan Institute
Jamova cesta 39, 1000 Ljubljana, Slovenia
elena.ikonomovska@ijs.si

2 Institute for Computer Science
Goethe-University
60325 Frankfurt am Main, Germany
zelke@em.uni-frankfurt.de

Abstract
We give a survey at some algorithmic techniques for processing data streams. After covering
the basic methods of sampling and sketching, we present more evolved procedures that resort
on those basic ones. In particular, we examine algorithmic schemes for similarity mining, the
concept of group testing, and techniques for clustering and summarizing data streams.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases streaming algorithm, sampling, sketching, group testing, histogram

Digital Object Identifier 10.4230/DFU.Vol5.10452.237

1 Introduction

The opportunity to automatically gather information by myriads of measuring elements
proves to be both a blessing and a challenge to science. The volume of available data
allows a problem examination to be more profound than ever before; climate prediction [31]
and particle physics [17] are unthinkable without exploring mounds of data. However, the
challenge is posed by the necessity to inspect these amounts of information. The particle
physics experiment at the large hadron collider of CERN will soon produce data of a size of
15 petabytes annually [51] corresponding to more than 28 gigabytes on average every minute.

This challenge puts the basic principle of the traditional RAM-model, cf. [3], in question:
It is unreasonable to take a main memory for granted that includes the whole input and
allows fast random access to every single input item. On the contrary, for applications as the
above ones massive input data must be processed that goes beyond the bounds of common
main memories and can only be stored completely on external memory devices. Since random
access is very time-consuming on these devices, traditional algorithms depending on random
access show unfeasible running times.

Streaming algorithms drop the demand of random access to the input. Rather, the input
is assumed to arrive in arbitrary order as an input stream. Moreover, streaming algorithms
are designed to settle for a working memory that is much smaller than the size of the input.

Because of these features, streaming algorithms are the method of choice if emerging
data must be processed in a real-time manner without completely storing it. In addition,

∗ This work was partially supported by the project “Foundations of data stream processing at FAIR
computing” and the Slovenian Research Agency.

© Elena Ikonomovska and Mariano Zelke;
licensed under Creative Commons License CC-BY

Data Exchange, Integration, and Streams. Dagstuhl Follow-Ups, Volume 5, ISBN 978-3-939897-61-3.
Editors: Phokion G. Kolaitis, Maurizio Lenzerini, and Nicole Schweikardt; pp. 237–274

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol5.10452.237
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-61-3

238 Algorithmic Techniques for Processing Data Streams

streaming algorithms can also benefit from their properties when processing data that is
stored on large external memory devices. Compared to their slow random access, the output
rates of such devices grow by magnitudes when the data content is dispensed in the order it
is stored, i. e., as a stream that can be handled by a streaming algorithm.

There is a large variety of streaming algorithms. They vary in several aspects such as the
number of passes that are permitted over the input stream, the size of the consumed memory,
or the time required to process a single input item. Such algorithms can be deterministic or
randomized, they might process streams comprising of numerical values, a graph’s edges,
coordinates of points, or parts of an XML document. For an overview of the rich literature
on streaming algorithms, we refer the reader to [9] and [58].

This work covers basic algorithmic techniques that are utilized by a multitude of streaming
algorithms. These techniques often form the foundation to which more sophisticated methods
revert to. After giving the necessary definitions in Section 2, we present the techniques
of sampling and sketching in Section 3 and Section 4, respectively. Then we build upon
these ideas and present some more advanced algorithmic techniques for similarity mining in
Section 5, the concept of group testing and its application to tracking hot items in Section 6,
and techniques for clustering and summarizing data streams based on robust approximation
in Section 7.

2 Preliminaries

Let U be a universe of n elements. Even though the members of U can be any objects, it is
convenient to identify them with natural numbers, thus, we assume U = {1, 2, . . . , n}. There
are several kinds of streams; the most natural one is simply a sequence a1, a2, . . . , aω of ω
items where each item is an element of U . Elements of U may occur once in the stream,
several times, or not at all. The sequence 2, 1, 2, 5 serves as an example. Such a sequence is
called a stream in the cash register model. Streams of the cash register model are widely
considered in practice; a sequence of IP addresses that access a web server is a typical
instance.

For an element j in our universe U , we can consider the number of occurrences of j in
the cash register stream. This way, we get the frequency of j that is denoted as fj . More
formally, fj = |{i : ai = j, 1 ≤ i ≤ ω}|, that is, the number of positions in the stream at
which element j appears. If we know the frequency for every element in U , we can arrange a
frequency vector f = (f1, f2, . . . , fn) containing the number of occurrences in the stream for
each j ∈ U at the corresponding position. For our example stream, the frequency vector is
(1, 2, 0, 0, 1, 0, . . . , 0) containing a zero for every element of U that is not part of the stream.

If we read a cash register stream item-wise from left to right, we can perceive this as
gradual updates to the frequency vector of U : Starting with the all-zero n-dimensional vector,
every ai in the stream causes an increment of the corresponding vector entry by one. After
processing the whole stream this way, the frequency vector emerges.

It is not hard to figure a generalization of the described update scheme: Instead of a single
element j ∈ U as a stream item incrementing fj by one, we can imagine a stream item
(j, z) ∈ U× Z. Such a pair in the stream changes fj by the amount of z, i. e., fj is increased
or decreased by |z| depending on the sign of z. A stream composed of such pairs is called
turnstile model stream.

A turnstile stream represents a frequency vector f of U since it describes fj for each
j ∈ U as the sum of all changes in the stream that are made on j. If for every prefix of the

E. Ikonomovska and M. Zelke 239

stream the represented vector consists of nonnegative entries only, we call this the strict
turnstile model. The sequence (3, 4), (2, 2), (5, 2), (1, 1), (5,−1), (3,−4) is an example for a
strict turnstile stream that gives rise to the same frequency vector of U as the previously
mentioned cash register example stream.

For the non-strict turnstile model, we allow the represented frequency vector to have negat-
ive entries as well. An example is given by the sequence (2,−1),(5, 1),(3,−3),(2, 3),(1, 1),(3, 3)
representing the same frequency vector as previous examples.

It easy to imagine a strict turnstile stream as a sequence of insert/delete operations to
a database. Every item (j, z) with positive (negative) z corresponds to inserting (deleting)
item j |z| times into (from) the database. The strict case applies here because at every
moment no entry is deleted from the database that has not been inserted before. We will see
the usage of this model in Section 6 when tracking frequent items in a database. As it turns
out in Section 5, the non-strict model has applications when examining the similarity of two
streams.

For some applications, it is common to use a certain restriction of the turnstile model. In
the turnstile model, the stream is a sequence (a1, z1), (a2, z2), . . . , (aω, zω) of pairs. Now let
us assume that for each element in U there is exactly one pair in the stream and the pairs
are ordered by the first component, that is, ai = i for every pair. Thus, we get a stream like
(1, z1), (2, z2), . . . , (n, zn) of n pairs. Since every ai is defined by its position in the stream,
we can drop the ai’s and end up with a stream z1, z2, . . . , zn. Such a stream is called a time
series model stream and it represents a frequency vector of U in the most elementary way:
It is just a sequence of the frequency vector entries written from left to right, i. e., fj = zj
for every j ∈ U .

The only time series stream possible representing the same frequency vector as previous
example streams is the sequence 1, 2, 0, 0, 1, 0, . . . , 0 of length n. The time series model has
applications in areas like sensor networks or stock markets where periodical updates like
measurements or share values are monitored. Each input item gives the observed value at
the corresponding moment and characteristics of the stream describe the value’s behavior.

For any given stream a1, a2, . . . , aω, a streaming algorithm reads the stream item by item from
left to right. It is forbidden to have random access to the stream. For the cash register and
turnstile model, such an algorithm cannot make any assumptions on the item’s order, that
is, it must be prepared for any order. Furthermore, the size of the memory for a streaming
algorithm is restricted: It must be sublinear in the size n of the universe and sublinear in
the cardinality of the stream which is defined as

∑
j∈U |fj |. We denote this cardinality by

m. Notice that for the cash register model, m equals ω, i. e., the number of items in the
stream. Hence, we will often write a1, a2, . . . , am for an input stream in the cash register
model omitting the ω. For the strict turnstile model, m is the total number of items that
have been inserted and not deleted.

Apparently, we assumed all our streams to be finite, that is, we have a first item a1 and a
last item aω or am. That seems to contradict many applications; sequences of IP addresses
accessing a web server or streams of operations to a database do not have a predefined
end. However, from the perspective of a streaming algorithm—and this very perspective we
take—the end of the stream is reached when the algorithm is queried about the stream. At
this moment, the last item is fixed, that is, the finite initial segment of a potentially infinite
stream is determined and framed as the object of investigation. However, the precise end
of the stream may not be known in advance which serves as a challenge for a streaming
algorithm that must must be prepared for answering a query about the stream at any
moment.

Chapte r 09

240 Algorithmic Techniques for Processing Data Streams

It is important to note that this broad definition of a streaming algorithm spans a large
spectrum of algorithms. There are streaming algorithms consuming a memory that is
polynomially smaller than the input size, e. g. [42], others are content with a polylogarithmic
amount, e. g. [6]. While one-pass algorithms [60] are designed for a single run over the input
stream, there are also algorithms that read the input stream several times. Some of those
multi-pass algorithms assume the input stream to be unchanged between different passes,
e. g. [19], others have the ability to influence the order of the input items prior to every pass,
e. g. [2]. However, in this work we restrict ourselves to the case of one-pass algorithms.

Since most streaming algorithms work in a randomized fashion, we utilize tools from
probability theory for their presentation. For an introduction to this area as well as for
definitions and properties of terms as expectation and variance, further for inequalities due
to Markov, Chebyshev, and Chernoff, we refer the reader to [55].

3 Sampling

Generally, sampling denotes a rule-based process that selects a smaller number of items out
of a larger group. It is easy to see that such an approach can be useful in the streaming
context. In particular, if we assume the cash register model—and that is what we do for
the whole section—the sampling approach smoothly applies: Out of the large group of all
items a1, a2, . . . , am in the input stream, the algorithm chooses a group of size smaller, in
most cases much smaller, than m to be kept in memory to consume a space sublinear in
m. The idea is that at the end of the stream or whenever the algorithm is queried, it uses
the memorized items, that is, the sample, to gain information about the whole stream. Of
course, the accuracy of this information heavily depends on how well the sample represents
the whole stream according to the query. We will see instances of representative samples in
Section 3.1. To draw a characteristic sample is the challenge for any sampling approach.

Though there are some deterministic sampling methods in the area of streaming algorithms,
e. g. [36, 62], the predominant part of sampling approaches in this area is randomized and
hence subject of this chapter.

3.1 Reservoir Sampling
Assume we want to sample from the input stream a1, a2, . . . , am a single item s uniformly at
random, that is, in such a way that the probability of being the sample is the same for every
input item. Hence, we require Pr[a` is the sample s] = 1/m for 1 ≤ ` ≤ m.

It is important to note here that we draw a uniform sample over all input items and not
over the elements of the universe U . Hence, for our sampling purposes, we make a difference
between two input items ai and aj as long as i 6= j, even if ai and aj denote the same element
of U .

From the input stream 2, 1, 2, 5 for example, we want to pick one of the four input items
uniformly at random, that is, each with probability 1/4, and we do not care that two of
those items represent the same element of U . Of course, the universe element 2 is chosen
as the sample with probability 2/4 because of the two corresponding input items a1 and a3
while the universe elements 1 and 5 are each sampled with probability 1/4. Indeed, this is
intended since the element 2 occurs as twice as often as each of 1 and 5.

We see that an element’s frequency of occurrence proportionally affects the probability
for being the sample. Therefore, by drawing and examining samples we can try to deduce
information about the frequency distribution of the input stream; an example for doing so is
given later in this subsection.

E. Ikonomovska and M. Zelke 241

Take a1

as sample s?

Take a2

to replace s?

Take a3

to replace s?

Take a4

to replace s?

The final
sample is

Probability
of this path

1

1
2

1
2

1
3

2
3

1
3

2
3

1
4

3
4

1
4

3
4

1
4

3
4

1
4

3
4

a4

1
24

a3

3
24

a4

2
24

a2

6
24

a4

1
24

a3

3
24

a4

2
24

a1

6
24

y e
s

yes no

yes
no yes

no
ye
s no ye
s no ye
s no ye
s no

Figure 1 Decision tree for the reservoir sampling algorithm of stream a1, a2, a3, a4. The algorithm
randomly decides to take or not to take (“yes” or “no”) the considered input item as the actual
sample s. Each node is labeled by the probability of the previous decision and its color indicates
the item currently chosen as s. The probability of a specific path through this tree results from
multiplying the probabilities along this path.

If we want to sample an input item uniformly at random from the stream and the length
m of the stream is known in advance, this is a very simple task: Before reading the stream,
the algorithm chooses a number ` ∈ {1, 2, . . . ,m} uniformly at random; then it reads the
stream until item a` which is picked as the sample. For the space consumption we note that
the algorithm needs to generate ` and to memorize ` and a`, additionally it requires to count
the number of stream items up to `. Since a memory of O(logm+ logn) suffices to do so
and the stream is accessed sequentially, this method in fact describes a streaming algorithm
using one pass.

However, the prior knowledge of m is a fairly unrealistic assumption. On the contrary,
in most streaming scenarios the length of the stream is unknown beforehand or—even
worse—there is no pre-defined end of the stream. Such continuous streams can arise from
perpetual sensor updates; here, the unpredictable moment of a query marks the end of a
stream on which the query needs to be evaluated.

It might come as a surprise that we are able to draw a uniform random sample without
knowing the length of the stream. This approach is called reservoir sampling and is due to
Vitter [63]. For every position ` in the stream a1, a2, . . . , am, it maintains an item s that is a
uniform random sample over all items ai, i ≤ `, that is, over all items of the stream up to ai.
At the end of the stream, s is the final sample drawn from the whole input stream.

The algorithm starts by setting a1 as s. In the following step, a2 is chosen to replace a1
as the sample with probability 1/2; next, a3 is picked as s with probability 1/3. In general,
for i ≥ 2, ai is memorized as s—and thereby replaces the previously stored item—with
probability 1/i.

Figure 1 shows the decision tree of the reservoir sampling algorithm for a stream of four
input items. Each non-leaf node corresponds to a random decision of the algorithm whether
or not to replace the actual sample s by the current input item. Every node is labeled by
the probability of the preceding decision. Hence, the product of all labels along a path from

Chapte r 09

242 Algorithmic Techniques for Processing Data Streams

the root to a leaf gives the probability for the specific sequence of decisions corresponding to
this path.

As an example we calculate the probability for choosing the second input item a2 as the
final sample from the stream a1, a2, a3, a4. After reading the first input item, the algorithm
chose a1 as the actual sample. While reading a2 in the next step, the algorithm picks a2
as s with a probability of 1/2. To end up with a2 as the final sample, the algorithm has
to decide to select neither a3 nor a4 as the actual sample in the next two steps. The item
a3 is not picked with a probability of (1− 1

3) = 2/3; a4 is not chosen with a probability of
(1− 1

4) = 3/4. Item a2 ends up as the final sample if and only if all mentioned events occur
which happens with a probability of 1

2 ·
2
3 ·

3
4 = 1

4 . Similarly, one can calculate the same
probability for the selection of each other input item as the final sample.

Another point of view on our small example is given by Figure 1: The probability
just calculated for choosing a2 as the final sample s corresponds to the decision sequence
“yes”, “yes”, “no”, “no” and thus to the path from the root to the orange leaf. However, while
a1 and a2 each have a single corresponding leaf only, a3 and a4 correlate with several leafs,
that is, decision sequences. Of course, the probability to end up with such items as the final
s is the sum over the probabilities of the corresponding sequences. Eventually, we get a
probability of 1/4 for every of the four input items.

The described reservoir sampling algorithm is certainly a streaming algorithm as it
sequentially reads the input stream and only requires to memorize a single item. To convince
ourselves that the choice for s at the end of the stream yields a uniform random sample, we
look at the probability that some a`, 1 ≤ ` ≤ m, is the final s. This happens if a` is chosen
as the actual s and additionally none of a`+1, a`+2, . . . , am replaces a` as the actual sample.
For this probability, we have

Pr[a` is the final s] = Pr[a` is chosen as s] ·
m∏

i=`+1
Pr[ai does not replace a` as s]

= 1
`
·

m∏
i=`+1

(
1− 1

i

)

= 1
`
·

m∏
i=`+1

i− 1
i

= 1
m

which means that any item a` ends up as the final sample with the same probability.

It is not hard to imagine a situation where we want to have a sample from the stream that
is larger than only one item. Here, a natural approach is to run k parallel instances of the
described procedure to get a random sample containing k items. As long as k is sublinear in
m, the storage required for this method is sublinear in m as well. However, it is important
to note that such a procedure results in a random sampling with replacement where each
item in the sample is chosen from the whole stream of m items. Hence, an item from the
stream can be selected more than once into the sample.

In contrast, it is often useful—as we will later see in this section—to get a random sample
without replacement where the sampled group of k items is randomly selected from all

(
m
k

)
subsets of size k that are possible over a set of m items. To get such a sample, the approach
of reservoir sampling can be generalized as follows.

The first k items a1, a2, . . . , ak in the stream are stored by the algorithm. For every
subsequent item ai, k < i ≤ m, the algorithm decides to include ai into the sample with

E. Ikonomovska and M. Zelke 243

probability k/i. If ai is chosen for insertion into the sample, the algorithm picks an item
uniformly at random among the k stored sample items that is replaced by ai.

This generalized reservoir sampling approach reads the stream sequentially and only
stores k items from the stream, hence, provided k is sublinear in m, that yields a streaming
algorithm. It also achieves the promised uniformity of the random sample. To see this, we
consider the probability that any k-item subset from the stream is chosen as the final sample.

For the sake of simplicity and because for different sample sizes the reasoning is along
the same lines, we focus on the case where k = 2, that is, a sample containing two items is
desired. Let a`1 , a`2 be any two items from the stream where `1 < `2. To end up with those
items as the final sample, a bunch of events must occur: First, the algorithm selects a`1 into
the sample. Second, every ai, `1 < i < `2 is either not chosen into the sample or, if it is
chosen, it does not replace a`1 . Third, the algorithm selects a`2 into the sample but does not
replace a`1 by doing so. Finally, no aj , `2 < j ≤ m, is chosen into the sample. We combine
the probabilities for these necessary events to get the probability for obtaining a`1 and a`2

as the final sample:

Pr[a`1 , a`2 form the final sample] = 2
`1
·
∏

`1<i<`2

(
1− 2

i
+ 2
i
· 1

2

)
· 2
`2
· 1

2 ·
∏

`2<j≤m

(
1− 2

j

)
= 2
`1 · `2

·
∏

`1<i<`2

i− 1
i
·
∏

`2<j≤m

j − 2
j

= 2
(m− 1) ·m

= 1/
(
m
2
)
.

It follows that all
(
m
2
)
subsets of 2 items from the stream are equally likely to show up as

the final sample.

We now want to direct our attention to an application for the reservoir sampling approach.
Consider a situation where we see a stream of items a1, a2, . . . , am and after the stream we
are given an order-independent predicate. Every item in the stream does or does not satisfy
such a predicate, but that is independent of the item’s position in the stream. The task is to
report the number of items in the stream that satisfy the predicate. As an example we can
imagine for our stream of natural numbers the predicate of being a prime number. Note that
the catch here is that the predicate is announced after the items passed by. Hence, we cannot
simply count the number of items satisfying the predicate while reading the input stream
because the subsequent predicate might as well ask for the number of items being equal to
zero or being larger than twelve; we simply do not know the predicate while receiving the
stream.

This problem is called query selectivity problem and it is of importance in the area of
databases. Here, a user’s query is usually unknown while an update stream is fed into the
database. To select a fast evaluation method for a query, it is very useful to know the fraction
of tuples that are retrieved in each evaluation step, that is, the fraction of tuples that are
selected by some predicate, c. f. [59].

It is not hard to imagine that any algorithm that exactly solves the query selectivity
problem for general streams and predicates requires the storage of the whole input stream.
To be prepared for every possible subsequent predicate, no input item can be abandoned.

However, often we do not need an exact answer; we are instead—as for the query
evaluation planning in a database—satisfied with an estimated one. For this, we can use
the described random sampling approach: We draw a sample of size k uniformly at random

Chapte r 09

244 Algorithmic Techniques for Processing Data Streams

from the input stream and get m by simply counting the number of input items. After the
predicate is known, we simply determine the number k+ of items in our sample satisfying the
predicate. The number of items in the whole input stream meeting the predicate we estimate
as (m · k+)/k. That is, we calculate the fraction k+/k of items in our sample satisfying the
predicate and estimate that the same fraction of all m items in the stream meet the predicate
as well.

Using the reservoir sampling approach, we can draw a sample of arbitrary size uniformly
at random. On the one hand, we want k to be large since that clearly increases the accuracy
of the estimate. On the other hand, k also determines the space consumption of the sampling
algorithm since every sampled item must be memorized, thus, we want k to be small. Recall
that k needs to be sublinear in m to give rise to a streaming algorithm. So, what size do we
need for k?

Let m+ be the number of input items that satisfy the given predicate, i. e., the number
we want to estimate, and let m+ = m/c for a constant c, 0 < c ≤ 1. Assume that we
aim for a (1± ε) - estimate of m+ with probability 1− δ where ε and δ are constants with
0 < ε, δ < 1. That is, we want to have our estimate within the interval [(1−ε)m+, (1+ε)m+]
with probability 1− δ. The parameters ε and δ are chosen by the user and affect the space
consumption of the algorithm.

Since a sampled item satisfies the predicate with probability 1/c, the expected value
for k+ is k/c. To achieve a (1± ε) - estimate of m+ with probability 1− δ, we need k+ to
be within the (1± ε) - interval around its expected value with the same probability. By an
application of the Chernoff Bound, we have

Pr
[∣∣k+ − Exp[k+]

∣∣ > ε · Exp[k+]
]
< e−Θ(ε2·k/c) .

Consequently, if we draw k = O(1/ε2 log(1/δ)) samples from the input stream, the probability
that k+ is outside the (1±ε) - interval around its expected value and therefore the probability
that we over- or underestimate m+ by more than an ε - fraction is at most δ.

We emphasize the fact that a constant number of samples suffices, a number that is inde-
pendent of the stream’s length m. The same number of samples is sufficient to estimate the
median or other quantiles from a stream [53].

Since a single item from U can be memorized in logn bits and the counter for m uses
logm bits, the described approach requires a memory of O(logn+ logm) bits. The input
items are processed in a sequential fashion, thus, the whole approach is a streaming algorithm.

However, we do not want to conceal that the quadratic dependence of the sample size k on
ε makes the scheme impractical for very small values of ε. For those cases more sophisticated
sampling approaches are known, e. g. [54], that reduce the dependence on ε.

3.2 AMS-Sampling
We recall that every stream a1, a2, . . . , am describes a distribution on the universe U ; it
conveys information about the number of occurrences for every j ∈ U . As defined in Section 2,
fj denotes the number of occurrences of the element j in the input stream, that is, the
frequency of j. If we imagine the stream 2, 3, 3, 2, 3, 1, 2, 3 as an example, we get f1 = 1,
f2 = 3, f3 = 4, and fb = 0 for every b ∈ U \ {1, 2, 3}.

There are many approaches in the area of streaming algorithms to reveal the characteristics
of frequencies: The average, minimum/maximum values, the median and other quantiles can
be estimated [62], as well as the most frequent items [25], the fraction of rare items [28], and
histograms [35].

E. Ikonomovska and M. Zelke 245

For each k ≥ 0 we define Fk =
∑n
j=1 f

k
j to be the kth frequency moment. Apart from F1,

which simply equals the length m of the stream, the frequency moments provide meaningful
parameters of a distribution. F0 gives the number of distinct items in the stream which can
be used to detect denial of service attacks [8]; Fk for k ≥ 2 characterizes the skew of the
distribution and is used for example by query optimizers in databases when join sizes need
to be predicted [5]. For our example stream, we have F2 = 26 and F0 = 3 where the second
equation tells us that the stream consists of three different items.

It is easy to compute all frequency moments exactly by maintaining a counter fj for every
single item j of the universe. But of course, the memory consumption of such an approach
heavily depends on the distribution and can be proportional to m and/or n; no streaming
algorithm can emerge from this scheme. However, there is no other method, elaborated or
not, that gives rise to a streaming algorithm since it is known [6] that every algorithm that
exactly computes Fk for k 6= 1 requires storage linear in m and n.

Consequently, we have to be content with an approximative solution. As earlier for
the query selectivity problem in Section 3.1, we aim for an (1± ε) - estimation of Fk with
probability 1 − δ. More formally, we want to have a solution that lies within the interval
[(1− ε)Fk, (1 + ε)Fk] with probability 1− δ. Again, it is the users choice to set the constants
0 < ε, δ < 1 affecting the precision and memory usage of the algorithm.

A method to estimate frequency moments in the desired accuracy using only sublinear space
is the procedure of AMS-sampling. It originates from a celebrated paper [6] of Alon, Matias,
and Szegedy, hence the name. The method works for all Fk with constant k ≥ 1 and is a
sample-and-count approach where a sample is maintained with additional data.

The core of the AMS-sampling is to pick an item ai uniformly at random from all items
a1, a2, . . . , am in the stream and to compute r = |{i′ : i′ ≥ i, ai′ = ai}|, i. e., the number of
items equal to ai occurring in the stream starting at position i. At the end of the stream a
value X is calculated as X = m(rk − (r − 1)k).

We can use the reservoir sampling approach from Section 3.1 to select ai. Whenever the
reservoir sampling chooses a new item to be the actual sample s, a counter c is initialized to
one; every subsequent item in the stream that is not chosen to be sampled increases c by one
if it equals s. At the end of the stream, r is provided by c.

In order to compute X at the end of the stream, we need to store s, c, and a counter for m;
for that, O(logn+ logm) bits are sufficient which is also enough for the actual calculation of
X. Since the input stream is processed sequentially, this gives rise to a streaming algorithm.

Let us assume that for our example stream 2, 3, 3, 2, 3, 1, 2, 3 we have k = 3 and our
randomly picked item is a4, that is, the second occurrence of 2 in the stream. Since there
are two items equal to a4 occurring in the stream starting at a4 (namely a4 and a7), it is
r = 2. Using m = 8 as the length of the stream we get X = 8(23 − 13) = 56.

It is striking that the somewhat inscrutable value X in fact estimates the demanded Fk.
Therefore, X is what we call an unbiased estimator, that is, a variable whose expectation
equals—without any further transformations—the value in question. To see this, we compute
the expected value of X. Let U ′ be the subset of the universe U containing the items that
occur in the stream, i. e., U ′ = U ∩ {a1, a2, . . . , am}. For every item j ∈ U ′, any of the fj
occurrences of j in the stream might be selected as the final sample of the reservoir sampling
procedure. Thus, X takes the value m((fj − r + 1)k − (fj − r)k) if the rth occurrence of
the item j is chosen as the final sample. Every occurrence of every item in U ′ is selected as
the final sample with uniform probability 1/m, thus, the possible values of X corresponding
to those selections emerge with the same uniform probability. For the expected value of X,

Chapte r 09

246 Algorithmic Techniques for Processing Data Streams

that means

Exp[X] =
∑
j∈U ′

fj∑
r=1

(
m
(
(fj − r + 1)k − (fj − r)k

)
· 1
m

)
=
∑
j∈U ′

fkj = Fk .

Even though in expectation X equals the desired value, it is not enough to simply take
X as an estimator for Fk. We cannot be sure that the probability of X lying outside the
(1± ε) - interval around Fk is at most δ as demanded. Therefore, the probability that X lies
within this interval needs to be increased, that is, we have to boost the concentration of
X around its expectation. To this aim the authors of [6] make use of a technique that has
become a standard by now and is presented in the following.

To increase the concentration of the random variable X around Exp[X], the variance of
X—which is a measure for expected deviation of X from Exp[X]—needs to be reduced. This
can be done for independent and identically distributed random variables v1, v2, . . . , vs by
taking the average v∗ =

∑s
a=1 va/s of the individual va’s. We then have Var[v∗] = Var[va]/s,

that is, compared to a single random variable va, the variance of the average is reduced by a
factor of s. Note that the expected value of the average is the same as for each individual
random variable va.

Now the idea to enhance the quality of the estimator for Fk is obvious: Instead of taking a
single X as an estimator for Fk, we run s1 independent instances of the above approach for
X in parallel to compute values X1, X2, . . . , Xs1 . By taking the average Y of this values, we
get an estimator for Fk which is more concentrated around its expectation, that is, around
Fk, than any individual Xa, 1 ≤ a ≤ s1.

To get the number s1 of parallel copies that are required, we utilize Chebyshev’s inequality
and can deduce that

Pr
[
|Y − Fk| > ε · Fk

]
≤ Var[Y]

ε2 · F 2
k

= Var[Xa]
ε2 · F 2

k · s1
for all 1 ≤ a ≤ s1 .

The authors of [6] show that for all 1 ≤ a ≤ s1, it is Var[Xa] ≤ kn1−1/kF 2
k . Thus, by

choosing s1 to be 8kn1−1/k/ε2, we get the following inequality1:

Pr
[
|Y − Fk| > ε · Fk

]
≤ Var[Xa]

ε2 · F 2
k · s1

≤ kn1−1/kF 2
k

ε2 · F 2
k · 8kn1−1/k/ε2 = 1

8 . (1)

Thus, the probability that Y is not a (1± ε) - estimation of Fk is at most 1/8. Admittedly, we
want this failure probability to be δ, not 1/8. Of course, we could choose s1 to be kn1−1/k/ε2δ

instead of 8kn1−1/k/ε2 to reduce the probability in (1) to δ. By doing so, s1 would depend
proportionally on 1/δ. But we recall that s1 determines the memory consumption of the
algorithm since every of the s1 parallel instances of the sample-and-count approach needs to
individually memorize a sample and a counter. Thus, a proportional dependence of s1 on
1/δ yields a handicap for applications where a very small failure probability is desired.

Fortunately, we can do better. Instead of taking a single Y as an estimator for Fk, we
independently compute s2 such values Y1, Y2, . . . , Ys2 and take its median Z as our estimator
for Fk. Every Yb, 1 ≤ b ≤ s2 is the average of a separate group of s1 Xa’s as described above.

Let Y −= {b : Yb 6∈ [(1− ε)Fk, (1 + ε)Fk], 1 ≤ b ≤ s2} be the set of indices of those Yb’s
that are not an (1± ε) - estimate of Fk. Because of (1), we know that in expectation these

1 The constant 8 in the value of s1 is used in the original work [6]; any constant greater than two suffices
and only slightly changes the line of argumentation in the following.

E. Ikonomovska and M. Zelke 247

Yb’s are at most a 1/8 - fraction of all Yb’s, thus, Exp
[
|Y −|

]
≤ s2/8. If Z as the median

of all Yb’s is no (1 ± ε) - estimate of Fk, it must hold that at least half of all Yb’s are no
(1± ε) - estimate of Fk either. That only happens if the size of Y − exceeds s2/2, that is, it
exceeds its expected value by at least 3s2/8. As a result, we can bound the failure probability
for Z as

Pr
[
Z 6∈ [(1− ε)Fk, (1 + ε)Fk]

]
≤ Pr

[
|Y −| ≥ Exp

[
|Y −|

]
+ 3s2/8

]
< e−Θ(s2)

where the second inequality follows from an application of the Chernoff bound. If we choose
s2 to be O(log(1/δ)), the probability of Z being no (1± ε) - estimate of Fk is at most δ.

Altogether, our estimator for Fk is the value Z which is the median over s2 independent Yb’s
where each of those is the average of s1 independent Xa’s. Since every Xa requires the storage
of a sampled item and a counter, the overall space requirement is s1 · s2 ·O(logm+ logn) bits
which is O(kn1−1/k(logm+ logn) log(1/δ)/ε2). Clearly, the presented scheme is a streaming
algorithm as the memory consumption is sublinear in both m and n; additionally, a sequential
access to the input stream suffices to realize the sample-and-count approach for the individual
Xa’s.

The presented achievement has been the foundation for a lot of work enhancing it. The
biggest improvement is the reduction of the n1−1/k - factor in the presented space bound to
an n1−2/k - factor [44]. This dependency on n is optimal, that is, cannot be decreased any
further [11]. The dependency on ε2 is impossible to reduce either [65].

All mentioned results hold for the (1 ± ε) - estimation with probability 1 − δ of Fk for
general k. It is interesting to note that if k is an integer with 0 ≤ k ≤ 2, Fk can be estimated
by a streaming algorithm using only O((logm+ logn) log(1/δ)/ε2) bits of memory [6]. For
the special case of F0, that is, the determination of the number of distinct elements in a
stream, the work of Kane et al. [47] gives a space optimal algorithm.

3.3 Sliding Window Sampling
So far, we viewed all items in the input stream as being equally important, no matter how
far the occurrence of an item dates back. That is fine for many applications; the design of a
query evaluation plan in a database often is independent of the input item’s chronological
order. We have seen in the previous sections that the estimation of query selectivities or join
sizes uses samples that are uniformly drawn from the whole input.

However, it is easy to come up with applications where recent items are more significant
than older ones. A typical task is the prediction of a system’s behavior in the future based
on its current state; to determine the current state, the recent input is of importance. For
instance, the Random Early Detection protocol RED [34] is used within Internet routers to
anticipate traffic bottlenecks by maintaining statistics over the recent queue lengths. Another
example is to track calling patterns of phone company customers. To identify rapid changes
in calling behavior, companies keep track of weighted averages where recent behavior is given
a larger weight than older one [27].

The easiest way to model a different influence of older and newer input items is to simply
define a stream’s location ` such that all stream items ai with i ≥ ` are viewed as equally
significant while all items ai with i < ` are not considered at all. If we are interested in the
recent w items, we have to increment ` for every incoming item. This approach is called
sliding window model. Formally, instead of looking at the whole input stream a1, a2, . . . , at,
where at is the last item arrived, we only look at the items at−w+1, at−w+2, . . . , at. We can

Chapte r 09

248 Algorithmic Techniques for Processing Data Streams

visualize this scheme as a window of size w that slides over the input stream from left to
right, hence the name.

There has been work in the sliding window model tackling problems that are known
from the ordinary data stream model. In [23] different statistics and histograms of a sliding
window are computed; [28] shows how to estimate the fraction of rare items and the similarity
of different streams. We will take a look at such applications in Section 5.2. In the present
section, we want to focus on the problem of maintaining a sample from the sliding window, a
problem which serves as a foundation for more evolved procedures.

The memory consumption of a streaming algorithm is constrained to be sublinear in m and
n. Note that under this requirement, every algorithm that completely stores the content of
the sliding window is a streaming algorithm as long as the window size w is sublinear in m
and n. Since for larger w such an algorithm is unsuitable, we have to tighten our requirement
accordingly. To yield practicable algorithms, we demand the memory usage of a sliding
window algorithm to be sublinear in n and w. As well as in the ordinary streaming model,
for most functions, their exact computation is impossible in this model [29] and we strive for
approximative solutions.

We want to give a sliding window algorithm that maintains a uniform random sample of
all items contained in the actual window. As in Section 3.1, we emphasize on the fact that
the sample is drawn uniformly from all items, that is, all positions within the window, not
from the universe elements that are part of the window. For the sake of simplicity, we aim
for a sample of size one and comment on larger sample sizes at the end of this section.

It is obvious that the reservoir sampling approach alone is not sufficient for the sliding
window context. Of course, we might be lucky and every actual sample arises from the actual
sliding window. But it is more likely that the actual sample falls out of the window as it
progresses; at that moment any algorithm using memory sublinear in w cannot construct a
new uniform sample.

A tempting idea to overcome this might be the following: We use the reservoir sampling
approach only over the first w stream items to draw a sample a`. By the properties of the
reservoir sampling, for the first sliding window a1, a2, . . . , aw the item a` is chosen uniformly
at random. If in the following the sliding window moves on, we keep a` as the random sample
until it falls out of the window, that is, if the item a`+w appears. At that particular moment,
we take a`+w as our sampled item which in turn is replaced with a`+2w and so on. That way,
the item a`+c·w, c ∈ N, is the actual random sample as soon as it occurs in the stream. If we
look at each sliding window individually, this approach indeed yields a sample that is drawn
uniformly at random from the window content. However, the sample for different window
positions is profoundly dependent: The place of a random sample for one window position
completely determines the place of the random sample in all following window positions.
Clearly, that is infeasible for many applications.

There is an algorithm for sampling items uniformly at random from a sliding window by
Braverman et al. [12]. In the following, we want to investigate the simple sliding window
algorithm maintaining a uniform random sample that is proposed by Babcock et al. [10] and
uses a priority sampling approach. Every incoming item ai is given a priority p(ai), that
is, a random value chosen uniformly at random in the continuous interval between 0 and 1.
The actual sample a` is given by the item that has the highest priority among all items in
the sliding window.

It remains to see that this method can be realized within the memory constraints of
the sliding window model. To this aim, we note that it is not necessary to store all items
from the actual window. We only need to memorize those items whose priority is maximal

E. Ikonomovska and M. Zelke 249

among items that arrived later. This is because an item ar will never be the sample if there
is an item as with s > r such that p(as) > p(ar). Hence, ar can be abandoned. We use a
linked list L that is ordered by decreasing priority to store the items that could be the actual
sample in the future. Every input item ai is processed by the random drawing of its p(ai),
its insertion into L according to p(ai), and the deletion of all descendants of ai in L. None
of these descendants can become the sample anymore. Furthermore, the item ai−w, that is,
the item that fell out of the window on the arrival of ai, is erased from L if it is part of L.
Note that at any time, the actual random sample is given by the head of the linked list.

Let us examine the key question here: What is the length |L| of the linked list L, i. e.,
how many items do we need to store? Clearly, the constitution of L depends on the item’s
priorities and so does |L|. It is interesting that in fact |L|—and therefore the memory
consumption of the algorithm—is a random variable. That includes the chance that the
random choices of the priorities force the memorization of all window items in which case
|L| = w and the model’s memory constraint is violated. However, we will see that such a
violation is very unlikely by an argumentation that is inspired by [7].

To this aim, we calculate the expected value of L’s length, i. e., Exp[|L|]. Let a′1, a′2, . . . , a′w
be the w recent input items, that is, the items that are in the actual window where a′i arrived
before a′i+1. Since a′w becomes the end of L, |L| is given by the number of ancestors of a′w in L
(where we define every item in L to be an ancestor of itself). Let X1, X2, . . . , Xw be indicator
random variables such that Xi = 1 if a′i is an ancestor of a′w in L and Xi = 0 otherwise. The
crucial observation is that a′i is an ancestor of a′w iff among all a′h with i ≤ h ≤ w the priority
p(a′i) is maximal. Since for s independent identically distributed continuous random variables
a fixed variable takes the maximum with probability 1/s, we have Pr[Xi = 1] = 1/(w− i+ 1).
The Xi’s are 0-1-random variables, thus Exp[Xi] = Pr[Xi = 1]. Due to the fact that a′w
cannot have ancestors with a later arrival time and by the linearity of expectation,

Exp
[
|L|
]

= Exp

[
w∑
i=1

Xi

]
=

w∑
i=1

Exp
[
Xi

]
=

w∑
i=1

1
w − i+ 1 = Hw

where Hw is the wth harmonic number bounded by lnw < Hw ≤ lnw + 1. Hence, in
expectation, only a logarithmic number of items is stored in the linked list L. To see that
with high probability no significant deviation from this expectation occurs, we apply the
Chernoff bound on |L| as a sum of indicator random variables having different distributions.
According to this, for every constant c ≥ e2,

Pr
[
|L| ≥ c · Exp

[
|L|
]]

< e−c·Exp[|L|] = e−c·Hw < w−c

which means that with high probability the length of the linked list is O(logw).
It is important to note that for the above analysis we have to assume that all priorities

are distinct. From a theoretical point of view that is no issue since two samples from a
continuous interval differ with probability one. But a streaming algorithm using limited
storage cannot memorize arbitrary real values from a continuous interval. To overcome this,
we use a technique of [7]: The random priorities in the interval [0, 1] are generated piecemeal
by adding more and more random bits to their binary representation when required. We only
use the priorities for comparisons; if for two compared priorities one binary representation is
the prefix of the other, the representations are randomly enhanced until the comparison is
decided. By [7], with high probability it suffices to generate—and memorize—only a constant
number of bits for every priority.

After all, the described technique yields a streaming algorithm to draw from a sliding
window of size w a sample that is uniformly distributed over all items in the window. The

Chapte r 09

250 Algorithmic Techniques for Processing Data Streams

input items can be processed in any given order. Since with high probability O(logw) items
are memorized in the linked list and every memorized item requires O(logn) bits of storage,
the memory consumption is O(logw · logn) with high probability.

It remains to enhance the algorithm for drawing more than one sample. As mentioned in
Section 3.1, the execution of k parallel independent runs yields a sample of size k which
is drawn with replacement. We can simulate sampling without replacement by executing
additional independent runs to achieve at least k distinct samples among all samples with
high probability. As long as k is sublinear in w, the number of required additional runs is
sublinear as well [10].

4 Sketching

The challenge for a streaming algorithm is to make a space-efficient summarization of the
input that allows to answer the given query at the end of the stream. In the previous section
we have examined the summarization due to sampling which is space-efficient as only a
limited number of input items are memorized. In this section a different technique called
sketching is considered.

Recall that for the cash register model we assumed the input stream a1, a2, . . . , am to be
a sequence of items where each ai stems from a universe U of size n. We may regard this
stream as an implicit, incremental update to a vector f = (f1, f2, . . . , fn) of dimension n.
Initially, f is the zero vector, i. e., fj = 0 for all 1 ≤ j ≤ n. Each input item ai in the stream
updates f by incrementing fai by one and leaving all other vector entries untouched. Hence,
after reading input item at, 1 ≤ t ≤ m, the vector f is the frequency vector of the stream
a1, a2, . . . , at, that is, each vector entry fj equals the number of occurrences of element j ∈ U
in a1, a2, . . . , at as previously defined in Section 2.

In the more general turnstile model, every item in the stream is a pair (j, z) ∈ U×Z. We
can imagine that after each such pair (j, z), the frequency vector f is updated by adding z
to fj . Recall that a positive z corresponds to insertions of item j, a negative z to deletions.
While in the strict turnstile model we assume all vector entries fj of f to be non-negative
at all times, in the non-strict case, the fj ’s can be general values in Z. In both cases, the
cardinality m of the stream is given by the sum of the absolute values of all vector entries.

Since in the streaming context we cannot assume or exclude particular orders of the input
items, every reasonable function to be calculated by a streaming algorithm is order-invariant.
Note that such an order-invariant function on the input items could easily be computed using
the frequency vector f at the end of the stream. Admittedly, no streaming algorithm can
have f at its disposal because the memorization of a general n-dimensional vector requires
at least n bits which violates the memory constraints of the streaming model. However,
we could, in limited space, try to sketch f in a way that allows the approximation of the
demanded function at the end of the stream.

That is exactly what the sketching approach does. It uses pseudo-random vectors of
dimension n and computes the dot product of these vectors with the frequency vector f . In
particular, if x is a pseudo-random n-dimensional vector, the dot product f · xT is called
a sketch of f . Usually, several sketches are used in combination to compute a—naturally
randomized—approximation of the function in question.

There are two important reasons for the utilization of sketches in the streaming context:
First, the sketch of the frequency vector f can be computed gradually while the stream items,
that is, the incremental updates of f are processed. For every input item (j, z) ∈ U× Z, the
sketch needs to be increased by z · xi where xi is the ith entry of x. Second, the sketch can

E. Ikonomovska and M. Zelke 251

be maintained in small memory. Since we assume the entries of x to be constants, the size of
the sketch f · xT is O(m · n) which can be memorized in O(logm+ logn) bits.

One of the first utilizations of sketches for the streaming context can be found in the
seminal paper of Alon, Matias, and Szegedy [6]. Here, the authors improve their own result of
approximating F2—which we examined in Section 3.2—by exploiting sketching techniques. A
further example of a sketching algorithm is the estimation of the number of distinct elements
in a data stream [24].

4.1 Count-Min Sketch

To highlight the sketching approach’s efficacy, we want to tackle the point query problem.
It asks at the end of the stream for fj , i. e., the number of occurrences in the input of
an arbitrary item j ∈ U . Note that the problem corresponds to the index problem of
communication complexity [50] which means that the storage required for an exact answer
is Ω(n). That is not surprising; since the algorithm does not know j before the end of the
stream, it has to prepare itself for every possible point query which for general streams
implies to maintain a counter for every item of the universe. It is further known [50] that
even a randomized algorithm with a reasonable error probability for this problem must use a
memory of size linear in n.

Hence, any streaming algorithm must be satisfied with an approximative answer. We
present such an algorithm in the following that utilizes the sketching approach, in particular,
the count-min sketch proposed in [26]. Our aim is to answer any point query by giving an
estimate f̂j of the queried fj . For this estimate we demand that fj ≤ f̂j ≤ fj + ε ·m with
probability 1− δ. As usual, the constants 0 < ε and 0 < δ < 1 are selected by the user in a
trade-off between desired precision and memory consumption of the algorithm.

For the ease of presentation, we focus in the following on our canonical cash register input
stream a1, a2, . . . , am where each ai is part of the universe U .2 However, we emphasize that
the presented count-min sketch smoothly applies to the strict turnstile model.

We let w = d2/εe and set up an array of w counters c(1), c(2), . . . , c(w) initialized with zero.
From a family of 2-universal hash functions that map from U to {1, 2, . . . , w}, a function h is
chosen uniformly at random. We comment on the usage and shape of such hash functions in
Section 4.2. While reading the input stream, the algorithm updates the counters: For every
input item ai, the counter c(h(ai)) is incremented by one. After reading the whole stream,
the algorithm answers any point query by utilizing the counters. In particular, if fj is in
question, the algorithm provides f ′j = c(h(j)) as an estimate.

It is easy to see that f ′j ≥ fj because every single occurrence of j in the stream increases
the counter c(h(j)). However, we cannot expect f ′j = fj because the number of counters
is smaller than the size of U , thus, collisions occur which affect the counter for item j to
be counted over with different input items. Let us examine the key question of how many
excessive increasings we have to reckon with.

For a fixed point query on fj , let X1, X2, . . . , Xn be indicator random variables such
that Xi = 1 if h(i) = h(j) and i 6= j; otherwise Xi = 0. Intuitively, each Xi indicates if
an item i different from j is hashed to the same counter by h. Since for the 0-1-variables

2 Notice that this cash register stream corresponds to the stream (a1, 1), (a2, 1), . . . , (am, 1) in the turnstile
model.

Chapte r 09

252 Algorithmic Techniques for Processing Data Streams

a1 , a2 , a3 , . . . , ai , . . . , am

w

h1(ai)
h2(ai)
h3(ai)

hd(ai)

d

+1
+1

+1

+1

random hash
functions

matrix of
counters

Figure 2 Update of the count-min sketch for input item ai of the input stream. For each row
1 ≤ s ≤ d, the assigned hash function hs is evaluated for ai. The result hs(ai) indicates which
column to increment in row s.

Exp[Xi] = Pr[Xi = 1], we get

Exp[Xi] = Pr[h(i) = h(j)] = 1
w

for i ∈ U \{j} and Exp[Xj] = 0 (2)

where the first equality follows by the property of a function chosen randomly from a 2-
universal family, see Section 4.2. Furthermore, we define Y =

∑n
i=1 fiXi to be number of

increasings to c(h(j)) that do not originate from j; hence, f ′j = fj + Y . By linearity of
expectation,

Exp[Y] = Exp

[
n∑
i=1

fi ·Xi

]
=

n∑
i=1

fi · Exp[Xi] ≤
m

w
≤ ε ·m

2 .

Thus, in expectation the estimate f ′j exceeds the true value fj by an amount of ε ·m/2.
Using Markov’s inequality, we can bound the probability that f ′j overruns fj by a value
greater than ε ·m as

Pr[f ′j > fj + ε ·m] = Pr[Y > ε ·m] ≤ Exp[Y]
ε ·m

= 1
2 . (3)

To reduce this failure probability to the desired value δ, we run d = dlog(1/δ)e independent
runs of the described algorithm in parallel. We can imagine this scheme as a d×w matrix of
counters c(s, t) with 1 ≤ s ≤ d, 1 ≤ t ≤ w where each row has its own hash function hs. It is
important that each of those functions is chosen independently and uniformly at random from
a family of 2-universal hash-functions. Every input item ai causes an update in every row, i. e.,
for every 1 ≤ s ≤ d, the counter c(s, hs(ai)) is incremented by one. The final estimate f̂j for
fj is the minimum value over the row’s estimates, that is, f̂j = min{c(s, hs(j)) : 1 ≤ s ≤ d}.

This whole scheme is called count-min sketch [26] based on its two main operations
counting and minimizing. Figure 2 shows the update of the sketch for an input item ai; the
determination of the returned value f̂j is outlined in Figure 3.

It remains to certify the claimed quality of the count-min sketch’s estimate. To bound the
failure probability of providing an estimate f̂j that exceeds the true value fj by more than

E. Ikonomovska and M. Zelke 253

w

h1(j)
h2(j)
h3(j)

hd(j)

dj

return the minimum of values in blue cells

Figure 3 Count min sketch estimation of fj . For each row 1 ≤ s ≤ d, the assigned hash function
hs is evaluated for j. The result hs(j) denotes the column to consider in row s. Of all considered
entries—indicated blue in this figure—the minimum is returned as f̂j , that is, the estimation of fj .

ε ·m, note that this happens iff the estimates of all rows overrun fj by more than ε ·m as
well:

Pr[f̂j > fj + ε ·m] = Pr[for all s ∈ {1, . . . , d} : c(s, hs(j)) > fj + ε ·m] ≤ 2−d ≤ δ

where the first and second inequality is due to (3) and the choice of d, respectively. Thus,
the failure probability is as desired.

Let us finally see that this procedure indeed yields a streaming algorithm. Obviously, the
input stream is processed sequentially. For the memory usage of the algorithm we state that
the hash functions consume a space of O(logn · log(1/δ)); we postpone the reason for that
to the next section. Any of the d · w counters can hold a value of at most m which yields an
overall memory usage of O(logm · log(1/δ)/ε+ logn · log(1/δ)) bits satisfying the limits of
the streaming model.

The utilization of the count-min sketch in the strict turnstile model instead of the cash
register one is straightforward: For each stream item (j, z) ∈ U× Z, we add z to all counters
that keep track of the occurrences of j. The estimation procedure for a query remains the
same, as well as the answer guarantees and the memory consumption. However, for the
non-strict turnstile model, the count-min sketch loses its ability to give an estimate f̂j that
is an upper bound of fj . This is due to the fact that the counters corresponding to j might
underrun fj because of colliding items with negative frequencies.

Finally, we want to highlight that the count-min sketch exploits its strength especially
on a stream in the strict turnstile model. We can imagine such a stream as insert or delete
operations to a database. As mentioned, with probability 1 − δ the error of the sketch is
ε ·m where m now is the number of items currently in the database. As an example assume
ε = 0.1 and δ = 0.01, thus, the count-min sketch comprises w · d = 20 · 7 = 140 counters. We
use it to track the insertion of a multiset containing a million (< 220) IP addresses into a
database. Since each counter requires at most 20 bits, an overall of at most 2800 bits are
used by the counters which is smaller than the input size by several orders of magnitudes.
If now all but a multiset of nine addresses are deleted again, we can use point queries to
the count-min sketch to reveal each of the remaining addresses and their frequencies exactly
with a probability of 0.99 because with this probability the error for a point query is at most
9ε < 1.

Chapte r 09

254 Algorithmic Techniques for Processing Data Streams

4.2 Universal Hash Functions
The sketching technique relies on projecting the frequency vector f along pseudo-random
vectors to reduce the dimension of information to memorize. Often, this pseudo-random
vectors are given implicitly by pseudo-random functions. We can see this in the case of the
count-min sketch of the Section 4.1 where every single counter is a sketch. Here, a counter
can be regarded as a dot product of f with a 0-1-vector that has a 1 at position i iff the
hash function of the counter’s row maps item i ∈ U to the counter.

The reason for utilizing pseudo-random functions instead of completely random ones is
the memory constraint of the streaming model; the memorization of completely random
functions whose domain is the universe U is infeasible. This is due to the fact that in order
to store a completely random function over the domain U we have to be prepared to store
any function over U . That however requires the potential to memorize for each element in U
which element of the target set is assigned to it; a memory of size Ω(|U |) is needed to do so.

In contrast, a suitable pseudo-random function combines some random-like properties
with small required storage space. A basic family of such functions is the family of 2-universal
hash functions.

As usual, U = {1, 2, . . . , n} is our universe and let V = {0, 1, 2, . . . , q − 1} be a set with
q ≤ n. A family of hash functions H from U to V is said to be 2-universal if, for all x1, x2 ∈ U
with x1 6= x2, and for h chosen uniformly at random from H we have

Pr[h(x1) = h(x2)] ≤ 1
q
. (4)

This property reflects what we mean by a random-like behavior. It is something we expect a
function to have that maps completely random from U to V , that is, assigns a completely
random hash value to every item in U . Notice that the family of all functions from U to V
satisfies this property as the random choice of any function from this family corresponds to
a completely random mapping. However, since there are |V ||U | = qn functions in this family,
Ω(n · log q) bits are required to store such a function distinguishable from all others which
exceeds the memory limitation.

However, there are families of functions that are 2-universal without being completely
random. For a fixed prime p > n, we let ha,b(x) = (((ax+ b) mod p) mod q) and define a
family of hash functions as H′ = {ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p}. Each function h from
this family is far from being completely random: The knowledge of two mappings h(x1) and
h(x2) for x1 6= x2 suffices to deduce h(y) for every y ∈ U while for a completely random
function we can never deduce an unknown mapping from known ones. Anyway, H′ can be
shown to be 2-universal [55].

The crucial observation is that to memorize a function from H′, we only need to store
a, b, and p which can be done in O(logn) bits3. Since the property of a 2-universal family is
exactly what is needed for equality (2), we can utilize H′ as the family of hash functions for
the count-min sketch. For every row of the matrix of counters, a random function ha,b from
H′ is drawn by randomly selecting a and b within their respective bounds. For dlog(1/δ)e
rows, O(logn · log(1/δ)) bits are used to store the required hash functions of the count-min
sketch.

In the original work presenting the count-min sketch [26], the authors choose the hash
functions out of a family that is pairwise independent or strongly 2-universal. A family of

3 Notice that by Bertrand’s postulate, there is a prime p with n < p < 2n.

E. Ikonomovska and M. Zelke 255

hash functions H from U to V is said to be strongly 2-universal or pairwise independent if,
for all x1, x2 ∈ U with x1 6= x2, any y1, y2 ∈ V , and for h chosen uniformly at random from
H we have

Pr[h(x1) = y1 and h(x2) = y2] = 1
q2 . (5)

Note that this guarantee of pairwise independence between h(x1) and h(x2) is stronger than
the one for the 2-universal family as property (4) follows from property (5). Even if the
count-min sketch does not require this stronger guarantee, there are techniques used in the
streaming area that do so or demand even stronger properties. The estimation of F2 in [6]
utilizes a family of strongly 4-universal hash functions where a family is strongly k-universal
or k-wise independent if the hash values h(x1), h(x2), . . . , h(xk) are mutually independent
for all distinct x1, x2, . . . , xk ∈ U . For any constant k, there are constructions known [64]
that yield a family of strongly k-universal hash functions from U to V where every function
can be memorized using O(k · logn) bits. These small memory requirements make those
functions a valuable tool for many streaming algorithms.

5 Similarity Mining

Estimating the similarity between two data streams is a basic problem in the data stream
model and has many applications in mining massive streams of data, tracking changes in the
network traffic, processing genetic data and query optimization. As an example, consider the
problem of identifying similar entities (eg., web sites) based on the similarity between their
corresponding data stream logs (IP addresses of their visitors, click-stream patterns, etc.).

An obvious solution to the problem of similarity estimation is to maintain a counter for
each distinct item from the stream and compute the similarity at query time. Unfortunately,
this solution requires Θ(n) words of storage, where n is the size of the universe U . As
discussed previously, in the data streams scenario the dimensionality of the universe is
typically very high, as well as the number of streams being analyzed. Very often we will not
be able to afford the amount of memory which will be necessary in order to obtain exact
answers. In such situations, one must refer to algorithms which will use bounded small
amount of memory (polylogarithmic in the size of the universe), and will be able to produce
high-quality approximations with high probability.

Among the most commonly used measures of similarity are the Lp distance and the
Jaccard coefficient of similarity. In this section we will discuss algorithms for estimating these
measures of similarity both in the unbounded data stream models (time series model, cash
register model and turnstile model) and in the windowed combinatorial data stream model.
The described algorithms build upon the basic mathematical ideas described in Section 3.3
and Section 4.

5.1 Estimating Similarity on Unbounded Data Streams

Random projections are an important mathematical idea used typically for an efficient
dimensionality reduction over high cardinality domains. To this end many techniques have
been proposed for computing various types of sketches, which rely on pseudo-random vectors
generated by space-efficient computation of pseudo-random variables. The AMS-sampling
and the count-min sketch described in Section 3.2 and Section 4 respectively are both based
on the same general idea.

Chapte r 09

256 Algorithmic Techniques for Processing Data Streams

The idea of using multiple random projections is very general and works in the turnstile
model as well. Similar powerful concept is based on generating a sequence of random variables
each drawn from a stable distribution. Sketches based on different stable distributions are
useful for estimating various Lp norms on the data stream, and form the basis of the
algorithms presented in this section.

Another very useful mathematical tool is the family of min-wise hash functions whose
properties enable a simple but efficient estimation of the Jaccard coefficient of similarity.
Min-wise hashing has been used to estimate the similarity between two data sets representing
various items in a market-basket analysis [22], and for estimating rarity and similarity in the
sliding window or combinatorial data stream model [28].

5.1.1 L2 and Lp Sketches
One of the most commonly used measures for data stream similarity is the Lp distance
between two streams A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bm), where m is the length of
the stream, while ai and bi are the actual i-th data elements of A and B. Here we consider
the simplest time-series data stream model. For a real number p ≥ 1 the Lp distance is
defined by:

Lp =
m∑
i=1
|api − b

p
i |

1/p. (6)

The the same definition applies to the cash-register and the turnstile data stream mod-
els with the difference that ai and bi would now represent updates on the counts of the
corresponding stream elements A[j] and B[j], for j ∈ {1, .., n}.

The special cases of the Lp distance for p = 0 and p→∞ are defined as follows. The L0
distance (also known as the Hamming distance) is the number of i’s such that ai 6= bi, and
measures the dissimilarity between two data streams. The L∞ distance is the limit of Lp for
p→∞ and is equivalent to the maximal difference at any time between any two items for
the given data streams:

L∞ = maxi∈{1,m}|ai − bi|. (7)

There is a substantial amount of work done on estimating the L1 [32, 24], the L2 (Euclidean
norm) [6, 43] and the Lp norm [43]. Feigenbaum et al. [32] were the first to produce a data
stream algorithm for estimating the L1 distance. Their technique relied on construction of
pseudo-randomly generated “range-summable“ variables which are four-wise independent4.
The L2 norm has been mostly used for estimating join and self-join sizes for the task of
query selectivity estimation using only a limited storage. The earliest work for estimating
the L2 norm is the paper of Alon et al. [6], where they consider the simpler cash-register
model. Their algorithms have been later extended in the work of [5] for handling the general
sequence of insertions and deletions in the turnstile data stream model.

Alon et. al.’s technique for estimating the L2 norm is based on the same concept described
in Section 3.2. The main idea is to define a random variable which can be computed under
the given space constraint, whose expected value is exactly the quantity we wish to estimate,
and whose variance is relatively small. The final result is then obtained by considering

4 The four-wise independence is defined as: the probability that a group of four random variables
{ε1, ε2, ε3, ε4} will map into a given combination of -1, +1 values, e.g., {−1,+1,+1,−1}, is equal to
1/24=1/16.

E. Ikonomovska and M. Zelke 257

sufficiently many such estimators, whose average is more concentrated around the expectation
of a single estimator. By putting them into several groups, computing the average within
each group, and taking the median of the group averages we get an estimator of the desired
quantity whose variance is bounded by a user-defined parameter ε with a tunable probability
of success 1 - δ, where δ is also specified by the user. Having the basic technique already
described, here we will briefly outline only the main points of the algorithm.

Let Zi,j for i = 1, 2, . . . , s1 and j = 1, 2, . . . , s2 denote independent random variables
defined as Zi,j =

∑m
v=1 εv(av − bv), where εv are 4-wise independent random variables that

take on the values +1 or -1 with equal probability. Let Xi,j = Z2
i,j . The interesting result is

that, the expected value of the square of this quantity is the square of the L2 distance we
wish to estimate:

Exp[Xi,j] = Exp
[
(
m∑
v=1

εv(av − bv))2]
= Exp

[m∑
v=1

ε2v(av − bv)2 +
∑
v 6=u

εvεu(av − bv)(au − bu)
]

=
m∑
v=1

(av − bv)2.

The last equality follows from the fact that Exp[εv] = 0 which will cancel out the second
term, and ε2v = 1, as well as the independence of the random variables.

We now explain how to compute the variables Zi,j , and hence Xi,j . Each Zi,j is initialized
to 0. The resulting algorithm simply maintains the values of the random variables Zi,j after
every update. Maintaining this value under continuous updates of the items av and bv is
straightforward: when an item with a value v arrives from stream A, we add εv to Zi,j for
all i and j. If an item with a value v arrives from stream B, we subtract εv from Zi,j for
all i and j. Practically, for each data item with value v we generate a mapping hi,j(v) from
{1, 2, . . . ,m} to {−1,+1} which is being added/subtracted to the random variables Zi,j .

The authors refer to this algorithm as tug-of-war, because each member of the sequence
with a value mapping to +1 associates to pulling the rope in one direction, while each member
with a value mapping to -1 associates to pulling the rope in the other direction. Note that
this algorithm does not require a priori knowledge about the length of the sequence, or the
number of distinct items seen from U at query time.

Let further Yj be the average of {X1,j , X2,j , . . . , Xs1,j} for all j = 1, 2, . . . , s2. Our final
estimate is given with the value of Y which is the median of {Y1, Y2, . . . Ys2}. As previously,
parameter s1 determines the accuracy of the results, i.e., the variance of the estimation,
and parameter s2 determines the confidence. By taking s1 = 1/ε2 and s2 = log(1/δ) the
algorithm will need O(s1s2) = O(1/ε2 log(1/δ)) memory words.

Building upon the ideas in [6, 32], Indyk extended the previous results providing a unified
framework for approximating the Lp distance between two data streams in small space, for
any p ∈ (0, 2] [43]. The method relies on the notion of p-stable distributions.

I Definition 1. A distribution D over < is called p-stable, if there exist p ≥ 0 such that for
any n real numbers a1, a2, . . . , an and i.i.d.5 variables X1, X2, . . . , Xn with distribution D,
the random variable

∑
i aiXi has the same distribution as the variable (

∑
i |ai|p)1/pX where

X is a random variable with distribution D.

5 independent and identically distributed

Chapte r 09

258 Algorithmic Techniques for Processing Data Streams

It is known that stable distributions exist for any p ∈ (0, 2]. In particular, the Cauchy
distribution is 1-stable, and the Gaussian (normal) distribution is 2-stable, while for the
general case p > 2, random variable X from a p-stable distribution can be generated by using
the method of Chambers et al. [45].

The idea of using stable distributions enables us to use the previous approach for estimating
the quantity (

∑
i |ai|p)1/p for any p ≥ 0. The algorithm proceeds as previously by generating

a number of i.i.d. random variables Xi,j , only this time drawn from a p-stable distribution D.
The resulting random variables Zi,j will have “magnitudes” proportional to the “magnitudes”
of the corresponding random variables Xi,j , which implies that the dot product can be used
to approximate the value of the Lp distance. As previously one needs to repeat the procedure
multiple times in parallel. The final estimate will be within a multiplicative factor 1± ε of
the true value, with probability of at least 1− δ.

5.1.2 Min-wise Hashing
Another very popular measure of similarity is the Jaccard coefficient of similarity. Given two
data streams A and B, let SA denote the set of distinct items appearing in stream A, and
let SB denote the corresponding set for stream B. The Jaccard similarity between these two
data streams is defined as:

σ(SA, SB) = |SA ∩ SB |
|SA ∪ SB |

.

Since we are restricted on the space we can use the simplest approach of memorizing all the
distinct items observed till the moment is not viable. Thus, we would have to do some sort
of sampling, choosing not to memorize the appearance of some items. This equals to creating
signatures of size k � n bits for each set of distinct items, Sig(SA) and Sig(SB), which will
be then used to compute an estimate of the similarity. Of course, the simplest way would
be to sample the sets uniformly at random k times, using some of the techniques described
above. However, due to sparsity this approach can miss important information, and as a
result we would obtain a biased similarity estimate. This becomes obvious from the formula
of the Jaccard coefficient, which shows that we are interested in the items that appear in
both of the streams, while random sampling will not take into account this important fact.

Having in mind that streams are typically characterized with domains of a high cardinality,
creating a space-efficient signature for each stream is not an easy task. Here we will present
a very efficient way (in terms of memory and time) based on the concept of min-wise hashing
[21]. Before explaining how it is possible to construct small signatures from large sets, it is
helpful to visualize the collection of two sets SA and SB as their characteristic matrix.

Element SA SB

1 1 1
2 0 1
3 1 0
4 1 0
5 0 1

Figure 4 A matrix representing the sets SA and SB .

I Example 2. In Fig. 4 is an example of a matrix representing sets SA and SB chosen from
the universal set U = {1, 2, 3, 4, 5}. Here, SA = {1, 3, 4}, and SB = {1, 2, 5}. The columns

E. Ikonomovska and M. Zelke 259

of the characteristic matrix correspond to the sets, and the rows correspond to elements of
the universal set U from which elements of the sets are drawn. There is a 1 in row r and
column c if the element for row r is a member of the set for column c. Otherwise the value
in position (r, c) is 0. The top row and leftmost columns are not part of the matrix.

I Definition 3. Let π be a randomly chosen permutation over [n] = {1, 2, . . . , n}. For a
subset SA ⊆ [n] the min-hash of SA for the given permutation π, i.e., (hπ(SA)), is a mapping
of the set SA to the element a ∈ SA with π(a) = min{π(a′)|a′ ∈ SA}

In other words, the min-hash of any subset is the is the number of the first row, in the
permuted order, in which the column has a 1.

π1 SA SB

1 1 1
4 1 0
5 0 1
2 0 1
3 1 0

π2 SA SB

5 0 1
4 1 0
3 1 0
2 0 1
1 1 1

π3 SA SB

3 1 0
4 1 0
5 0 1
1 1 1
2 0 1

Figure 5 The matrices representing the sets SA and SB after the permutations π1, π2, and π3

given in the corresponding order.

I Example 4. Consider the following 3 permutations for a universe of size n = 5, U =
{1,2,3,4,5}: k = 1, π1 = (1 2 3 4 5); k = 2, π2 = (5 4 3 2 1); k = 3, π3 = (3 4 5 1 2), where
k represents the index of the permutation. Although it is not physically possible to permute
very large characteristic matrices, the min-hash function h implicitly reorders the rows of
the matrix of Fig. 4 so it becomes one of the other matrices given in Fig. 5.

Given the sets SA = {1, 3, 4} and SB = {1, 2, 5} the min-hashes for each permutation
are as follows: k = 1: hπ1(SA) = 1, hπ1(SB) = 1; k = 2: hπ2(SA) = 4, hπ2(SB) = 5; k =
3: hπ3(SA) = 3, hπ3(SB) = 5. The expectation of the fraction of permutations for which
the min-hashes agree is an estimation of the Jaccard similarity between the sets SA and SB .
In this case the fraction equals to 1/3 = 0.33 which is not a very good estimation of the
true value 1/5 = 0.2. The quality of the estimate depends on the amount of memory we are
willing to use, i.e., the size of the signature, that is, the value of k.

The wonderful and simple to prove property of min-hash functions is given with the
following proposition:
I Proposition 1. For any pair of subsets SA, SB ⊆ [n]

Pr[hπ(SA) = hπ(SB)] = |SA ∩ SB |
|SA ∪ SB |

± ε,

where the probability is defined over the random choice of the permutation π. The proof is
given in [13, 14].

The on-line algorithm for estimating the similarity works in the following way: choose
at random k permutations corresponding to k min-hash functions h1, h2, . . . , hk. Then at
any time t maintain: h∗i (SA) = minj≤thi(aj), and h∗i (SB) = minj≤thi(bj) for i = 1, . . . , k.
This is simple to do in a streaming fashion: as each new element at+1 from the first stream
appears, the algorithm computes the min-hash hi(at+1) for i = 1, . . . , k, i.e., for all the

Chapte r 09

260 Algorithmic Techniques for Processing Data Streams

initially chosen permutations π1, π2, . . . , πk. Then, it compares the computed min-hashes
with their current minimum h∗i (SA). The minimum is updated only if hi(at+1) < h∗i (SA).

In order to maintain the h∗i (SB) values for the second stream, the same procedure
is performed simultaneously in a similar manner using the same randomly chosen k per-
mutations. The fraction of the min-hash values that they agree on, i.e., σ̂(SA, SB) =
|{i : h∗i (SA) = h∗i (SB)}|/k can be easily computed at any time.

To obtain an unbiased estimate we need to repeat the calculation multiple times, each
time choosing at random k permutations. In [33] it is shown that, for k = O(ε−1 log(1/δ))
the value σ̂(SA, SB) approximates the true Jaccard similarity with probability of at least
(1− δ) within a multiplicative factor of (1± ε). More precisely, for 0 < ε < 1, 0 < δ < 1 and
k ≥ 2ε−3 log δ−1, with probability of at least 1− δ holds:

σ̂(SA, SB) ∈ (1± ε) |SA ∩ SB |
|SA ∪ SB |

.

The ideal family of min-hash functions is defined by the set of all permutations over [n].
Storing a single permutation from this family requires O(n logn) bits; hence, they are not
suitable for data stream applications. In [56] a family of approximate min-hash functions is
presented such that any function from this family can be represented using O(logn log(1/ε′))
bits (each hash function being computed efficiently in O(log(1/ε′)) time). This induces
an additional error to the approximation of ε′, for which only the k value will have to be
appropriately adjusted. The advantage is in the savings of space and time.

5.2 Estimating Similarity on Windowed Data Streams
In many real-life scenarios the users are most interested on the most recent statistics or
models gathered over the “recently observed” data elements. Despite the exponential growth
in the storage capacity of the available systems, it is not common for such streams to be
stored even partially. For example, consider high-speed, backbone Internet routers that
route several Gbit/s and process tens of millions of packets per second on average. Storing
the log of these packets locally even for an hour will require several MB of fast memory.
Alternatively, moving it to a central warehouse would consume a sizable portion of the
network bandwidth [28]. The windowed data stream model was formalized as a framework
for designing algorithms, addressing the need of reasoning in this context.

Let us briefly recall the definition of the combinatorial [58] or sliding window data stream
model defined previously in Section 3.3: At any time t consider the window of the last w
observations at−(w−1), at−(w−2),, at, where each item ai is a member of the universe of n
items U . In this model we are allowed to ask queries about the data in the window using
only o(w) (often polylogarithmic in w) storage space.

Using sliding windows causes additional complications since maintaining simple statistics
like minimum or maximum over a window of most recent data requires storing the most recent
t items in the window, i.e., when a new item comes in, an old item is removed. Despite these
difficulties, there are algorithms for estimating both the Lp distance [29] and the Jaccard
similarity [28] over sliding windows of streaming data.

5.2.1 Approximating the Lp Norm
The work of Datar et al. [29] provides a general method for translating a wide range
of data stream algorithms into the windowed data stream models, such as maintaining
histograms, hash tables, distinct values and statistics or aggregates such as averages/sums.

E. Ikonomovska and M. Zelke 261

Their technique is based on a special type of a histogram called exponential histogram, which
is used to partition the window of w items into buckets. The main property of their algorithm
is to maintain buckets with exponentially increasing sizes such that: there are at most k

2 + 1
and at least k

2 buckets of each bucket size, where k = d 1
ε e. Thus, whenever there are k

2 + 2
buckets of same size, the oldest two buckets are merged, which may occasionally lead to a
cascade of such mergers.

Each bucket maintains the Lp sketches computed over the items it contains, but not the
actual values of the items. Additionally, for each bucket a time-stamp is associated that
marks the oldest active element in the bucket, and is used to indicate expiry. The expired
buckets are deleted, and new ones are created for the newly encountered items. The absolute
error of their estimate is due to the fact that the last bucket may contain items older than
the last observation seen at time t− (w− 1). However, this error is bounded with an additive
(1 + ε) factor loss in accuracy for a multiplicative overhead of O(1

ε logw) in memory. The
query time for the exponential histogram is O(1), and the worst-case processing time is O(w).
For more details the reader is referred to [29].

5.2.2 Approximating the Jaccard Similarity
Computing an approximation of the Jaccard similarity in the windowed data stream model
is not an easy task, primarily due to the problem of maintaining the minimum over a sliding
window. The algorithm for approximating the Jaccard similarity described in section 5.1.2
requires at any time the correct minimal values for each hash function h∗i (A) (h∗i (B)), for
i = 1, . . . , k computed after every new observation at (bt). To be able to maintain these
minimums, one needs to store the outcome of all hi(aj) (hi(bj)), where j = t− (w− 1), . . . , t.
Thus, the problem boils down to maintaining the minimum hash values h∗i (t) for each random
permutation at any time t for both of the streams. Datar and Muthukrishnan [28] provide a
simple solution to this problem based on the idea of maintaining a linked list of hash values
hi and their timestamps only for the dominant items. Note, that we are interested only in
the items which are appearing in the current window, i.e., with timestamps greater than or
equal to t− (w − 1).

The property of dominance is defined as follows: Consider at time t two items d1 and d2
from the window of most recent w items with arrival times t1, t2 such that t1 < t2 < t. If
hi(d1) ≥ hi(d2) then we say that item d2 dominates item d1. Thus, as long as there is an
item d2 that dominates an item d1 both appearing in the window, we need not to store the
hash value hi(d1). It is easy to see that, at any time t if d1 is in the window then d2 is also
present and has a hash value no greater than hi(d1). Hence, the minimum h∗i at time t will
not be affected by the hash value of an item that is dominated.

Based on the observation above, the authors propose to maintain at any time t a linked
list Li(t) for all i = 1, . . . , k permutations. Every element of this list will represent a pair of
a hash value and its time-stamps (hi(aj), j) for some data item aj at time t, where j is the
arrival time of the item and satisfies the property t−(w−1) ≤ j ≤ t. The list would look like:

{(hi(aj1), j1), (hi(aj2), j2), . . . , (hi(ajl
), jl)}, where l ≤ w.

The list satisfies the property that both the hash values and the arrival times are strictly
increasing from left to right, i.e.,

j1 < j2 < j3 < . . . < jl and hi(aj1) < hi(aj2) < hi(aj3) < . . . < hi(ajl
),

where clearly h∗i (t) = hi(aj1).

Chapte r 09

262 Algorithmic Techniques for Processing Data Streams

Maintaining this list is simple. When a new data item arrives at+1, we compute its hash
value hi(at+1) and traverse the list Li(t) looking for the largest index j′ (eg., a binary search
over a special data structure) such that hi(aj′) ≤ hi(at+1). Then, we remove all the pairs
from the list which appear after the pair with index j′. Now, (hi(aj′),j′) will be the rightmost
item in the list Li(t):

j1 < j2 < . . . < j′ and hi(aj1) < hi(aj2) < . . . < hi(aj′),

If its hash value is different from hi(at+1) then we insert the pair (hi(at+1), t + 1) at
the end of the list Li(t). Otherwise, we only need to update (hi(aj′),j′) into (hi(aj′),t+ 1).
The last step is to check if the leftmost pair corresponds to an item which is still present in
the window. If j1 /∈ {(t+ 1)− (w − 1), . . . , t+ 1} than the leftmost pair is deleted, and we
get an updated list Li(t+ 1).

In the worst case this procedure will require a memory of O(w). However, with high
probability, over the random choice of min-hash functions hi the size of the list is proportional
to the Harmonic number Hw, given by 1 + 1

2 + 1
3 + . . .+ 1

w = Θ(logw). A proof of this bound
is given in Section 3.3. Hence, the standard algorithm can be adapted to the windowed data
stream model, using O(logw+ logn) words of space and taking O(log logw) processing time
per data item, with high probability. Note that, the success of the result above is predicated
on the random choice of the random min-hash functions, and not over the distribution of the
input, meaning that, it holds for an arbitrary (worst case) input.

6 Group Testing for Tracking Frequent Items

Tracking the hot items (those that occur frequently) on an underlying database relation or a
data stream is a fundamental issue for the task of continuous query selectivity estimation,
iceberg query computation or simple outliers detection in stream data mining. Hot items
influence caching, load balancing, network traffic management, market-basket analysis and
are crucial for a successful anomaly detection. As such, maintaining the set of hot items
at any time is an interesting and an important problem. Formally, the question is how to
dynamically maintain a set of hot items under the presence of delete and insert operations in
the general turnstile data stream model.

Imagine that you observe a sequence (or a stream) of m operations on items, each member
of a universe U of size n. Without loss of generality, we can assume that the item identifiers
are integers in the range 1 to n. The net occurrence of any item x at time t, denoted cx(t),
is the number of times the item x has been inserted minus the number of times it has been
deleted. The current frequency of any item is thus given by:

fx(t) = cx(t)/
n∑
i=1

ci(t).

The k most frequent items at time t are those with the k largest fx(t)’s, where k is a
parameter. On the other hand, an item x is called hot item if fx(t) > 1/(k + 1), i.e., it
represents a significant fraction of the entire dataset. Clearly, there can be at most k hot
items, and there may be none.

I Example 5. Observe the following sequence of items: 1,2,1,3,4,5,1,2,2,3,1,1,3,5,2,6,1,2 each
of them being a member of the set [1, 6]. Their corresponding frequencies are: f1 = 6/18,
f2 = 5/18, f3 = 3/18, f4 = 1/18, f5 = 2/18 and f6 = 1/18. For k = 3, hot items are only 1
and 2 (f1 = 6/18 = 1/3 > 1/4 and f2 = 5/18 > 1/4).

E. Ikonomovska and M. Zelke 263

6.1 Preliminaries

Determining the set of hot items is an easy problem if we are allowed a memory of O(n)
words. Using a simple heap structure, we can process each insert or delete operation in
O(logn) time and find the hot items in O(k logn) time in the worst case [4]. As discussed
in several occasions for many streaming applications it is important to use sub-linear space
o(n) on the cardinality of the data stream. However, Alon et al. [6] proved that estimating
f∗(t) = maxxfx(t) is impossible with o(n) space. Thus, estimating the k most frequent
items or the k hot items is at least as hard. A simple argument from information theory can
help us show that solving this problem exactly, i.e., finding all and only items which have
frequency greater than 1/(k + 1) requires the storage of at least n bits.

This also applies to randomized algorithms. Any algorithm which guarantees to output
all hot items with probability at least 1− δ, for some constant parameter δ, must also use
Ω(n) space. This follows by observing that the above statement corresponds to the Index
problem in communication complexity [50]. However, if we are willing to accept approximate
answers it is possible to guarantee with high success probability at least 1− δ, that all hot
items will be found and no item which has frequency less than approximately 1

k+1 − ε, for
some user-specified parameter ε and any user-specified probability δ [25].

6.2 Background

The problem of finding the most frequent items in one-pass with limited storage has gained a
lot of interest in the last two decades. There is a large body of one-pass algorithms for finding
the k most frequent items in the simpler data stream model in which only insert operations
are allowed [30, 48, 52]. The general idea is to hold a number of counters (polylogarithmic
in n), each associated with a single item seen in the sequence. The counters are incremented
whenever their corresponding item is observed, but are decremented or deallocated only
under certain circumstances. Therefore, they cannot be easily adapted to the dynamic case.
As before, the algorithms guarantee that all hot items will be found, including items about
which no guarantees of frequency can be made.

Another approach is to use filters: as each item arrives, the filter is updated to account
for this arrival. Items which are above the threshold are retained as possible candidates for
hot items. At output time all the retained items are rechecked with the filter, and those that
pass the filter are output. Filter methods can only discover items when they become hot but
cannot retrieve items from past which have since become frequent [25]. An important result
that is of Charikar et al. [20], who gave an algorithm to approximate the count of any item
correct up to εn in O(1

ε2 log 1
δ) space and O(log 1

δ) time per update.
In the general turnstile model only the algorithms proposed by Cormode and Muthukrish-

nan [25] give theoretical space and time guarantees, which are outperformed in practice, as
claimed. The algorithms use O(k log k logn) space for a summary data structure, and are
able to process each transaction in O(log k logn) time. Querying the summary for finding
the hot items takes O(k log k logn) time, which is independent on the size of the stream.

The approach of Cormode and Muthukrishnan is based on two different “group testing”
procedures which can be categorized as adaptive and nonadaptive. Thus the methods are
different in nature and give slightly different time and space guarantees. In the following
subsection we will discuss the nonadaptive group testing method which is more efficient
for the case of high transaction rates. For the adaptive group testing based method the
interested reader is referred to [25].

Chapte r 09

264 Algorithmic Techniques for Processing Data Streams

6.3 Nonadaptive Group Testing

The general idea behind the algorithm is to randomly create O(k log k) groups or sets
of items, which are further deterministically divided or grouped into O(logn) subgroups
using error-correcting codes. Each group is associated with a counter which is incremented
whenever an item that belongs to that group is inserted, or decremented when the item gets
deleted. If a group contains a hot item then its corresponding counter will exceed a certain
threshold. Thus, discovering the hot items requires an assembling of all the results from the
tests performed over the different groups.

To ease the exposition of the algorithm, we will first describe a solution to the simpler
problem of finding the majority (occurs more than half of the time) item. The algorithm for
solving the latter problem will then be extended for the problem of finding k hot items.

6.3.1 Finding the Majority Item

While finding the majority item in the cash-register data stream model (where only insert
operations are allowed) is easy, this problem looks less trivial for the turnstile data stream
model. The reason is that an item which was found to be frequent, can become infrequent
due to a sequence of delete operations. However, there exist a deterministic algorithm to
solve this problem using dlog2 ne+ 1 counters. The algorithm maintains the set of counters
at any time trough increment and decrement operations. To identify the majority item at
output time a binary search procedure of log(n) steps is used.

The first counter d0 = c(t) =
∑
x cx(t) keeps track of the number of items in total, i.e.,

we increment d0 for every insert and decrement it for every delete operation. The remaining
counters d1, d2, . . ., dj are associated each with its corresponding jth bit of the binary
representation for a given item identifier x in the range 1 to n. Thus, j goes from 1 to logn.
Let bit(x, j) is a function that returns the value of the jth bit of the binary representation of
the integer x. The update procedure is as follows:

On insert(x): increment d0 and update all counters cj with +bit(x, j), for j = 1, . . . , logn
On delete(x): decrement d0 and update all counters cj with −bit(x, j), for j = 1, . . . , logn

At output time the algorithm does a binary search over the set of counters. The logic is
simple: if there is an item whose count is greater than d0/2 (majority item), then for any
way of dividing the elements into two sets, the set containing the majority item will have
weight greater than d0/2, and the other will have weight less than d0/2. For example, if
c1 > c0/2 (the least significant bit) means that the majority item is an item from the group
of odd numbers. Next we will need to examine if it belongs to the group of items divisible
with 4 or not, i.e., we need to test the value of c2. In this way we proceed with examining
the values of all the counters using the following procedure:

Initialize x← 0
For j = 1, . . . , logn, if cj > c0/2 then x← x+ 2j−1

Output x

The algorithm described above guarantees always to find the majority item if there is
one. If there is none such item, it will still return some item. Note, that in that case it will
not be possible to distinguish the difference based only on the information stored.

E. Ikonomovska and M. Zelke 265

6.3.2 Finding k Hot Items
Suppose we have selected a group of items to monitor which happened to contain only one hot
item. Then we can apply the algorithm from the previous section to this group by dividing
it further into logn buckets and associating a counter with each bucket. Determining the
hot item in the group would require simple “weighting” of all the buckets. Provided that the
total weight of other items in the group is not too much the hot item will always be in the
heavier of the two buckets.

The idea is to divide each group into logn subgroups in which we will not hold an exact
count for each separate item that is mapped to the group. This enables us to use space
polylogarithmic in the size of the universe, albeit on the cost of an approximate answer.
However, as we shall see this approximation can be very close to the correct answer. The
choice of items belonging to each group can be done completely randomly, in which case we
would have to store a list of members for every group explicitly (space at least linear in n).
Instead, to create a concise description of each group, one may use hash functions which will
provide a mapping of items to the groups. Each group will consist of all the items which are
mapped to the same value by a particular hash function. The advantage of this approach
comes from the possibility to store a concise representation for each hash function, using
space O(logn).

Let assume that we need W groups each divided further into logn subgroups. We need
a hash function which will provide a mapping from the set of item identifiers [1, n] to the
set of group identifiers [1,W]. The hash functions used in the algorithm of Cormode and
Muthukrishnan [25] are universal hash functions derived from those given by Carter and
Wegman [16], and were discussed in Section 4.2. Briefly, each hash function is defined by a
and b, which are integers smaller than P (initially chosen to be O(n)) as: fa,b(x) = (((ax+ b)
mod P) mod W), where P > n > W is a fixed prime, and a and b are drawn uniformly at
random in the range [0, P − 1]. As a result, the space required to store each hash-function
representation is O(logn) bits.

When a hash function is used to provide a mapping into a number of groups, there is a
probability that two different items will be mapped to the same group. The authors make
use of the following fact which comes from Proposition 7 of [16]:

Over all choices of a and b, for x 6= y, Pr[fa,b(x) = fa,b(y)] ≤ 1
W .

This probability is directly connected with the success probability of the algorithm for
determining all k hot items. Therefore, we need to maximize it by using not one but several
hash functions of this type. Lets assume that we will use T such hash functions. As a result
we get T ×W overlapping groups. For storing the representation of each hash function hi
we will need two arrays a[1 . . . T] and b[1 . . . T] whose values are chosen at random, having
hi = fa[i],b[i] for i = 1, . . . T .

The data structure which will be maintained at all times is a three-dimensional array of
counters d, of size T ×W ×(logn+ 1). In addition to that, we need a counter for the current
total number of items seen m. The counters d[1][0][0] to d[T][W − 1][logn] are all initialized
to zero. The counter d[0][0][0] is used to keep count of the total number of items. Let
Gi,j = {x|hi(x) = j} be the set of item identifiers which will be mapped to group Gi,j by the
hash function hi, for i = 1, . . . T and j = 1, . . .W . To keep the count of the current number
of items within each group Gi,j we will use the counters d[i][j][0]. For each such group we
will need logn counters for logn subgroups defined as Gi,j,l = {x|x ∈ Gi,j ∧ bit(x, l) = 1}.
These correspond to the groups used for finding the majority item. We will use d[i][j][l] to
keep count of the current number of items within subgroup Gi,j,l.

Chapte r 09

266 Algorithmic Techniques for Processing Data Streams

The update procedure is simple and very similar to the update procedure for finding the
majority item, i.e., update the logn counters for each of the groups where an item x belongs
to based on its bit representation in exactly the same way as in section 6.3.1. The time to
perform an update O(T logn) is the time taken to compute the T hash functions, and to
modify logn counters for each of those T mappings. To output the hot items the structure
can be searched at any time. The basic test wold be whether the count for a group or a
subgroup exceeds the threshold needed for an item to be hot, which is m/(k + 1). A group
containing a hot item will always pass this test, but the same is possible for a group which
does not contain a hot item. Although this probability is very small various checks need to
be made in order to reduce the number of items output which are not hot.

The search procedure consist of examining all of the groups and testing if they contain a
hot item. That is, for a given group Gi,j , if d[i][j][0] ≤ m/(k + 1) then there cannot be a hot
item in that group, and the group is rejected. For the groups which are not rejected we need
to examine the counts of their subgroups. If a group is not rejected, then there is enough
information to discover the identity of the hot item x contained. At the end, the discovered
hot item need to be further verified if it belongs to the group it was found in, and if all the
groups where the item belongs are above the threshold, i.e., d[i][hi(x)][0] > m/(k + 1) for all
i. The total time to find all hot items is O(T 2W logn).

Cormode and Muthukrishnan [25] gave the following final result: Choosing W ≥ 2/ε and
T = log2(k/δ) for a user-specified parameter δ ensures that, with probability at least 1− δ
we can find all hot items whose frequency is more than 1

k+1 , and for a given ε ≤ 1
k+1 , with

probability at least 1− δ/k each item which is output has frequency at least 1
k+1 − ε.

The proof is simple and is based on the property of the hash functions used and the
Markov inequality, combined with some simple observations on the testing procedure. The
interested reader is referred to [25] for more details. If we substitute the values for T and W
from the above result into the previously given time and space bounds we will obtain the
following bounds: the upper bound on the space required is O(1

ε logn log(k/δ)), the update
time takes O(logn log(k/δ)), and the query time is no more than O(1

ε log 2(k/δ) logn).
One of the drawbacks of the method is that the update time depends on the product of T

and logn, which can be slow for streams with high cardinality, i.e., large item identifiers. To
reduce the time dependency on T each of the hash functions can be applied in parallel, and
the relevant counts can be modified separately. The dependency on logn can be addressed by
increasing the space usage. The observation is that, if instead of using the function bit(x, i)
one can use a function dig(x, i, b) which gives the ith digit in the integer x when it is written
in base b ≥ 2. Then, within each group one will need to keep (b − 1) ×logb n subgroups:
the i,j group now counting how many items have dig(x, i, b) = j for i = 1, . . . , logb n and
j = 1, . . . , b− 1. Setting b to m will correspond to keeping a count for every item.

7 Clustering and Summarizing Data Streams

In this last section we will discuss some more advanced algorithms for solving basic sum-
marization problems in the singe-pass data stream scenario. We will place the focus on the
maximum error histogram construction problem, although the techniques discussed here can
be applied to other summarization problems like K-center, K-median clustering and VOPT
histogram construction [39].

Histograms and related synopsis structures are popular techniques for approximating
data distributions, and may serve as basic building blocks in the design of more sophisticated
summary data structures for maintaining other statistics of interest. They have been

E. Ikonomovska and M. Zelke 267

extensively used in database query optimization for estimating selectivity factors [57] and
access path selection in a relational database management system [61], in approximate query
answering [1], mining time series [18], and many other areas.

With the increased interest into mining data streams several streaming algorithms for
histogram construction problems have been proposed [38, 39, 41, 15, 49]. However, all of
them have space bounds dependent on the size of the input m, the magnitude of the optimum
solution ε∗ or the machine precision M . A new result given by Guha [37] improves all
previous algorithms on the problems of histogram construction and K-center clustering in
either the space bound, the approximation factor or the running time. It represents the best
algorithm applicable to streaming scenarios with tunable guarantees, linear running time and
memory requirements independent of the input size.

In the following sections we will describe three main ideas used in the framework proposed
by Guha [37]: (1) the notion of “thresholded approximation”, (2) the idea of running
multiple copies of the algorithm corresponding to different estimates of the final error and, (3)
“streamstrapping” as a way to bootstrap the estimation procedure by using the summaries of
the prefixes of the data to choose the correct granularity required to further inspect the data.

7.1 Maximum Error Histograms
Let X = x1, . . . , xm be a finite data sequence of m real-valued numbers. The histogram
construction problem is defined as follows: given some space constraint B, create and store a
piecewise constant representation HB of the data sequence using at most B storage (pieces),
such that HB is optimal under some notion of error EX(HB) defined between the data
sequence and HB. The representation is a grouping of the values of consecutive points xi,
where i ∈ [lj , rj] into a single value hj , thus forming a bucket bj , defined with the smallest lj
and the greatest rj index of the data points belonging to the bucket, and their representative
value hj . In other words, for lj ≤ i ≤ rj we estimate xi by hj . The histogram uses at most B
buckets which cover the entire interval [1,m], and saves space by storing only O(B) numbers
instead of m.

Since hj is an estimate for the values in bucket bj , for the query at point i, where
lj ≤ i ≤ rj we incur an error xi − hj . The error EX(HB) of the histogram HB is defined
as a function of these point errors. Since the interval corresponding to the buckets do not
overlap and every point belongs to exactly one bucket, we can express the total error of a
histogram HB with buckets b1, . . . , bB as a sum over all bucket errors:

∑
j Err(bj). In the

case of the maximum (absolute) error histogram construction problem, the error Err for the
bucket bj defined by the interval [lj , rj] and representative hj is defined as follows:

Err(bj) = Err(lj , rj) = max
i∈[lj ,rj]

|xi − hj |.

The error of the histogram is given with:

EX(HB) =
∑
j

Err(bj) =
∑
j

max
i∈[lj ,rj]

|xi − hj |.

In order to minimize the error of the histogram we need to minimize the error of each
bucket. For the case of the maximum absolute error histogram construction problem the
representative values which minimize the maximum absolute error are computed using the
formula hj = xlj

+xrj

2 . Replacing the formula for hj in xi − hj the error of a bucket is given
with Err(bj) = xrj

−xlj

2 .

Chapte r 09

268 Algorithmic Techniques for Processing Data Streams

Figure 6 Illustration of the histogram construction problem.

I Example 6. Let us consider the following data sequence X = {20, 1, 5, 15, 5, 2, 16, 22,
36, 30, 34, 7, 31}. When constructing histograms it is usually useful to order the data X =
{1, 2, 5, 6, 7, 15, 16, 20, 22, 30, 31, 34, 36} to ease the representation. Figure 6 illustrates the
original sequence and the resulting histograms for the given sequence X and two possible
storage constraints: B = 6 and B = 4. As we can see, each histogram tries to approximate
the data sequence using fewer data points. Thus, the histogram construction algorithm
has to examine all of the possible divisions of this sequence in order to find the one that
minimizes the total error EX(HB) of the histogram.

We would first like to construct a maximum absolute error histogram using at most B=6
storage, which means that our histogram will have not more than 6 buckets. Let assume
that we have such an algorithm which is able to find the optimal histogram for the given
sequence X and space constraints B. The resulting optimal histogram for B=6 divides the
data elements in the following sequence of buckets B1 = {1, 2}, B2 = {5, 6, 7}, B3 = {15, 16},
B4 = {20, 22}, B5 = {30, 31} and B6 = {34, 36}, represented with the corresponding sequence
of values h1 = 1.5, h2 = 6, h3 = 15.5, h4 = 21, h5 = 30.5 and h6 = 35, with a cumulative
error EX(HB) = 4.

However, if we wish to reduce the storage to B = 4 pieces, then there are two possible
solutions with equal errors and one of them comprises the following sequence of buckets
B1 = {1, 2, 5, 6, 7}, B2 = {15, 16}, B3 = {20, 22} and B4 = {30, 31, 34, 36}, represented with
the corresponding sequence of values h1 = 4, h2 = 15.5, h3 = 21 and h4 = 33. The total
error under these space constraints is EX(HB) = 8.

Another variant of the maximum error histogram construction problem is to use the
relative error instead:

Err(lj , rj) = min
hj

max
i∈[lj ,rj]

|xi − hj |
max{c, |xi|}

,

where c is an absolute constant that works as a sanity bound, used to reduce excessive
domination of the relative error by small data values. By setting c to be larger than all
numbers in the input, the relative error is reduced to an absolute error multiplied by 1

c which
allows to discuss both errors at the same time. The maximum absolute or relative error
metrics enable to approximate the data with uniform fidelity throughout the domain, unlike
sum-based measures.

Jagadish et al. [46] first gave a general technique for computing the optimum histogram
in O(m2B) time and O(mB) space for several measures. However, the quadratic running
time showed is undesirable for large data sets, not to mention for streaming applications.
Besides, having in mind that the histogram is already an approximation of the data, it

E. Ikonomovska and M. Zelke 269

came natural to think of near optimal solutions which can be constructed in time linear in
the size of the input data. This line of thinking went even further, considering “tunable”
approximations which would allow faster running times if a less accurate histogram suffices
for the application at hand. As a result, many solutions have been developed for a slightly
different problem formulation known as constructing (1 + ε)-approximate histograms [39]:
Given a sequence X of length m, a number of buckets B, and a precision parameter ε > 0,
find HB with EX(HB) at most (1 + ε) minH EX(H) where the minimization is taken over
all histograms H with B buckets. Thus, if we desire a 1% approximation to the optimal
histogram, we would set ε = 0.01. However, all of the solutions proposed have running times
dependent on the size of the input, although polylogarithmic.

An interesting and important result is given by Guha and Shim [40], where they present
a linear time optimal algorithm for the maximum absolute and relative error measures for
computing the optimum histogram in O(m+B2 log3m) time and O(m) space. Note that
the improvement in the running time is on the cost of an increased memory usage. Although
the algorithm is linear, due to its memory dependence on the size of the input it cannot be
used in streaming applications.

Only recently Guha [37] gave the first tight results for linear time algorithms whose space
requirements do not depend on the size of the input, i.e., the data stream. The StreamStrap
algorithm [37] uses the concept of thresholded approximation plugged into a framework
in which multiple repetitions of the thresholded algorithm are run in a sequential manner,
where each new run is enhanced and bootstrapped with the results from the previous run,
an idea called “streamstrapping”. The StreamStrap algorithm is discussed in more detail in
the following section.

7.2 The StreamStrap Algorithm
To be able to apply the StreamStrap algorithm there are two basic requirements which have
to be fulfilled in our summarization scenario:

1) Thresholded small space approximations exists.
2) The error measure is a Metric error.

For a given summarization problem P a thresholded approximation (as given in the work
of [37]) is defined to be an algorithm which simultaneously guarantees that: 1) if there is
a solution with summarization size B′ and error ε (where ε is known), then in small space
we can construct a summary of size at most B′ such that the error of our summary is at
most αε for some α ≥ 1 and, 2) otherwise declare that no solution with error ε exists. An
important point of the first requirement is that we use the knowledge of ε.

The second requirement translates into a property of the error measure which enables us
to use the following inequality for any X, Y , H, H ′:

Err(X(H) ◦ Y,H ′)− Err(X,H) ≤ Err(X ◦ Y,H ′) ≤ Err(X(H) ◦ Y,H ′) + Err(X,H),

where Err(X,H) is the summarization error of X using the summary H (eg., maximum
error histogram), X ◦ Y denotes a concatenation of input X followed by Y , and X(H) is the
summarized input in which every point x is replaced by the corresponding representative h
from H.

A thresholded version of the optimal algorithm for the maximum error problem [40] can
be easily derived by using the knowledge of ε in the computations [37]. For a given error
ε the algorithm can produce a summary of the input in linear time, using O(B′) space, if

Chapte r 09

270 Algorithmic Techniques for Processing Data Streams

such summary exists. Further, both the maximum error and the square root of the VOPT
error satisfy the second requirement. Thus, we can fulfill all the conditions required for the
StreamStrap algorithm to be applied.

On a high level the algorithm proceeds as follows: First, it reads B points from the input.
Since all the input values are stored at this point of time, the summarization error is 0. The
algorithms continues with reading as long as the error remains zero. When the first input
which causes a non-zero error is observed (say this error is ε0), the algorithm initializes J
copies of the thresholded summarization algorithm and runs the algorithms. Each copy is
run for a different error value which is exponentially increasing with a factor of (1 + ε), i.e.,
ε0, (1 + ε)ε0, . . ., (1 + ε)Jε0. The value of J is chosen such that (1 + ε)J > α/ε, giving us
O(1

ε log α
ε) different algorithms.

A property of the thresholded algorithm is that it will succeed only if a summary exists
for the given error ε and the available storage space. Therefore, when at some point in
time some of the copies of the thresholded algorithm will declare a “fail” for some ε′, we
know that there exist no such solution for an error smaller or equal to ε′, that is, ε∗ > ε′.
Now, we terminate all the algorithms run for error estimates ≤ ε′ and, start running a
thresholded algorithm for (1 + ε)Jε′ using the summary from the “failing” algorithm as the
initial input. Whenever a running copy of the thresholded algorithm will declare a “fail” the
same procedure is applied. As a result, we will always have the same number of running
algorithms, but for different error estimates. At query time the algorithm returns the answer
for the lowest error estimate for which a thresholded algorithm is still running, i.e., have not
declared a “fail”.

The general idea is to start with the smallest possible estimate of the error and raise it a
number of times until we find a solution under the constraints on the memory storage and
the approximation factor ε. Using the summaries from the previous runs and the property
of a Metric error, it can be shown that for a given summarization problem that fulfills the
requirements of the framework, for any ε ≤ 1/10 the StreamStrap algorithm provides a
α/(1− 3ε)2 approximation. The proof is given in [37].

7.3 Applications
If we apply the StreamStrap algorithm for the maximum error histogram construction
problem with B buckets, we can have a single pass 1 + ε streaming approximation using
O(Bε log 1

ε) space and O(m + B
ε (log2 B

ε) logMε∗) time. The error of any bucket will be
additively within εε∗ of the true error of that bucket.

The StreamStrap algorithm has been applied also to the the problem ofK-center clustering,
K-median clustering and the VOPT histogram construction problem, for which upper bounds
on the space and running time are given [37]. Guha further proved the first lower space
bounds for maximum error histograms and for the K-center problem in the Oracle Distance
Model, where an oracle is assumed which given two input points and an additional small
space determines their distance. In particular, for the maximum error histogram construction
problem he proved that: for all ε ≤ 1/(40B), any 1 + ε approximation for B bucket maximum
error histogram, which also approximates the error of each bucket within additive ε times the
optimum error must use Ω(B

ε log(B/ε)) bits of space. This result is proved by using a reduction
of the Indexing problem to the problem of constructing a histogram.

The importance of Guha’s results lies in the fact that the StreamStrap algorithm can
run indefinitely using a bounded amount of space and a constant processing time for each
data item from the stream, while still providing an approximation or a summary which
is according to the user’s specifications (given the approximation factor ε and the size of

E. Ikonomovska and M. Zelke 271

the summary B). Thus, it can be easily applied in many data stream applications in the
cash-register model, and as a building block in more sophisticated summary data structures
for tracking various statistics of interest. To the best of our knowledge, similar results have
not yet been achieved for the more general turnstile data stream model.

References
1 Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. The

aqua approximate query answering system. SIGMOD Rec., 28:574–576, June 1999.
2 Gagan Aggarwal, Mayur Datar, Sridhar Rajagopalan, and Matthias Ruhl. On the streaming

model augmented with a sorting primitive. Foundations of Computer Science, Annual IEEE
Symposium on, pages 540–549, 2004.

3 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis of
computer algorithms. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam,
1975.

4 Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft. Data structures and algorithms.
Addison-Wesley, Reading, Mass., 1983.

5 Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. Tracking join and self-join
sizes in limited storage. In Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, PODS’99, pages 10–20, New York, NY, USA,
1999.

6 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

7 C.R. Aragon and R.G. Seidel. Randomized search trees. Foundations of Computer Science,
Annual IEEE Symposium on, 0:540–545, 1989.

8 Aditya Akella Ashwin, Ashwin Bharambe, Mike Reiter, and Srinivasan Seshan. Detect-
ing ddos attacks on isp networks. In Proceedings of the Workshop on Management and
Processing of Data Streams, 2003.

9 Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Mod-
els and issues in data stream systems. In PODS’02: Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 1–16,
New York, NY, USA, 2002.

10 Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a moving window over
streaming data. In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete
algorithms, SODA’02, pages 633–634, Philadelphia, PA, USA, 2002. Society for Industrial
and Applied Mathematics.

11 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702 – 732, 2004. Special Issue on FOCS 2002.

12 Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding
windows. J. Comput. Syst. Sci., 78(1):260–272, 2012.

13 A. Broder. On the resemblance and containment of documents. In Proceedings of the Com-
pression and Complexity of Sequences 1997, SEQUENCES’97, pages 21–29, Washington,
DC, USA, 1997. IEEE Computer Society.

14 Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-
wise independent permutations (extended abstract). In Proceedings of 13th Annual ACM
Symposium on Theory of Computing, STOC’98, pages 327–336, New York, NY, USA, 1998.
ACM.

15 C. Buragohain, N. Shrivastava, and S. Suri. Space efficient streaming algorithms for the
maximum error histogram. In Data Engineering, 2007. ICDE 2007. IEEE 23rd Interna-
tional Conference on, pages 1026 –1035, april 2007.

Chapte r 09

272 Algorithmic Techniques for Processing Data Streams

16 J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions (extended
abstract). In Proceedings of the ninth annual ACM symposium on Theory of computing,
STOC’77, pages 106–112, New York, NY, USA, 1977. ACM.

17 CERN: European Organisation for Nuclear Research. http://public.web.cern.ch/.
18 Kaushik Chakrabarti, Eamonn Keogh, Sharad Mehrotra, and Michael Pazzani. Locally

adaptive dimensionality reduction for indexing large time series databases. ACM Trans.
Database Syst., 27:188–228, June 2002.

19 Timothy M. Chan and Eric Y. Chen. Multi-pass geometric algorithms. Discrete & Com-
putational Geometry, 37:79–102, 2007.

20 Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In Proceedings of the 29th International Colloquium on Automata, Languages and
Programming, ICALP’02, pages 693–703, London, UK, UK, 2002. Springer-Verlag.

21 Edith Cohen. Size-estimation framework with applications to transitive closure and reach-
ability. J. Comput. Syst. Sci., 55:441–453, December 1997.

22 Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev Motwani,
Jeffrey D. Ullman, and Cheng Yang. Finding interesting associations without support
pruning. IEEE Trans. on Knowl. and Data Eng., 13:64–78, January 2001.

23 Edith Cohen and Martin Strauss. Maintaining time-decaying stream aggregates. In Pro-
ceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS’03, pages 223–233, New York, NY, USA, 2003. ACM.

24 Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing data
streams using hamming norms (how to zero in). In Proceedings of the 28th international
conference on Very Large Data Bases, VLDB’02, pages 335–345. VLDB Endowment, 2002.

25 Graham Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking most
frequent items dynamically. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, PODS’03, pages 296–306, New
York, NY, USA, 2003. ACM.

26 Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms, 55(1):58 – 75, 2005.

27 Corinna Cortes and Daryl Pregibon. Giga-mining. In Knowledge Discovery and Data
Mining, pages 174–178, 1998.

28 M. Datar and S. Muthukrishnan. Estimating rarity and similarity over data stream windows.
In Proceedings of the 10th Annual European Symposium on Algorithms, ESA’02, pages 323–
334, London, UK, UK, 2002. Springer-Verlag.

29 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31:1794–1813, June 2002.

30 Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency estimation of
internet packet streams with limited space. In Rolf H. Möhring and Rajeev Raman, editors,
ESA, volume 2461 of Lecture Notes in Computer Science, pages 348–360. Springer, 2002.

31 Earth System Research Laboratory. http://www.esrl.noaa.gov/psd/.
32 Joan Feigenbaum, Sampath Kannan, Martin J. Strauss, and Mahesh Viswanathan. An

approximate l1-difference algorithm for massive data streams. SIAM J. Comput., 32:131–
151, January 2003.

33 Philippe Flajolet and G. Nigel Martin. Probabilistic counting. In FOCS, pages 76–82.
IEEE, 1983.

34 Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoidance.
IEEE/ACM Trans. Netw., 1:397–413, August 1993.

35 Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and
Martin J. Strauss. Fast, small-space algorithms for approximate histogram maintenance. In

http://public.web.cern.ch/
http://www.esrl.noaa.gov/psd/

E. Ikonomovska and M. Zelke 273

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, STOC’02,
pages 389–398, New York, NY, USA, 2002.

36 Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile
summaries. In Proceedings of the 2001 ACM SIGMOD international conference on Man-
agement of data, SIGMOD’01, pages 58–66, New York, NY, USA, 2001.

37 Sudipto Guha. Tight results for clustering and summarizing data streams. In Proceedings
of the 12th International Conference on Database Theory, ICDT’09, pages 268–275, New
York, NY, USA, 2009. ACM.

38 Sudipto Guha, Nick Koudas, and Kyuseok Shim. Data-streams and histograms. In Proceed-
ings of the thirty-third annual ACM symposium on Theory of computing, STOC’01, pages
471–475, New York, NY, USA, 2001. ACM.

39 Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and streaming algorithms
for histogram construction problems. ACM Trans. Database Syst., 31:396–438, March 2006.

40 Sudipto Guha and Kyuseok Shim. A note on linear time algorithms for maximum error
histograms. IEEE Trans. on Knowl. and Data Eng., 19:993–997, July 2007.

41 Sudipto Guha, Kyuseok Shim, and Jungchul Woo. Rehist: Relative error histogram con-
struction algorithms. In Very Large Data Bases, pages 300–311, 2004.

42 Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on data
streams. External memory algorithms, pages 107–118, 1999.

43 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53:307–323, May 2006.

44 Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments of
data streams. In Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, STOC’05, pages 202–208, New York, NY, USA, 2005.

45 C. L. Mallows J. M. Chambers and B. W. Stuck. A method for simulating stable random
variables. Journal of the American Statistical Association, 71:340–344, June 1976.

46 H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Kenneth C. Sevcik,
and Torsten Suel. Optimal histograms with quality guarantees. In Proceedings of the
24rd International Conference on Very Large Data Bases, VLDB’98, pages 275–286, San
Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

47 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, PODS’10, pages 41–52, New York,
NY, USA, 2010. ACM.

48 Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm
for finding frequent elements in streams and bags. ACM Trans. Database Syst., 28:51–55,
March 2003.

49 Panagiotis Karras, Dimitris Sacharidis, and Nikos Mamoulis. Exploiting duality in sum-
marization with deterministic guarantees. In Proceedings of the 13th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, KDD’07, pages 380–389,
New York, NY, USA, 2007. ACM.

50 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

51 LHC Computing Grid. http://lcg.web.cern.ch/LCG/.
52 Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data

streams. In Proceedings of the 28th international conference on Very Large Data Bases,
VLDB’02, pages 346–357. VLDB Endowment, 2002.

53 Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate medians
and other quantiles in one pass and with limited memory. In Proceedings of the 1998 ACM

Chapte r 09

http://lcg.web.cern.ch/LCG/

274 Algorithmic Techniques for Processing Data Streams

SIGMOD international conference on Management of data, SIGMOD’98, pages 426–435,
New York, NY, USA, 1998.

54 Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Random sampling
techniques for space efficient online computation of order statistics of large datasets. In
Proceedings of the 1999 ACM SIGMOD international conference on Management of data,
SIGMOD’99, pages 251–262, New York, NY, USA, 1999.

55 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

56 Ketan Mulmuley. Computational Geometry: An Introduction Through Randomized Al-
gorithms. Prentice Hall, 1993.

57 M. Muralikrishna and David J. DeWitt. Equi-depth histograms for estimating selectivity
factors for multi-dimensional queries. In Haran Boral and Per-Åke Larson, editors, Pro-
ceedings of the 1988 ACM SIGMOD International Conference on Management of Data,
Chicago, Illinois, June 1-3, 1988, pages 28–36. ACM Press, 1988.

58 S. Muthukrishnan. Data streams: algorithms and applications. Found. Trends Theor.
Comput. Sci., 1(2):117–236, 2005.

59 Gregory Piatetsky-Shapiro and Charles Connell. Accurate estimation of the number of
tuples satisfying a condition. In Proceedings of the 1984 ACM SIGMOD international
conference on Management of data, SIGMOD’84, pages 256–276, New York, NY, USA,
1984.

60 Nicole Schweikardt. One-pass algorithm. In Ling Liu and M. Tamer Zsu, editors, Encyclo-
pedia of Database Systems, pages 1948–1949. Springer Publishing Company, Incorporated,
1st edition, 2009.

61 P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In Proceedings of the
1979 ACM SIGMOD international conference on Management of data, SIGMOD’79, pages
23–34, New York, NY, USA, 1979. ACM.

62 Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. Me-
dians and beyond: new aggregation techniques for sensor networks. In Proceedings of
the 2nd international conference on Embedded networked sensor systems, SenSys’04, pages
239–249, New York, NY, USA, 2004.

63 Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11:37–57,
March 1985.

64 Mark N. Wegman and J. Lawrence Carter. New hash functions and their use in authentic-
ation and set equality. Journal of Computer and System Sciences, 22(3):265 – 279, 1981.

65 David Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, SODA’04, pages
167–175, Philadelphia, PA, USA, 2004.

	Introduction
	Preliminaries
	Sampling
	Reservoir Sampling
	AMS-Sampling
	Sliding Window Sampling

	Sketching
	Count-Min Sketch
	Universal Hash Functions

	Similarity Mining
	Estimating Similarity on Unbounded Data Streams
	L2 and Lp Sketches
	Min-wise Hashing

	Estimating Similarity on Windowed Data Streams
	Approximating the Lp Norm
	Approximating the Jaccard Similarity

	Group Testing for Tracking Frequent Items
	Preliminaries
	Background
	Nonadaptive Group Testing
	Finding the Majority Item
	Finding k Hot Items

	Clustering and Summarizing Data Streams
	Maximum Error Histograms
	The StreamStrap Algorithm
	Applications

