
Reasoning about Schema Mappings ∗

Emanuel Sallinger

Vienna University of Technology
sallinger@dbai.tuwien.ac.at

Abstract
Schema mappings are an important tool in several areas of database research. Recently, the
topic of reasoning about schema mappings was given attention, in particular revolving around
the central concepts of equivalence and optimality. In this chapter, we survey these results. First,
we introduce relaxed notions of logical equivalence and show their potential for finding optimized
schema mappings. We then look at applications of these concepts to optimization, normalization,
and schema mapping management, as well as the boundaries of computability. We conclude by
giving a glimpse at reasoning about schema mappings in a broader sense by looking at how to
debug schema mappings.
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1 Introduction

Schema mappings are high-level specifications that describe the relationship between two
database schemas. They are an important tool in several areas of database research, notably
in data exchange [16, 8] and data integration [17, 15]. Over the past years, schema mappings
have been extensively studied.

In this chapter, we will focus on the topic of reasoning about schema mappings. Central
to any reasoning task is the concept of implication, and its close relative, equivalence. Since
schema mappings are usually specified by logical formulas, the natural starting point of
finding equivalence between schema mappings is

logical equivalence: schema mappings that are satisfied by the same database instances
are treated as being equivalent.

So now that we have a notion of equivalence, a natural next step is to use it to optimize schema
mappings. That is, finding out the “best” among all equivalent schema mappings given some
optimality criterion. Fortunately, there are algorithms for computing such optimized forms
for a broad range of optimality criteria, as we will explore in Section 5.

Unfortunately, it turns out that logical equivalence is a quite restrictive concept for
common tasks of data exchange. In particular, we can find two schema mappings where one
is clearly preferred to the other, they both work perfectly well for the given data exchange
task, but they are not logically equivalent. Hence we would not find the better one using
optimization procedures for logical equivalence. This is clearly unsatisfactory.

∗ This work was supported by the Vienna Science and Technology Fund (WWTF), projects ICT08-032
and ICT12-15, and by the Austrian Science Fund (FWF): P25207-N23.

© Emanuel Sallinger;
licensed under Creative Commons License CC-BY

Data Exchange, Integration, and Streams. Dagstuhl Follow-Ups, Volume 5, ISBN 978-3-939897-61-3.
Editors: Phokion G. Kolaitis, Maurizio Lenzerini, and Nicole Schweikardt; pp. 97–127

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol5.10452.97
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-61-3


98 Reasoning about Schema Mappings

To remedy this situation, Fagin, Kolaitis, Nash and Popa in [9] introduced relaxed notions
of equivalence: Notions that are less strict than logical equivalence, and therefore admit
more optimization potential. These are

data-exchange equivalence: schema mappings which behave in the same way for
data-exchange are seen as equivalent, and
conjunctive-query equivalence: schema mappings which behave similarly for answer-
ing conjunctive queries on the target database are treated as equivalent.

Therefore, using these notions, two of the prevalent applications of schema mappings can be
reasoned about. The question remains of course: In which cases are there, hopefully efficient,
algorithms for optimization under these relaxed notions of equivalence? This is a complex
question that depends on the class of schema mappings we are interested in. We will talk
about optimization potential and boundaries of computability in Section 6.

The notions of equivalence discussed up to now were primarily concerned with the two
crucial tasks of data exchange and query answering. But beyond that, the area of schema
mapping management [3, 4] poses quite different challenges: Operators of schema mapping
management allow one to e.g. invert schema mappings or extract the essential parts of
mappings.

The task of finding useful notions of equivalence between schema mappings for the
purposes of schema mapping management was taken on by Arenas, Pérez, Reutter and
Riveros in [1]. There they introduced notions of

equivalence in terms of information transfer: schema mappings, which transfer
the same amount of information are seen as equivalent. This notion has two variants,
transferring source information and covering target information.

We will see that important operators of schema mapping management can be characterized
using these equivalence notions and corresponding order relations in Section 7.

Up to now, we have talked about reasoning about mappings in a very strict sense. In the
broad sense, reasoning about schema mappings covers a number of tasks related to working
with schema mappings. When understanding and designing mappings, questions such as
“What is this schema mapping doing?” and “Why is this schema mapping not doing what is
expected?” are some of the first that are asked. We will give a glimpse at such reasoning
tasks in a broader sense, like analyzing and debugging schema mappings, in Section 8.

1.1 Organization

In Section 2, we will introduce the necessary concepts. The main parts of this chapter are:
Concepts: Where we will introduce notions of equivalence in Section 3 and then continue
to discuss notions of optimality in Section 4.
Applications: Where we will talk about optimization under logical equivalence in
Section 5. After that, we look at the boundaries of computability in Section 6. We will
finish by discussing applications to schema mapping management in Section 7.
Reasoning in the Broad Sense: Where we will look at analyzing and debugging
schema mappings in Section 8.

We finish this chapter with a conclusion and outlook in Section 9.
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2 Preliminaries

In these preliminaries, we will first introduce database schemas and the relationships such as
homomorphisms that may exist between database instances. Building upon that, we will
define schema mappings and solutions to problems concerning schema mappings. After that,
we describe the logical formalisms, called dependencies, on which schema mappings can be
based. We conclude this section by introducing an algorithm called the chase.

2.1 Schemas
A schema R = {R1, . . . , Rn} is a set of relation symbols Ri. Each relation symbol Ri has a
fixed arity. An instance I over a schema R associates a relation RIi to each relation symbol
in R. We call a relation symbol, together with some position an attribute. Sometimes, we
associate a name to such an attribute. If ~v ∈ RIi , we call ~v a tuple of Ri in I and also say
that the atom Ri(~v) is contained in I. Instances in the context of this chapter are always
considered to be finite. If the meaning is clear, we will not distinguish between syntax and
semantics, e.g. relation symbols and relations. For two instances I, J , we write I ⊆ J to say
that the set of atoms contained in I is a subset of the set of atoms contained in J .

The domain of an instance I consists of two types of values, constants and variables. We
write dom(I) for the domain, const(I) for the constants and var(I) for the variables. Variables
are also called labeled nulls or marked nulls. We assume that dom(I) = var(I)∪ const(I) and
var(I) ∩ const(I) = ∅. An instance is called ground, if var(I) = ∅. Instances are considered
ground, unless specifically noted otherwise. In the same way as for instances, we can also
refer to the domain, variables and constants of an atom, and speak of ground atoms. We
usually denote labeled nulls by italic font (x) and constant symbols by sans-serif font (a).

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas with no relation symbols in
common. We write (S, T ) to denote the combined schema {S1, . . . , Sn, T1, . . . , Tm}. If I is
an instance of S and J is an instance of T , then (I, J) denotes the instance of the schema
(S, T ), consisting of the combined relations.

Let I, I ′ be instances. A substitution σ is a function dom(I) → dom(I ′) which replaces
variables by constants or variables, but leaves constants unchanged, i.e., for all c ∈ const(I)
it holds that σ(c) = c. We write σ = [x1 7→ a1, . . . , xn 7→ an] if σ maps xi ∈ var(I) to
ai ∈ dom(I) and for all v ∈ dom(I) not in {x1, . . . , xn}, σ(v) = v.

A homomorphism h : I → I ′ is a substitution dom(I) → dom(I ′) (i.e. leaves constants
unchanged) and for all atoms R(~x) it holds that R(~x) ∈ I implies R(h(~x)) ∈ I ′. If there
exists such an h, we write I → I ′. We say that I and I ′ are homomorphically equivalent,
denoted I ↔ J , iff I → I ′ and I ′ → I. If I → I ′ but not in the other direction, I is called
more general than I ′, and I ′ is called more specific than I.

A homomorphism h : I → I ′ is called an isomorphism, iff h−1 is defined, and is a
homomorphism from I ′ to I. If such an isomorphism exists, we write I ∼= I ′ and say that
I and I ′ are isomorphic. A homomorphism h : I → I is called an endomorphism. An
endomorphism is proper if it reduces the domain, that is, it is a surjective function (i.e. onto).

An instance I∗ ⊆ I is called a core of I , if I → I∗ and I∗ cannot be reduced by a proper
endomorphism. That is, there is no I ′ ⊂ I∗ such that I → I ′. Cores have several important
properties. The core is unique up to isomorphism, i.e. if I ′ and I ′′ are cores of I, then
I ′ ∼= I ′′. Therefore, we may talk about the core of I and refer to it as core(I). Furthermore,
for instances I and I ′ it holds that I ↔ I ′ iff core(I) ∼= core(I ′).

Chapte r 04
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2.2 Schema mappings
We now introduce schema mappings, which specify the relationship between schemas. Based
on the data-exchange problem, we will then explore specific instances called solutions, universal
solutions and the core of the universal solutions. These are three of the key notions for
working with schema mappings.

A schema mappingM = (S, T,Σ) is given by a source schema S, a target schema T , and
a set Σ of dependencies over S and T in some logical formalism. An instance (I, J) ofM
is an instance of the schema (S, T ), for which (I, J) |= Σ holds. The instance I is called
the source instance and is usually ground, whereas J is called the target instance and may
contain variables. If the source schema S and the target schema T are clear, or the specific
schema is not of primary interest, we will identify a schema mappingM = (S, T,Σ) with the
set Σ of dependencies. We sometimes refer to schema mappings just as mappings.

A target instance J is called a solution for I underM if (I, J) |= Σ. The set of all solutions
for I underM is denoted by Sol(I,M).

Let M = (S, T,Σ) be a schema mapping and I a source instance. A target instance
J is a universal solution for I under M iff it is a solution for I under M and for all
J ′ ∈ Sol(I,M) we have that J → J ′. The set of all universal solutions is denoted by
UnivSol(I,M). An important property of universal solutions is that if J and J ′ are universal
solutions for a source instance I underM, they are homomorphically equivalent, i.e. J ↔ J ′.
Therefore the cores of J and J ′ are isomorphic, that is core(J) ∼= core(J ′) (cf. [10]).

The core of the universal solutions core(I,M) is given by core(I,M) = core(J) for
any J ∈ UnivSol(I,M). Any universal solution J can be taken for computing the core, since
the core of homomorphically equivalent instances is unique up to isomorphism. Note that the
core of the universal solutions core(I,M) need not necessarily be a solution for I underM.

2.3 Dependencies
Here we will focus on the logical formalisms called dependencies on which schema mappings
are based. We will first define embedded dependencies and the important subtypes tuple-
generating dependencies and equality-generating dependencies. These are all based on
first-order logic. So after that, we will cover second-order dependencies. We conclude this
section by a discussion of conjunctive queries.
An embedded dependency over a schema R is a first-order formula of the form

∀~x (ϕ(~x)→ ∃~y ψ(~x, ~y))

where ϕ is a conjunction of atoms over R called the antecedent and ψ is a conjunction of
atoms over R and equalities called the conclusion. Furthermore, ϕ contains at least one
atom, and each x ∈ ~x occurs at least once in ϕ.

The following notational convention will be adopted to save some space and ease reading.
For dependencies, we will mostly omit universal quantifiers. All variables occurring in the
antecedent are implicitly universally quantified. We will sometimes also omit existential
quantifiers. All variables occurring just in conclusions are implicitly existentially quantified.
Therefore, for the dependency ∀~x (ϕ(~x)→ ∃~y ψ(~x, ~y)), we may write ϕ(~x)→ ψ(~x, ~y).
A tuple-generating dependency (tgd) is an embedded dependency of the form

∀~x (ϕ(~x)→ ∃~y ψ(~x, ~y))
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over a schema R where both ϕ and ψ are conjunctions of atoms over R. Tuple-generating
dependencies can be viewed as generalizations of inclusion dependencies, in particular in the
form of foreign-key constraints. However, tgds cannot express key constraints.
An equality-generating dependency (egd) is an embedded dependency of the form

∀~x (ϕ(~x)→ xi = xj)

over a schema R where xi and xj are contained in ~x. Equality-generating dependencies
generalize functional dependencies. These are in particular used to express key constraints.
For a schema mappingM = (S, T,Σ), an embedded dependency φ(~x)→ ψ(~x, ~y) is called a
source-to-target dependency (s-t dependency) if ϕ is defined over S and ψ over T . It is
called a target dependency if both ϕ and ψ are defined over the T and called a source
dependency if both are defined over S.

A second-order tgd (SO tgd) over source schema S and target schema T has the form

∃~f (τ1 ∧ . . . ∧ τn) where each τi has the form ∀~x (ϕ(~x) ∧ χ(~x)→ ψ(~x))

in which ϕ is conjunctions of atoms over S, ψ is a conjunction of atoms over T and χ is
a conjunction of equalities. As values, atoms and equalities may contain function terms
based on ~f . That is, second-order tgds extend the notion of (first-order) s-t tgds by allowing
existential quantification over function symbols. All variables from each ~x have to be safe. A
variable is safe, if it occurs in the relational atoms of ϕi or is derived through equations or
function applications from safe variables. Formal details can be found in [11].

By definition, it is clear that SO tgds are closed under conjunctions. A set of SO tgds
can therefore be identified with a single SO tgd. The most important property of SO tgds is
that they are also closed under composition [11].

Conjunctive queries. We conclude this section about logical formalisms by introducing
conjunctive queries. They are important for one of the relaxed notions of equivalence that
we are going to introduce.

A (Boolean) conjunctive query q over a schema R is a logical formula that has the
form ∃~x (A1 ∧ . . . ∧ An) where each Ai is an atom over relation symbols from R, and all
variables occurring in q are from ~x.

The certain answers to a (Boolean) conjunctive query q over T on a source instance I
under a schema mappingM, assuming that Sol(I,M) 6= ∅ are given as follows:

cert(q, I,M) =
⋂
J∈Sol(I,M) q(J)

The certain answers to a (Boolean) conjunctive query q on I underM can be obtained directly
from a universal solution [8], that is J ∈ UnivSol(I,M) implies cert(q, I,M) = ground(q(J))
where ground(q(j)) denotes the ground atoms of q(j), i.e., the atoms not containing variables.
This concept can be naturally generalized to non-Boolean conjunctive queries.

2.4 The chase
The chase procedure [2] is an algorithm that computes universal solutions for a variety of
schema mappings based on different dependency formalisms [8]. For a schema mapping
M = (S, T,Σ) based on (finite sets of) s-t tgds, target tgds and egds, and SO tgds, the
following holds: Given a source instance I, the chase procedure returns a universal solution J
for I underM, if it terminates and a universal solution exists. This J is called the canonical
universal solution for I underM and written as chase(I,M).

Chapte r 04
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The chase procedure computes a universal solution by a series of chase steps, based on a
source instance and an initially empty target instance. In every step, a single dependency
or multiple dependencies that are violated (i.e. not satisfied) by the current source and
target instance are applied by adding further tuples to the target instance to fulfill those
dependencies. We then say that these dependencies fire.

In the presence of target tgds, the chase does not always terminate. A sufficient condition
for termination is that the set of target tgds is weakly acyclic. Intuitively, this criterion
describes that the target tgds may not enter cycles which create new labeled nulls at each
pass through the cycle. We refer to [19] and [8] for detailed definitions and further pointers.

We will use three variants of the chase in this chapter. They are in general based on s-t tgds,
target tgds and target egds:

the standard chase: in which for each step, one dependency that is violated is applied
the parallel chase: in which for each step, all dependencies that are violated are applied
the SO tgd chase: which is the chase procedure for SO tgds

More details and formal definitions of different variants of the chase procedure can be found
in Chapter 1 of this book dedicated to the chase procedure.

2.5 Summary

This section introduced the most important preliminaries for the remainder of this chapter.
A brief summary can be found in Figure 1.

A schema mappingM = (S, T,Σ) is given by
a source schema S
a target schema T
a set Σ of dependencies over S and T in some logical formalism

Important dependency formalisms are
tuple-generating dependencies (tgds)
∀~x (ϕ(~x)→ ∃~y ψ(~x, ~y))

equality-generating dependencies (egds)
∀~x (ϕ(~x)→ xi = xj)

second-order tgds (SO tgds)
∃~f (τ1 ∧ . . . ∧ τn) where each τi has the form
∀~x (ϕ(~x) ∧ χ(~x)→ ψ(~x)) and χ is a conjunction of equalities

Figure 1 Schema mappings and dependencies (short summary).

3 Equivalence

In this first part on concepts, we will introduce the central notions of equivalence (this section)
and optimality (next section) for schema mappings. We therefore start by covering the
fundamental notions of equivalence we can use to compare schema mappings. We first treat

logical equivalence between schema mappings, which equates schema mappings that
are satisfied by the same instances.
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Building upon that, we look at relaxed notions of equivalence introduced by Fagin et al. [9].
These notions characterize schema mappings that are not necessarily logically equivalent,
but nevertheless indistinguishable for a variety of purposes. The first such relaxation is

data-exchange equivalence (DE-equivalence), which equates schema mappings that
exhibit the same behavior for data exchange. After that, we discuss
conjunctive-query equivalence (CQ-equivalence), which equates schema mappings
that yield the same certain answers to conjunctive queries.

If we need to compare schema mappings which differ e.g. in their target schemas, the amount
of source information transferred becomes important, independently of how exactly this
information is represented in the target instance [1]. This gives rise to

equivalence w.r.t. source information transferred (S-equivalence). The corres-
ponding notion for differing source schemas is
equivalence w.r.t. target information covered (T-equivalence) based on the amount
of target information that can be reconstructed by the schema mappings.

3.1 Notions of equivalence
We will now motivate and define these notions of equivalence. We will always start with an
example, seeing why the respective notion naturally arises, and after that formally define
that notion. Let us start by looking at such an example.

I Example 1. Over the source schema S = {P} and target schema T = {Q}, let the schema
mappingM = (S, T,Σ) be given by the following dependency:

P (x, y) ∧ P (z, y)→ Q(x, y)

This tgd is very similar to a simple copy tgd from relation P to Q. However, the additional
conjunct P (z, y) in the antecedent seems superfluous. Indeed, since the variable z does not
occur anywhere else in the dependency, and P (z, y) is satisfied whenever P (x, y) is satisfied,
it is easy to see that the conjunct could just be left out.

To be more precise, the schema mappingM and the schema mappingM′ = (S, T,Σ′)
given by the dependency

P (x, y)→ Q(x, y)
are satisfied by exactly the same pairs of instances. J

In the previous example, we saw logical equivalence at work. This is the most natural notion
to start with for reasoning about schema mappings, since our schema mappings are based on
dependencies given in a logical formalism.

I Definition 2. LetM = (S, T,Σ) andM′ = (S, T,Σ′) be two schema mappings. M and
M′ are logically equivalent if for every source instance I and every target instance J ,

(I, J) |= Σ⇔ (I, J) |= Σ′

We denote logical equivalence byM≡log M′. J

To avoid confusion, we do not use ≡ without subscript in this chapter. The following
formalization in terms of solutions for I underM characterizes the same notion. Two schema
mappingsM andM′ are logically equivalent, if for every source instance I, it holds that

Sol(I,M) = Sol(I,M′)

This characterization follows immediately from the definition of solutions. The use of data
exchange terminology for describing logical equivalence will be beneficial as we go on.

Chapte r 04
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I Example 3. Over the source schema S = {P} and target schema T = {Q,R}, let the
schema mappingM = (S, T,Σ) be given by the following dependencies:

P (x, y)→ Q(x, y)
R(x, y)→ R(x, x)

Let us look at the result of data exchange under this schema mapping. We consider the source
instance I = {P (a, b)} and compute the chase result J = chase(I,M) = {Q(a, b)}. During
this chase, the second dependency never fires. Even more striking, there is no universal
solution for any I underM which ever materializes a tuple of R.

So, for the purposes of data exchange which is usually concerned with universal solutions,
we would like to simplifyM into the schema mappingM′ = (S, T,Σ′) given by the dependency

P (x, y)→ Q(x, y)

Unfortunately,M andM′ are not logically equivalent, they do not have the same solutions
for every source instance. Consider, for the source instance I = {P (a, b)}, the solution
J = {Q(a, b), R(a, b)}. This clearly violatesM, since the tuple R(a, a) would be required by
the second dependency.

But, as we have seen before, for the purposes of data exchange, the schema mappings
are “just as good”. To be more precise, the schema mappingsM andM′ have the same
universal solutions for all source instances. J

The previous example motivates the introduction of the first relaxed notion of equivalence
introduced by Fagin et al. [9], data-exchange equivalence (DE-equivalence), which does not
distinguish schema mappings which behave in the same way for the purposes of data exchange,
or more formally:

I Definition 4. [9] LetM = (S, T,Σ) andM′ = (S, T,Σ′) be two mappings. M andM′
are data-exchange equivalent, if for every source instance I,

UnivSol(I,M) = UnivSol(I,M′)

We denote data-exchange equivalence byM≡DE M′. J

Since for logical equivalence all solutions coincide, and for data-exchange equivalence the
universal solutions coincide, it is clear that from M ≡log M′, it follows that M ≡DE M′
for all schema mappings. With that, it is appropriate to talk about a relaxation of logical
equivalence. Also, in Example 3, we have already seen that this relaxation is proper (i.e.
both notions are distinct) for schema mappings based on s-t tgds and target tgds.

I Example 5. Over the source schema S = {P} and target schema T = {Q}, let the schema
mappingM = (S, T,Σ) be given by the following dependencies:

P (x, y)→ Q(x, x)
Q(x, y)→ Q(x, x)

Now, compared to the previous example, the source-to-target dependency is not anymore a
simple copy tgd, and the relation symbol occurring in the target dependency actually also
occurs in the source-to-target one. Can we, as in the previous example, simply remove the
second dependency, gaining the schema mappingM′ = (S, T,Σ′) given by

P (x, y)→ Q(x, y)
while still upholding data-exchange equivalence? It is now a bit more subtle to see why
M and M′ do not have the same universal solutions. The more so as for the source
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instance I = {P (a, b)}, both schema mappings have the same canonical universal solution
J = chase(I,M) = chase(I,M′) = {Q(a, a)}.

But now consider J ′ = {Q(a, a), Q(u, v)} where u and v are variables. It is clear that J ′
is still a universal solution underM′, since it is a solution underM′, and J ′ maps to the
universal solution J through the homomorphism [u 7→ a, v 7→ a]. Yet to satisfy M, since
u 6= v, it would require the atom Q(u, u) to be present. So J ′ is not a universal solution for
I underM.

This state of affairs is clearly unsatisfactory if we look at a conjunctive query like
∃x, y Q(x, y). If we want the certain answer to this query, a “strange” universal solution like
J ′ will not affect the result. The tuple Q(u, v) from J ′ will not be contained in the certain
answers, since it is not contained in J . Indeed, M and M′ will yield the same certain
answers to conjunctive queries. J

This example directly leads us to conjunctive-query equivalence (CQ-equivalence). It is based
on the behavior of conjunctive queries, posed against the solutions of a schema mapping.

I Definition 6. [9] Let M = (S, T,Σ) and M′ = (S, T,Σ′) be two schema mappings. M
andM′ are conjunctive-query equivalent, if for every source instance I and every conjunctive
query q, either Sol(I,M) = Sol(I,M′) = ∅ or

cert(q, I,M) = cert(q, I,M′)

We denote conjunctive-query equivalence byM≡CQ M′. J

By this definition, there can be two reasons for schema mappings to be CQ-equivalent. The
first is that both schema mappings could have no solutions at all. In this case, we say that
the schema mappings are CQ-equivalent. The other case is of course that there are solutions
to both schema mappings, and the certain answers to queries against them coincide.

The original definition of CQ-equivalence given above is based on the certain answers to
conjunctive queries. However, an alternative characterization is possible:

I Proposition 7. [9] LetM = (S, T,Σ) andM′ = (S, T,Σ′) be two schema mappings such
that the following holds.

Sol(I,M) 6= ∅ implies UnivSol(I,M) 6= ∅

M andM′ are conjunctive-query equivalent, if for every source instance I, either Sol(I,M) =
Sol(I,M′) = ∅ or

core(I,M) = core(I,M′) J

A few points are of interest now. The first crucial question is for which classes of schema
mappings it holds that Sol(I,M) 6= ∅ implies UnivSol(I,M) 6= ∅. That is, for which kinds
of schema mappings is there always a universal solution whenever any solution exists. In
[9], it is shown that a sufficient condition is to have schema mappings defined by s-t tgds,
target egds, target tgds that have a terminating chase, as well as to SO tgds. In particular,
leaving out target tgds or requiring the set of target tgds to be weakly acyclic guarantees a
terminating chase and therefore the property that we require.

What is also clear now is that in this case, CQ-equivalence is in fact a relaxation of DE-
equivalence and therefore of logical equivalence. This was not obvious for the characterization
based on conjunctive queries. It is easy to see here though, since the core is based on some
universal solution and by DE-equivalence all universal solutions coincide, so fromM≡DE M′
followsM≡CQ M′.

Chapte r 04
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We have now arrived at a hierarchy of schema-mapping equivalences given by respective
relaxation between logical equivalence, DE-equivalence and CQ-equivalence. This hierarchy
itself holds for all classes of schema mappings. For the most important classes of schema
mappings (where universal solutions exist, given that solutions exist), one can easily see this:
given that all solutions coincide, the universal solutions coincide and from that follows that
the cores of the universal solutions coincide.

I Proposition 8. [9] LetM = (S, T,Σ) andM′ = (S, T,Σ′) be two schema mappings

M≡log M′ ⇒ M≡DE M′ ⇒ M≡CQ M′
J

Also, we have seen in Examples 3 and 5 that this hierarchy is proper for schema mappings
based on s-t tgds and target tgds. Later in this chapter, we will take a more detailed look at
for which classes of schema mappings the hierarchy is proper, and for which it collapses.
We now have at hand two very natural relaxations of logical equivalence. Next we will explore
what happens if we need to reason about schema mappings that have differing source or
target schemas. They were introduced by Arenas et al. in [1].

I Example 9. Over the source schema S = {P} and target schema T = {Q}, let the schema
mappingM = (S, T,Σ) be given by the following dependencies:

P (x, y)→ Q(x, y)

Now consider the slightly altered schema mappingM′ = (S, T ′,Σ′) for T ′ = {R} given by
P (x, y)→ R(x, y, y)

Since the target relations affected by the two schema mappings are different, it is clear that
M andM′ are neither logically, nor DE-, nor CQ-equivalent. But intuitively, these schema
mappings are very similar.

In fact, through a schema mapping N based on Q(x, y)→ R(x, y, y) we can “reconstruct”
M′ fromM in the following sense: The composition ofM and N yieldsM′. In the same
way, we can reconstructM through the composition ofM′ and a schema mapping N ′ based
on R(x, y, y)→ Q(x, y).
In this way, we see that both schema mappings transfer the same amount of source
information, in the sense that they are able to reconstruct the result of the other. J

I Definition 10. [1] LetM = (S, T,Σ) andM′ = (S, T ′,Σ′) be two schema mappings. M′
transfers at least as much source information asM, writtenM �S M′, iff there exists a
schema mapping N from T to T ′ s.t.

M◦N ≡log M′

We say that M and M′ are equivalent w.r.t. the source information transferred, written
M≡S M′, iffM�S M′ andM′ �S M. J

Given that we talked about schema mappings with differing target schemas, it is natural to
ask about differing source schemas. The following definition mirrors the above one:

I Definition 11. [1] LetM = (S, T,Σ) andM′ = (S′, T,Σ′) be two schema mappings. M′
covers at least as much target information asM, writtenM�T M′, iff there exists a schema
mapping N from S to S′ s.t.

N ◦M ≡log M′

We say thatM andM′ are equivalent w.r.t. the target information covered, writtenM≡T M′,
iffM�T M′ andM′ �T M. J

Note that while the names of the ordering relations are given in this way in [1], the corres-
ponding equivalence relations are originally used without reference to a specific name.



E. Sallinger 107

3.2 Summary

In this section, we introduced notions of equivalence for schema mappings and showed
through examples how they naturally arise when working with schema mappings.

We started with logical equivalence and then introduced relaxed notions of equivalence:
notions of equivalence which do not distinguish between mappings which behave the same for
a given purpose. We discussed data-exchange equivalence and conjunctive-query equivalence.
After that, we looked at two notions of equivalence in terms of information transfer.

In total, for schema mappings where the existence of solutions implies the existence of
universal solutions, the definitions are for reference summarized in Figure 2.

Two schema mappingsM andM′ are
logically equivalent (≡log)

iff for all I we have Sol(I,M) = Sol(I,M′)
data-exchange equivalent (≡DE)

iff for all I we have UnivSol(I,M) = UnivSol(I,M′)
conjunctive-query equivalent (≡CQ)

iff∗ for all I we have core(I,M) = core(I,M′)
equivalent w.r.t. source information transferred (≡S)

iff there exist N ,N ′ s.t. M◦N ≡log M′ andM′ ◦ N ′ ≡log M
equivalent w.r.t. target information covered (≡T)

iff there exist N ,N ′ s.t. N ◦M ≡log M′ and N ′ ◦M′ ≡log M

Figure 2 Notions of equivalence (∗assuming universal solutions exist in case solutions exist).

4 Optimality

Given that we can reason about schema mappings that are equivalent according to a variety
of notions as introduced in the previous section, there is a natural next task at hand: Finding
a schema mapping that is “best” among those equivalent mappings.

In this section, we therefore discuss a number of optimality criteria. Mostly, we will talk
about notions of “minimality” or “redundancy”. These give rise to decision problems, i.e.
identifying if a given schema mapping is minimal or non-redundant among equivalent schema
mappings. They of course also induce optimization problems in the sense of actually finding
such minimal or non-redundant schema mappings.

This section starts with the most basic optimality criteria, like subset- and cardinality-
minimality. There, our main concern will be understanding how they affect schema mappings.
But there are also quite intricate optimality criteria that we will talk about.

We thus start with some of the most basic optimality criteria (formal definitions follow later):
σ-redundancy: By that we mean detecting if some specific dependency σ is redundant,
i.e. could be left out while still yielding an equivalent schema mapping. Closely related is
subset-minimality: That is, finding a minimal subset of dependencies. In other words,
that set should contain no dependency that is redundant. A natural next step is
cardinality-minimality: Finding a schema mapping that uses the minimum number of
dependencies possible.
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The previous three notions were concerned with schema mappings at the level of dependencies,
but did not look inside of those dependencies. In [14], further criteria were presented that are
concerned with internal characteristics of the given dependencies. There is, given in slightly
generalized form:

antecedent-minimality: It is concerned with the total number of atoms in antecedents.
Together with cardinality-minimality, this aims at reducing the computational cost of the
joins computed by the chase. The complementary notion is
conclusion-minimality: Minimizing the total number of atoms in the conclusions.
Besides the number of atoms, we can also consider
variable-minimality: It is based on minimizing the total number of existentially quan-
tified variables. This is of course related to the number of labeled nulls introduced during
the chase.

The previously mentioned optimality criteria were all syntactically defined, which is important
for the computational cost of the chase or similar procedures. Still, there are interesting
semantic optimality criteria that are not based on the dependencies, but on the mapping seen
as a binary relation between source and target instances. The following semantic criteria
were introduced in [1] w.r.t. specific notions of equivalence:

target-redundancy: Is there an equivalent schema mapping that “uses fewer target
instances” (in the sense that the range of the optimized schema mapping is a subset of
the range of the original one). The complementary notions is
source-redundancy: Is there an equivalent schema mapping with a subset of source
instances. We will give formal definitions of all notions later in this section.

For all of the criteria, two things need to be fixed: First, what is the notion of equivalence
we are talking about? Secondly, what is the class of schema mappings that we allow for
the desired optimized mapping? The interplay between notions of optimality, notions of
equivalence and desired classes of schema mappings will turn out to be interesting.

4.1 Notions of optimality
We will now motivate and define these notions of optimality. Like in the previous section, we
will always start with an example, seeing why the respective notion naturally arises, and
after that formally define that notion. Let us start by looking at such an example.

I Example 12. Consider the schema mappingM given by the following dependencies:
P (x, y)→ Q(x, y) (σ1)
P (x, x)→ Q(x, x) (σ2)
P (x, y)→ R(y) (σ3)
P (u, v)→ R(v) (σ4)

Looking at dependency σ2, it is clear that whenever a tuple is produced through σ2, the
same tuple is also produced by σ1. That is, σ2 is clearly redundant in M (w.r.t. logical
equivalence). J

I Definition 13. LetM = (S, T,Σ) be a schema mapping and σ ∈ Σ. We say thatM is
σ-redundant w.r.t. e-equivalence, iff Σ \ {σ} ≡e Σ . J

I Example 12 (ctd). We have seen thatM is σ2-redundant, and we can remove it while
retaining logical equivalence. It is also easy to see that M is both σ3 and σ4-redundant,
since they are isomorphic “copies” of each other. Still, simply removing all σ-redundant
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dependencies will not yield a logically equivalent schema mapping: either σ3 or σ4 needs to
be retained. Thus, the following schema mappingM′ given by Σ′ as

P (x, y)→ Q(x, y) (σ1)
P (x, y)→ R(y) (σ3)

is a minimal subset of Σ s.t. M≡log M′. J

I Definition 14. Let M = (S, T,Σ) be a schema mapping and σ ∈ Σ. We say that M
is subset-minimal w.r.t. e-equivalence, iff there is no schema mappingM′ = (S, T,Σ′) s.t.
Σ′ ⊂ Σ andM≡eM′. J

I Example 12 (ctd). Somehow, the schema mappingM′ is still not completely satisfactory
regarding the number of dependencies. If we talk about subsets,M′ is clearly the best we
can do, but if we allow arbitrary dependencies, we can defineM′′ based on

P (x, y)→ Q(x, y) ∧R(y) (σ5)

This clearly has the minimum cardinality among all logically equivalent schema mappings. J

In the previous example, we have seen that M′′, is cardinality minimal among schema
mappings based on arbitrary dependencies. If we only look at schema mappings based on
GAV dependencies (which restrict tgds by allowing only a single atom in the conclusion), we
see thatM′ is cardinality minimal. This motivates the following definition relative to the
class of schema mappings:

I Definition 15. LetM = (S, T,Σ) be a schema mapping and C a class of schema mappings.
We say thatM is cardinality-minimal w.r.t. e-equivalence among C-schema mappings, iff
there is no mappingM′ = (S′, T ′,Σ′) in C s.t. |Σ′| < |Σ| andM≡eM′. J

Up to now, we have looked only at the dependencies themselves. We will now look inside of
them to find additional ways to optimize these schema mappings:

I Example 16. Consider the schema mappingM given by the following dependency:
P (x, y) ∧ P (u, v)→ Q(x, y)

It is clear that we could just as well leave out the atom P (u, v) in the antecedent, thus
getting the schema mappingM′ based on

P (x, y)→ Q(x, y)
which has the minimum total number of atoms in the antecedent (based on all schema
mappings that are logically equivalent). J

This motivates the following definition. Note that we are talking about the total number of
atoms over all dependencies here, not the maximum number over all dependencies.

I Definition 17. [14] LetM = (S, T,Σ) be a schema mapping and C a class of sch. mappings.
We say thatM is antecedent-minimal w.r.t. e-equivalence among C-schema mappings, iff
there is no mapping M′ = (S′, T ′,Σ′) in C s.t. AntSize(Σ′) < AntSize(Σ) and M ≡e M′,
where AntSize denotes the total number of atoms in antecedents. J

I Example 18. Consider the schema mappingM given by the following dependency:
P (x, y)→ ∃z(Q(x, y) ∧Q(x, z))

There are two dimensions in the conclusion that we can measure: the number of atoms, and
the number of existential variables that we use. The following mappingM′

P (x, y)→ Q(x, y)
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uses both the minimum total number of atoms in the conclusion, as well as the minimum
total number of existentially quantified variables. J

I Definition 19. [14] LetM = (S, T,Σ) be a schema mapping and C a class of sch. mappings:
M is conclusion-minimal w.r.t. e-equivalence among C-schema mappings, iff there is no
schema mapping M′ = (S′, T ′,Σ′) in C s.t. ConSize(Σ′) < ConSize(Σ) and M ≡e M′,
where ConSize denotes the total number of atoms in conclusions.
M is variable-minimal w.r.t. e-equivalence among C-schema mappings, iff there is no
schema mapping M′ = (S′, T ′,Σ′) in C s.t. VarSize(Σ′) < VarSize(Σ) and M ≡e M′,
where VarSize denotes the total number of existentially quantified variables. J

We can now talk about schema mappings based on their dependencies opaquely, and we can
look inside of those dependencies based on the number of atoms and existentially quantified
variables. For many tasks in data exchange and data integration, above all for the chase
procedure, it can be argued that it is desirable to find schema mappings which are minimal
under some, if not all of those criteria.

Still there is another, semantical, point of view in which such a schema mapping can still
be redundant, and it will have important applications later on:

I Example 20. Consider the schema mappingM given by the dependency:
P (x, y)→ Q(x, x)

Intuitively, this schema mapping “wastes space” compared to a schema mapping based on
e.g. P (x, y)→ R(x) by storing each source value x twice in the target.

In a more precise way, M is redundant in the following sense: Given source instance
I = {P (a, b)}, the canonical universal solution is J = {Q(a, a))}. But there is also another
possible solution J ′ = {Q(a, a)), Q(a, b))} with J ⊂ J ′. And indeed, we can find another
schema mappingM′ which has J as a solution, but not J ′:

P (x, y)→ Q(x, x)
Q(x, y)→ x = y

ClearlyM≡S M′, that is, they transfer the same amount of source information (incidentally,
they are also CQ-equivalent). In total, we have two mappingsM andM′, both are equivalent
w.r.t. source information transferred, but one has a strict subset of solutions for I. J

I Definition 21. LetM = (S, T,Σ) be a schema mapping and C a class of schema mappings.
M is target-redundant w.r.t. e-equivalence among C schema mappings, iff there is a target
instance J ′ ∈ {J | (I, J) ∈M} s.t. forM′ = {(I, J) ∈M | J 6= J ′} holdsM≡eM′. J

The preceding definition was originally given in [1] w.r.t. S-equivalence. As we will later see,
this is also the way it is commonly used and if no other notion of equivalence is explicitly
mentioned, we assume this notion as default.

As an important remark, note that this definition does not necessarily talk about schema
mappings “wasting space” inside the target instances. In particular, both schema mappings
M andM′ in the previous example store the value x twice in the target. So in this sense,
they both waste space, even though one is target redundant and the other is not (w.r.t.
S-equivalence among all schema mappings). The point is thatM wastes target instances,
since a subset of those would suffice.

Let us conclude this section by defining the natural counterpart to target-redundancy:
source-redundancy. It is commonly used w.r.t. T-equivalence.

I Definition 22. LetM = (S, T,Σ) be a schema mapping and C a class of schema mappings.
M is source-redundant w.r.t. e-equivalence among C schema mappings, iff there is a source
instance I ′ ∈ {I | (I, J) ∈M} s.t. forM′ = {(I, J) ∈M | I 6= I ′} holdsM≡eM′. J
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4.2 Summary
We now have means to talk about non-redundant and minimal schema mappings in a
variety of manners: We can have schema mappings that are non-redundant in their syntactic
representation (dependencies, atoms, variables) and their semantic extension (source- and
target instances). For reference, we informally summarize the definitions in Figure 3.

The following criteria are given w.r.t. a notion of equivalence and a class of mappings:

σ-redundant: a specific dependency σ could be left out
subset-minimal: no dependency could be left out
cardinality-minimal: the number of dependencies is minimal

antecedent-minimal: the total number of atoms in antecedents is minimal
conclusion-minimal: the total number of atoms in conclusions is minimal
variable-minimal the total number of existentially quantified variables is minimal

target-redundant: a target instance could be left out
source-redundant: a source instance could be left out

All criteria are usually w.r.t. logical equivalence, the exceptions are that usually
target-redundancy is w.r.t. S-equivalence, source-redundancy w.r.t. T-equivalence.

Figure 3 Notions of optimality for a schema mapping (informal summary).

5 Normalization and optimization for logical equivalence

In the previous sections, our main goal was to develop the relevant notions of equivalence
and optimality for reasoning about schema mappings. What was left open was how to use
these notions for actual reasoning, that is, the question of algorithms and complexity.

In this section, we will talk about reasoning under logical equivalence. The major result
we will cover here, presented by Gottlob et al. in [14], is that there is an algorithm which
transforms schema mappings based on s-t tgds into an optimal form in the following sense:

it is a unique normal form (up to variable renaming), and
the mapping is cardinality-, antecedent-, conclusion- and variable-minimal
among all split-reduced schema mappings.

This form can be computed in polynomial time if the length of each dependency is bounded
by a constant. What exactly split-reduced schema mappings are will be our next topic:

5.1 Finding optimal split-reduced schema mappings
Let us see why optimality among all mappings based on s-t tgds is not always desirable:

I Example 23. Over the source schema S = {L} and the target schema T = {C,E}, let the
schema mappingM be given by the following dependencies:

L(x1, x2, x3)→ ∃y C(x1, y) (σ1)
L(x1, x2, x3) ∧ L(x4, x2, x5)→ E(x1, x4) (σ2)

It is easy to see that the antecedents of σ1 is fulfilled whenever the antecedent of σ2 is fulfilled.
Therefore, clearlyM is logically equivalent toM′ based on the following dependency

L(x1, x2, x3) ∧ L(x4, x2, x5)→ ∃y(C(x1, y) ∧ E(x1, x4)) (σ3)
which contains both conclusions in a single dependency.
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Now let us compute the canonical universal solutions to both of these schema mappings for
source instance I = {L(a, b, c), L(d, b, f)} (which is just the antecedent of σ3 with variables
replaced by distinct constants). Let J = chase(I,M) and J ′ = chase(I,M′).

Considering the C-atoms, for J we have C(a, y1) and C(d, y2), since there are two possible
ways to instantiate the antecedent of σ1. But for J ′, since for σ3 there are actually four
possible ways to instantiate the antecedent, we additionally have C(a, y3) and C(d, y4). J

In the preceding example, we saw that, while M′ is the cardinality-, antecedent- and
conclusion-minimal mapping among all schema mappings, this leads to a quadratic blowup
of the size of the canonical universal solution compared toM.

However, σ3 ofM′ has a problematic property: The atoms in the conclusion are actually
not related to each other, they could very well be formulated in separate dependencies. This
was the reason for the quadratic blowup. Therefore the following was defined:

I Definition 24. [14] A schema mapping M = (S, T,Σ) consisting of s-t tgds is split-
reduced, if there is no logically equivalent mapping M′ = (S, T,Σ′) with |Σ| > |Σ′| but
ConSize(Σ) = ConSize(Σ′). J

Let us look at what this definition means: If we can, through “splitting up” a dependency –
thus raising the number of dependencies – still have the same total size of the conclusions,
then some conclusion atoms where not related to each other in a significant way. In other
words, the dependencies are decomposed without raising the total size of the conclusions.
If we find a schema mapping among the class of split-reduced schema mappings that is
minimal according to our chosen criteria, we get both a schema mapping that has good
properties in terms of the dependencies (minimality) and good properties in the solution
produced by the chase (some unnecessary blowup is avoided).

Note that one can view split-reducedness also as a derived optimality criterion like the
ones discussed in the previous section (based on cardinality- and conclusion minimality).
Let us now find, through an example, rules to rewrite a mapping into the optimal form we
promised. For ease of reference, the rewrite rule numbers will match those in [14]:

I Example 25 (based on [14]). Over the source schema S = {L} and T = {P,Q,R}, let the
mapping M be given by the following dependencies. For readability, all variables xi are
universally quantified and all variables yi are existentially quantified. For the same reason,
we use constant a within dependencies (avoidable by e.g. adding A(a) to all antecedents).

L(x1, x2, x3)→ P (x1, y1, a) ∧R(y1, x2, a) ∧R(y1, x2, y2) (σ1)
L(x1, x1, x1)→ P (x1, y1, y2) ∧Q(y2, y3, x1) ∧R(y1, x1, y2) (σ2)
L(x1, x2, x2) ∧ L(x1, x2, x3) → P (x1, y2, y1) ∧ Q(y1, y3, x2) ∧ Q(a, y3, x2) ∧ R(x2, y4, x3) (σ3)

In this state, it is very hard for a human to make much sense out of this schema mapping
without significant analysis. Let us therefore try to simplify it before trying to understand it.

A simple first rewriting is for σ1: The last atom R(y1, x2, y2) is actually a more specific
form of the second one R(y1, x2, a) in the conclusion. Thus we can do the following:

Rule 1: Simplify the conclusion to its core
applied to: L(x1, x2, x3)→ P (x1, y1, a) ∧R(y1, x2, a) ∧R(y1, x2, y2) (σ1)

So through the homomorphism [y2 7→ a], we can drop the last atom arriving at the core of
the conclusion. Before making things easier by dropping further atoms, let us try to split up
the quite long dependency σ3, to get a better overview (and reach a split-reduced form):
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Rule 3: Split the dependency if possible
applied to: L(x1, x2, x2) ∧ L(x1, x2, x3)→ (σ3)

P (x1, y2, y1) ∧Q(y1, y3, x2) ∧Q(a, y3, x2) ∧R(x2, y4, x3)

We see that in the first three atoms of the conclusion, there are existentially quantified
variables y1 to y3 intermingled and in the last one, there is only y4. Indeed, we can split σ4
in this way, yielding two dependencies, one with the conclusion R(x2, y4, x3) and one with
the other three atoms. Let us look at the current state of the schema mapping after having
applied those two rules:

L(x1, x2, x3)→ P (x1, y1, a) ∧R(y1, x2, a) (σ′1)
L(x1, x1, x1)→ P (x1, y1, y2) ∧Q(y2, y3, x1) ∧R(y1, x1, y2) (σ2)
L(x1, x2, x2) ∧ L(x1, x2, x3)→ P (x1, y2, y1) ∧Q(y1, y3, x2) ∧Q(a, y3, x2) (σ′3)
L(x1, x2, x2) ∧ L(x1, x2, x3)→ R(x2, y4, x3) (σ′4)

Now we look a bit further at the new rule σ′3. Following the split, in the antecedent there
occurs variable x3, but it is never used in the conclusion. Therefore we can:

Rule 2: Simplify the antecedent to its core
applied to: L(x1, x2, x2) ∧ L(x1, x2, x3)→ P (x1, y2, y1) ∧Q(y1, y3, x2) ∧Q(a, y3, x2) (σ′3)

Easily, through the homomorphism [x3 7→ x2], we can thereby drop the second atom of the
antecedent.

Let us stay with the conclusion of this dependency. Take the first atom P (x1, y2, y1).
It is clearly not implied by any of the other conclusion atoms, so Rule 1 – simplifying the
conclusion to its core – will not help. But maybe it is produced by another dependency:

Rule 5: Remove atoms from the conclusion, if it they are implied
applied to: L(x1, x2, x2)→ P (x1, y2, y1) ∧Q(y1, y3, x2) ∧Q(a, y3, x2) (σ′′3 )

More formally, by implied, the following is meant: If dependency τ ′ is produced from τ by
removing atoms from the conclusion, then the removed atoms are implied, if (Σ\{τ})∪{τ ′} is
logically equivalent to Σ. Indeed, looking at σ′1, we see that it produces the atom P (x1, y1, a)
under more general antecedents. This clearly implies our first atom P (x1, y2, y1), so we can
drop that. Furthermore, we see that the second conclusion atom Q(y1, y3, x2) is implied by
the last one Q(a, y3, x2) and we can also drop it.

Let us look at the one dependency we did not rewrite up to now, σ2: The first conclusion
atom P (x1, y1, y2) is a more specific case of P (x1, y1, a) from σ′1, and the other atoms are
also not very different from those implied by some dependencies. Let us check whether σ2 is
needed at all:

Rule 4: Remove the following dependency, if it is implied by other dependencies
applied to: L(x1, x1, x1)→ P (x1, y1, y2) ∧Q(y2, y3, x1) ∧R(y1, x1, y2) (σ2)

We see that the last atom R(y1, x1, y2) is implied by R(y1, x2, a) of σ1, and the remaining
one Q(y2, y3, x1) by σ′′′3 . So indeed, we can remove σ2. Our mapping is now given as follows:

L(x1, x2, x3)→ P (x1, y1, a) ∧R(y1, x2, a) (σ′1)
L(x1, x2, x2)→ Q(a, y3, x2) (σ′′′3 )
L(x1, x2, x2) ∧ L(x1, x2, x3)→ R(x2, y4, x3) (σ′4)

It can be checked that this mapping is now minimal according to our optimality criteria. J

Chapte r 04



114 Reasoning about Schema Mappings

1. Simplify the conclusion to its core
2. Simplify the antecedent to its core
3. Split the dependency if possible
4. Remove the dependency, if it is implied by other dependencies
5. Remove atoms from the conclusion, if it they are implied by other dependencies

Figure 4 Rewrite rules for optimization and normalization (informal formulation).

Indeed, these rules are sufficient for achieving all four optimality criteria for mappings based
on s-t tgds among split-reduced mappings. Even more interesting, they actually yield a
unique normal form. Let us now summarize the rewriting system as defined by [14]:
Note that the first and second rules come down to core computations. If the length of each
dependency is bounded by a constant, this can be done efficiently (cf. [13]). The last two
items are implication tests, which are well known to be efficiently computable [2]. Splitting
can also be efficiently performed. In total, the normal form can be computed in polynomial
time if the length of each dependency is bounded by a constant [14].

5.2 Summary
In this section, we have seen how to compute an optimized unique normal form of a schema
mapping based on s-t tgds. The resulting schema mapping is cardinality-, antecedent-, subset-
and variable-minimal among all split-reduced schema mappings.

Through a quite complex extension, and a reformulation of what “split-reduced” should
mean in the presence of egds, an optimized but not normalized normal form can be obtained
for schema mappings based on s-t tgds and target egds [14].

6 Decidability of reasoning with relaxed notions of equivalence

In the previous section we have seen how to obtain optimized schema mappings under logical
equivalence. However, as we have talked about in the beginning, logical equivalence is quite
restrictive in the optimization potential it admits. In this section, we will therefore discuss the
question of the computational properties of optimality under relaxed notions of equivalence.

We have seen that logical-, DE- and CQ-equivalence form a hierarchy where each notion
might offer additional optimization potential compared to the one before. That is, while
logical equivalence is the most restrictive, CQ-equivalence is the least restrictive.

A number of questions remained. The first one is:
For which classes of schema mappings is this hierarchy proper, that is, for which schema
mappings can we really gain additional optimization potential? The counterpart of
this question is one about computability and complexity:
If there is additional optimization potential, can we find algorithms for reasoning about
them? In particular, can we construct algorithms for finding optimal schema map-
pings given various optimality criteria?

These are the questions that will guide this section. They will lead us to the boundaries of
computability as explored by Fagin et al. [9] and Pichler et al. [19].

Before looking at questions of computability, let us first find out for which classes of
schema mappings there is additional optimization possible. In other words, when is the
hierarchy of logical-, DE- and CQ-equivalence strict, and when does it collapse?
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6.1 Hierarchy or collapse
Let us first summarize what we have seen earlier in Section 3 when we introduced logical
equivalence, DE-equivalence and CQ-equivalence:

Logical equivalence, DE-equivalence and CQ-equivalence form a hierarchy (Proposition 8):
M≡log M′ ⇒ M≡DE M′ ⇒ M≡CQ M′.
For schema mappings based on s-t tgds and target tgds, all three notions are distinct
(through Examples 3 and 5 in Section 3).

Similar examples show that the three notions are different also for s-t tgds with target tgds
[9] or target egds [14] as well as for SO tgds [9]. By contrast, we will now see that for
schema mappings based on s-t tgds, the three notions actually coincide. We thus return to
an example we have seen in a similar form before (Example 5). This time, it will allow us to
find out something quite different:

I Example 26. For the source schema S = {P} and the target schema T = {Q} let the
schema mappingM be defined by the following dependencies:

P (x, y)→ Q(x, x)
Q(x, y)→ x = y

Let us compare this to the schema mapping based on just the s-t tgd. That is, we define the
schema mappingM′ based on

P (x, y)→ Q(x, x)

We have that the schema mappingsM andM′ are CQ-equivalent, but not DE-equivalent.
As an intuition for the CQ-equivalence, observe that the egd has no effect on the cores of the
universal solutions, since the atoms contained in it already have the form Q(x, x).

Now let I = P (a, a). The canonical universal solution, which in this case is also the core
of the universal solutions, will be J = {Q(a, a)} for both M and M′. But now consider
J ′ = {Q(a, a), Q(u, v)}, for variables u and v. This instance is universal for bothM andM′,
evidenced by the homomorphism [u 7→ a, v 7→ a]. Still, while J ′ is a universal solution for
M′, it is not even a solution forM. J

Fagin et al. [9] identify this property as the key reason for CQ-equivalence and DE-equivalence
to be distinct for a class of schema mappings: For two DE-equivalent schema mappings, there
is a universal solution for one mapping that is not even a solution for the other mapping.

I Definition 27. [9] Let M = (S, T,Σ) be a schema mapping. M has all the universal
solutions, if whenever

J ∈ UnivSol(I,M) and J ↔ J ′, then J ′ ∈ Sol(I,M) J

Recall that ↔ denotes homomorphic equivalence in this context. That is, for this property,
every instance homomorphically equivalent to a universal solution must also be a universal
solution. Note that from J ′ ∈ Sol(I,M′) through homomorphic equivalence to J follows that
J ′ ∈ UnivSol(I,M′). Given this definition, we then know that:

I Proposition 28. [9] If M and M′ have all the universal solutions, then M ≡CQ M′
impliesM≡DE M′. J

That is, if all mappings in a class of schema mappings have all the universal solutions, then
for this class DE- and CQ-equivalence coincide. Also, the following sufficient condition for
this property is attained:
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I Definition 29. [9] LetM = (S, T,Σ) be a schema mapping. M is preserved under target
homomorphisms, if whenever

J ∈ Sol(I,M) and J → J ′, then J ′ ∈ Sol(I,M) J

This property holds for schema mappings based on s-t tgds. Knowing that preservation
under target homomorphism holds has the following important consequence:

I Proposition 30. [9] IfM andM′ are
both preserved under target homomorphisms, and
both have that Sol(I,M) 6= ∅ implies UnivSol(I,M) 6= ∅ for all I

thenM≡log M′ iffM≡DE M′ iffM≡CQ M′. J

From this, since the properties hold for s-t tgds, we have that the three notions of logical-,
DE- and CQ-equivalence coincide for mappings based on s-t tgds. Also, since the three
notions are distinct for the classes of schema mappings

based on s-t tgds and target tgds
based on s-t tgds and target egds
based on SO tgds

we know through the preceding theorem that they are not generally preserved under target
homomorphisms for these classes. In total, if we allow target egds, target tgds or SO
dependencies, then the relaxed notions of equivalence offer additional optimization potential.

6.2 Decidability of equivalence and optimization
First, let us note that for mappings based on s-t tgds (where logical, DE-, and CQ-equivalence
coincide), all three notions are decidable. The decidability proof comes down to checking
implication of dependencies by the chase (cf. e.g. [7]).

I Proposition 31. LetM andM′ be schema mappings based on s-t tgds. Then it is decidable
whetherM≡log M′,M≡DE M′ andM≡CQ M′. J

So in this case, the problems are decidable, but there is no additional optimization power,
since the notions coincide. Given that for a variety of schema mapping classes there is clearly
additional optimization power using DE- and CQ- equivalence, we would like to use this
power by appropriate algorithms for reasoning about them. In [9], the following general
bounds are shown:

I Theorem 32. [9] Given two schema mappingsM andM′ based on s-t tgds and a weakly
acyclic set of target tgds

it is decidable whetherM≡log M′

it is undecidable whetherM≡CQ M′

The undecidability results holds even for copy s-t tgds and full target tgds. J

The decidability proof again comes down to checking implication of dependencies by the
chase. The undecidability result is based on a reduction from Datalog equivalence (which is
undecidable as shown in [20]), where target tgds are used to mirror recursive Datalog rules.

Further exploration of these bounds is done by Pichler et al. in [19], where schema
mappings based on target egds and target tgds are considered under DE-equivalence in
addition to CQ-equivalence. Also, various optimality criteria are discussed there.
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I Theorem 33. [19] For schema mappingsM andM′ based on full s-t tgds and full target
tgds, or s-t tgds and target egds, the following problems are undecidable
M≡DE M′ andM≡CQ M′
σ-redundancy ofM w.r.t. DE- and CQ-equivalence
subset-minimality ofM w.r.t. DE- and CQ-equivalence
cardinality-minimality ofM w.r.t. DE- and CQ-equivalence J

Thus leaving out target dependencies leads to a collapse of the hierarchy, hence no additional
optimization power. Adding target dependencies leads to undecidability. These bounds leave
one possibility open: If we require the target dependencies to be fixed, can we then optimize
the s-t tgds further?

Towards this goal, the following connection between normalization of Section 5 and
relaxed notions of equivalence was shown for s-t tgds and target tgds or egds. Here we
consider source egds, which are simply egds defined over the source schema.

I Theorem 34. [19] LetM andM′ be schema mappings based on s-t tgds and target tgds
or egds. Let Σ = Σst ∪ Σt the sets of s-t tgds resp. target dependencies ofM. Assume the
same for Σ′ andM′.
IfM≡CQ M′, then there exists a common set Σ∗s and Σ∗st of source egds resp. s-t tgds, s.t.

Σ ≡log Σ∗s ∪ Σ∗st ∪ Σt and Σ′ ≡log Σ∗s ∪ Σ∗st ∪ Σ′t J

So why is this theorem interesting? Assume that we have CQ-equivalent schema mappings
whose target dependencies are logically equivalent. Given the previous theorem, we can
normalize the source and s-t tgds upholding logical equivalence. But given that also the
target dependencies are logically equivalent, the two schema mappings are altogether logically
equivalent. This has the following consequence:

I Theorem 35. [19] In the same setting as in Theorem 34. If Σt ≡log Σ′t, then

Σ ≡log Σ′ iff Σ ≡DE Σ′ iff Σ ≡CQ Σ′ J

This settles the question of whether optimization is possible if the target dependencies are
fixed: There is no additional optimization power.
The third road to finding interesting decidable fragments is to look at special cases, e.g.
mappings based on functional dependencies or inclusion dependencies. However, the following
result weakens this hope for CQ-equivalence:

I Theorem 36. [19] CQ-equivalence is undecidable for schema mappings based on s-t tgds
and at most one key dependency per target relation. J

Interestingly, the situation for DE-equivalence looks quite different:

I Theorem 37. [19] DE-equivalence is decidable for schema mappings based on s-t tgds and
weakly acyclic sets of functional- and inclusion dependencies as target dependencies. J

These two results show our first disparity between the computational properties of DE- and
CQ-equivalence.

We have now talked about various optimization tasks under both DE- and CQ-equivalence.
From the point of schema mappings, we looked at those based on s-t tgds only, and at those
with target egds or target tgds in addition to s-t tgds. What we still have not discussed are
SO tgds. Here the following results are known:
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I Theorem 38. [12] LetM andM′ be given by SO tgds. It is undecidable whether
M≡log M′
M≡log M′ even if it is known thatM≡CQ M′
M≡CQ M′ for mappings based on SO tgds and source key deps. J

The proof of the first bullet is based on results about the existence of inverses from [1], about
which we will talk a bit later in this chapter.

The previous theorem talks about equivalence between schema mappings based on SO
tgds (showing undecidability) and before we talked about equivalence between schema
mappings based on s-t tgds (yielding decidability). Recently, Fagin and Kolaitis [7] looked at
equivalence where one mapping is based on SO tgds and the other one is based on s-t tgds:

I Theorem 39. [7] LetM be given by SO tgds andM′ be given by s-t tgds
it is undecidable whetherM≡log M′
it is decidable whetherM≡CQ M′ J

Interestingly, CQ-equivalence becomes decidable in this case, while it is undecidable for
schema mappings based on SO tgds plus source key dependencies.

6.3 Equivalence to classes of schema mappings
In this final subsection, we will talk about the computational properties of deciding whether a
mapping from some class of schema mappings is equivalent to a mapping in a more restricted
class of schema mappings.

Results in this area were shown in [9] for the following problem: Given a schema mapping,
under which conditions is it CQ-equivalent to a mapping consisting of s-t tgds?

We start with mappings based on full s-t tgds and full target tgds. For this, we need the
following concept: A mapping has bounded parallel chase if there is a constant, such that for
every source instance, the parallel chase needs at most that constant number of steps. Using
this, we have that

I Theorem 40. [9] LetM be a schema mapping based on full s-t tgds and full target tgds.
There exists a schema mappingM′ based on full s-t tgds withM≡CQ M′ iffM has bounded
parallel chase. J

The problem of finding such a schema mapping is undecidable [9]. We now look at mappings
based on SO tgds. Again, we need a characterizing concept, but this time it is more complex:

I Definition 41. [9] The Gaifman graph of facts G of a target instance K is the graph
whose nodes are the facts of K and there is an edge between two facts if they have a null in
common. A fact block (f-block) of K is a connected component of G.

MappingM has bounded f-block size if there is a constant such that core(I,M) has f-block
size bounded by this constant for every source instance I. J

In [7], it was shown that deciding whether the f-block size of an SO tgd is bounded by a
given number is equivalent to a problem we have already seen in the previous section: is a
schema mapping based on s-t tgds equivalent to one based on SO tgds. Importantly, the
notion of bounded f-block size characterizes CQ-equivalence of an SO tgd to s-t tgds:

I Theorem 42. [9] LetM be a schema mapping based on an SO tgd. There exists a mapping
M′ based on s-t tgds withM≡CQ M′ iffM has bounded f-block size. J
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Note that in [9] a characterization is also given for schema mappings based on s-t tgds and
target tgds with terminating chase.

Concerning schema mapping languages that can express only a subset of s-t tgds, results
where shown by ten Cate and Kolaitis [21]. Let a LAV tgd be a tgd with a single atom on
the left-hand side (this corresponds to what is called “extended LAV” in [7], compared to
“strict LAV” which requires that all variables on the left-hand side occur just once).

I Theorem 43. For a given schema mapping M, deciding whether there exists a schema
mappingM′ such thatM≡log M′ is NP-complete if
M is given by s-t tgds andM′ shall be definable by full s-t tgds
M is given by s-t tgds andM′ shall be definable by LAV s-t tgds
M is given by LAV s-t tgds andM′ shall be definable by full s-t tgds

it is decidable in polynomial time if
M is given by full s-t tgds andM′ shall be definable by LAV s-t tgds J

6.4 Summary
In this section, we have looked into the power of logical-, DE- and CQ-equivalence for
optimizing schema mappings. We have seen that for schema mappings based on s-t tgds
only, all three notions of equivalence coincide and therefore admit no additional potential
for optimization. We then looked at schema mappings based on target egds or target tgds
in addition to s-t tgds, as well as SO tgds. We have seen that there clearly is additional
potential for optimization using relaxed notions of equivalence.

However, unfortunately, most tasks are undecidable in general apart from logical equival-
ence for s-t tgds and weakly acyclic sets of target tgds. In particular, DE- and CQ-equivalence
are undecidable for schema mappings based on s-t tgds and target tgds or target egds. For
SO tgds, even logical equivalence is undecidable. We also looked at how to find mappings
which are CQ-equivalent to more restricted classes of schema mappings.

Altogether, many of the boundaries are known, but decidable cases are still sparse. Still,
the decidable special case for DE-equivalence and schema mappings with functional and
inclusion dependencies shows an interesting disparity between DE- and CQ-equivalence. We
summarize the results in Figure 5.

7 Equivalence and optimality for schema mapping management

In the previous two sections, we first discussed logical equivalence and its application to
normalization. After that, we talked about DE- and CQ-equivalence and the boundaries of
computability. In this section, we will talk about the notions of equivalence we have not
covered up to this point: Schema mappings which are equivalent w.r.t. the source information
transferred (S-equivalence) or equivalent w.r.t. the target information covered (T-equivalence).
They were introduced and applied by Arenas et al. [1].

These notions have a slightly different character compared to logical-, DE- and CQ-
equivalence. In particular, we can use them to compare schema mappings that have different
source or target schemas. On the other hand, mappings which are e.g. S-equivalent may
produce completely different target instances. Still, they guarantee that we can reconstruct
the original target instance using some other schema mapping.

Our focus in this section will be on applications of S-equivalence and T-equivalence, in
particular combined with the corresponding redundancy notions of source-redundancy and
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Optimization potential

Logical-, DE- and CQ-equivalence coincide for
mappings based on s-t tgds

They are distinct for
mappings based on s-t tgds and target tgds or target egds
mappings based on SO tgds

Boundaries of decidability

Logical equivalence is
decidable for mappings based on s-t tgds and sets of weakly acyclic target tgds
undecidable for mappings based on SO tgds

Data-exchange equivalence is
undecidable for mappings based on s-t tgds, target tgds or target egds
decidable for mappings with weakly acyclic sets of functional- and inclusion deps.

Conjunctive-query equivalence is
undecidable for mappings based on s-t tgds, target tgds or target egds
(even if restricted to a single key dependency per relation)
undecidable for mappings based on SO tgds and source key dependencies
decidable if one mapping is given by SO tgds, the other one by s-t tgds

Further results

Optimality is undecidable for mappings based on s-t tgds, target tgds or egds for
σ-redundancy, subset-minimality, cardinality-minimality

CQ-equivalence to mappings based on s-t tgds is characterized for
mappings based on target tgds with terminating chase
mappings based on SO tgds

Figure 5 Optimization potential and boundaries of decidability.

target-redundancy. We will see that for the important area of characterizing the operators
for schema mapping management, these notions of equivalence and optimality find natural
applications. After that, we will briefly discuss some algorithmic properties.

7.1 Application to schema mapping management
We begin by talking about the extract operator of schema mapping management [18]. Though
there are a number of possible characterizations, the intended meaning of the extract operator
is the following: Given a schema mapping, find a new source schema that captures exactly
the information that participates in it. Let us start by looking at an example.

I Example 44 (based on [1]). Over the source schema S = {P,Q,R} and the target schema
T = {U, V,W} let the schema mappingM be given by the following dependencies:

P (x, y)→ ∃uW (x, u) ∧ U(x, x) (σ1)
P (x, y) ∧R(y, z)→ ∃v V (x, y, v) (σ2)

Before taking an in-depth look into what the dependencies of schema mappingM do, let us
look at the source relation Q. It actually never occurs in the dependencies ofM.
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We could extract a new source schema S′ that does not include the information of Q at
all and then use two new schema mappings: M1 from S to S′ migrates from the old source
schema to the new one. M2 from S′ to T uses this new source schema to map to the target
schema. In this example, we could take M1 to be just copy tgds from S = {P,Q,R} to
S′ = {P,Q} i.e. based on

P (x, y)→ P ′(x, y)
R(x, y)→ R′(x, y)

andM2 to consist exactly of our two original dependencies σ1 and σ2 adapted to the new
schema. Here, we would trivially have that the two mappingsM1 andM2 composed do the
same thing as the originalM, or more preciselyM1 ◦M2 ≡log M. J

In the preceding example, we have extracted a new source schema S′ andM1 andM2 so
that the composition M1 ◦M2 yields the original mapping M. This feels like a natural
condition for an extract operator, but as we have seen, this condition alone yields rather
unimpressive results for S′,M1 andM2. Let us continue our example.
I Example 44 (ctd). In our previous example, we saw that we may find unsatisfyingM1
andM2 s.t. M1 ◦M2 ≡log M, if we impose no further restrictions. Yet indeed, we want to
extract exactly the information that participates inM. Let us look at the source information
that participates inM, and should therefore transferred byM1.

In our first dependency σ1, only the first variable x is actually used in the conclusion.
We must not transfer y if we want to capture exactly the needed information. Similarly for
σ2, only the result after the join between P and R is relevant. In particular, we do not need
the variable z in the conclusion. Let us express this as a schema mappingM1 based on

P (x, y)→ P1(x)
P (x, y) ∧R(y, z)→ P2(x, y)

To make our argument about “transferring the needed amount of source information” precise,
we have a tool at our hand: S-equivalence expresses that two schema mappings transfer the
same amount of source information. That is, we have found anM1 withM1 ≡S M.

Now having constructed M1, let us talk about M2, which should be able to do two
things. First, it should be able to yieldM in the sense thatM1 ◦M2 ≡log M. Secondly, we
should require thatM2 really covers exactly the amount of target information needed, or in
other wordsM2 ≡T M. Let us construct such anM2 based on

P1(x)→ ∃uW (x, u) ∧ U(x, x)
P2(x, y)→ ∃v V (x, y, v)

Altogether, we now have found schema mappings that capture exactly the information
participating inM, by requiringM1 ≡S M andM2 ≡T M. J

Our characterization of how we expect the extract operator to behave is now reasonably
complete. However whileM1 transfers exactly the information needed, andM2 covers the
information needed, the in-between schema S′ has no condition imposed on it so far. In
particular, we could still store every x from P (x, y) as P1(x, x, x, x), which intuitively is not
a good result of the extract operator. Let us continue our example.
I Example 44 (ctd). The problem we still have is possible redundancy in the new source
schema S′. While using P1(x, x, x, x) as an intermediate atom seems quite drastic, actually
we also have a somewhat surprising redundancy in M1, S′ and M2 from the previous
example, though it is a bit subtle:

Let us look at the source instance I = {P (a, a), P (b, b), R(b, b)}. The canonical universal
solution of I using our schema mappingM1 is J = {P1(a), P1(b), P2(b, b)}. But actually we
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do not need to store P (b), since it occurs as P2(b, b) anyway. That is, any x from P (x, y)
that has a join-partner in R need not necessarily be stored in the intermediate instance. So
the kind of redundancy we are talking about here is redundancy of possible source instances
or target instances.

Of course, our current schema mapping M2 would not be sufficient to make use of
this information, it would require a mapping with an additional dependency of the form
P2(x, y)→ ∃uW (x, u) ∧ U(x, x). Yet this modified schema mapping is clearly T-equivalent,
it covers the same target information. Let us avoid this redundancy in another way. Add to
bothM1 andM2 the following dependency:

P2(x, y)→ P1(x)
yieldingM′1 andM′2. This is a target tgd forM′1 and a source tgd forM′2.

Let us sum up and make precise our argument about redundancy. We are talking about
possibly redundant instances here, and the optimality notions appropriate for this case have
been already introduced in Section 4: source-redundancy and target-redundancy. We would
likeM1 to be target non-redundant among the S-equivalent mappings, andM2 to be source
non-redundant among the T-equivalent mappings. J

Through a progression of examples, we have now identified a characterization for the extract
operator that meets natural requirements. Let us make this definition explicit:

I Definition 45. [1] LetM = (S, T,Σ) be a mapping. (M1,M2) is an extract ofM if
M1 ◦M2 ≡log M
M1 ≡S M andM1 is target non-redundant w.r.t. ≡S
M2 ≡T M andM2 is source non-redundant w.r.t. ≡T J

We finish this subsection on the extract-operator by a few notes: Apart from the characteriz-
ation, there also exists an algorithm for computing extracts for mappings based on s-t tgds
with FO formulas in the antecedent. It is based on rewriting and composition [1]. The exact
language needed to express these extracts is still open.

Apart from the extract operator, the merge operator was analyzed in [1] as well as the
setting of schema evolution. Also, a characterization of the inverse operator [6] is given. The
inverse operator is discussed in detail in Chapter 3 of this book.

7.2 Decidability and complexity
For the following results about the properties of our notions, we will be mainly talking about
the ordering relations �S and �T instead of the equivalence relations ≡S and ≡T. Our first
goal will be to find algorithms for deciding these ordering relation.

An alternative characterization based on the following notions brings us one step closer
to this goal: A query Q over source schema S is called target rewritable underM, if there is
a query Q′ over T such that Q(I) = certain(Q, I,M) for all I. Then we have:

I Theorem 46. [1] LetM = (S, T,Σ) andM′ = (S, T ′,Σ′) be a schema mapping based on
s-t tgds. Then M �S M′ iff for every query Q, if Q is target rewritable in M then Q is
target rewritable inM′. This result even holds if FO formulas are allowed as antecedents. J

Backed up by this result we see that, equivalence and ordering w.r.t. source information
transferred (which are based on transferring enough source information to be able to recover
the original target information) are both intuitively and provably close to target rewritability.

For schema mappings based on s-t tgds, even with inequivalence in the antecedent,
decidingM �S M′ is in coNEXPTIME. However, for schema mappings based on s-t tgds
that allow FO formulas as antecedents, it is undecidable whetherM�S M′ [1].
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7.3 Summary
In this section, we looked at S-equivalence and T-equivalence. We applied them to characterize
the operator extract, one of the central operators of schema mapping management. To
characterize this operator, we saw that notions of equivalence (S- and T-equivalence) were
needed, as well as notions of optimality (source- and target-redundancy).

We hinted at other operators invert, merge, and the setting of schema evolution that can
be characterized using these concepts. For all of these, characterizations and algorithms can
be found in [1]. We finished this section by a quick look at questions of decidability and
complexity.

8 Reasoning in the broader sense

In the previous sections, we discussed reasoning about schema mappings in a strict sense.
Our topics were primarily equivalence and optimality. But of course the term “reasoning”
can be applied to a broad range of important tasks associated with schema mappings. While
we cannot cover all of them, we want to finish this chapter by at least talking about one of
them, in particular one that fits very well into what we discussed up to now.

Reasoning about schema mappings as a task humans have to do poses a number of
challenges. Of course, using optimization techniques beforehand might help create schema
mappings that are easier to handle as humans. Yet at some point, we have to deal with the
actual schema mappings we have at that moment.

Given such a schema mapping, one of the first challenges is to find out what this schema
mapping actually does, or rather what its intended meaning is. The other question that
usually enters our reasoning process earlier than we might like is what a certain schema
mapping does wrong. This topic of finding errors, that is debugging schema mappings, will
be our topic in this section.

8.1 Analyzing and debugging with routes
Since we want to actually understand and debug some arbitrary schema mapping that we
are given, let us start with such an example.

I Example 47 (based on [5]). In this example, to ease debugging, we leave the names of the
relation symbols intact. Also, universally quantified variables are denoted by words starting
in lower case (sal), existentially quantified variables are given starting with upper case (M)
and constants as usual in sans-serif font (Smith or 6689).

Let the mappingM over the source schema ManhattenCredit = {Cards,SuppCards} and
the target schema FargoFinance = {Accounts,Clients} be given by the following dependencies:

Cards(cn, l, s, n,m, sal, loc)→ ∃A (Accounts(cn, l, s) ∧ Clients(s,m,m, sal, A)) (σ1)
SuppCards(an, s, n, a)→ ∃M, I Clients(s, n,M, I, a) (σ2)
Accounts(a, l, s)→ ∃N,M, I,AClients(s,N,M, I,A) (σ3)
Clients(s, n,m, i, a)→ ∃N,LAccounts(N,L, s) (σ4)
Accounts(a, I, s) ∧ Accounts(a′, I ′, s)→ I = I ′ (σ5)

The schemas and the s-t tgds σ1 and σ2 are illustrated in Figure 6. Seemingly, it is a schema
mapping describing how data about credit cards is transferred to some financial organization.
Without worrying too much for now how this schema mapping actually works in detail, let
us try debugging it with a test instance. Let I be given by the following ground atoms:
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Cards Accounts
cardNo accNo
limit limit
ssn accHolder
name
mName Clients
salary ssn
location name

mName
SuppCards income
accNo address
ssn
name
address

Figure 6 Schemas and s-t tgds of mapping M.

Cards(6689, 15K, 434, J.Long,Smith, 50K,Seattle) (s1)
SuppCards(6689, 234,A.Long,California) (s2)

In the target database, we use the following instance J given by:
Accounts(6689, 15K, 434) (t1)
Accounts(N1, 50K, 234) (t2)
Clients(434,Smith,Smith, 50K, A1) (t3)
Clients(234,A.Long,M1, I1,California) (t4)

Let us take a closer look on t3, which is slightly strange: In Clients(434,Smith,Smith, 50K, A1),
why is there a labeled null A1 introduced, and why does the constant Smith occur twice?

Let us try to answer this question by tracing tuple t3 back to the atoms that are directly
responsible for creating it. We get the following atom s1 being responsible for creating both
t1 and t3 through dependency σ1 using homomorphism h:

Cards(6689, 15K, 434, J.Long,Smith, 50K,Seattle) (s1)
σ1: Cards(cn, l, s, n,m, sal, loc)→ ∃A (Accounts(cn, l, s) ∧ Clients(s,m,m, sal, A))
h: {cn 7→ 6689, l 7→ 15K, s 7→ 434, n 7→ J.Long, m 7→ Smith, sal 7→ 50K, loc 7→ Seattle, A 7→ A1}

Accounts(6689, 15K, 434) (t1) Clients(434,Smith,Smith, 50K, A1) (t3) J

Before using this chase-like step for debugging our schema mapping, let us formally define it:

I Definition 48. [5] A satisfaction step is given as K1
σ,h−−→ K2 where

K1 is an instance such that K1 ⊆ K and K satisfies σ
σ is a tgd ϕ(~x)→ ∃~y ψ(~x, ~y)
h is a homomorphism from ϕ(~x) ∧ ψ(~x, ~y) to K such that
h is also a homomorphism from ϕ(~x) to K1
K2 is the result of satisfying σ on K1 with h, where K2 = K1 ∪ h(ψ(~x, ~y)) J

Note that this differs from the definition of a chase step, in particular because the applicability
condition is far broader. This is not surprising since such a satisfaction step shall be able to
help debug arbitrary solutions, whether they were created through the chase or not. We now
continue our debugging:
I Example 47 (ctd). Let us look at what we can find out using this satisfaction step with
the result including t3. As we can see, the location Seattle is indeed contained in s1, it just
is not copied by σ1, instead being replaced by a labeled null. This is most probably not the
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intended meaning, we will correct it. For the constant Smith occurring twice, we see that σ1
uses m,m twice in the conclusion, instead of n,m from the antecedent. We can correct this
typo as well, modifying σ1 to

Cards(cn, l, s, n,m, sal, loc)→ Accounts(cn, l, s) ∧ Clients(s, n,m, sal, loc) (σ′1)

So we corrected an error, but we might have spotted this error without any help of a
debugging system.
Let us look at a more complex case, debugging t2: Accounts(N1, 50K, 234). This atom cannot
be traced via a single satisfaction step to source atoms. But it can be traced back to two
satisfaction steps (here, we omit the homomorphisms):

SuppCards(6689, 234,A.Long,California) (s2)
σ2: SuppCards(an, s, n, a)→ ∃M, I Clients(s, n,M, I, a)
Clients(234,A.Long,M1, I1,California) (t4)
σ4: Clients(s, n,m, i, a)→ ∃N,LAccounts(N,L, s)
Accounts(N1, 50K, 234) (t2) J

Before using this sequence of satisfaction-steps for debugging, we again formally describe the
notion first:

I Definition 49. [5] A route for Js with M, I and J is a sequence of satisfaction steps
(I, ∅) σ1,h1−−−→ (I, J1) . . . σn,hn−−−−→ (I, Jn) where

J is a solution of I underM
Ji ⊆ J and σi are fromM
Js ⊆ Jn J

Having now defined what we mean by a route, let us use the one we have found in our
continuing example for debugging our schema mapping:
I Example 44 (ctd). The route shows some strange things: The value 50K suddenly appears
in t2, without being required by the dependency. This also shows that J is actually not a
universal solution, thus we witness the difference between satisfaction step and chase step.

Also, the account contains a labeled null N1 as the account number, even though in the
source tuple, we have the concrete value 6689. The reason is clear looking at this trace: The
intermediate atom t4 simply cannot store this account number. We can correct this by a
more complex modification of σ2 based on a join:

Cards(cn, l, s1, n1,m, sal, loc) ∧ SuppCards(cn, s2, n2, a)→
∃M, I Clients(s2, n2,M, I, a) ∧ Accounts(cn, l, s2) (σ′2)

In total, we might not have found all errors through this debugging, but a few obvious ones,
and also some non-obvious errors have now been corrected. J

To conclude this section, we note a quite important fact for actual debugging with such
routes: There is an algorithm for computing a minimal route, essentially in polynomial time
w.r.t. the size of the atoms to-be-debugged. Also, there are situations where one route is not
enough, but computing all routes is required. There is an algorithm for that as well in [5].

8.2 Summary
In this subsection, we scratched the surface of reasoning about schema mappings in the
broader sense. We looked at a particular application of debugging schema mappings using
the concept of routes. While we briefly noted algorithmic properties, we had no chance to
explore further connections to e.g. the topic of provenance.

This was of course only an exemplified excursion into the broad topic of what “reasoning”
about schema mappings may mean. Each of those meanings might fill a chapter of its own.

Chapte r 04
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9 Conclusion

The topic of reasoning about schema mappings is a broad one. In this chapter, we focused
on some of the central concepts of reasoning tasks: equivalence (Section 3) and optimality
(Section 4). But we also talked about applications and reasoning in the broader sense.

So before summarizing what we discussed in this chapter, let us look at how those topics
fit together in how we actually reason about schema mappings:

Given a schema mapping:
What does it do, and
Can we find errors in it? (Debugging, Section 8)
Can we optimize it?

automatically using logical equivalence? (Optimizing and Normalizing, Section 5)
is there hope using relaxed notions? (Boundaries of Decidability, Section 6)
or at least preserving the information involved? (Information Transfer, Section 7)

This process could of course be augmented with any number of other reasoning tasks about
schema mappings, both in the strict or in a broader sense. Let us now summarize what we
discussed in this chapter:

9.1 Summary
In the first part of this chapter, focused on concepts, we introduced notions of equivalence
and notions of optimality. We saw how they naturally arise when working with schema
mappings and discussed their relationship to each other. As a quick reference of all involved
notions, see Figure 2 and 3 at the ends of Section 3 and 4.
In the second part, we looked at applications and computational properties of these
concepts. We first saw that under logical equivalence, one can optimize schema mappings
based on s-t tgds under a broad range of optimality criteria, achieving a unique normal form.

We then explored the boundaries of decidability under data-exchange equivalence and
conjunctive-query equivalence. While many of the general problems there are undecidable, we
saw that there is both additional potential opened by these relaxations of logical equivalence,
as well as some decidable cases that may exploit this additional potential.

We then continued to apply equivalence in terms of information transfer to characterizing
important operators of schema mapping management. We saw that one can achieve quite
concise characterizations in that way.
In the final part, we also gave a glimpse at the broader sense of reasoning about schema map-
pings. There, we briefly looked at analyzing and debugging schema mappings by introducing
the concept of routes.

9.2 Outlook
While many of the general computational boundaries of reasoning about equivalence and
optimality of schema mappings have been explored, there are a number of theoretical and
practical problems open. For practical utilization, the search for useful decidable fragments
is paramount. In particular, current algorithms like those illustrated in Section 5 might be
extendable to cover an even broader range of schema mappings. Still, new approaches might
be needed to cope with relaxed notions of equivalence.

In the broader sense of reasoning about schema mappings, we touched only the surface of
available material. It is a topic that could fill many chapters of this size.
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