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Abstract
In many application fields, such as production lines or stock analysis, it is substantial to create
and process high amounts of data at high rates. Such continuous data flows with unknown
size and end are also called data streams. The processing and analysis of data streams are a
challenge for common data management systems as they have to operate and deliver results in real
time. Data Stream Management Systems (DSMS), as an advancement of database management
systems, have been implemented to deal with these issues. DSMS have to adapt to the notion
of data streams on various levels, such as query languages, processing or optimization. In this
chapter we give an overview of the basics of data streams, architecture principles of DSMS and
the used query languages. Furthermore, we specifically detail data quality aspects in DSMS as
these play an important role for various applications based on data streams. Finally, the chapter
also includes a list of research and commercial DSMS and their key properties.
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1 Introduction

Today, sensors are ubiquitous devices and they are crucial for a multitude of applications.
Especially, tasks like condition monitoring or object tracking often require sensors [76].
Important examples for monitoring applications are weather observation and environment
monitoring in general, health monitoring, monitoring of assembly lines in factories, RFID
monitoring, or road monitoring. These applications share characteristic properties which are
especially challenging for a data management system processing this data. First of all, the
sensed data is produced at a very high frequency, often in a bursty manner, which may pose
real-time requirements on processing applications and may allow them only one pass over
the data. ECG signals, for example, are created at a frequency of usually 250 Hz. Second,
sensor data is not only produced rapidly, but also continuously forming a data stream. Data
streams can be unbounded, i.e., it is not clear, when the stream will end. Data from sensors
furthermore can be defective, i.e., it is likely to include errors introduced by the imprecision
of measurement techniques (e.g., a vehicle speedometer has an error tolerance of 10% [29]),
data may be lost due to transmission failure or failure of the sensor.

Also the mapping of recorded sensor data to a time domain is important to rate the
timeliness of the data and to make it interpretable in that dimension. In monitoring
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applications the most recent data is apparently the most interesting data. This reveals
another source of defectiveness of the sensor data – namely disorder of data, which is likely
to happen when the protocol used for transmission cannot guarantee to sustain order or
network latencies occur [64]. In monitoring applications, data from multiple sources have also
to be integrated and analyzed to build a comprehensive picture of a situation. For example,
integrating data from several health sensors (such as ECG, temperature, blood pressure)
has to be integrated to derive that a patient is in a critical situation. Another challenge is
caused by the pure mass of data. Due to limited system resources in terms of space and CPU
time, algorithms analyzing the data, e.g. data mining algorithms, cannot store and process
the entire data, but they can process the data only once (the one-pass property) with the
available resources. In some applications, it is also required to combine streaming data with
historical or static data from a common database, e.g., when for a monitored road section
we want to look up, if it currently contains a construction site. All of these properties are
especially common to sensor data on which we will focus in this chapter. There are also other
typical applications producing data streams (further termed stream applications). Popular
examples are stock price analysis or network traffic monitoring, which can produce even
millions of samples per second.

To tackle the aforementioned challenges in data stream processing, a specific type of
systems called Data Stream Management Systems (DSMS) has evolved. The properties of
stream applications discussed before lead to a long list of requirements for DSMS. In contrast
to common data management systems and based on the nature of stream applications, DSMS
have to react to incoming data and deliver results to listening users frequently [65]. This
is also termed as the DBMS-Active, Human-Passive model by Carney et al. [19], while the
DBMS-Passive, Human-Active model is implemented by common Database Management
Systems (DBMS). In DSMS a reactive behaviour is realized by continuous queries which are
registered by a user in the system once and after that the queries are executed incessantly.
But some applications may at the same time require to allow ad hoc user queries [2] or
views [39] also. Data in a DSMS must not only be processed and forgotten, but the system
also has to react to changes of data items, which may lead to recalculation of already produced
results. This requires an appropriate change management in the system [1, 8].

Handling unbounded data streams while having only a limited amount of memory available
and being restricted in CPU time for processing the data is one of the main challenges for
a data stream management system. The creation of incremental results for critical data
processing operations and the application of window operators are only two examples of
how these issues are solved in DSMS. As already mentioned, most of the applications pose
real-time requirements to the data processing system [65]. This implicitly comprises the
requirement to be scalable in terms of data rates, which in turn demands techniques for
load balancing and load shedding to be incorporated in a stream system. But the system
must be also scalable in terms of queries as some application contexts can get complex and
require the introduction of several queries at the same time. Therefore, the demand for and
the adaptability to newly registered, updated, or removed queries is obvious [20]. This also
brings up the need for multi-query optimization, e.g., by sharing results of operators in an
overall query plan. Query plan modification during query processing is not only desirable
for query optimization, but also to serve Quality of Service demands under varying system
resource availabilities [59].

The imperfectness of data has also to be addressed by a DSMS. Unordered data has to be
handled adequately, and may be tolerated in controlled bounds. Means to recognize and rate
the quality of the data processed are also crucial to make assumptions about the produced
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answers or results [73]. Finally, as Stonebreaker et al. [65] demand, a DSMS also has to have
a deterministic behaviour, which outputs predictable and repeatable results to implement
fault tolerance and recovery mechanisms. This contrasts with non-deterministic components
in a DSMS, such as a component randomly dropping tuples to compensate a high system
load [78].

Parallel to DSMS, the terms Event Processing, Complex Event Processing (CEP) or
Event Stream Processing have evolved. These terms are referring to a concept which is
closely related to the notion of data streams. The corresponding systems are specialized
on the processing and analysis of events to identify higher level events, such as predicting
a political development from Twitter tweets or detecting a serious condition from vital
parameter readings. DSMS have a broader application scope, but CEP applications can
also be rebuild with DSMS [28]. Cugola and Margara distinguish DSMS and CEP systems
as data processing and event detection systems denoting the different focuses. The focus
disparities result, among others, in differences in architectures, data models and languages
between CEP systems and DSMS [25]. The focus of this chapter is put on DSMS. For a
comparison of CEPs and DSMS we refer to the survey by Cugola and Margara [25].

In this chapter, we will give a brief overview of DSMS and of some of the solutions which
address the above requirements. As there are already excellent surveys on the concepts of
DSMS, e.g., [11, 38, 22, 78, 39], we will focus on two main aspects and discuss them in more
detail: query languages for DSMS and data quality in DSMS.

1.1 Running Example – A Traffic Application Scenario
Throughout this chapter, we will use a real-time traffic management application as a running
example, namely traffic state estimation based on data from multiple mobile traffic sources.
In Car-to-X (C2X) communication vehicles can communicate with other vehicles (Car-to-Car)
or with the road infrastructure (Car-to-Infrastructure). The data collected and sent is called
Floating Car Data (FCD). For example, a vehicle can warn other vehicles behind it when it
brakes very hard. We consider two kinds of event-based messages sent out by the vehicles:
Emergency Braking Light (EBL) messages, which are created when a vehicle has a high
negative acceleration, and Warning Light Announcement messages (WLA). The latter are
produced when a vehicle turns on its warning light flashers. These messages contain general
information about the current state of the vehicle, such as the speed, the location, or the
acceleration.

Example 1 shows the schema of a C2X message stream, which is an example for FCD.
Another source of a data stream may be anonymously collected mobile phone position data
(also called Floating Phone Data (FPD) analogously to Floating Car Data (FCD)). This can
be used to derive further traffic information, such as the speed or the traffic state [33].

I Example 1. In our case study we receive the CoCar messages sent by the equipped vehicles
as a data stream. The simplified schema of the stream CoCarMessage is as follows,

C2XMessage(TS ,AppID,Speed,Acceleration,Latitude,Longitude)

where AppID represents the message type, such as an emergency brake message, Longitude
and Latitude represent the position of the vehicle and Speed and Acceleration represent
the current values for these attributes of the vehicle. Additionally, the data stream elements
contain a timestamp TS from a discrete and monotonic time domain.

The idea of traffic state estimation based on C2X messages is simple. We divide roads
in a given road network into equal-sized sections, e.g., of 100 meters length, as depicted in

Chapte r 10
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Figure 1 A road with two directions divided up into sections [35].

Figure 1. We collect the messages and data produced, assign the data to a section based
on the position in the message, and aggregate the data for each section and a certain time
period (e.g., the last minute). Based on the aggregated data for each section we can then
determine the traffic state either based on simple rules (if speed is higher than x and the
number of messages is higher than y) or using data stream mining techniques.

We realized the described application in the course of the CoCar project1 and its successor
CoCarX. We implemented an architecture based on a DSMS and data stream mining
algorithms. The architecture is supposed to derive further traffic data from raw data, such
as hazard warnings or the traffic state, and to send it out as traffic information to end-
users [35, 34]. The CoCar project investigates the feasibility of traffic applications based on
Car-to-X communication via cellular networks (UMTS and its successor LTE) and pWLAN.

2 DSMS Architectures

Due to the system requirements for DSMS their architectures differ in several aspects from
the traditional relational DBMS architecture. Querying has to be viewed from a different
angle as data is pushed into the system and not pulled from the system [20]. In Data Stream
Management Systems queries are executed continuously over the data passed to the system,
also called continuous or standing queries. These queries are registered in the system once.
Depending on the system, a query can be formulated mainly in two ways: as a declarative
expression, mostly done in an SQL-dialect, or as a sequence or graph of data processing
operators. Some of the systems provide both possibilities. A declarative query is parsed to a
logical query plan, which can be optimized. Similar to DBMS this logical query is afterwards
translated into a physical query execution plan (QEP). The query execution plan contains
the calls to the implementation of the operators. Besides of the actual physical operators,
query execution plans include also queues for buffering input and output for the operators.
A further support element in QEPs are synopsis structures. DSMS may provide specific
synopsis algorithms and data structures which are required, when an operator, e.g., a join,
has to store some state to produce results. A synopsis summarizes the stream or a part of the
stream. It realizes the trade-off between memory usage and accuracy of the approximation
of the stream. Additionally, load shedders can be integrated in the plan, which drop tuples
on high system loads. In most systems, execution plans of registered queries are combined
into one big plan to reuse results of common operators for multiple queries. The physical
query plan may be constantly optimized based, e.g., on performance statistics. In Figure 2
the query processing chain is depicted.

In Figure 3 a generic architecture of a DSMS based on [5, 39] is shown. First of all a
DSMS typically gets data streams as input. Wrappers are provided, which can receive raw
data from its source, buffer and order it by timestamp (as e.g. implemented by the Input
Manager in the STREAM system [64]) and convert it to the format of the data stream

1 http://www.aktiv-online.org/english/aktiv-cocar.html
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Figure 2 Illustration of the Query Processing Chain in DSMS as given in [50].
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Figure 3 An generic architecture of a DSMS based on [5, 39].

management system (the task of the Stream Manager). As most systems adopt a relational
data model, data stream elements are represented as tuples, which adhere to a relational
schema with attributes and values. After reception the tuples are added to the queue of the
next operator according to the query execution plan. This can be done e.g. by a Router
component as implemented in the Aurora system [3]. The management of queues and their
corresponding buffers is handled by a Queue Manager. The Queue Manager can also be used
to swap data from the queues to a secondary storage, if memory resources get scarce. To
enable access to data stored on disk many systems employ a Storage Manager which handles
access to secondary storage. This is used, when persistent data is combined with data from
stream sources, when data is archived, or swapped to disk. Also it is required when loading
meta-information about, inter alia, queries, query plans, streams, inputs, and outputs. These
are held in a system catalog in secondary storage.

While the queue implementation decides which element is processed next, a Scheduler
determines which operator is executed next. The Scheduler interacts closely with the Query
Processor which finally executes the operators. Many systems also include some kind of
Monitor which gathers statistics about performance, operator output rate, or output delay.
These statistics can be used to optimize the system execution in several ways. The scheduler
strategy can be influenced, e.g., prioritizing specific subplans. Furthermore, the throughput
of a system can be increased by a Load Shedder, i.e., stream elements selected by a sampling
method are dropped. The Load Shedder can be a part of a Query Optimizer, a single
component, or part of the query execution plan. Furthermore, the statistics can be used to
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reoptimize the current query execution plan and reorder the operators. For this purpose
a Query Optimizer can be included. In the Telegraph system [20] subsets of operators are
build which are commutative. The operators of each subset are connected to a component
called Eddy. Each Eddy routes the incoming tuples to the operators connected to it based
on optimization statistics. Each tuple has to log, which operator has already processed it
successfully and when all attached operators processed it, it is routed to the next part of the
plan or output to recipients [20]. DBMS and DSMS share some of their query optimization
goals – both try to minimize computational costs, memory usage and size of intermediate
results stored in main memory. But obviously, the priorities for these goals are different for
the two system types. DBMS mainly try to reduce the costs of disc accesses [27], while DSMS
mainly have to reduce memory usage and computation time to be fast enough. Of course,
these different goals stem from the different data handling strategies (permanent storage vs.
real-time processing). In a DSMS a query is also not only optimized before execution, but it
is adaptively optimized during its run time. This enables the system to react to changes of
input streams and system and network conditions.

An interesting work to research the different architectural components of a DSMS is
the Odysseus [17, 32] framework. Odysseus allows to create customized DSMS for which
it provides basic architectural components while offering variation points for each of the
components. At these variation points custom modifications such as the integration of a new
data model or the inclusion of new algebraic and physical operators or new optimization
rules for logical query plans are possible.

Now that general concepts of DSMS architectures for query management and processing
have been introduced, the user interface to access the data, namely the principles of query
languages in DSMS are discussed in the next section.

3 Query Languages in DSMS

In principle, two main types of query languages for DSMS can be distinguished: declarative
languages (mostly relational, based on SQL) and imperative languages which offer a set of
operators (also called box operators) to be assembled to a data-flow graph using a graphical
user interface. The imperative languages often also include operators which represent SQL
operations. SQL-based languages are widely used, though SQL has many limitations for
querying streams [52]. Systems which include a declarative SQL-based language are, for
example, STREAM (Continuous Query Language, CQL) [10], Oracle Event Processing2,
PIPES [50], SASE (Complex Event Language) [43], or StreamMill (Expressive Stream
Language, ESL) [72]. Imperative languages are supported for example by the Aurora/Borealis
system (SQuAl) [3], or System S/InfoSphere Stream3 (SPADE/SPL) [31].

Because a stream is potentially unbounded in size, it is neither feasible nor desirable to
store the entire stream and analyze it. Some of the operations known from traditional query
languages, such as SQL, might wait infinitely long to produce a result, as the operation would
have to see the entire stream to generate a result (defined as blocking operations) [11]. The
missing support of sequence queries, i.e., retrieving sequential data, is one crucial limitation
known from relational databases and SQL [52]. One simple yet powerful way is to first
extract only a desired portion of the stream and use this portion in the remainder of the
query. Therefore, a very important requirement for a DSMS query language is the provision

2 http://oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
3 http://ibm.com/software/data/infosphere/streams

http://oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
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of windows [22, 9, 57]. Windows are operators that only select a part of the stream according
to fixed parameters, such as the size and bounds of the window. Hence, they provide an
approximation of the stream, but are at the same time implementing the desired query
semantics [11]. A window is updated based on fixed parameters [57] and internal matters of
the system (e.g., in principle, a result can be updated whenever a new element arrives or
whenever time proceeds) [45]. We will detail the different types and parameters of windows
in Section 3.1.5.

Besides the definition of windows in the language, also an approved set of query operations
accompanied by established semantics is beneficial for a DSMS query language [9]. This can
be accomplished, e.g., by using a common query language based on relational algebra and
its operators for operations on finite tuple sets (commonly called relations). The advantage
is the reuse of operator implementations and transformations for query optimization [9].
But such an approach also risks to be complicated, because the closure under a consistent
mathematical structure, such as bags in relational algebra, is crucial to enable nested queries
and algebraic optimization. Cherniack and Zdonik [22] investigated the property of DSMS
query languages to be closed under streams. A language is closed under streams if its
operators get streams as an input and if the output of the operators are streams as well.
They state that most languages provide stream-to-stream operators by either implicitly using
operators for windowing and conversion to streams or special stream-to-stream operators.
Only CQL provides the possibility to explicitly formulate the conversion of relations to
streams by specific relation-to-stream operators. These operators can either add output
elements to a result stream when a new element compared to the last time step is in the
result set (Istream operator), or when an element has been removed from the query result
relation compared to the last time step (Dstream operator), or all elements which are present
in the result set in the current time step (Rstream) are added to the stream [10, 9]. But to
avoid an inconsistent query formulation producing results not closed under streams, CQL
also offers many default query transformations. In fact, Arasu et al. showed in [9] that a
stream-only query language (only using stream-to-stream operators) can be build based on
the set of CQL operators. We will detail the types of operators used in continuous query
languages in Section 3.1.4.

I Example 2. Suppose we want to monitor the number of speeders in a reduced speed
area. We would like to retrieve the number of CoCar messages which have been sent in the
last minute and which contain a speed greater than 30km/h. Additionally, we also want to
retrieve an update every 10 seconds. In CQL the following query could be formulated to
fulfil our information requirement:

SELECT Istream Count (*) FROM
C2XMessage [Range 1 Minute Slide 10s]

WHERE
Speed > 30.0

Listing 1 Query 1

The same query can be formulated in an imperative query language by assembling box
operators. In Figure 4a a query formulated in Aurora’s SQuAl is depicted. The Filter
operator is similar to the selection in relational algebra – it retrieves all tuples with speed
greater than 30.0. Furthermore, an Aggregate operator is connected to the Filter operator,
which can be parametrized with the aggregate function and details for an implicit window
integrated in the operator. The SPADE query in Figure 4b is similar – the parametrized
Functor operator selects the tuples according to the speed restriction and the Aggregate
operator executes the Count operation.

Chapte r 10
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Filter(Speed > 30.0)

Aggregate(CNT, Assuming O, Size 1 minute, Advance 10 second)

(a) Query 1 in SQuAl

C2X_Source Functor Aggregate TCP_Sink

(b) Query 1 in SPADE

Figure 4 Query 1 formulated in imperative languages.

To include more powerful and custom functionality, another requirement to DSMS query
languages is the extension of the language by custom functions and operators to include
more complex actions, such as data mining or custom aggregates [52]. Most of the languages
provide a possibility for custom extensions. In the System S by IBM [31] a code generator
enables users to create skeleton code for user-defined operators in C++ and add custom code
to the operator. The operator is treated the same way as the other operators, e.g., during
query optimization. The Aurora system provides a specific operator Map in which user-
defined functions can be integrated and are executed whenever a new element is received [3].
In the Stream Mill ESL [52, 72] User-defined Aggregates (UDAs) based on concepts from
the SQL:99 standard (INITIALIZE, ITERATE, INSERT INTO RETURN, TERMINATE)
and the stream are used to implement new operators such as non-blocking aggregates or
windows. The UDAs process one tuple at a time and allow for keeping a state over the so far
seen stream elements. They can output a result when a specified condition is fulfilled and
not only when all the input elements have been seen. In [72] the authors also show how they
integrate stream mining algorithms into Stream Mill using UDAs.

3.1 Data Models and Semantics of Data Streams
Before we go into detail on continuous queries and operators used in the queries, we have
to understand what is exactly meant by the term “data stream”. In this section we will
also break data streams down to their indivisible components and examine the data models
applied in DSMS.

3.1.1 Data Models
Depending on the desired application realized with the DSMS and the data sources to support
there are different demands on the adopted data model and the semantics of the query
language. In the literature, the relational model is very dominant, presumably due to the
well-defined semantics, the established set of relational algebra operators, and the very well
studied principles of DBMS. Also, from a user’s perspective, the step from SQL towards its
streaming extensions seems to be quite small. But there are also data sources which do not
conform to the flat table concept for discrete data offered by the relational data model [56].
XML data received from, e.g., web services or RSS feeds as well as continuous signal data,
object streams, or spatio-temporal data streams demand special treatment. Therefore, a
variety of specialized DSMS with differing data models and corresponding query languages
have been proposed.
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The maintenance and analysis of massive and dynamic graphs is also a challenging
problem which can be tackled by data stream technology. There are multiple forms of this
data model possible. The stream can consist of, amongst others, a sequence of edges [30], a
stream of graphs where each graph is an adjacency matrix or list [67], or weight updates
of edges [6]. It may be used in event detection and forecasting e.g. of Twitter streams,
for web page linkage or social network analysis. To achieve a stable logical foundation for
DSMS Zaniolo presents a data model and query language called Streamlog, which is based
on Datalog [77]. While stream sources are represented by fact streams and sinks (or output
streams) by the goal of a datalog query, the operators in between are defined by rules.

An interesting generic approach, supporting multiple query languages and data models,
is implemented by the Odysseus framework [17]. A logical algebra component converts
queries from various language parsers to a logical query plan with generic algebra operators.
The semantics of the PIPES system [50] also allows for implementing multiple data models.
In this chapter we will concentrate mostly on the classical relational model, though there
are also many works on XML stream processing, e.g., using XML-QL [21], XPath [58] or
XQuery [18]. In the following we will discuss various representations and semantics of data
streams and concepts related to them.

3.1.2 Representations and Semantics of Data Streams
A data stream S can be understood as an unbounded multiset of elements, tuples, or
events [52, 11, 26, 50]. This means, each tuple can occur more than once in the stream which
is denoted by a multiplicity value. Each tuple (s, τ) ∈ U , where U is the support of the
multiset S, has to adhere to the schema of S. The support U of a multiset S is a set which
consists of the elements which occur in the multiset S at least once. Multiset and support
can be defined as follows [68, 63]:

I Definition 3. (Multiset and Support of a Multiset) A multiset is a tuple A = (B, f), where
B is a set and f is a function f : B → N, assigning a multiplicity to the tuple (number of
occurrencies of the tuple in the stream). The support of A is a set U which is defined as
follows:

U = {x ∈ B|f(x) > 0},
i.e., U ⊆ B.

The schema of a stream is constituted of attributes A1, . . . , An. Each tuple contains also
an additional timestamp τ from a discrete and monotonic time domain. Most definitions of
data stream semantics do not consider the timestamp as a part of the stream schema [10, 50, 3]
and therefore, it is always separately listed in the tuple notation.

A data stream can be formally defined as follows, based on the definition of Arasu et
al. [10]:

I Definition 4. (Data Stream) A data stream S is an unbounded multiset of data stream
elements (s, τ), where τ ∈ T is a timestamp attribute with values from a monotonic,
infinite time domain T with discrete time units. s is a set of attribute values of attributes
A1, A2, . . . , An with domains dom(Ai), 1 ≤ i ≤ n, constituting the schema of S. A stream
starts at a time τ0. S(τi) denotes the content of the stream S at time τi, being
S(τi) = {< (s0, τ0),m0 >,< (s1, τ1),m1 >, . . . , < (si, τi),mi >}.

I Example 5. The schema of the C2XMsgs stream from Example 1 would be written
according to this definition as:

C2XMessage(Timestamp, (TS ,AppID,Speed,Acceleration,Latitude,Longitude))

Chapte r 10
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In this example the timestamp Timestamp has been generated by the DSMS and TS is the
creation timestamp defined by the application. The different kinds of timestamps are detailed
in Section 3.2.

Depending on the data model, the attributes A1, . . . An can contain values of primitive
data types, objects or XML data. For example, Krämer and Seeger consider tuples to be
drawn from a composite type (in the relational case this is the schema) and its attributes can
contain objects [50]. This generic definition allows them to be open to different data models.
Gürgen et al. propose a generic relational schema for streams of sensor data of all kinds. Each
tuple in a stream consists of several general attributes also denoted as properties containing
the meta-data of the sensor, an attribute measurement carrying the values measured by that
sensor and a timestamp, when the measurement has taken place [41]. Their semantics of a
stream considers a temporal aspect, i.e., the present, past, and future of a stream is defined.
The life time of present data is limited by the size of the corresponding queue in the DSMS
and becomes past data when the queue is full [41].

Data streams commonly adhere to an append-only principle, i.e., data once inserted
in the stream will not be removed or updated [14]. But to enable updates in the streams,
there are also systems which do not only support insertion of tuples, but also updates and
deletions. In the Borealis system [1], which is the distributed successor system of Aurora, an
extended data stream model has been implemented. The schema of the stream has one or
more attributes which have been designated as the key of the stream. This allows for the
identification of data stream elements in the stream system for future changes. Furthermore,
the tuples include a revision flag which indicates if the tuple is either an insertion, an update,
or a deletion. The revision flag is processed by operators in the query plan and if an update
or deletion has been detected, former buffered results are reevaluated and also tagged with
a corresponding revision flag. Additionally, each tuple can also have information about
Quality of Service attached, which will be detailed in Section 4. The internal (physical)
representation of streams in STREAM uses the concept of revision flags, too, to denote
inserted and outdated tuples, e.g. for a window [10].

In the PIPES [50] and STREAM systems, streams are separated into base streams and
derived streams to denote the origin of the stream. Base streams are produced by an
external source and derived streams are produced by internal system operators. Furthermore,
in PIPES stream notations are distinguished based on the level in the query processing
chain. Streams from external sources are termed raw streams and adhere to the attributes
plus timestamp notation described above (according which the tuples are ordered in the
stream). Streams on the logical or algebraic level are termed logical streams. The tuples of a
logical stream contain attributes corresponding to the stream schema, a timestamp τ and a
multiplicity value. The multiplicity value indicates how often the tuple occurs at time τ in
the stream, which implements the bag semantics explicitly. Finally, the PIPES system also
introduces a physical stream notation. The notation is used to represent streams in query
execution plans, which include in addition to the attributes a validity time interval with
start and end timestamp, similar to the CESAR language [26], which indicates when a tuple
is outdated.

While above we have described the representations of streams and tuples, the semantics
or denotation of a stream (i.e., the underlying mathematical concept) can be separated from
these representations [56]. So far we used the rough semantics of an unbounded multiset for a
stream. This rough semantics raises the questions of how tuples are organized in the stream,
which tuples are included, and how a stream evolves with the addition of tuples. A stream
denoted as a multiset or bag of elements, allows duplicate tuples in the stream [10, 15, 50].
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The denotation as a set, i.e., without duplicates, is also possible. Furthermore, a stream
could also be interpreted as a sequence of states [56], where a relation transitions from
one state to another (on arrival of tuples or progression of time). Maier et al. propose
reconstitution functions to formally describe the denotations of streams and operations on
these denotations [56]. For example, the insertion of a new tuple in a stream denoted as a bag
can be recursively defined by describing what will be the following state, i.e., the “result bag”.
The reconstitution functions allow to write down the semantics in a more formal way and
can then be used to prove properties like the correctness of operators for the corresponding
denotation.

3.1.3 Inclusion of Persistent Relations
Solely querying of streams is often not sufficient to implement certain applications. Take the
traffic state estimation as an example. To improve our assertion about the traffic state we
could also integrate information from other streams, such as Floating Phone Data (positions
from anonymously tracked phones in vehicles), or from persistent sources such as historical
data about the traffic state at the same time last week or last year on the same street. This
would involve to join data of streams with other streams and to join streams with persistent
data from “static” data sources. In [22] this ability is called correlation. Most languages
support joins between streams and relations, because it is easy to implement. In principle,
each time new tuples arrive in the stream these are joined with the data in the relation and
the operator outputs the resulting join tuples. The join between streams is a little bit more
complicated. Most languages require at least one stream to be windowed [22], which results
in the former situation of joining a stream with a finite relation. Some offer also specific
operators for joins without windows.

The use of persistent relations in queries requires them to be represented in the query
language. In SQL-based languages these are noted in the same way as streams (it is
maybe more correct to say that the streams are represented in the same way as relations).
Representations for relations can also be related to the notion of time. A relation at time
τ consists then of a finite, unbounded bag of tuples which is stored in the relation at time
τ [10]. In CQL, a time-related relation is called an instantaneous relation, and analogously
to streams, base relations and derived relations are distinguished.

I Example 6. In this example we want to know for a certain road and section on this road, if
and how many road works it currently contains. The schemas of the stream with aggregated
information from the C2X messages about the road section and the persistent relation are as
follows:

AvgC2XMessage(Timestamp, (AvgSpeed,AvgAcceleration,RoadID,SectionID))

ConstructionSite(SiteID,StartDate,RoadID,SectionID)

In CQL we would formulate the query in the following way:

SELECT Rstream m.* , Count(c. SiteID ) As SiteNo
FROM AvgC2XMessage [Now] AS m, ConstructionSite AS c
WHERE c. RoadID = m. RoadID AND c. SectionID = m. SectionID

Note, that CQL is limited in its ability to join streams and relations. Only a NOW window
on the stream and the Rstream operator can safely be used for joins between streams and
relations. Queries with different windows or relation-to-stream operators would usually
deliver semantically incorrect results [10].
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3.1.4 Continuous Queries and Algebraic Operators

Now that we have clarified the main constituents of continuous queries in DSMS, namely,
streams, tuples, and relations, we will proceed to explain continuous queries and operators
for languages based on the relational algebra. So what is the difference between a continuous
query and an ad-hoc query? One goal of Tapestry [70], one of the first data management
systems processing continuous data, was to give the user the impression that a query is
continuously executed (which is not possible). To achieve this in DSMS, the result of a
continuous query at time τ is equal to the result of the query executed at every time instant
before and equal to τ [70, 10]. That means it takes into account all tuples arrived up to τ .
Depending on the language the result of the query can be a stream or a finite set of tuples,
e.g., in CQL the result can be either or, while other languages only support streams.

There are three main models how data is processed in a DSMS, i.e., when continuous
queries are executed. When a time-driven model [45] is used, a query will be updated with
progression of time (on every time step of the system). In a tuple-driven model a query is
evaluated on the arrival of each tuple, unless the query includes some temporal restriction,
such as a time-based window [45]. The event-driven model allows to define events or triggers
on whose firing the query is executed, e.g. in OpenCQ [55]. Of course these could be also
temporal events or an amount of tuples seen so far, but these could be also user-defined
events, such as a fired alert or an incoming e-mail.

One main problem for operators processing streams is the fact that streams are unbounded.
Especially, blocking operators, i.e., operators which do not produce a result tuple before they
have seen all tuples on their inputs [11], are problematic. The set of these operators comprises
aggregations, groupings, but also set operations, such as NOT IN or NOT EXISTS [52, 40].
For example, if we would like to calculate the average over the speed of the incoming C2X
messages, a classical average operation has to wait until the stream of messages ends (but we
do not know when the stream ends) to produce the desired result. In contrast, non-blocking
operators produce results periodically or on arrival of new tuples, i.e., incrementally [51].
Partially blocking operators [52] are operators which can produce intermediate results but
also a final result in the end. Obviously, a language for continuous queries can then only be
based on non-blocking operators [52, 11]. But the set of non-blocking operators is neither in
relational algebra nor in SQL sufficient for all expressible relational queries [52]. We discuss
the completeness of languages in Section 3.3. Another type of operators which are harmful
to continuous query processing are stateful operators [56] (in contrast to stateless operators).
These operators, e.g., joins, require to store a state for their operation, which for streams is
unbounded in size. Hence, the remedy to these problems is to approximate processing the
stream as a whole as good as possible. One simple yet powerful approach is the partitioning
of the stream into small portions, so-called windows. Each window is a finite bag of tuples
and can be processed also by the common relational blocking operators. A second possibility
is to provide incremental implementations of these operators, which are able to update the
result with new tuples and output “intermediate” results. Finally, an approximation of the
stream in form of a summary or synopsis can be used to operate on. In the following we will
detail window operators and their semantics.

3.1.5 Windows

In continuous query languages based on SQL, windows are a crucial extension to the algebraic
set of operators. It depends on the language which types of windows are supported. A window
is always built according to some ordered windowing attribute which determines the order of
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elements included in the window [57, 56]. The type of window, i.e., how it is determined
which elements are valid in the current window, according to [57] can be described by its
measurement unit, the edge shift, and the progression step. The measurement unit can be
either a number of x time units (time-based window) or tuples (tuple-based window) declaring
that the elements with timestamps within the last x time units or the last x elements are
valid for the window at the point in time of the query. We define a time-based window of
size l similar to the definition in [57] as follows:

I Definition 7. (Time-based Window) A time-based window WlT
(with window size lT ∈ T)

over a stream S at time τi ∈ T is a finite multiset of stream elements with

WlT
(S(τi)) = {< (sk, τk),mk > | (sk, τk) ∈ U, τi − lT ≤ τk ≤ τi, τk ≥ τ0},

where mk is the multiplicity of the tuple in the subset and U is the support of stream S(τi).

We assume, that the stream elements are ordered by timestamp τ before a window
operator is applied. The definition for a tuple-based window of size lN is similar:

I Definition 8. (Tuple-based Window) Let S(τi) = {< (s0, τ0),m0 >, . . . , < (sn, τn),mn >},
τi ≥ τn ≥ τ0 ∧ τj ≥ τj−1 ∀j ∈ {1, . . . , n}, be the content of stream S at time τi. Then a
tuple-based window WlN

(with window size lN ∈ N) over stream S at time τi ∈ T is a finite
multiset of stream elements with

WlN
(S(τi)) = {< (sk, τk),mk > | (sk, τk) ∈ U, j ≤ k ≤ i,

∃m′j ,m′′j . m′j ≥ 0,m′′j > 0,

mj = m′j +m′′j , m′′j +
i∑

`=j+1
m` = lN}.

where (sn, τn) ∈ U, ∀τj ∈ U τn > τj , and U is the support of stream S(τi).

This means, that we go backwards in the stream from time τi on and search for the last
point time τn at which elements arrived. We now collect exactly N tuples going backwards
in the stream. We assume, that the last tuple which (partially) fits into the window is
< (sj , τj),mj >. Then only the multiplicity portion m′′j which still fits into the window will
be added to the window.

In the Aurora system [78, 3] value-based windows as a form of generalization of time-based
windows are presented. These windows implement the idea of having a different windowing
attribute instead of a timestamp – the attribute just has to be ordered. Furthermore, the
value-based window should return only those tuples whose value of the particular attribute
is within a specific interval (hence, value-based windows). A similar concept are predicate-
windows [37] suited for systems which work with negative and positive tuples. A correlation
attribute identifying the data in the tuple and a predicate condition are defined for the
window, which enables to filter the tuples according to that predicate. The filtering may result
in negative tuples, when the predicate has been fulfilled by tuples for the same correlation
attribute value before but is not for the present query evaluation. Partitioned windows [53, 10]
are applicable to time- or tuple-based windows and follow the idea of dividing the stream
into substreams based on filter conditions and of windowing them separately. Afterwards,
the windows of the substreams are unioned to one result stream [3].

The edge shift of a window describes the motion of the upper and lower bounds of the
window. Each of them can either be fixed or moving with the stream. For example, in the
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most common variant, the sliding window, both bounds move, while for a landmark window
one bound is fixed and one is moving.

Finally, the progression step or periodicity defines the intervals between two subsequent
movements of a window. This again can either be time-based or tuple-based, e.g., the window
can move every 10 seconds or after every 100 arrived tuples. When the contents of windows
in each progression step are non-overlapping, this is termed a tumbling window, i.e., size
and sliding step have an equal number of units. Windows can also be punctuation-based. A
notification tuple sent with the stream indicates the window operator that it should evaluate.
We will explain punctuations in Section 3.2.

In the following, one of the most commonly used forms of a moving window, a sliding
time-based window, is defined as:

I Definition 9. A sliding time-based window with window size lT ∈ T and slide value v ∈ T
over a stream S at time τi ∈ T is a finite multiset of stream elements with

WlT ,v(S(τi)) = {< (sk, τk),mk > | (sk, τk) ∈ U,∃j ∈ N : τ0 + j · v ≤ τi,

τ0 + (j + 1) · v > τi, τi ≥ τ0 + lT ,

τ0 + j · v − lT ≤ τk ≤ τ0 + j · v, τk ≥ τ0}.

where U is the support of stream S(τi)

I Example 10. In our traffic example we would like to retrieve the number of C2X messages
with speed greater than 30km/h from the last minute every 10 seconds. We realize this
by defining a time-based sliding window WlT , v of size lT = 60s and with a sliding step of
v = 10s over the CoCarMessage stream. In Figure 5a the content of the window after 1
minute is shown. This is the first point in time, where the query with the window delivers
results (hence, τi ≥ τ0 + lT ). The window contains the elements 1,2,4,5,6. After 10 more
seconds the window slides, element 1 is dropped from the window and element 7 is added
(Figure 5b). After another slide after 10 seconds element 2 is dropped and element 8 is added
to the window (Figure 5c).

120s110s100s90s80s70s60s50s40s30s20s10s

65421 1087

W60,10(S(τ60))

τ

(a) Window after 60s
120s110s100s90s80s70s60s50s40s30s20s10s

76542 1081

W60,10(S(τ70))

τ

(b) Window after 70s

120s110s100s90s80s70s60s50s40s30s20s10s

87654 1021

W60(S(τ80))

τ

(c) Window after 80s

Figure 5 Example of a sliding window with size of 1min and slide step of 10s.

Depending on the language, windows can either be implicitly included in an operator (see
the definition of the Aggregate operator in Example 2, Figure 4a) or defined as a separate
operator in the query language. An example of the latter is given in the data and query
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model SStream [41] of the system SStreaMWare [42]. Gürgen et al. enable to define windows
a little bit different to provide a high flexibility and variety of window types. A window
creation operator produces a set of windows on a stream according to a window description
configuring the operator. The description is constituted of initial start and end parameters
(time or tuples are possible), parameters for the advancement of start and end window edges,
and a rate parameter which is analog to the slide parameter. The windows serve as input for
windowed operators, such as aggregation operators.

In SQL-based declarative languages the window construct included in the SQL:2003
standard is extended, e.g., by a SLIDE keyword to enable the definition of a sliding step.
Example 11 shows three different types of windows in different languages.

I Example 11.

CREATE STREAM C2XSpeeder
SELECT COUNT (*) As speederNo
OVER (RANGE 1 MINUTE PRECEDING SLIDE 10 SECOND ]
FROM C2XMessage WHERE Speed > 30.0

Listing 2 A Time-based Sliding Window in ESL (Stream Mill)

SELECT Istream COUNT (*)
FROM C2XMessage [RANGE 100 SLIDE 100]
WHERE Speed > 30.0

Listing 3 A Tuple-based Tumbling Window in CQL (STREAM)

SELECT Count (*)
FROM C2XMessage <LANDMARK RESET AFTER 600 ROWS ADVANCE 20 ROWS >
WHERE Speed > 30.0

Listing 4 A Tuple-based Landmark Window in TruSQL (TruSQLEngine)

3.2 The Notions of Time and Order
We already mentioned before, that time plays an important role in DSMS. In all DSMS
systems the processed tuples have some kind of timestamp assigned from a discrete and
monotonic time domain. The timestamps allow then to determine if a tuple is in order or
not and enable the definition of time-based windows [64].

3.2.1 Time
The prominent status of timestamps can already be seen from several semantics’ definitions
of streams. The timestamp is always handled as a specific attribute which is not part of
the stream schema [57, 10, 50]. A monotonic time domain T can be defined as an ordered,
infinite set of discrete time instants τ ∈ T [57, 9]. For each timestamp exists a finite number
of tuples (but it can also be zero).

In the literature, there exist several ways to distinguish where, when, and how timestamps
are assigned. First of all, the temporal domain from which the timestamps are drawn can
be either a logical time domain or physical clock-time domain. Logical timestamps can
be simple consecutive integers, which do not contain any date or time information, but
serve just for ordering. In contrast, physical clock-time includes time information (e.g.,
using UNIX timestamps). Furthermore, systems differ in which timestamps they accept
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and use for internal processing (ordering and windowing). In most of the systems implicit
timestamps [11, 78], also called internal timestamps or system timestamps are supported.
Implicit timestamps are assigned to a tuple, when it arrives at the DSMS. This guarantees
that tuples are already ordered by arrival time, when they are pipelined through the system.
Implicit timestamps assigned at arrival in the system also allow for estimating the timeliness
of the tuple when it is output [3]. Besides a global implicit timestamp (assigned on arrival),
there exists also the concept of new (local) timestamps assigned at the input or output
queue of each operator (time of tuple creation). This could also be implicitly expressed
by the tuple’s position in the queue [78]. In contrast, explicit timestamps [11, 78], external
timestamps [15] or application timestamps [64] are created by the data stream sources and
an attribute of the stream schema is determined to be the timestamp attribute. The authors
of the Stream Mill language ESL [72, 15] use the term explicit timestamp in another way to
discriminate between their concept of latent timestamps and internal and external timestamps.
Latent timestamps are assigned on demand (lazily), i.e., only for operations dependent on a
timestamp such as windowed aggregates [15], while explicit timestamps are assigned to every
tuple. Example 12 shows, how the three types of timestamps are defined on creation of our
C2XMsgs stream. In Listing 5 the creation timestamp ts is used as an explicit timestamp,
designated by the ORDER BY clause. The query in Listing 6 uses an implicit timestamp by
applying the function current_time and also designating it as order criterion. Listing 7
does not contain any information about an ordering attribute (no ORDER BY clause). Thus a
timestamp will be assigned on demand.

I Example 12 (Usage of the different timestamp types in ESL).

CREATE STREAM C2XMgs (
ts timestamp , msgID char (10) , lng real ,
lat real , speed real , accel real)

ORDER BY ts;
SOURCE ’port5678 ’;

Listing 5 Explicit Timestamp

CREATE STREAM C2XMgs (
ts timestamp , msgID char (10) , lng real , lat real ,
speed real , accel real , current_time
timestamp )

ORDER BY current_time ;
SOURCE ’port5678 ’;

Listing 6 Implicit Timestamp

CREATE STREAM C2XMgs (
ts timestamp , msgID char (10) , lng real , lat real ,
speed real , accel real );

SOURCE ’port5678 ’;

Listing 7 Latent Timestamp

Depending on the semantics of a data stream, tuples can include more than one timestamp.
For example, in the data stream definition of the CESAR language [26], which is an event-
based stream algebra, a tuple contains two timestamps, τ0 and τ1, denoting the start and
end of an event, respectively.
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There are also systems (e.g., StreamBase) which additionally order the tuples for the
same timestamp, for instance, by arrival order. Jain et al. define the order of tuples with
respect to the timestamp even stricter – an additional ordering between batches of tuples
with the same timestamp is specified [45]. This order was proposed because the authors
noticed semantic inconsistencies for query results in systems which use a time-driven model
(i.e., windows are evaluated on each new time instant) as well as in systems, which use a
tuple-driven model (i.e., a window is evaluated on each new tuple).

An interesting question is how timestamps should be assigned to results of binary operators
and aggregates to ensure semantic correctness. Babcock et al. propose two solutions to
assign a timestamp to results of a join [11]. The first option is to use the creation time
of a join output tuple when using an implicit timestamp model. The second option is to
use the timestamp of the first table involved in the join in the FROM clause of the query
can be used, which is suited for explicit and implicit timestamp models. For aggregates
similar considerations can be made. For example, if a continuous or windowed minimum or
maximum is calculated, the timestamp of the maximal or minimal tuple, respectively, could
be used. When a continuous sum or count is calculated, the creation time of the result tuple
or the timestamp of the latest element included in the result can be used. If an aggregate
is windowed there exist additional possibilities. The smallest or the highest timestamp of
the elements in the window can be used as they reflect the oldest timestamp or most recent
timestamp in the window, respectively. Both maybe interesting, when timeliness for an
output tuple is calculated, but which one to use depends obviously on the desired outcome.
Another possibility would be to take the median timestamp of the window.

3.2.2 Order
Many of the systems and their operators rely on (and assume) the ordered arrival of tuples
in increasing timestamp order to be semantically correct [64]. For example, in the STREAM
system (using a time-driven execution model) time can only advance to the next time instant,
when all elements in the current time instant have been processed [10]. This has been coined
as the ordering requirement [64]. But as already pointed out, this can not be guaranteed
especially for explicit timestamps and data from multiple sources. In the various DSMS
basically two main approaches to the problem of disorder have been proposed.

One approach is to tolerate disorder in controlled bounds. The Aurora system, for example,
does not assume tuples to be ordered by timestamp [3]. The system divides operators into
order-agnostic and order-sensitive operators. The first group of operators does not rely on an
ordering of elements, for instance, the Filter operation we already introduced in Example 2,
which is a unary operation processing one tuple at a time. The order-sensitive operators
are parametrized with a definition how unordered tuples should be handled. The definition
contains the attribute which indicates the order of the tuples and a slack parameter. The
slack parameter denotes, how many out-of-order tuples may arrive between the last and
next in-order tuple. All further out-of-order tuples will be discarded. The order can also be
checked for partitions of tuples, specified by an additional GROUP BY clause in the order
definition. A general concept of a slack parameter, called adherence parameter has been
presented for the STREAM system [7, 13]. The adherence parameter is a measure for how
well a stream “adheres” to a defined constraint. The authors define a set of k-constraints one
of which is the ordered-arrival-k-constraint. This constraint conforms to the slack parameter’s
ordering semantics.

The second way to handle disorder is to dictate the order of tuples and reorder them
if necessary. While the use of implicit timestamps is a simple way of ordering tuples on
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arrival [64], the application semantics often requires the use of explicit timestamps though.
Heartbeats [64] are tuples sent with the stream including at least a timestamp. These markers
indicate to the processing operators, that all following tuples have to have a timestamp greater
than the timestamp in the punctuation. As already mentioned in Section 2 the STREAM
system includes an Input Manager which buffers stream elements based on heartbeats. The
buffered elements are output in ascending order as soon as a heartbeat is received, i.e., they are
locally sorted. The heartbeats can be created by the stream sources or by the Input Manager
itself. Srivastava and Widom propose approaches to create heartbeats either periodically or
based on properties of the stream sources and the network, such as transmission delay [64].
Heartbeats are only one possible form of punctuation [74]. Punctuations, in general, can
contain arbitrary patterns which have to be evaluated by operators to true or false [74].
Therefore, punctuations can also be used for approximation. They can limit the evaluation
time or the number of tuples which are processed by an otherwise blocking or stateful
operator. For example, when a punctuation-aware join operator receives a punctuation it can
match all elements received on the streams to join since the last punctuation. Other methods
for reordering tuples in limited bounds use specific operators. Aurora’s SQuAl language
provides a sorting operator called BSort [3]. It orders tuples according to some attribute
by applying a buffered bubble sort algorithm. Finally, the Stream Mill system leaves the
handling of out-of-order tuples to the user [15]. It detects these tuples and adds them to a
separate stream.

3.3 Completeness of Stream Query Languages
It has already been mentioned that blocking operators are not an option for query languages
in DSMS [11]. Hence, SQL as is is not suited for DSMS, because sequence queries cannot
be expressed [52, 51]. An interesting question therefore is, which queries can be formulated
using only non-blocking operators of SQL. Continuous query semantics is based on the
append-only principle. Therefore, the class of monotonic queries is different from the query
classes which allow deletions and updates [70]. For a monotonic query Q holds, that the
result of a query over the ordered stream S at time τi is included in the results of the query
at time τi+1 [70, 52, 51, 39] or formally expressed:

Q(S(τi)) ⊆ Q(S(τi+1)),∀τi ∈ T

Law et al. have proven that the class of monotonic queries over data streams can be
expressed by queries using only non-blocking operators [52]. Non-blocking and monotonic
operators in the relational algebra are obviously Selection and Projection. Law et al. also
showed that a query which is monotonic for ordered streams is also monotonic for relations
with respect to set containment and can therefore be expressed only with non-blocking
operators [51]. It can be followed from this, that Union and Cartesian Product or Join also
can be calculated by non-blocking operators as these are monotonic wrt. set containment [51],
while Set Difference (which is non-monotonic) cannot. The intersection is a monotonic
operator and can be either expressed in the relational algebra by non-blocking or blocking
operators. In SQL also continuous forms of Count and Sum are non-blocking [52].

4 Data Quality in DSMS

We have motivated the demand for a new concept of data management systems by monitoring
and tracking applications. These applications usually rely on sensors which create data
streams by measuring values or recording multimedia. But the use of sensors also reveals
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problems. The produced data can be incorrect, unordered, and incomplete. Another source
of inaccuracies in data streams can be the use of classification, prediction, ranking or any
other sort of approximation algorithms [47, 48]. The unreliability of the data processed again
leads to unreliable results of applications realized with a DSMS. Consider our example of
traffic state estimation. We rely on positions determined by GPS devices. These devices
usually introduce a measurement error in positioning and messages may also contain no
position, when the GPS signal is lost. These errors are propagated through the entire data
processing chain. For example, when the road and the section on which the message has been
created is determined, the error can lead to an assignment to a wrong section. Inevitably,
this will lead to inexact results when estimating the traffic state for the road. Hence, means
to take inaccuracies into account and to rate the result of a query have to be considered.
Not only the quality of the data values (we will call this application-based data quality in the
following), but also the data stream management system performance has to be considered to
assess the quality of query results. When the output delay in the DSMS is too high, e.g., the
estimated traffic state will identify a traffic situation which is no longer present. Furthermore,
if too many tuples are dropped by a load shedder to gain performance, statements based
on a low number of data may also harm the result. Therefore, also the Quality of Service
(QoS) for multiple performance aspects of a system has to be tracked and taken into account
in query processing. Hence, we define data quality related to the system performance as
system-based data quality. In the following, we will discuss data quality dimensions for
application-based and system-based data quality. We will discuss solutions which enable to
rate and to track the corresponding data quality dimensions. We will also briefly introduce
our own ontology-based approach.

4.1 Application-based and System-based Data Quality Dimensions
As mentioned before, we distinguish data quality which is inherent in the data itself, i.e., it
describes how reliable the data we process is, and data quality which represents the system
performance of a DSMS. The type of the measured data quality is expressed by a data
quality dimension. For example, the timeliness of data is a data quality dimension. For
each data quality dimension a data quality metric defines a possible way to measure the
quality within that dimension. There exists a plethora of classifications which structure and
describe data quality dimensions, such as the Total Data Quality Management (TDQM)
classification [75, 66], the Redman classification [60], or the Data Warehouse Quality (DWQ)
classification [46]. For data streams, Klein and Lehner propose a dimension classification [49].
In Table 1 we list a non-exhaustive set of data quality dimensions, which we think are of
importance for data quality rating in a traffic state estimation application realized by a
DSMS (based on [49, 16]) and rate if they are application-based or system-based. Data
quality for a dimension can be measured on different levels. It can be measured system-wide,
e.g., the output rate, on operator level, e.g., the selectivity of an operator, or on window,
tuple, or attribute level.

In the following, we will discuss some approaches of measuring and rating data quality in
DSMS.

4.2 Quality of Service Monitoring in DSMS
In Section 2 we described that DSMS can implement means to monitor the system performance
during query processing. Aspects which describe the performance of a DSMS are also termed
Quality of Service. Quality of Service in general rates how good the component or system at
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Table 1 Example Data Quality Dimensions.

Data Qual-
ity Dimen-
sion

Informal Description Example Metric Application-
based/
System-
based

Completeness Ratio of missing values or
tuples to the number of re-
ceived values/tuples

The number of non-null
values divided by all values
including null values in a
window

Application-
based

Data Volume The number of tuples or
values a result is based on,
e.g., the number of tuples
used to calculate an ag-
gregation

Quantity of tuples in a win-
dow

System-
based and
Application-
based

Timeliness The age of a tuple or value Difference between cre-
ation time and current sys-
tem time

System-
based and
Application-
based

Accuracy Indicates the accuracy of
the data, e.g., a constant
measurement error or the
result of a data mining al-
gorithm

An externally calculated or
set value

Application-
based

Consistency Indicates the degree to
which a value of an attrib-
ute adheres to defined con-
straints, e.g., if a value lies
in certain bounds

Rule evaluation Application-
based

Confidence Reliability of a value or
tuple, e.g., the confidence
to have estimated the cor-
rect traffic state

A weighted formula which
is calculated from values
for other data quality di-
mensions

Application-
based

hand fulfils the constraints and requirements posed to it. QoS oriented systems then try to
give guarantees for the QoS aspects and try to keep QoS within defined bounds by applying
countermeasures. QoS dimensions (used here analogously to quality dimensions) have been
classified by Schmidt in [62] into time-based and content-based dimensions. Schmidt identified
the following time-based dimensions for DSMS: throughput (or data rate), output delay
(or latency) and the following content-based dimensions: sampling (or drop rate), sliding
window size, approximation quality and data mining quality. He defined two new time-based
dimensions, called signal frequency (amount of information in a stream) and inconsistency
(maximal difference between creation timestamp and system timestamp, which is similar
to our example metric of timeliness in Section 4.1). In the Aurora system additionally a
value-based QoS dimension is defined, which rates if important values have been output, i.e.,
they prioritize results and can therefore also prioritize values and adapt operators of the
corresponding queries for these values [3]. To guarantee to stay in given bounds for the above
dimensions, DSMS have several countermeasures, depending on the QoS dimension at hand.
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For example, if the system is overloaded and the output delay or the throughput are low, a
DSMS can drop tuples with sampling techniques, which can be quite simple (random) or very
sophisticated, e.g., based on information about other QoS parameters as in the case of the
value-based QoS [3]. The dropping of tuples is also called load shedding. Load shedding is
done by placing load shedding operators into the query execution plan [12, 69] where required.
Other possibilities are adaptive load distribution or admission control [69]. In the Aurora
system for each QoS the administrator of the system is required to model a two-dimensional
function with a QoS rating between 0 and 1 on the y-axis and the QoS dimension values on
the x-axis for each output stream [3]. Additionally, a threshold for the QoS dimension has to
be defined to indicate in which bounds QoS is acceptable. A similar approach is followed by
the QStream system [61, 62]. In the QStream system two descriptors for each output stream
are defined – a content quality descriptor which includes the dimension’s inconsistency and
signal frequency defined by Schmidt [62] and a time quality descriptor consisting of values
for data rate and delay. The quality dimensions are calculated throughout the whole query
process. All operators in the query execution plan comprise functions used to calculate the
value of each quality dimension when new tuples are processed. At the end of the processing
chain quality values are output for the result streams of each continuous query. A user
can pose requirements on the result stream’s quality by formulating a request describing
thresholds for the dimensions. If the descriptors meet the quality request, this is reported to
the user as a successful negotiation.

4.3 Inclusion of Data Quality in Data Streams
In the systems reviewed in the previous section, QoS information is handled separately
from the stream data and can only be retrieved for the output streams. Furthermore, data
quality dimensions are mostly system-based, i.e., the content of the data in the stream
and corresponding application-based quality dimensions are not taken into account. In the
successor system of Aurora, Borealis [1], the QoS model of Aurora has been refined to rate
QoS not at the output streams of the system, but also in each operator in between. To this
end, each tuple includes a vector with quality dimensions, which can be content-related (e.g.,
the importance of a message) or performance-related (e.g., processing time for a message up
to this operator). The vectors can be updated by operators in the query execution plan and
a score function is provided which can rate the influence of a tuple on the QoS based on a
vector [1]. A crucial limitation of the previous approach is, that the quality dimensions in the
vector are equal for each stream, which does not allow for an application-based data quality
rating of stream contents. To achieve a more fine-granular rating of data quality on attribute,
tuple and window level and to also include application-based data quality dimensions, Klein
and Lehner [49] propose a different approach. They extended the PIPES system [50] by
Krämer and Seeger with modified operators to include data quality dimensions as a part of
the stream schema. Krämer and Seeger distinguish four different types of operators based
on the operator’s influence on the stream data (modifying, generating, reducing or merging
operators). Changes on the data can in turn result in updates of the data quality of an
attribute, tuple, or window. For each data quality dimension and each operator the influence
of the operator is discussed and a function to calculate the new data quality is provided.
The approach introduces so called jumping data quality windows which include a set of data
quality dimensions and where for each attribute and window the size of the window can be
defined independently [49]. In addition, Klein and Lehner make the size of the data quality
windows dynamically adaptable based on an interestingness factor. The interestingness factor
is dependent on the application realized and can for example shrink the window size when

Chapte r 10



296 Data Stream Management Systems

there are interesting peaks in the stream data to refine the granularity of quality information
in this stream portion.

A drawback of Klein and Lehner is the deep integration of data quality dimensions and
corresponding metrics into the operators. The implementation of operators has to be changed
substantially to include the quality information. Therefore, we propose a more flexible
solution, which allows to define custom quality dimensions and metrics based on an abstract
data quality ontology. The ontology consists of two parts – a first part including data quality
related concepts, such as Quality Metric, Quality Dimension and Quality Factor, and a
second part comprising application specific concepts with relationships to the data quality
concepts (e.g., an attribute is related to a certain quality dimension). The data quality meta
information is loaded once when a continuous query is registered in the system and the data
quality is then calculated according to the meta information throughout query processing.
Similar to [49] we add the data quality information as separate attributes to the tuples in the
stream. We identified three main tasks in the data stream management process, which can
influence the data quality. First, in line with Klein and Lehner we parse the continuous query
and identify relational operators in the query which modify the data stream and the data in it
and hence, also the data quality. Second, in the ontology we allow to define rules, which rate
the semantic consistency of attribute values or values of multiple related attributes in a tuple.
For example, if we receive the current temperature and an indicator for snow, we can define
a rule to check if the value for snow (yes/no) is consistent with the temperature given (no
snow possible when above 3◦C). Third, also application specific and user-defined operations,
such as data mining operations, are considered and the addition of data quality values can
be easily integrated into the application code. The data quality metrics can be arbitrarily
complex and can include several data quality factors and can also combine values of other
data quality dimensions. This allows for flexible and application-dependent estimation of
data quality. For example, in the traffic state estimation example we calculate a confidence
value for the estimated traffic state based on multiple weighted data quality dimensions,
where the weights allow to reflect the individual contribution to the overall quality. Finally,
we made the calculation of data quality in the system optional – if not required, data quality
information is not calculated at all. Our approach is described in detail in [36].

4.4 Probabilistic Data Streams
A completely different way of dealing with defective data in DSMS are probabilistic data
streams. Uncertainty has been studied intensively for Database Management Systems and
several systems (mainly research prototypes) implementing probabilistic query processing
have been proposed. In data stream management this is a very recent topic which has been
addressed only scarcely in literature compared to other research questions. Kanagal and
Desphande [48] distinguished two main types of uncertainties in data streams (analogously
to databases). First, the existence of a tuple in the stream can be uncertain (how probable
is it for this tuple to be present at the current time instant?), which is termed by Kanagal
and Despande tuple existence uncertainty. Second, the value of an attribute in a stream
tuple can be uncertain, which is called attribute value uncertainty (what is the probability of
attribute X to have a certain value?). In literature, mainly the tuple existence uncertainty
is addressed. To model uncertainty for attribute values, for each attribute of a stream a
random variable with a corresponding distribution function has to be introduced [48]. The
probability of a tuple to consist of a certain configuration of values is then modeled by a joint
distribution function, which multiplies the probabilities of the single attribute values. The
tuple existence uncertainty can be modeled by a binary random variable, which can either
be zero (is not included) or one (is included) and a probability distribution function [48].
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I Definition 13. A probabilistic stream or probabilistic sequence is a sequence of tuples
S = < t1, p1 >, . . . , < tn, pn >, where pi is the probability of the existence of a tuple ti at
position i modeled by a probability distribution function (pdf) [48, 47, 23].

The probability for a composition of the stream of a certain multiset of tuples at a certain
point in time is again modeled by a joint probability distribution calculated from the pdfs of
the tuples. Analogously to the possible worlds in probabilistic databases, from the random
variables and the probability distributions, all possible streams [48, 47], i.e., deterministic
instances of the stream, at a time τ and their probability can be determined.

One can easily see that the number of possible streams grows exponentially with the
size of the stream and the number of possible tuples (#P-hard data complexity) [23]. For
certain query operations, such as aggregates, on probabilistic streams, which are again
probability distributions, it is therefore undesirable to calculate all the possible streams. The
remedy to this problem are operators, which approximate the pdfs for the corresponding
query operations. In [23] aggregates are computed using sketches, i.e., estimating frequency
moments for the probabilistic stream. The data complexity of possible streams is even worse
when the random variables are not independent of each other, i.e., if there is a correlation
between tuples [48]. Kanagal and Desphande [48] propose to use directed graphical models
(this can be, for example, Bayesian Networks) to describe correlated random variables,
intermediate query results, and the dependencies between them. In the graphical model, the
nodes depict the random variables and the edges are the dependencies. To limit the size of
the graph and hence the computational complexity for a query, marginal distributions are
used, which neglect unnecessary dependencies and infer new dependencies. Kanagal and
Desphande extended the set of SQL operators by some probabilistic operators. For example,
two new SELECT operators are provided, which can return a deterministic result for a query.
The SELECT-MAP retrieves the stream with the highest probability of all possible streams,
while SELECT-ML returns the possible stream which includes for each attribute of a tuple the
value with the highest probability for that attribute. Their language also supports sliding
windows and the set of common aggregates over the probabilistic data streams.

While the approaches before assumed possible stream semantics for streams with discrete
data, these semantics is not valid for streams with uncertain continuous data (a problem of
attribute-value uncertainty). The PODS system [73] addresses this issue by modeling each
continuous-valued attribute as a continuous random variable with a corresponding pdf. To
model pdfs for continuous random variables Tran et al. use Gaussian Mixture Models, which
include several distributions for one variable. A bimodal distribution function, for example,
can be approximated by two different Gaussian distribution functions. A probabilistic or
uncertain data stream then consists of a sequence of tuples with discrete and continuous
random variables for each attribute [73].

5 Conclusion

DSMS have demonstrated to be effective and efficient solutions dealing with huge amounts
of rapidly incoming data which has to be processed in real-time. The new data management
requirements of data stream applications have not only led to new concepts for data manage-
ment architectures, but also to new and adapted query languages and semantics suited for
streaming systems. Now, after almost two decades of research on continuous queries and data
streams, many research prototypes have evolved and already some of them have turned into
mature industry solutions. Many big players in the field of data management, such as Mi-
crosoft, IBM, or Oracle, have their own data stream management solution. However, despite
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some efforts, there is neither a common standard for query languages nor an agreement on a
common set of operators and their semantics until today. Finally, data quality has turned
out to be a crucial aspect in DSMS. Incoming data streams may be delivered by unreliable
sources and results of a DSMS application can be falsified by data inaccuracies. Hence, data
quality measurement, monitoring, and improvement solutions have to be integrated into
DSMS and receive increasing attention. Since many interesting questions still remain open
further research in the field is to be done and will follow.
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A Scientific and Commercial DSMS

In the following tables scientific and commercial DSMS are listed with their predominant
properties.

A.1 Research Projects

Table 2 Data Stream Management Systems – Research Projects.
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A.2 Commercial Systems

Table 3 Data Stream Management Systems – Commercial Products.
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