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Abstract
The inversion of schema mappings has been identified as one of the fundamental operators for the
development of a general framework for data exchange, data integration, and more generally, for
metadata management. Given a mappingM from a schema S to a schema T, an inverse ofM
is a new mapping that describes the reverse relationship from T to S, and that is semantically
consistent with the relationship previously established byM. In practical scenarios, the inversion
of a schema mapping can have several applications. For example, in a data exchange context, if
a mappingM is used to exchange data from a source to a target schema, an inverse ofM can
be used to exchange the data back to the source, thus reversing the application ofM.

The formalization of a clear semantics for the inverse operator has proved to be a very
difficult task. In fact, during the last years, several alternative notions of inversion for schema
mappings have been proposed in the literature. This chapter provides a survey on the different
formalizations for the inverse operator and the main theoretical and practical results obtained so
far. In particular, we present and compare the main proposals for inverting schema mappings that
have been considered in the literature. For each one of them we present their formal semantics
and characterizations of their existence. We also present algorithms to compute inverses and
study the language needed to express such inverses.
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1 Introduction

A schema mapping is a specification that describes how data from a source schema is to
be mapped to a target schema. Schema mappings are of fundamental importance in data
management today. In particular, they have proved to be the essential building block for
several data-interoperability tasks such as data exchange, data integration and peer data
management.

In recent years, the research on the schema mapping area has mainly focused on perform-
ing data-interoperability tasks using schema mappings. However, as Bernstein [12] pointed
out, many information-system problems involve not only the design and integration of com-
plex application artifacts, but also their subsequent manipulation. Notice that the creation
of a schema mapping may imply considerable work by an expert who needs to know the
semantics of the schema components. Only an expert can establish a meaningful high-level
correspondence between those components. Thus, a schema mapping reflects the know-
ledge of the expert about the relationship between the schemas. This knowledge could, in
principle, be reused beyond the interoperability tasks for which the mapping was initially
created. Driven by these considerations, Bernstein [12] proposed a general framework for
managing and reusing schema mappings.
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In Bernstein’s framework [12], schema mappings are first class citizens, and high-level
algebraic operators are used to manipulate and reuse them. One of the most fundamental
operators in schema mapping management is the inversion of schema mappings. Given a
mapping M from a schema A to a schema B, an inverse of M is a new mapping that
describes the reverse relationship from B to A, and that is semantically consistent with the
relationship previously established byM. Notice that this is a very general idea of what an
inverse of a schema mapping should be. In fact, even the formalization of a clear semantics
for the inverse operator has proved to be a very difficult task [16, 17, 20, 21, 10, 11, 22, 6].
This chapter provides a survey on the different formalizations in the literature for the inverse
operator on schema mappings and the study of the theoretical problems that arise. Before
going into the details of these works, let us give a bit more intuition on how the inverse of
schema mappings can be useful in practice.

In practical scenarios, the inversion of schema mappings can have several applications.
In a data exchange context [18], if a mappingM is used to exchange data from a source to
a target schema, an inverse ofM can be used to exchange the data back to the source, thus
reversing the application ofM. As a second application, consider a peer data management
system (PDMS) [14, 26]. In a PDMS, a peer can act as a data source, a mediator, or
both, and the system relates peers by establishing mappings between the peers’ schemas.
Mappings between peers are usually directional, and are used to reformulate queries. For
example, if there is a mapping M from peer P1 to peer P2 and a query over P2, a PDMS
can useM to reformulate the query by using P1 as a source. Hence, an inverse ofM would
allow the PDMS to reformulate a query over P1 in terms of P2, thus considering this time
P2 as a source. Another application is schema evolution, where the inverse together with
the composition play a crucial role [13, 23]. Consider a mappingM between schemas A and
B, and assume that schema A evolves into a schema A′. This evolution can be expressed
as a mapping M′ between A and A′. Thus, the relationship between the new schema A′
and schema B can be intuitively obtained by inverting mapping M′ and then composing
the result with mappingM.

As we have mentioned before, in the study of the inverse operator, one of the key issues
is to provide a good semantics for this operator, which turned out to be a difficult problem.
After defining a semantics, some of the important questions that need to be answered are:

Existence For which classes of mappings is the inverse guaranteed to exist?
Expressiveness What is the mapping language needed to specify an inverse?
Algorithmic How can we effectively construct an inverse?

In this chapter, we present and compare the main proposals for inverting schema map-
pings that have been considered in the literature, and for each one of them we present the
main results regarding these three issues. In Section 2 we present the notion of inverse
proposed by Fagin [16], that we call here Fagin-inverse1, which is the first formal notion of
inverse proposed in the literature. In Section 3 we present the notion of quasi-inverse [20, 21]
which is obtained by relaxing the notion of Fagin-inverse. Section 4 presents the notions
of recovery and maximum recovery [10, 11] which were proposed as alternative notions for
inverting schema mappings. In Section 5 we present procedures to compute inverses and
discuss expressiveness issues, more importantly, the issue of what the language needed to

1 Fagin [17] named his notion just as inverse of a schema mapping. Since in this chapter we are intro-
ducing several different semantics for the inverse operator, we reserve the term inverse to refer to this
operator in general, and use the name Fagin-inverse for the notion proposed by Fagin [17].
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express inverses is. In Section 6 we present a relaxation of the notions of recovery and
maximum recovery based on certain answers, which gives alternative definitions of inverses
when one is focused on retrieving information with a particular class of queries. In Section 7
we report on extensions to the previous notions that deal with incomplete information in
source instances. Conclusions are presented in Section 8. We begin by giving a bit of general
notation for the chapter.

Preliminary notions and notation
In the study of the inverse operator, we use a general notion of schema mapping (or just
mapping in our context). We assume that a mapping from schema S to schema T is simply
a set of pairs (I, J) where I is an instance of S and J is an instance of T. As usual in data
exchange, given a mappingM from S to T and an instance I of S, we denote by SolM(I)
the set of solutions for I underM, that is SolM(I) = {J | (I, J) ∈M}.

Notice that a mapping in this general setting is just a binary relation, and thus one
can define some general operators over mappings that inherits from binary relations. One
such particular operator that plays a crucial role in this chapter is mapping composition.
Let M be a mapping from S to T, and M′ a mapping from T to R. The composition of
M andM′, denoted byM◦M′, is defined as the composition of binary relations, that is
M◦M′ = {(I,K) | there exists J such that (I, J) ∈M and (J,K) ∈M′} [33, 19].

We usually specify mappings by using logical languages. One particular language of spe-
cial interest is the language of source-to-target tuple-generating dependencies (st-tgds) [18].
An st-tgd from S to T is a First-Order formula of the form

∀x̄∀ȳ
(
ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)

)
(1)

in which x̄, ȳ and z̄ are tuple of variables, ϕ(x̄, ȳ) is a conjunction of relational atoms over S
(mentioning all the variables x̄ and ȳ), and ψ(x̄, z̄) is a conjunction of relational atoms over T
(mentioning all the variables x̄ and z̄). The left-hand side of the implication in formula (1) is
called the premise, and the right-had side the conclusion of the st-tgd. For simplicity, we omit
the universal quantifiers when writing st-tgds. That is, we just write ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)
for an st-tgd of the form (1). Given an st-tgd σ of the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) from S
to T, and a pair (I, J) with I an instance of S and J an instance of T, we say that (I, J)
satisfies σ if for every pair of tuples ā, b̄ such that I satisfies ϕ(ā, b̄), there exists a tuple c̄
such that J satisfies ψ(ā, c̄).

We say that a mappingM from S to T is specified by a set Σ of st-tgds, if for every pair
of instances I of S and J of T we have that (I, J) ∈M if and only if (I, J) satisfies every st-
tgd in Σ. We consider two types of values when defining mappings, constant and null values,
and we assume the existence of a special predicate C(·) to differentiate them. In particular,
C(u) holds if and only if u is a constant value. As is usual in the data exchange context [18],
when defining a mapping from S to T specified by st-tgds we assume that source instances
(instances of S) contain only constant values, while target instances (instances of T) may
contain constant and null values. Notice that an inverse ofM is a mappingM′ from T to
S, and thus M′ has constant and null values in its source schema (schema T), while only
constants in its target schema (schema S). In Section 7 we drop this assumption, and study
inversion of mappings that may contain constant and nulls in source and target instances.

2 Fagin-inverse

The first notion of inverse in the literature was proposed by Fagin [16]. This notion is based
on the algebraic intuition that a mapping composed with its inverse should be equal to

Chapte r 03



72 The Inverse of a Schema Mapping

the identity. Since we can unambiguously define the composition of two schema mappings
(based on the composition of binary relations), we only needed to define a notion of identity
for schema mappings.

Fagin was specially interested in defining an inverse for mappings specified by st-tgds
thus, he defined an intuitive identity in terms of st-tgds as follows. Let S be a schema, and
Ŝ = {R̂ | R ∈ S}, that is, Ŝ is a copy of S. The set of copying st-tgds over S is defined as

ΣS-copy = { R(x1, . . . , xk)→ R̂(x1, . . . , xk) | R is a k-ary relation symbol in S}.

The idea is that ΣS-copy essentially copies every source relation from the source to the target.
Notice that we need to use Ŝ = {R̂ | R ∈ S} in the definition of ΣS-copy and not simply
S since, otherwise, the semantics of the tgds would be trivial. Consider now the mapping
MS-copy from S to Ŝ, which is specified by ΣS-copy. Given the definition of mappingMS-copy,
it its a natural identity in our context, and thus, the notion of Fagin-inverse is formulated
as follows.

I Definition 1 ([16]). LetM be a mapping from S to T, andM′ a mapping from T to Ŝ.
ThenM′ is a Fagin-inverse ofM ifM◦M′ =MS-copy.

Notice that in the above definition, a Fagin-inverse of a mapping from S to T is not
a mapping from T to S but from T to Ŝ. This is because we were specially interested
in defining the identity mapping with a set of st-tgds. But we can reformulate the above
notion to use only schema S. Let I, J be instances of S and Ĵ be a copy of J over schema Ŝ.
Then we have that (I, Ĵ) ∈MS-copy if and only if I ⊆ J . Thus we can redefine the identity
mapping as a mapping IdS from S to S given by

IdS = {(I, J) | I, J are instances of S and I ⊆ J}.

With this new identity mapping we can reformulate the notion of Fagin-inverse as follows.

I Definition 2 ([16]). LetM be a mapping from S to T, andM′ a mapping from T to S.
ThenM′ is a Fagin-inverse ofM ifM◦M′ = IdS.

In the rest of the chapter we use Definition 2 for the notion of Fagin-inverse. Moreover,
if mappingM has a Fagin-inverse, then we say thatM is Fagin-invertible. It is important
to notice that IdS is not exactly the identity relation over instances of schema S. In [17],
Fagin formally justified the use of IdS as the identity when inverting mappings specified by
st-tgds, instead of the more natural IdS = {(I, I) | I is an instance of S}. As Fagin proved,
no composition of st-tgds can be equal to IdS (see Proposition 5.2 in [17]).

I Example 3. Let S be a source schema composed of a binary relation A(·, ·), and T a target
schema with a ternary relation B(·, ·, ·). Consider now the mappingM from S to T specified
by the st-tgd A(x, y)→ B(x, x, y). Then the mappingM1 specified by B(x, u, y)→ A(x, y)
is a Fagin-inverse ofM.

To see whyM1 is a Fagin-inverse ofM, assume that (I, J) ∈ M ◦M1. We know that
there exists an instance K of schema T such that (I,K) ∈ M and (K,J) ∈ M1. Then, if
A(a, b) is a fact in I with a and b arbitrary values, then B(a, a, b) is a fact in K, which, by
the definition ofM1 implies that A(a, b) is a fact in J . We have shown that every fact in I
is also a fact in J , and thus I ⊆ J . On the other hand, assume that I ⊆ J , and consider the
instance L of T such that B(a, a, b) is a fact in L if and only if A(a, b) is a fact in I. Then it
is straightforward that (I, L) ∈ M and (L, J) ∈ M1, which implies that (I, J) ∈ M ◦M1.
We have shown that (I, J) ∈M◦M1 if and only if I ⊆ J , thus implying thatM◦M1 = IdS.
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Consider now the mappingM2 specified by B(u, x, y)→ A(x, y), and the mappingM3
specified by B(x, x, y)→ A(x, y). Then bothM2 andM3 are also Fagin-inverses ofM. This
example shows that Fagin-inverses need not to be unique up to logical equivalence [17]. J

In the above example it was quite simple to obtain a Fagin-inverse. In fact, as mapping
M3 shows, just reversing the arrows in the definition of M generates a Fagin-inverse. In
the following examples, we show that Fagin-inverses are not always as easy to construct.
In particular, Example 4 shows that reversing the arrows does not always produce a Fagin-
inverse, and Example 5 shows that in some cases we need inequalities when specifying
Fagin-inverses.

I Example 4 ([17]). Consider a schema S with two unary relations A(·) and B(·), and a
schema T with three unary relations S(·), T (·), and U(·). LetM be the mapping specified
by the following set of st-tgds

A(x) → S(x)
A(x) → T (x)
B(x) → U(x)
B(x) → T (x)

LetM′ be the mapping obtained from the specification ofM by just reversing the arrows,
that is, M′ is specified by the set of tgds S(x) → A(x), T (x) → A(x), U(x) → B(x) and
T (x)→ B(x). It is easy to see thatM′ is not a Fagin-inverse ofM. Consider the instance
I = {A(1)}. Then for every K ∈ SolM(I) we have that T (1) is a fact in K. Thus, given
that T (x) → B(x) is in the specification of M′, we have that for every J ∈ SolM′(K) it
holds that B(1) is a fact in J . This implies that for every J such that (I, J) ∈ M ◦M′ it
holds that B(1) is a fact in J , and thus, (I, I) 6∈ M◦M′, which shows thatM◦M′ 6= IdS.

The problem in this case is that dependencies A(x) → T (x) and B(x) → T (x) are
somehow mixing the data of relations A and B in target relation T . Thus, to obtain a
Fagin-inverse of M, we cannot use T to recover the data of relations A and B. In fact, a
Fagin-inverse ofM can be constructed by using only target relations S and U as follows:

S(x) → A(x)
U(x) → B(x)

It can be easily shown that the mapping defined by the above dependencies is a Fagin-inverse
ofM. J

I Example 5 ([21]). Consider a schema S with a binary relation A(·, ·) and a unary relation
B(·), and a schema T with a binary relation S(·, ·) and two unary relations T (·) and U(·).
LetM be the mapping specified by the following set of st-tgds

A(x, y) → S(x, y)
B(x) → S(x, x)
B(x) → T (x)

A(x, x) → U(x)

Notice that in this case the mapping is translating tuples of the form A(a, a) and B(a) into
the same target relation S, thus, as in Example 4, mappingM is somehow mixing the source
information when translating it to the target. In this case we can solve this issue by using
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inequalities to specify a Fagin-inverse of M. Consider the mapping M′ specified by the
following dependencies

S(x, y) ∧ x 6= y → A(x, y)
T (x) → B(x)
U(x) → A(x, x)

Then, it can be shown thatM′ is a Fagin-inverse ofM. In fact, Fagin et al. showed [20, 21]
that inequalities are strictly needed to specify Fagin-inverses of mappings given by st-tgds
(we make this statement precise in Section 5). J

On the existence of Fagin-inverses
As we explained in the introduction, a first important question to answer for every definition
of inverse of schema mappings, is for which class of mappings the inverse is guaranteed to
exist. As we show next, there are several mappings specified by st-tgds that do not admit
Fagin-inverses.

Consider the following mappings specified by st-tgds (in every case, source and target
schemas are implicit in the dependencies).

M1 : A(x, y) → S(x)

M2 : A(x, y) → S(x) ∧ T (y)

M3 : A(x) → S(x)
B(x) → S(x)

(2)

As pointed out by Fagin [17], Fagin-invertibility for a mapping intuitively coincide with no
loss of information. Thus, considering this intuition, none of the above mappings should
be Fagin-invertible. For instance, mapping M1 is only transferring the first component
of relation A from source to target, and thus, we are losing the second component when
transferring the source data. In the case of M2, although it is actually transferring both
components of A from source to target, these components are being stored in independent
relations in the target thus loosing the relationships that they had in the source. For M3
the problem is a little bit different. In this case all the data in both A and B is being
transferred but, since all the information is stored in the same relation in the target, it is
impossible to reconstruct the initial source instances.

The question is how to formally prove that the above mappings have no Fagin-inverses?
To answer this, Fagin [16] proposed a very simple condition that a mapping specified by
st-tgds needs to satisfy in order to have a Fagin-inverse. This property is called the unique-
solutions property and is formalized as follows.

I Definition 6 ([16]). A mappingM from S to T satisfies the unique-solutions property if
for every pair of instances I1, I2 of S, it holds that SolM(I1) = SolM(I2) implies I1 = I2.

I Theorem 7 ([16]). Let M be a mapping from S to T specified by st-tgds. If M has a
Fagin-inverse thenM satisfies the unique-solutions property.

The proof of the theorem is very simple. Assume that we have a mappingM and that
M′ is a Fagin-inverse ofM. Now let I1 and I2 be instances such that SolM(I1) = SolM(I2).
SinceM′ is a Fagin-inverse ofM, we know thatM◦M′ = IdS and thus (I2, I2) ∈M◦M′.
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This implies that there exists an instance K such that (I2,K) ∈ M and (K, I2) ∈ M′.
Now, since SolM(I1) = SolM(I2) and K ∈ SolM(I2), we have that (I1,K) ∈ M and then
(I1, I2) ∈ M ◦M′ = IdS which implies that I1 ⊆ I2. With a symmetric argument we can
show that I2 ⊆ I1 and thus I1 = I2.

With this tool we can formally prove that the mappings in (2) have no Fagin-inverses.
For the case of M1, consider instances I1 = {A(1, 2)} and I2 = {A(1, 3)}. The instances
are different but SolM1(I1) = SolM2(I2). For the case of M2 we can use instances I1 =
{A(1, 2), A(3, 4)} and I2 = {A(1, 4), A(3, 2)} which satisfy that SolM2(I1) = SolM2(I2). For
the mappingM3 and the instances I1 = {A(1)} and I2 = {B(1)}, we have that SolM3(I1) =
SolM3(I2). Thus neither M1 nor M2 nor M3 satisfy the unique-solutions property which
implies that they have no Fagin-inverse.

The natural question at this point is whether the unique-solutions property is also a
sufficient condition to test Fagin-invertibility for mappings specified by st-tgds. It can be
shown that it is not [21]2. Fortunately, Fagin et al. [20] introduced another property, called
the subset property, which characterizes Fagin-invertibility for the case of mappings specified
by st-tgds.

I Definition 8 ([20]). A mappingM from S to T satisfies the subset property if for every
pair of instances I1, I2 of S we have that SolM(I1) ⊆ SolM(I2) implies I2 ⊆ I1.

I Theorem 9 ([20]). LetM be a mapping from S to T specified by st-tgds. ThenM has a
Fagin-inverse if and only ifM satisfies the subset property.

We have shown that there are several mappings specified by st-tgds that have no Fagin-
inverse, thus the question at this point is whether we can find some relaxed notions that can
give natural and useful reverse mappings when Fagin-inverses do not exist. In the next two
sections we introduce the notions of quasi-inverse [20, 21] and maximum recovery [10, 11]
proposed to deal with this issue.

3 Quasi-inverse

As we have shown in the previous section, there are many simple mappings specified by st-
tgds that do not possess Fagin-inverses. Nevertheless, in many cases there are very simple
and natural ways of specifying useful reverse mappings. Thus, there is a need for a weaker
notion of inverse to handle these cases. Towards solving this problem, Fagin et al. [20]
proposed the notion of a quasi-inverse of a schema mapping.

Intuitively, the notion of quasi-inverse is obtained from the notion of Fagin-inverse by not
differentiating between source instances that are equivalent for data-exchange purposes. Let
M be a mapping from S to T, and define the equivalence relation ∼M between instances
of S as follows: I1 ∼M I2 if and only if SolM(I1) = SolM(I2). That is, I1 and I2 are
considered equivalent if they have the same space of solutions under M. For instance, for
the mapping M specified by the st-tgds A(x, y) → S(x), and the instances I1 = {A(1, 2)}
and I2 = {A(1, 3)}, we have that I1 ∼M I2.

Informally, M′ is a quasi-inverse of M if the equation M ◦M′ = IdS holds modulo
∼M. To make this statement precise, let us introduce some notation. Let D be a binary

2 Fagin proved that for LAV mappings, that is, mappings specified by st-tgds in which only one atom is
mentioned in the premises of dependencies, the unique-solutions property is necessary and sufficient to
characterize Fagin-invertibility [17].
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relation over instances of a source schema S (that is, a mapping from S to S), and let M
be a mapping from S to a schema T. Then we define the relation D[∼M] as follows:

D[∼M] = {(I1, I2) | there exists I ′1 and I ′2 such that I1 ∼M I ′1, I2 ∼M I ′2 and (I ′1, I ′2) ∈ D}.

Now we can formally introduce the notion of quasi-inverse of a schema mapping.

I Definition 10 ([20]). Let M be a mapping from S to T, and M′ a mapping from T to
S. ThenM′ is a quasi-inverse ofM if (M◦M′)[∼M] = IdS[∼M].

I Example 11. Consider a source schema S = {A(·, ·)} and a target schema T = {S(·)},
and let M be the mapping from S to T specified by A(x, y) → S(x). We showed in the
previous section thatM has no Fagin-inverse. Consider now the mappingM′ specified by
S(x) → ∃u A(x, u). We now show thatM′ is a quasi-inverse ofM. To see why this is the
case, consider first the inclusion:

IdS[∼M] ⊆ (M◦M′)[∼M]. (3)

If (I1, I2) ∈ IdS[∼M], then there exist instances I ′1, I ′2 of S such that I1 ∼M I ′1, I2 ∼M I ′2
and (I ′1, I ′2) ∈ IdS. Thus, we have that I ′1 ⊆ I ′2. Let J ′1 be an instance of T such that S(a) is a
fact in J ′1 if and only if A(a, b) is a fact in I ′1 (for arbitrary values a and b). Then we have that
(I ′1, J ′1) ∈M, and also that (J ′1, I ′1) ∈M′ by the definitions ofM andM′. Moreover, given
that I ′1 ⊆ I ′2 we have that (J ′1, I ′2) also satisfies the tgds definingM′, and thus (J ′1, I ′2) ∈M′.
Hence, we conclude that (I ′1, I ′2) ∈ (M◦M′), which implies that (I1, I2) ∈ (M◦M′)[∼M]
(since I1 ∼M I ′1 and I2 ∼M I ′2). Thus, we have shown that inclusion (3) holds, and it only
remains to prove that the following inclusion holds:

(M◦M′)[∼M] ⊆ IdS[∼M]. (4)

If (I1, I2) ∈ (M ◦M′)[∼M], then there exist instances I ′1, I ′2 of S such that I1 ∼M I ′1,
I2 ∼M I ′2 and (I ′1, I ′2) ∈ (M◦M′). Thus, we have that there exists an instance K of T such
that (I ′1,K) ∈M and (K, I ′2) ∈M′. By the definitions ofM andM′ we conclude that for
every fact A(a, b) in I ′1, there exists an element c such that A(a, c) is a fact in I ′2. From this
last property we conclude that the instance I? = I ′1 ∪ I ′2 is such that I? ∼M I ′2. Moreover,
since I2 ∼M I ′2 and I ′2 ∼M I?, we have that I2 ∼M I?. Notice that I ′1 ⊆ I?, and thus we
have that I1 ∼M I ′1, I2 ∼M I? and (I ′1, I?) ∈ IdS, which implies that (I1, I2) ∈ IdS[∼M].
Thus, we have shown that (4) holds, which proves thatM′ is a quasi-inverse ofM. J

As the previous example shows, there are mappings that are not Fagin-invertible but
have a quasi-inverse. This, plus the following result, show that the notion of quasi-inverse is
a strict generalization of the notion of Fagin-inverse. In particular, the result shows that if
a mapping has a Fagin-inverse, then the notions of Fagin-inverse and quasi-inverse coincide.

I Theorem 12 ([20]). Let M be a mapping from S to T specified by st-tgds, and assume
that M has a Fagin-inverse. Then M′ is a Fagin-inverse of M if and only if M′ is a
quasi-inverse ofM.

It is not difficult to see why the theorem holds. Let M be a mapping from S to T,
and assume that M is specified by st-tgds and has a Fagin-inverse. If M′ is a Fagin-
inverse of M then M ◦M′ = IdS, which implies that (M ◦M′)[∼M] = IdS[∼M], and
thus M′ is a quasi-inverse of M. Assume now that M′ is a quasi-inverse of M, that is,
(M◦M′)[∼M] = IdS[∼M]. Given that M has a Fagin-inverse, from Theorem 7 we know
thatM satisfies the unique-solutions property. Thus, we have that for every pair of instances
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I1, I2 of S, it holds that if I1 ∼M I2 (or equivalently SolM(I1) = SolM(I2)) then I1 = I2.
Notice that this implies that (M◦M′)[∼M] = M◦M′ and IdS[∼M] = IdS. Thus, since
(M ◦M′)[∼M] = IdS[∼M] we obtain that M ◦M′ = IdS which implies that M′ is a
Fagin-inverse ofM.

On the existence of quasi-inverses
Consider the mappings in (2) in the previous section. In Example 11 we showed that for
mapping M1 specified by A(x, y) → S(x), the mapping specified by S(x) → ∃u A(x, u) is
a quasi-inverse. Consider M2, which is specified by A(x, y) → S(x) ∧ T (y). In this case
it can be proved that the mapping specified by S(x) ∧ T (y) → ∃u A(x, u) ∧ ∃v A(v, y) is
a quasi-inverse of M2. Moreover, for the case of mapping M3 specified by A(x) → S(x)
and B(x) → S(x), it can be proved that S(x) → A(x) ∨ B(x) is a quasi-inverse. Although
none of these mappings admit a Fagin-inverse, all of them admit a quasi-inverse. This gives
rise to the interesting question of whether every mapping specified by sets of st-tgds has
a quasi-inverse. Unfortunately, it was shown by Fagin et al. [20, 21] that the answer is
negative. To formalize this result we next introduce a property that characterizes when a
mapping specified by st-tgds has a quasi-inverse. This property is obtained by relaxing the
subset-property that characterizes Fagin-inverses.

I Definition 13 ([20]). A mappingM from S to T satisfies the (∼M)-subset property, when
for every pair I1, I2 of instances of S, if SolM(I1) ⊆ SolM(I2) then there exist instances I ′1
and I ′2 such that I1 ∼M I ′1, I2 ∼M I ′2 and I ′2 ⊆ I ′1.

I Theorem 14 ([20]). Let M be a mapping from S to T specified by st-tgds. Then M has
a quasi-inverse if and only ifM satisfies the (∼M)-subset property.

With the above tool we can show that there are mappings specified by st-tgds that do
not have a quasi-inverse.

I Example 15 ([20, 21]). Consider a source schema S consisting of a binary relation A(·, ·),
a target schema T consisting of a binary relation S(·, ·) and a unary relation T (·), and the
mappingM from S to T specified by the st-tgd

A(x, z) ∧A(z, y) → S(x, y) ∧ T (z). (5)

Fagin et al. showed [20, 21] thatM does not satisfy the (∼M)-subset property, from which
follows thatM has no quasi-inverse. We next show whyM does not satisfy the (∼M)-subset
property.

Let I1, I2 be instances of S such that:

I1 = {A(1, 4), A(4, 3), A(1, 2), A(2, 5), A(4, 2)}
I2 = {A(1, 2), A(2, 3)}

Moreover, let J1, J2 be the following instances over T:

J1 = {S(1, 3), S(1, 2), S(1, 5), S(4, 5), T (2), T (4)}
J2 = {S(1, 3), T (2)}

That is, J1 and J2 are the canonical solutions [18, 3] of I1 and I2, respectively. In this
case, given the definition of M, it is not difficult to see that they are also minimal and
characterizes their space of solutions. For instance, we have that K ∈ SolM(I1) if and only
if J1 ⊆ K. Similarly for I2 we have that K ∈ SolM(I2) if and only if J2 ⊆ K. Thus, given
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that J2 ⊆ J1, we conclude that SolM(I1) ⊆ SolM(I2). Next we show that there are no
instances I ′1, I ′2 of S such that I1 ∼M I ′1, I2 ∼M I ′2 and I ′2 ⊆ I ′1, which implies thatM does
not satisfy the (∼M)-subset property.

For the sake of contradiction, assume that there exist instances I ′1, I ′2 of S such that
I1 ∼M I ′1, I2 ∼M I ′2 and I ′2 ⊆ I ′1, and let J ′1, J ′2 be the canonical solutions for I ′1 and I ′2
underM, respectively. That is

J ′1 = {S(a, b) | there exists c s.t. A(a, c), A(c, b) ∈ I ′1} ∪
{T (c) | there exist a, b s.t. A(a, c), A(c, b) ∈ I ′1},

J ′2 = {S(a, b) | there exists c s.t. A(a, c), A(c, b) ∈ I ′2} ∪
{T (c) | there exist a, b s.t. A(a, c), A(c, b) ∈ I ′2},

Given that I2 ∼M I ′2, we have that SolM(I2) = SolM(I ′2) and, therefore, J2 = J ′2 by the
definition ofM. Thus, given that S(1, 3) ∈ J2, we have that S(1, 3) ∈ J ′2 and, hence, there
exists an element m such that A(1,m), A(m, 3) ∈ I ′2. Notice that this implies that T (m)
should be a fact in J ′2 and then since J ′2 = J2, we obtain that m must be equal to 2. Thus,
we have that A(1, 2), A(2, 3) ∈ I ′2. Now given that I ′2 ⊆ I ′1, we conclude that:

A(2, 3) ∈ I ′1. (6)

Given that I1 ∼M I ′1, we have that SolM(I1) = SolM(I ′1) and, therefore, J1 = J ′1 by the
definition ofM. Thus, given that S(4, 5) ∈ J1, we have that S(4, 5) ∈ J ′1 and, hence, there
exists an element n such that A(4, n), A(n, 5) ∈ I ′1. Notice that this implies that T (n) should
be a fact in J ′1 and then since J ′1 = J1, we obtain that n must be equal to either 2 or 4.
We show that in both cases we obtain a contradiction. Assume that n = 4, then we have
that A(4, 4) ∈ I ′1 implying that S(4, 4) ∈ J ′1 which leads to a contradiction since J1 = J ′1
and S(4, 4) /∈ J1. Assume that n = 2, then A(4, 2), A(2, 5) ∈ I ′1. But we know from (6)
that A(2, 3) ∈ I ′1 concluding that S(4, 3) ∈ J ′1 (since A(4, 2) ∈ I ′1), from which we obtain a
contradiction since J1 = J ′2 and S(4, 3) 6∈ J1. J

Although numerous non-Fagin-invertible schema mappings possess natural and useful
quasi-inverses, the previous example shows that there still exist simple mappings specified
by st-tgds that have no quasi-inverse. This leaves as an open problem the issue of finding a
notion of inversion for st-tgds which ensures that every mapping in this class is invertible.
This is the main motivation for the introduction of the notion of inversion discussed in the
following section.

4 Recovery and Maximum Recovery

In this section we introduce the notions of recovery and maximum recovery proposed by
Arenas et al. [10] as alternative notions for inverting mappings. As we show in this section,
the notion of maximum recovery strictly generalizes the notion of Fagin-inverses, but has
the desirable property that every mapping specified by st-tgds admits a maximum recovery,
thus solving the open problem left by the notion of quasi-inverse.

Let us start by considering the mapping M in Example 15, that is, M is specified by
A(x, z) ∧ A(z, y) → S(x, y) ∧ T (z). Notice that although mapping M does not have a
quasi-inverse, there is a very natural reverse mapping in this case. Consider the mapping
M′ defined by the tgds

S(x, y) → ∃u
(
A(x, u) ∧A(u, y)

)
T (z) → ∃v∃w

(
A(v, z) ∧A(z, w)

)
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M′ is essentially doing its best effort to recover the data initially stored in the source schema.
This is the main intuition behind the notions of recovery and maximum recovery. Intuitively,
a recovery ofM is a mapping that is capable of recovering sound data with respect toM,
and a maximum recovery ofM is a mapping that is capable to recover the maximum amount
of sound data with respect toM. We next formalize both notions.

LetM be a mapping from a schema S to a schema T, and IdS the identity mapping over
S, that is,

IdS = {(I, I) | I is an instance of S}.

Notice the difference between IdS and IdS; mapping IdS is the classical identity of binary
relations. When trying to invertM, the ideal would be to find a mappingM′ from T to S
such that,M◦M′ = IdS. If such a mapping exists, we know that if we useM to exchange
data, the application ofM′ gives as result exactly the initial source instance. Unfortunately,
in most cases this ideal is impossible to reach. For example, it is impossible to obtain such
an inverse if M is specified by a set of st-tgds [16]. The main problem with such an ideal
definition of inverse is that, in general, no matter whatM′ we choose, we will have not one
but many solutions for a source instance underM◦M′.

If for a mapping M, there is no mapping M1 such that M ◦M1 = IdS, at least we
would like to find a schema mappingM2 that does not forbid the possibility of recovering
the initial source data. That is, we would like that for every source instance I, the space
of solutions for I underM◦M2 contains I itself. Such a schema mappingM2 is called a
recovery ofM.

I Definition 16 ([10]). LetM be a mapping from S to T andM′ a mapping from T to S.
ThenM′ is a recovery ofM if (I, I) ∈M ◦M′ for every instance I of S.

I Example 17. Let S = {A(·, ·)}, and T = {S(·, ·), T (·)}. Consider the mapping M in
Example 15, that isM is a mapping from S to T specified by the following st-tgd:

A(x, z) ∧A(z, y) → S(x, y) ∧ T (z), (7)

LetM1 be a mapping from T to S specified by tgd:

S(x, y) → ∃u
(
A(x, u) ∧A(u, y)

)
.

It is straightforward to prove that M1 is a recovery of M. Let I be an arbitrary instance
of S, and J the canonical solution [18] for I, that is,

J = {S(a, b) | there exists c s.t. A(a, c), A(c, b) ∈ I} ∪
{T (c) | there exist a, b s.t. A(a, c), A(c, b) ∈ I}.

Then in this case we have that (I, J) ∈ M and (J, I) ∈ M1, from which we conclude that
(I, I) ∈ M ◦M1. This implies thatM1 is a recovery ofM. Similarly, ifM2 is a mapping
from T to S specified by tgd:

T (z) → ∃v∃w
(
A(v, z) ∧A(z, w)

)
,

then we also have thatM2 is a recovery ofM. On the other hand, ifM3 is a mapping from
T to S specified by tgd:

S(x, y) ∧ T (z) → A(x, z) ∧A(z, y), (8)

then we have that M3 is not a recovery of M. To see why this is the case, consider the
instance I = {A(1, 1), A(2, 2)}. Next we show that (I, I) 6∈ M ◦ M3. ForL the sake of
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contradiction, assume that (I, I) ∈M◦M3, and let K be an instance such that (I,K) ∈M
and (K, I) ∈ M3. Given that (I,K) satisfies st-tgd (7), we have that S(1, 1), S(2, 2) and
T (1), T (2) are facts in K. But then given that (K, I) satisfies tgd (8), we conclude that
A(1, 2), and A(2, 1) are facts in I, which is a contradiction. J

Being a recovery is a sound but mild requirement. Indeed, a schema mapping M from
S to T always has as recoveries, for example, mappings M1 = {(J, I) | J is an instance
of T and I is an instance of S}, and M2 = M−1 = {(J, I) | (I, J) ∈ M}. If one has to
choose betweenM1 andM2 as a recovery ofM, then one would probably chooseM2 since
the space of possible solutions for a source instance I underM◦M2 is smaller than under
M◦M1. In fact, if there exists a mappingM3 such thatM◦M3 = IdS, then one would
definitely preferM3 overM1 andM2.

In general, ifM′ is a recovery ofM, then the smaller the space of solutions generated by
M◦M′, the more informativeM′ is about the initial source instances. This notion induces
an order among recoveries. If M1 and M2 are recoveries of M and M◦M2 ⊆ M ◦M1
then we say that M2 is more(-or-equally) informative than M1 as a recovery of M. This
naturally gives rise to the notion of maximum recovery. If for a mappingM there exists a
recovery M′ that is more informative than any other recovery of M, then M′ is the best
option to bring exchanged data back, among all the recoveries. Intuitively, such a mapping
M′ recovers the maximum amount of sound information. Such a mapping M′ is called a
maximum recovery ofM.

I Definition 18 ([10]). Let M be a mapping from S to T, and M′ a mapping from T to
S. ThenM′ is a maximum recovery ofM if:
1. M′ is a recovery ofM, and
2. for every recoveryM′′ ofM, it holds thatM◦M′ ⊆M◦M′′.

Notice that the definition of maximum recovery implies a quantification over all the
possible recoveries of a mapping M. Thus, the process of proving that a particular map-
ping is indeed a maximum recovery of M seems to be very a difficult task (compare it
with the definitions of Fagin-inverse, quasi-inverse and recovery). Fortunately, Arenas et
al. [11] provide a toolbox to deal with maximum recoveries. In particular, the following
general characterization is useful to prove that a mapping is a maximum recovery of another
mapping.

I Theorem 19 ([11]). Let M be a mapping from S to T and M′ a mapping from T to S.
ThenM′ is a maximum recovery ofM if and only ifM =M◦M′ ◦M.

I Example 20. Let S = {A(·, ·)}, and T = {S(·, ·), T (·)}. Consider again the mappingM
in Example 15 specified by:

A(x, z) ∧A(z, y) → S(x, y) ∧ T (z),

and letM′ be the mapping from T to S specified by the following tgds:

S(x, y) → ∃u
(
A(x, u) ∧A(u, y)

)
,

T (z) → ∃v∃w
(
A(u, z) ∧A(z, w)

)
,

Next we use Theorem 19 to show that M′ is a maximum recovery of M. Given that M′
is a recovery of M (see Example 17), we have that M ⊆ M ◦M′ ◦ M. Thus, by using
Theorem 19, in order to show thatM′ is a maximum recovery ofM, we only need to show
thatM◦M′ ◦M ⊆M.



J. Pérez 81

Let (I, J) ∈ M ◦ M′ ◦ M. To prove that (I, J) ∈ M, we need to show that (I, J)
satisfies the st-tgd that specifies M. Let A(a, b) and A(b, c) be facts in I, with a, b, c
arbitrary elements. Then we need to prove that S(a, c), T (b) ∈ J . To prove this, first notice
that given that (I, J) ∈ M ◦M′ ◦M, there exist instances K of T and L of S such that
(I,K) ∈ M, (K,L) ∈ M′ and (L, J) ∈ M. Thus, given that A(a, b), A(b, c) ∈ I and
(I,K) ∈ M, we conclude that S(a, c), T (b) ∈ K. Hence, from the definition ofM′ and the
fact that (K,L) ∈M′, we conclude that there exist elements d, e and f such that

A(a, d), A(d, c), A(e, b), A(b, f) ∈ L.

Therefore, given that (L, J) ∈ M, we conclude that S(a, c), T (b) ∈ J which was to be
shown. J

As for the case of the quasi-inverse, it can be shown that the notion of maximum recovery
strictly generalizes the notion of Fagin-inverse for mappings specified by st-tgds.

I Theorem 21 ([10]). Let M be a mapping from S to T specified by st-tgds, and assume
that M has a Fagin-inverse. Then, M′ is a Fagin-inverse of M if and only if M′ is a
maximum recovery ofM.

The relationship between maximum recoveries and quasi-inverses is a little bit more
complicated and is given in the following result.

I Theorem 22 ([10]). Let M be a mapping from S to T specified by st-tgds, and assume
thatM has a quasi-inverse.
1. IfM′ is a maximum-recovery ofM thenM′ is a quasi-inverse ofM.
2. IfM′ is a quasi-inverse and a recovery ofM, thenM′ is a maximum recovery ofM.

On the existence of maximum recoveries
One of the main results regarding maximum recoveries is that they exist for every mapping
specified by st-tgds [10]. To show this, we next introduce the notion of witness solution that
can be used to characterize when a general mapping has a maximum recovery.

I Definition 23 ([10]). Let M be a mapping from S to T and I an instance of S. Then
an instance J ∈ SolM(I) is a witness solution for I underM, if for every other instance I ′
such that J ∈ SolM(I ′) it holds that SolM(I) ⊆ SolM(I ′).

Witness solutions are in a sense identifiers for spaces of solutions. In particular, if
there are two instances I1 and I2 that share a witness solution, then SolM(I1) = SolM(I2).
Arenas et al. [10], proved the following general characterization of the existence of maximum
recoveries.

I Theorem 24 ([10]). Let M be a general mapping from S to T (not necessarily specified
by st-tgds). Then M has a maximum recovery if and only if every instance I of S has a
witness solution underM.

It should be noticed that as opposed to the characterizations for the existence of Fagin-
inverses and quasi-inverse shown in Theorems 9 and 14, respectively, the characterization
for maximum recoveries can be applied to general mappings, not necessarily specified by
st-tgds. We can now use Theorem 24 to show that mappings specified my st-tgds always
have maximum recovery. For this we need to recall the notion of universal solutions in data
exchange [18]. Universal solutions were introduced as desirable solutions for data exchange.
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Essentially, a universal solution for an instance I under a mappingM is, in a precise sense,
the most general solution for I and can be embedded in any other solution for I [18]. In
particular, for mappings specified by st-tgds, universal solutions can be obtained by using
the chase procedure (see Chapter 1, for a comprehensive study of the chase procedure).
In our context, the two most important properties of universal solutions are stated in the
following lemma.

I Lemma 25 ([10, 18]). LetM be a mapping from S to T specified by st-tgds.
1. If J is a universal solution for I underM then J is a witness solution for I underM.
2. For every instance I of S there exists a universal solution for I underM.

Then from Theorem 24 and Lemma 25 we obtain the following.

I Corollary 26 ([10]). Every mappingM specified by st-tgds has a maximum recovery.

5 Computing Inverses

Up to this point we have presented three alternative notions for inverting mappings. For
every one of them we have discussed their formal definitions, characterizations and the ex-
istence problem. But we have not discussed the most important practical problem regarding
inverses of schema mappings: how to compute an inverse. In this section we present a gen-
eral algorithm that can be used to compute all the notions of inverses introduced so far.
We also discuss expressiveness issues. In particular, what is the language needed to express
these inverses which is directly related to the language used in the output of the algorithm.

5.1 An algorithm for inverting mappings
The algorithm presented in this section is based on query rewriting and thus we first in-
troduce the necessary terminology and some preliminary results. A fundamental notion in
this section is the notion of certain answers. Given a mapping M from S to T, a source
instance I, and a query QT over T, the set of certain answers of QT over I, denoted by
certainM(QT, I) is the set

certainM(QT, I) =
⋂

J∈SolM(I)

QT(J).

That is, a tuple ā is a certain answer if ā ∈ QT(J) for every solution J of I. With the
notion of certain answers we can define the notion of source rewritability. Given a mapping
M from S to T, and a query QT over T, we say that QS over S is a source rewriting of QT
underM if for every instance I of S it holds that

QS(I) = certainM(QT, I).

That is, if QS is a source rewriting of QT, in order to compute the certain answers of QT
one only needs to compute QS(I).

The computation of a source rewriting of a conjunctive query is a basic step in the
first algorithm presented in this section. This problem has been extensively studied in the
database area [30, 31, 15, 1, 35] and, in particular, in the data integration context [24, 25, 29].
It can be shown that given a mapping M from S to T specified by a set of st-tgds, and a
conjunctive query QT over T, then a rewriting of QT over the source can always be expressed



J. Pérez 83

as a union of conjunctive queries with equality predicates (UCQ=). As an example, consider
a mapping given by the following tgds:

A(x, y) → S(x, y),
B(x) → S(x, x),

and let QT be the target query given by formula S(x, y). Then a rewriting of QT over the
source is given by A(x, y) ∨ (B(x) ∧ x = y), which is a query in UCQ=. Notice that in this
rewriting, we do need disjunction and the equality x = y. Moreover, it is known that source
rewritings of conjunctive queries can be computed in exponential time. We formalize the
above discussion in the following lemma.

I Lemma 27 ([11]). There exists a procedure Source-Rew that given a set Σ of st-tgds
from S to T, and a conjunctive query QT over T, computes (in exponential time) a query
in UCQ= which is a source rewriting of QT under the mappingM specified by Σ.

The following algorithm, proposed in [11], uses procedure Source-Rew to compute
inverses. In particular, the algorithm computes a maximum recovery of the input mapping.
In the algorithm we use the special predicate C(·) that differentiates constant values from
labeled null values (that is C(u) holds if and only if u is a constant value). We also use
C(x̄), with x̄ a tuple of variables (x1, . . . , xk), as a shorthand of C(x1) ∧ · · · ∧C(xk).

Algorithm Inverse
Input: A mappingM from S to T specified by a set Σ of st-tgds.
Output: A mappingM′ from T to S specified by a set Σ′ of tgds with disjunctions, equalities
and predicate C(·).
1. Start with Σ′ as the empty set.
2. For every st-tgd ϕ(x̄)→ ∃ȳ ψ(x̄, ȳ) in Σ, do the following:

a. Let QT be the conjunctive query defined by formula ∃ȳ ψ(x̄, ȳ).
b. Use Source-Rew to compute a formula α(x̄) in UCQ= that is a source rewriting of
QT under mappingM.

c. Add dependency ∃ȳ ψ(x̄, ȳ) ∧C(x̄)→ α(x̄) to Σ′.
3. Return the mappingM′ from T to S specified by Σ′.

I Example 28. Let S = {A(·, ·), B(·)}, and T = {S(·, ·)}, and letM be the mapping for S
to T specified by the st-tgds

A(x, y) → S(x, y),
B(x) → S(x, x).

With inputM, algorithm Inverse first considers the st-tgd A(x, y)→ S(x, y) and computes
a source rewriting of S(x, y). From the discussion previous to the algorithm we know that
A(x, y) ∨ (B(x) ∧ x = y) is a source rewriting of S(x, y). Thus the algorithm includes in
Σ′ the dependency S(x, y) ∧C(x) ∧C(y) → A(x, y) ∨ (B(x) ∧ x = y). Then the algorithm
considers dependency B(x) → S(x, x) and computes a source rewriting of S(x, x) which
is given by the source query A(x, x) ∨ B(x). Then the algorithm includes dependency
S(x, x) ∧C(x)→ A(x, x) ∨B(x) in Σ′. Finally, the output of the algorithm is the mapping
M′ specified by the dependencies

S(x, y) ∧C(x) ∧C(y) → A(x, y) ∨ (B(x) ∧ x = y),
S(x, x) ∧C(x) → A(x, x) ∨B(x). J
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I Theorem 29 ([6, 11]). Let M be a mapping specified by st-tgds. Then with input M,
algorithm Inverse computes a maximum recovery ofM.

By Theorems 21 and 22 we obtain the following corollary regarding the computation of
Fagin-inverses and quasi-inverses.

I Corollary 30. LetM be a mapping specified by st-tgds. IfM has a Fagin-inverse (quasi-
inverse), then with input M, algorithm Inverse computes a Fagin-inverse (quasi-inverse)
ofM.

In general, the set Σ′ constructed in algorithm Inverse is of exponential size. Notice
that this directly depends on the size of the source rewritings computed by Source-Rew
which are in general exponential. Nevertheless, there are cases for which this process can be
done more efficiently. In particular, if mappingM is specified by a set of st-tgds that do not
use existential quantification in the conclusions of dependencies, also called full st-tgds [18],
then Step (2b) of algorithm Inverse can be accomplished in polynomial time [11, 34].

For the case of the Fagin-inverse, Arenas et al. [7] proposed an alternative algorithm
that uses target rewritings. Let M be a mapping from S to T specified by st-tgds, and
QS a conjunctive query over S. Then, a query QT is a target rewriting of QS under M if
certainM(QT, I) = QS(I) for every source instance I. That is, QT is a target rewriting of
QS if and only if QS is a source rewriting of QT. Although the notions of source and target
rewriting are tightly related, their associated algorithmic problems are not equivalent. For
example, as opposed to the case of source rewritings, for a conjunctive query QS a target
rewriting does not always exist [7]. Nevertheless, Arenas et al. [7] showed that if M is a
mapping specified by st-tgds that has a Fagin-inverse, then every conjunctive source query
is target rewritable. Moreover, it can be proved that a target rewriting can be computed in
exponential time and can be expressed as a union of conjunctive queries with equalities and
inequalities (UCQ=,6=) [7, 34]. We formalize this in the following lemma.

I Lemma 31 ([7, 34]). There exists a procedure Target-Rew that given a set Σ of st-tgds
from S to T, and a conjunctive query QS over S that is target rewritable, computes (in
exponential time) a query in UCQ=,6= which is a target rewriting of QS under the mapping
M specified by Σ.

With this procedure we can present the following algorithm to compute Fagin-inverses
(which is implicit in the work by Arenas et al. [7](Proposition 5.3)). In the algorithm we
also use the following property. A tgd from S to T of the form ϕ1(x̄) ∨ ϕ2(x̄) → ψ(x̄)
is equivalent to the set of tgds {ϕ1(x̄) → ψ(x̄), ϕ2(x̄) → ψ(x̄)}. That is, one can always
eliminate disjunctions from the premises of tgds. Another property that we use is that
equalities in the premises of tgds can always be eliminated by making the necessary variable
replacements. That is, the dependency ϕ(x̄) ∧ x = y → ψ(x̄) is equivalent to ϕ(x̄′)→ ψ(x̄′)
where x̄′ is the tuple obtained from x̄ by replacing every occurrence of y by x.

Algorithm Fagin-Inverse
Input: A mappingM from S to T specified by a set Σ of st-tgds that has a Fagin-inverse.
Output: A mapping M′ from T to S specified by a set Σ′ of tgds with inequalities and
predicate C(·).
1. Start with Σ′ as the empty set.
2. For every source k-ary relation symbol R do the following:

a. Let x = (x1, . . . , xk) be a k-tuple of distinct variables, and QS the conjunctive query
defined by formula R(x̄).
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b. Use Target-Rew to compute a formula α(x̄) in UCQ=,6= that is a target rewriting
of QS under mappingM.

c. For every disjunct β(x̄) of α(x̄) add dependency β(x̄) ∧C(x̄)→ R(x̄) to Σ′.
3. Eliminate all the equality predicates in Σ′ by making the necessary variable replacements

(and eliminating the remaining predicates C(x) for every replaced variable x).
4. Return the mappingM′ from T to S specified by Σ′.

I Example 32. Let S = {A(·, ·), B(·)} and T = {S(·, ·), T (·), U(·)}, and let M be the
mapping in Example 5, that is,M is specified by the set of st-tgds

A(x, y) → S(x, y)
B(x) → S(x, x)
B(x) → T (x)

A(x, x) → U(x)

With inputM, algorithm Fagin-Inverse first considers relation symbol A and in Step (2b)
and computes a target rewriting of A(x, y). It can be shown that the query given by
(S(x, y) ∧ x 6= y) ∨ (U(x) ∧ x = y) is a target rewriting of A(x, y). Then in Step (2c) the
algorithm adds dependencies

S(x, y) ∧ x 6= y ∧C(x) ∧C(y) → A(x, y)
U(x) ∧ x = y ∧C(x) ∧C(y) → A(x, y)

to the set Σ′. Then the algorithm considers relation symbol B and computes a target
rewriting of B(x). It can be proved that T (x) is a target rewriting in this case, thus,
the algorithm adds dependency T (x) ∧ C(x) → B(x). Finally, in Step (4) the algorithm
eliminates the equalities by variable replacements to obtain the set of dependencies

S(x, y) ∧ x 6= y ∧C(x) ∧C(y) → A(x, y)
U(x) ∧C(x) → A(x, x)
T (x) ∧C(x) → B(x)

Notice that the obtained mapping is almost exactly the mapping that is claimed to be a
Fagin-inverse ofM in Example 5. J

The correctness of algorithm Fagin-Inverse is stated in the following theorem.

I Theorem 33 ([7, 34]). LetM be a mapping specified by st-tgds that has a Fagin-inverse.
Then with inputM, algorithm Fagin-Inverse computes a Fagin-inverse ofM.

It should be pointed out that the first algorithms proposed to compute quasi-inverses [21],
and maximum recoveries [10], used ad-hoc techniques and were far more complicated that
the one that we presented in this section. The algorithms that we have presented were
proposed by Arenas et al. [11, 6, 7] and are based on query rewriting procedures which makes
them suitable for optimizations and can be benefited from the vast amount of work on query
rewriting in the data integration and data exchange contexts. Fagin et al. [21] also proposed a
simple algorithm to compute Fagin-inverses based on the chase procedure. We do not explain
all the details of this algorithm but describe the main idea. We assume some familiarity with
the chase procedure for tgds (see Chapter 1 for details on the chase procedure). For every
source atom R(x̄), the algorithm by Fagin et al. [21] considers all the atoms obtained by
considering all possible combinations of equalities among the variables in x̄. Those atoms are
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called prime atoms in [21]. For example, for a source relation R(·, ·, ·) the algorithm considers
the prime atoms R(x1, x1, x1), R(x1, x1, x2), R(x1, x2, x2), R(x1, x2, x1), and R(x1, x2, x3).
Assume that a Fagin-inverse is to be computed for a mappingM specified by a set Σ of st-
tgds. Moreover, given a prime atom α, let chaseΣ(α) be the result of chasing α with Σ. Then
for every prime atom α the algorithm generates a formula σα of the form β∧δ∧γ → α, where
β is the conjunction of all the target atoms in chaseΣ(α), δ is a conjunction of inequalities
of the form x 6= y for every pair of different variables mentioned in α, and γ is a conjunction
of formulas C(x) for every variable x mentioned in α. Fagin et al. [21] proved that if M
has a Fagin-inverse, then the set of formulas {σα | α is a prime source atom} specifies a
Fagin-inverse ofM [21].

5.2 Languages for expressing inverses

In this section we study the question of what the language needed to express inverses is. In
particular we survey the results in the literature that justify the languages used as output
in the algorithms of the previous section. In particular a first result which is immediately
obtained from the algorithms is the following.

I Theorem 34 ([20, 10]). LetM be a mapping from S to T specified by st-tgds.
1. M has a maximum recovery specified by a set of tgds from T to S with disjunctions and

equalities in the conclusions and predicate C(·) in the premises.
2. IfM has a Fagin-inverse (quasi-inverse), then there exists a Fagin-inverse (quasi-inverse)

of M specified by a set of tgds from T to S with disjunctions and equalities in the con-
clusions and predicate C(·) in the premises.

3. If M has a Fagin-inverse, there exists a Fagin-inverse of M specified by a set of tgds
from T to S with inequalities and predicate C(·) in the premises.

Parts 1) and 2) of the theorem follow from algorithm Inverse, while part 3) follows
from algorithm Fagin-Inverse. Fagin et al. [20, 21] use a slightly different language to
specify quasi-inverses of mappings specified by st-tgds. In particular, they use tgds with
inequalities and predicate C(·) in the premises and disjunctions (without equalities) in the
conclusions. It is not difficult to see that in the output of algorithm Inverse one can replace
the equalities in the conclusions of dependencies by inequalities in the premises as is outlined
in the following example.

I Example 35. Consider the mapping M in Example 28, that is, M is specified by the
dependencies A(x, y) → S(x, y) and B(x) → S(x, x). In that example, we compute a
maximum recoveryM′ ofM specified by the set of dependencies

S(x, y) ∧C(x) ∧C(y) → A(x, y) ∨ (B(x) ∧ x = y), (9)
S(x, x) ∧C(x) → A(x, x) ∨B(x).

Notice that from (9) we can generate two formulas depending on whether x = y or x 6= y

obtaining the set

S(x, y) ∧C(x) ∧C(y) ∧ x 6= y → A(x, y),
S(x, y) ∧C(x) ∧C(y) ∧ x = y → A(x, y) ∨B(x), (10)

S(x, x) ∧C(x) → A(x, x) ∨B(x). (11)
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Finally we can use variable substitutions to eliminate the equality in (10). In that case the
obtained dependency is equivalent to (11), and thus the final set of dependencies is

S(x, y) ∧C(x) ∧C(y) ∧ x 6= y → A(x, y),
S(x, x) ∧C(x) → A(x, x) ∨B(x).

J

It was shown by Arenas et al. [6](Lemma 4.2) that if from the output of algorithm
Inverse we eliminate the equalities with the process outlined in the above example, then
the obtained mapping is still a maximum recovery ofM. By a different procedure Fagin et
al. [20] showed that for mappings specified by st-tgds that has a quasi-inverse, there exists a
quasi inverse specified by a set of tgds with inequalities and predicate C(·) in the premises
and disjunctions in the conclusions. Thus we have the following.

I Theorem 36 ([6, 20]). LetM be a mapping from S to T specified by st-tgds.
1. M has a maximum recovery specified by a set of tgds from T to S with inequalities and

predicate C(·) in the premises and disjunctions in the conclusions.
2. IfM has a quasi-inverse, then there exists a quasi-inverse ofM specified by a set of tgds

from T to S with inequalities and predicate C(·) in the premises and disjunctions in the
conclusions.

We know what languages are sufficient to specify inverses but, are all the features of these
languages strictly needed to specify inverses? For example, do we really need disjunctions to
specify maximum recoveries and quasi-inverses? Do we really need predicate C(·) to specify
Fagin-inverses? In what follows we answer these questions.

The first result that we report was proved by Fagin et al. [20, 21], and states that
predicate C(·) is strictly necessary to specify Fagin-inverses.

I Theorem 37 (Necessity of C(·) [20]). There exists a mappingM specified by st-tgds that
has a Fagin-inverse but does not have a Fagin-inverse specified by tgds with inequalities in
the premises and disjunctions in the conclusions (without using predicate C(·)).

I Example 38. Consider the mappingM specified by the st-tgds A(x, y) → ∃z
(
S(x, z) ∧

S(z, y)
)
. It can be shown that M is Fagin-invertible. In fact, the mapping M′ specified

by S(x, z) ∧ S(z, y) ∧ C(x) ∧ C(y) → A(x, y) is a Fagin-inverse of M. Fagin et al. [20]
show that M does not have a Fagin-inverse that does not use C(·). To see the intuition
of the failure, lets show that if we delete the C(·) predicates in the definition of M′, the
resulting mapping is no longer a Fagin-inverse of M. Thus consider the mapping M′′
specified by S(x, z)∧S(z, y)→ A(x, y) and assume thatM′′ is a Fagin-Inverse ofM. Then
for every source instance I we have that (I, I) ∈ M ◦ M′′. Now consider the instance
I = {A(1, 2), A(2, 1)}. Since (I, I) ∈ M ◦M′′ we know that there exists an instance K
such that (I,K) ∈ M and (K, I) ∈ M′′. Thus, by the definition ofM, we have that there
exists elements a, b such that S(1, a), S(a, 2), S(2, b), S(b, 1) ∈ K. Then by definition ofM′′
we have that A(a, b), A(b, a) ∈ I and thus, either a = 1 and b = 2, or a = 2 and b = 1.
Assume first that a = 1 and b = 2, then we have that S(1, 1), S(2, 2) ∈ K which implies that
A(1, 1), A(2, 2) ∈ I which is a contradiction. If we assume that a = 2 and b = 1 we obtain
the same contradiction. Notice that we cannot obtain this contradiction withM′ since I has
as solution under M the instance K ′ = {A(1, n), A(n, 2), A(2,m), A(m, 2)} with n and m

different null values. Moreover, K ′ has I as solution underM′ and thus (I, I) ∈M◦M′. J

One can prove a stronger result for the case of maximum recoveries, namely that predicate
C(·) is needed even if we allow the full power of First-Order logic.
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I Theorem 39 (Necessity of C(·) for maximum recoveries [10]). There exists a mapping M
specified by st-tgds that has no maximum recovery specified by First-Order sentences that do
not use predicate C(·).

The following result shows that we need either inequalities in the premises or equalities in
the conclusions of dependencies in order to specify Fagin-inverses. This immediately implies
the necessity of these features to specify quasi-inverses and maximum recoveries.

I Theorem 40 (Necessity of either = or 6= [20]). There exists a mapping M specified by
st-tgds that has a Fagin-inverse but does not have a Fagin-inverse specified by tgds with
predicate C(·) in the premises and disjunctions in the conclusions.

Fagin et al. [21] use the mapping M in Example 32 to show the necessity of either
inequalities in the premises of equalities in the conclusions to specify Fagin-inverses. The
only remaining property that we need to prove is that disjunctions are necessary for quasi-
inverses and maximum recoveries.

I Theorem 41 (Necessity of ∨ [34, 20]).
1. There exists a mapping M specified by st-tgds that has no maximum recovery specified

by tgds with predicate C(·) in the premises and equalities in the conclusions.
2. There exists a mappingM specified by st-tgds that has a quasi-inverse but has no quasi-

inverse specified by tgds with inequalities and predicate C(·) in the premises.

6 Query Language-Based Inverses of Schema Mappings

In the data exchange scenario, the standard procedure used to exchange data with a mapping
is based on the chase procedure [18] (See Chapter 1 for a comprehensive study of the chase
procedure in data exchange). More precisely, given a mapping M and a source database
I, a canonical translation of I according to M is computed by chasing I with the set of
dependencies definingM [18]. Thus, when computing an inverse ofM, it would be desirable
from a practical point of view to obtain a mapping M′ where the chase procedure can be
used to exchange data. Unfortunately, the notions of inverse that we have introduced in the
previous sections, express inverses in some mapping languages which include features that
are difficult to use in practice. The most important of those issues is the use of disjunctions
in the conclusion of the mapping rules.

To provide a solution for the aforementioned issue, Arenas et. al [6] introduce a query-
language based notion of inverse called C-maximum recovery, with C a class of queries. The
idea is that when one focuses on particular query languages one can obtain inverses with
better properties regarding the languages needed to specify these inverses. In particular,
Arenas et al. [6] proved that when one focuses on conjunctive queries, one can obtain inverses
that can be expressed in a chaseable language.

The main intuition behind the notion proposed by Arenas et al. [6] is to use queries
to measure the amount of information that a mapping M′ can recover with respect to a
mappingM. LetM be a mapping from S to T,M′ a mapping from T to S. Notice that
M◦M′ is a mapping that goes from S to T and then to S again. Thus one can measure
the amount of information recovered byM′ by using queries over S. Let Q be a query over
S, then we say thatM′ recovers sound information w.r.t. Q underM if for every instance
I it holds that

certainM◦M′(Q, I) ⊆ Q(I).
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Thus, by posing the query Q over the space of solutions for I underM◦M′, one can only
obtain tuples that are already in the evaluation of Q over the original instance I. This
notion can be generalized to a class C of queries, which gives rise to the notion of C-recovery.

I Definition 42 ([6]). LetM be a mapping from S to T,M′ a mappings from T to S, and
C a class of queries over S. Then M′ is a C-recovery of M if for every query Q ∈ C and
every source instance I it holds that

certainM◦M′(Q, I) ⊆ Q(I).

As for the definition of maximum recovery, one can compare different C-recoveries. Let
M′ and M′′ be C-recoveries of M, and suppose that for every query Q ∈ C and source
instance I, it holds that

certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I) ⊆ Q(I).

Clearly, the mappingM′ is better thanM′′ to recover information w.r.t. queries in C, since
certainM◦M′(Q, I) is closer to Q(I) than certainM◦M′′(Q, I). This discussion naturally
gives rise to the notion of C-maximum recovery.

I Definition 43 ([6]). Let M be a mapping from S to T, and C a class of queries over S.
ThenM′ is a C-maximum recovery ofM if
1. M′ is a C-recovery ofM, and
2. for every C-recoveryM′′ ofM, it holds that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I).

Before stating some general results regarding C-maximum recoveries and the relationship
with the notions presented in the previous sections, let us show some examples on what is the
influence of the class C of queries in the notion of C-maximum recovery. Before presenting
the example, we note that if M′ is a maximum recovery of M, then M′ is a C-maximum
recovery ofM for every class C of queries [8]. This is not difficult to show given the set of
tools for maximum recoveries proposed by Arenas et al. [11] (see [34, 8] for details on the
relationship between maximum recoveries and C-maximum recoveries).

I Example 44. LetM be specified by these two st-tgds:

A(x, y) → R(x, y), B(x) → R(x, x).

It can be shown that mappingM1 specified by dependency:

R(x, y) → A(x, y) ∨
(
B(x) ∧ x = y

)
is a UCQ-maximum recovery ofM (in factM1 is a maximum recovery ofM). To specify
M1, we have used a disjunction in the conclusion of the dependency. This disjunction is
unavoidable if we use UCQ to retrieve information [8]. On the other hand, if we focus on
CQ to retrieve information, then, intuitively, there is no need for disjunctions in the right-
hand side of the rules as conjunctive queries cannot extract disjunctive information. In fact,
it can be shown that a CQ-maximum recovery ofM is specified by dependency:

R(x, y) ∧ x 6= y → A(x, y). J

The example suggests that the notion of CQ-maximum recovery is a strict generaliza-
tion of the notion of UCQ-maximum recovery. More importantly, it shows that for different
choices of the class of queries used, we obtain different notions of inverses of schema map-
pings. The following results show that one can actually characterize the notions of Fagin-
inverse and quasi-inverse for particular classes of queries. In the theorem we use UCQ 6= to
denote the class of unions of conjunctive queries with inequalities.
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I Theorem 45 ([6, 8]). LetM be a mapping specified by a set of st-tgds.
1. Assume that M has a Fagin-inverse. Then M′ is a Fagin-inverse of M if and only if
M′ is a UCQ6=-maximum recovery ofM.

2. Assume that M has a quasi-inverse. There exists a class CM that depends on M such
thatM′ is a quasi-inverse ofM if and only ifM′ is a CM-maximum recovery ofM.

Arenas et al. [6, 8] provide several tools to work with C-maximum recoveries including
characterizations for the mappings that admit C-maximum recoveries and a general necessary
and sufficient condition for the existence of C-maximum recoveries. We refer the reader
to [34, 8] for a comprehensive study of C-maximum recoveries, and in particular, for a
definition of the class CM used in part 2) of Theorem 45.

The language of CQ-maximum recoveries
Arenas et al. [6] study several properties about C-maximum recoveries when one focuses
on CQ as the class C of queries. In particular, they provide an algorithm to compute
CQ-maximum recoveries for st-tgds showing the following theorem.

I Theorem 46 ([6]). Every mapping specified by a set of st-tgds has a CQ-maximum recov-
ery, which is specified by a set of tgds with inequalities and predicate C(·) in the premises.

Notice that the language needed to express CQ-maximum recoveries of st-tgds has the
same good properties as st-tgds for data exchange. In particular, the language is chaseable
in the sense that the standard chase procedure can be used to obtain a canonical solution.
Thus, compared to the notions of Fagin-inverse, quasi-inverse, and maximum recovery, the
notion of CQ-maximum recovery has two advantages: (1) every mapping specified by st-
tgds has a CQ-maximum recovery (which is not the case for Fagin-inverses and quasi-
inverses), and (2) such a CQ-maximum recovery can be specified in a mapping language with
good properties for data exchange (which is not the case for quasi-inverses and maximum
recoveries).

The algorithm proposed by Arenas et al. [6] to compute CQ-maximum recoveries is based
on the algorithm for computing maximum recoveries reported in the previous section. After
computing a maximum recovery, the algorithm does a post-processing step to eliminate the
disjunctions in the conclusions of the dependencies by using a notion of conjunctive-query
products [6, 34]. Given two conjunctive queries Q1 and Q2, the product query Q1 × Q2 is,
intuitively, the closest conjunctive query to both Q1 and Q2 in terms of homomorphisms.
Let us to introduce some terminology to formalize this notion.

Let Q1 and Q2 be two n-ary conjunctive queries, and assume that x̄ is the tuple of free
variables of Q1 and Q2. The product of Q1 and Q2, denoted by Q1×Q2, is defined as a k-ary
conjunctive query (with k ≤ n) constructed as follows. Let f(·, ·) be a one-to-one function
from pairs of variables to variables such that:
1. f(x, x) = x for every variable x in x̄, and
2. f(y, z) is a fresh variable (mentioned neither in Q1 nor in Q2) in any other case.
Then for every pair of atoms R(y1, . . . , ym) in Q1 and R(z1, . . . , zm) in Q2, the atom
R(f(y1, z1), . . . , f(ym, zm)) is included as a conjunct in the query Q1 × Q2. Furthermore,
the set of free variables of Q1 × Q2 is the set of variables from x̄ that are mentioned in
Q1 ×Q2. For example, consider conjunctive queries:

Q1(x1, x2) : P (x1, x2) ∧R(x1, x1),
Q2(x1, x2) : ∃y (P (x1, y) ∧R(x2, x2)).
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Then we have that Q1 ×Q2 is the conjunctive query:

(Q1 ×Q2)(x1) : ∃z1∃z2 (P (x1, z1) ∧R(z2, z2)).

In this case, we have used a function f such that f(x1, x1) = x1, f(x2, y) = z1, and
f(x1, x2) = z2. As shown in the example, the free variables of Q1 × Q2 do not neces-
sarily coincide with the free variables of Q1 and Q2. The definition of the product of queries
is motivated by the standard notion of Cartesian product of graphs. In fact, if Q1 and Q2
are Boolean queries constructed by using a single binary relation E(·, ·), then the product
Q1 ×Q2 exactly resembles the graph-theoretical Cartesian product [27].

The product of queries is the key ingredient in the algorithm CQ-Max-Recovery pro-
posed by Arenas et al. [6] to compute CQ-maximum recoveries. Given a mappingM spe-
cified by st-tgds, CQ-Max-Recovery first uses algorithm Inverse to compute a maximum
recoveryM′ ofM. Then it eliminates equalities in the conclusions of the dependencies defin-
ingM′ by adding the necessary inequalities in the premises of the dependencies (as outlined
in Example 35). Finally, the algorithm replaces the remaining disjunctions Q1∨Q2∨· · ·∨Qk
in the conclusions of the tgds, by the conjunctive query Q1×Q2×· · ·×Qk. The final output
of CQ-Max-Recovery is a set of tgds with inequalities and predicate C(·) in the premises
(without disjunctions in the conclusions).

I Example 47. Assume that the output of Inverse contains the dependency

A(x, y) ∧C(x) ∧C(y) →
(
P (x, y) ∧R(x, x)

)
∨ ∃z

(
P (x, z) ∧R(y, y)

)
.

Then algorithm CQ-Max-Recovery replaces this dependency by

A(x, y) ∧C(x) ∧C(y) → ∃u∃v
(
P (x, u) ∧R(v, v)

)
,

since ∃u∃v (P (x, u)∧R(v, v)) is the product of P (x, y)∧R(x, x) and ∃z
(
P (x, z)∧R(y, y)

)
. J

Arenas et al. [6] also study the minimality of the language used to express CQ-maximum
recoveries, showing that inequalities and predicate C(·) are both needed to express the CQ-
maximum recoveries of mappings specified by st-tgds. Arenas et al. [8] also show that the
class CQ is optimal to obtain the desired result of a notion of inverse with good properties
for data exchange. In particular, if one uses either CQ6= or UCQ 6= in the definition of C-
maximum recovery, then the language needed to express inverses is no longer chaseable [8].

7 Inversion in the Presence of Null Values in Source Instances

Fagin et al. [22] made the observation that almost all the literature about data exchange
and, in particular, the literature about inverses of schema mappings, assume that source
instances do not contain null values. Most of the results regarding inverses that we have
reported so far are proved for the case of mappings in which the source instances contain
only constant values while target instances may contain constant and null values. Fagin
et al. [22] go a step further and propose new refined notions for inverting mappings that
consider nulls in the source. In particular, they propose the notions of extended inverse,
and of extended recovery and maximum extended recovery. In this section, we review the
definitions of the latter two notions and compare them with the previously proposed notions
of recovery and maximum recovery (for a comprehensive study of the notion of extended
inverse see the work by Fagin et al. [22]).

The first observation to make is that since null values are intended to represent missing
or unknown information, they should not be treated naively as constants [28]. In fact, as
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shown by Fagin et al. [22], if one treats nulls in that way, the existence of a maximum
recovery for mappings given by st-tgds is no longer guaranteed.

I Example 48. Consider a source schema S = {A(·), B(·)} and a target schema T = {S(·)},
and letM be a mapping specified by the st-tgds

A(x) → ∃uS(u)
B(x) → S(x)

From Theorem 24, we know that if source instances only contain constant values, then M
has a maximum recovery. This property holds since, under this assumption, every source
instance I has a witness solution (see Definition 23 and Theorem 24). For example, for the
instance I = {A(1)} the target instance J = {S(n)}, with n a null value, is a witness solution
of I. In fact, if I ′ is any source instance such that J ∈ SolM(I) then SolM(I) ⊆ SolM(I ′).
Assume now that instances of S may contain constant and null values. Then we have that
J is no longer a witness solution of I under M. To see this consider the source instance
I ′ = {B(n)}. Then we have that J ∈ SolM(I ′) but, for example J ′ = {S(2)} is a solution
for I but not for I ′, therefore SolM(I) 6⊆ SolM(I ′), and thus J is not a witness solution of
I. In fact, it can be proved that if source instances may contain null values then I has no
witness solution underM implying thatM has no maximum recovery if null are allowed in
the source. J

Notice that in the above example, nulls in the source are considered as constants when
evaluating the tgds. Since nulls should not be treated naively when exchanging data, Fagin
et al. [22] proposed a new way to deal with null values based on homomorphisms. Recall
that given instances I and I ′ containing constant and null values, a homomorphism from I

to I ′ is a function h that is the identity over constant values, maps nulls to constants or null
values, and is such that if R(a1, . . . , ak) is a fact in I, then R(h(a1), . . . , h(ak)) is a fact in
I ′. Intuitively, in order to treat null values and constants differently, Fagin et al. [22] close
mappings under homomorphisms. This idea is supported by the fact that nulls are intended
to represent unknown data, thus, it should be possible to replace them by arbitrary values.
Formally, the authors introduce the following concept.

I Definition 49 ([22]). LetM be a mapping. The homomorphic extension ofM, denoted
by e(M), is the mapping

e(M) = {(I, J) | there exist I ′, J ′ such that (I ′, J ′) ∈M and there exist
homomorphisms from I to I ′ and from J ′ to J }.

The idea is that for a mapping M that has nulls in source and target instances, one
does not have to consider M but e(M) as the mapping to deal with for exchanging data
and computing mapping operators since e(M) treats nulls in a meaningful way [22]. The
following result shows that with this new semantics one can avoid anomalies as the one
shown in Example 48.

I Theorem 50 ([22]). For every mapping M specified by a set of st-tgds and with nulls in
source and target instances, e(M) has a maximum recovery.

As mentioned above, Fagin et al. [22] go a step further by introducing new notions
of inverse for mappings that consider nulls in the source. More specifically, the authors
introduce the following definitions
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I Definition 51 ([22]). Let M be a mapping from S to T, in which source and target
instances may contain null values. Mapping M′ is an extended recovery of M if (I, I) ∈
e(M) ◦ e(M′), for every instance I of S. Then given an extended recovery M′ of M, the
mapping M′ is a maximum extended recovery of M if for every extended recovery M′′ of
M, it holds that e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′).

At a first glance, one may think that the notions of maximum recovery and maximum
extended recovery are incomparable. Nevertheless, as shown by Arenas et al. [5] there is a
tight connection between these two notions.

I Theorem 52 ([5]). Let M be a mapping that may have nulls values in source and target
instances. ThenM has a maximum extended recovery if and only if e(M) has a maximum
recovery. Moreover, M′ is a maximum extended recovery of M if and only if e(M′) is a
maximum recovery of e(M).

One of the main result of Fagin et al. [22] regarding maximum extended recoveries is
that every mapping specified by st-tgds having nulls in source and target instances has a
maximum extended recovery. This result is implied by Theorems 50 and 52, and we formalize
it in the following theorem.

I Theorem 53 ([22]). Let M be a mapping specified by st-tgds in which source and target
instances may contain null values. ThenM has a maximum extended recovery.

It was left as an open problem to identify what is the exact language needed to express
maximum extended recoveries [22]. In fact, it is even open whether maximum extended
recoveries can be specified if the full power of First-Order logic is allowed to construct
mappings.

8 Conclusions

As many information-system problems involve not only the design and integration of complex
application artifacts, but also their subsequent manipulation, the definition and implement-
ation of some operators for schema mappings has been identified as a fundamental issue to
be solved [12, 13]. Nowadays, the community recognizes the need to develop techniques to
manipulate these mappings’ specifications and, in particular, the inverse of a schema map-
ping has been identified as one of the fundamental operators to be studied in this area. In
this chapter, we have surveyed the main definition for the inverse operator proposed in the
literature and the results that have been obtained in the last years.

One very important and challenging problem is the interplay between the inverse operator
and other schema mapping operators, in particular the composition of schema mappings [33,
19]. Arenas et al. [9] proved that the mapping that results from composing mappings
specified by st-tgds is not always invertible (even considering the relaxed notion of CQ-
maximum recovery). This opens the question on good notions for inversion and composition
of schema mappings, and a language for expressing mappings, suitable to deal with the
interplay between the two operators [5]. A first attempt and a partial solution for this
problem was given in [9].

The definition of the appropriate semantics for the inverse operator has proven to be a
non-trivial task, in which many sensible decisions had to be taken. In fact, the answer to
each of these decisions has given rise to different semantics for the inverse operator. Some
general questions that one might want to answer include whether we want inverses that are
guaranteed to be consistent in a general scenario, or do we settle for relaxed notions that
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allow only answering conjunctive queries (or other restricted classes of queries)? Certainly,
the latter question involves a tradeoff, since the more general operators usually require more
expressive languages, and their computation is more complex.

The spread of new semantics for the schema mappings, either modified semantics for
mappings specified by standard logical specifications over the relational model [32, 22], or
mappings for data models beyond the relational model, such as XML, which need different
mapping specification languages [4, 2, 36], originates several challenges. Under these new
scenarios, previously defined mapping operators have to be re-studied. This shows the
importance of having general notions of inverse that are not tied to a particular schema
mapping semantic, language or data model. Among the notions that we have presented,
only the notion of maximum recovery is defined in a general setting and can be applied
to abstract mappings independent of the mapping specification language, the semantics
used for logical specifications, or the data model used. Nevertheless, there is not yet clear
consensus about which semantics for the inverse operator is the appropriate one in general,
and we think that particular applications would need to use different inverses depending on
their specific needs. We hope the definitions and results presented in this chapter would be
useful to compare the proposals for inverses, their characteristics, and their applicability in
different contexts.
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