Learning and Game Al

Héctor Muiioz-Avila!, Christian Bauckhage?, Michal Bida3,
Clare Bates Congdon*, and Graham Kendall®

1 Department of Computer Science, Lehigh University, USA
hem4@lehigh.edu

2 Fraunhofer-Institut fiir Intelligente Analyse und Informationssysteme IAIS,
Germany
christian.bauckhage@iais.fraunhofer.de

3 Faculty of Mathematics and Physics, Charles University in Prague, Czech
Republic
michal.bida@gmail.com

4 Department of Computer Science, The University of Southern Maine, USA
congdon@usm.maine.edu

5 School of Computer Science, University of Nottingham, UK and Malaysia
graham.kendall@nottingham.ac.uk

—— Abstract

The incorporation of learning into commercial games can enrich the player experience, but may
concern developers in terms of issues such as losing control of their game world. We explore a
number of applied research and some fielded applications that point to the tremendous possibili-
ties of machine learning research including game genres such as real-time strategy games, flight
simulation games, car and motorcycle racing games, board games such as Go, an even traditional
game-theoretic problems such as the prisoners dilemma. A common trait of these works is the
potential of machine learning to reduce the burden of game developers. However a number of
challenges exists that hinder the use of machine learning more broadly. We discuss some of these
challenges while at the same time exploring opportunities for a wide use of machine learning in
games.

1998 ACM Subject Classification 1.2.m Artificial Intelligence, miscellaneous

Keywords and phrases Games, machine learning, artificial intelligence, computational intelli-
gence

Digital Object Identifier 10.4230/DFU.Vol6.12191.33

1 Introduction

Machine learning seeks to improve the performance of a system (e.g., a computer player agent)
on a given gaming task (e.g., defeat an opponent). Typically, machine learning algorithms
can do this online or offline. The former takes place while playing the game while the latter
takes place from data collected in previous games. For example, online learning enables
game-playing algorithms to adapt to the current opponent strategy while offline learning
enables eliciting common game-playing strategies across multiple games.

In this chapter, we explore learning aspects in current computer games, challenges,
and opportunities for future applications. Our intention is to look at the broad issues of
incorporating learning into games, independently of languages and platforms.

We begin our study by discussing research and applications of machine learning to game
AT We first provide a quick overview of a number of research and applications of machine

© Héctor Muiioz-Avila, Christian Bauckhage, Michal Bida, Clare Bates Congdon, and Graham Kendall;
37 licensed under Creative Commons License CC-BY

Artificial and Computational Intelligence in Games. Dagstuhl Follow-Ups, Volume 6, ISBN 978-3-939897-62-0.

Editors: Simon M. Lucas, Michael Mateas, Mike Preuss, Pieter Spronck, and Julian Togelius; pp. 33-43

\\v oacsTunl Dagstuhl Publishing
ForLow-ups Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol6.12191.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-62-0

34

Learning and Game Al

learning to games. Then we examine carefully the use of evolutionary computation in gaming
tasks.

Next we examine a number of challenges that makes it difficult to apply machine leaning
more broadly in games including (1) the need for algorithms to explain their decisions and
gain the user’s trust, and (2) some lingering issues such as difficulty of pointing to a specific
solution and the need for gaming data, and (3) Making the game enjoyable for the player.
The latter is a difficult yet crucial one. It is clear that we want to make games more enjoyable
but it is unclear how we can formalize the notion of "fun" in machine understandable form.

Finally, we examine opportunities for machine learning applications which we believe
are within reach of current techniques. These include (1) balancing gaming elements, (2)
balancing game difficulty, and (3) finding loopholes in games.

2 Sample State-of-the-Art Applications and Research

Our discussion of the state of the art is divided into two parts: first we give a overview of a
number of applications of machine leaning and in the second part we discuss in depth how
evolutionary computation can be used to build sophisticated Al.

2.1 Machine Learning for Game Al

It would be difficult to give a complete overview of research and applications on machine
learning for Game AI. We discuss some of these works to give the reader an overview of the
topic.

There are a number of well-documented success stories such as the use of induction
of decision trees in the commercial game Black and White [1]. There are a number of
noncommercial applications of machine learning to game such as the use of reinforcement
learning to play Backgammon [29]. The use of machine learning to find patterns from
network and log data has demonstrated to be significant [8]. Also there is significant research,
demonstrating the use of learning approaches such as evolutionary computation to evolve
rules for high-performance for arcade games.

In [6], the authors used a Q-learning based algorithm to simulate dog training in an
educational game. In [10], the authors used coevolution to evolve agents playing Capture-
the-Coins game utilizing rtNeat and OpenNERO research platform. In [22], the authors
used learned self-organizing map to improve maneuvering of team of units in real-time
strategy game Glest. In [24], car racing track models are learned from sensory data in car
racing simulator TORCS. In [14], the authors used cgNEAT to evolve content (weapons)
in Galactic Arms Race game. In [20], tunsupervised learning tecniques are used to learn a
player model from large corpus of data gathered from people playing the Restaurant game.
In [31], evolutionary algorithms are used for automatic generation of tracks for racing games.
In [21], a neural network learning method combined with a genetic algorithm is used to
evolve competitive agent playing Xpilot game. In [19], the authors use a genetic algorithm to
evolve AT players playing real time strategy game Lagoon. In [7], artificial neural networks
are used to control motorbikes in Motocross The Force game. In [28], the authors used
genetic algorithms to evolve a controller of RC racing car. In [26], the authors introduced the
real-time neuro-evolution of augmenting topologies (rt-NEAT') method for evolving artificial
neural networks in real time demonstrated on NERO game. In [32], the authors present
evolution of controllers for a simulated RC car. In [9], parameters are evolved for bots playing
first person shooter game Counter Strike. In [34], the authors used a genetic algorithm to
optimize parameters for a simulation of a Formula One car in Formula One Challenge 99-’02

H. Muiioz-Avila, C. Bauckhage, M. Bida, C.B. Congdon, and G. Kendall

racing game. In [15], the authors reported on the impact of machine learning methods in
iterated prisoner’s dilemma. In [4], the authors used real-time learning for synthetic dog
character to learn typical dog behaviors. In [17], genetic algorithm are used to develop neural
networks to play the game of Go. In [35], the authors used neuro-evolution mechanisms to
evolve agents for a modified version of Pac-Man game. In [23], tagents playing Quake 3 are
evolved. In [12], authors provided a technical description of the game Creatures where they
used neural networks for learning of the game characters. In [2], data from recorded human
game play is usedd to train an agent playing first person shooter game Quake 2. In [30], the
authors used pattern recognition and machine learning techniques with data from recorded
human game play to learn an agent to move around in first person shooter game Quake 2. In
[18], the authors report on using tabular Sarsa(A\) RL algorithm for learning the behavior of
characters in a purpose-built FPS game.

2.2 A Discussion of Evolutionary Computation Applications

We concentrate on evolutionary systems, which is reflective of the potential and some of the
difficulties of fielding machine learning techniques in commercial games.

Evolutionary rule-based systems have been demonstrated to be a successful approach to
developing agents that learn to play games, as in [25, 5, 11]. In this approach, the agent’s
behavior is dictated by a set of if-then rules, such as “if I see an opponent, and I have low
health, then collect health”. These rule sets are subject to evolutionary learning, which allows
one to start with random behaviors and to have the evolutionary learning process conduct
the search for individual rules that are strong as well as complete rule sets that are successful.

This approach has been used with good results on a variety of arcade and video games,
including Unreal Tournament 2004, Mario, and Ms. Pac-Man, in the competition environ-
ments provided at IEEE conferences. Small and Congdon [25] demonstrated learning in the
environment of the Unreal Tournament 2004 Deathmatch competition at IEEE Congress on
Evolutionary Computation. In this competition setup, agents (bots) played head-to-head in
this dynamic first person shooter. Bojarski and Congdon [5] demonstrated learning in the
environment of the Mario AT Championship 2010 competition at the IEEE Computational
Intelligence and Games conference (CIG). In this competition setup, the agent was allowed
10,000 times to play a novel level (providing time to learn the level) and was scored on its
performance on the 10,001st play. Gagne and Congdon [11] demonstrated learning in the
environment of the Ms. Pac-Man vs. Ghosts Competition for CIG 2012. In this competition
setup, a simulated version of Ms. Pac-Man is used, allowing entrants to submit agents for
the role of Ms. Pac-Man in the game or to submit a ghost team. The Gagne and Congdon
work describes an evolutionary rule-based system that learns to play the ghost team role.

These approaches have in common the use of “Pittsburgh-style” rule sets, in which the
individuals in the evolutionary computation population are each a rule set. (This is contrasted
with “Michigan-style” rule sets, in which each individual in the evolutionary computation
population is a single rule, and the entire population constitutes a rule set.) Learning occurs
both through mutation of the conditions for the rules and via crossover, in which rules swap
their conditions. While the learning takes time (e.g., a week or two), the agents learn to get
better at playing their respective games.

Kadlec [16], uses evolutionary computation techniques for controlling a bot. These
techniques are used to learn both strategic behavior (e.g., planning next steps such as which
weapons to find) as well as reactive behavior (e.g., what to do under attack). The testbed
uses was Unreal Tournament 2004. Unreal Tournament is a first-person shooter game (see
Figure 1) where bots and human-controlled characters compete to achieve some objectives.

35

Chapter 03

36

Learning and Game Al

Figure 1 Snapshot of Unreal Tournament 2004 (courtesy of Rudolph Kadlec (2008)).

Kadlec’s work uses genetic programming to evolve the strategic knowledge while neural
networks was used to generate reactive behavior.

Experiments were performed in two kinds of games: death match (where participants
increase their score by killing enemies) and capture the flag, where players increase their
score by capturing enemy flags and bringing them to their home base. Figures 2 and 3
show sample behavior trees learned for the death match and capture the flag experiments
respectively. The experiment demonstrated the feasibility to learn complex behavior but on
the other hand the resulting behaviors were not as complex as the ones followed by humans
or hand-coded bots.

Behavior trees consisted of three types of nodes - functional nodes that help to decide
which behavior should be selected, behavior nodes that code specific type of behavior and
sensory nodes that output the value of a specified sensor. Each behavior in a tree has its
priority either computed by a function or fixed. The functional nodes then decide which
behavior will be activated based on these priorities. In the trees there are two types of
functional nodes - highest activation that simply selects the behavior with the highest
activation and sequential arbiter that returns the first behavior if its activation is higher
than 0.1 or when the activation of the second behavior is lower than 0.1, otherwise it returns
the second behavior result.

Kadlec [16] also reports on a second experiment using the algorithm reported by Stanley
and Miikkulainen [27]. This experiment demonstrated the capability to learn reactive behavior
but again the resulting bots didn’t exhibit human-like or hard-coded performance. While
the results were interesting, there is still room for research on these techniques before they
can be deployed.

Bauckhage et al. [3] used neural network architectures to learn behavior of bots in the
first-person-shooter game Quake II. As an input for learning, they used post-processed
network data of the game, coding the changes in the state from the game. This allowed
them to use recordings of gameplay to train the neural networks. Authors were successful in
learning basic moving and aiming behavior by this approach, proving it is possible to learn
human-like behavior by analyzing the data gathered from actual human game play.

H. Muiioz-Avila, C. Bauckhage, M. Bida, C.B. Congdon, and G. Kendall 37

HighestActivation

VAR

PickHealth AttackPlayer

@

Figure 2 Behavior trees of best individuals for the DeathMatch experiment (courtesy of Rudolph
Kadlec (2008)). The bot exhibits two types of behaviors. The bot attacks the enemy player (node
AttackPlayer) with the priority fixed to 0.65 or it picks health packs (node PickHealth). The priority
of PickHealth behavior is an inverse of the SeeAnyEnemy sensor. This means if the bot actually
sees any enemy, the inverse function will inverse this sense to be false and the behavior priority will
be 0, so the bot will select AttackPlayer behavior.

Sequential Arbiter
AttackPlayer HighestActivation
o ¥ ¥ T
- Y
(: Enfm.) Ili.'-S_pi.kjl’) HighestActivation HighestA ctivation
i r N -
] ",
___l‘___ / \ L HH"
(Ha:-,Flag:\- WanderArond WanderAroud AttackPlayer HighestAchvaton
...n"ll "'.I A,H\H‘
/"l"- P A I . L =
(" Enemy) (Heath) (HasFlag) { Enemy) (HasFlag) | WanderAroud WanderAroud
R R
/“i"\ f“t'\ -"_i_"- "‘L"'\
™~ R e N
(Zoemr) (Bomy) ChatoniedWimen > (sl)
N
o ™
|_\.En£|11_}_/,.

Figure 3 Behavior trees of best individuals for the Capture the Flag experiment (courtesy of
Rudolph Kadlec (2008)). Although the tree looks complex the resulting behavior is simple: the bot
wanders around (moves randomly around the map) if it does not see enemy flag carrier or shoots
the enemy player if the player is holding the flag.

Chapter 03

38

Learning and Game Al

3 Challenges

We identify two challenges in adding learning to commercial games: The need to explain
decisions and gaining user’s trust and issues with using machine learning algorithms.

3.1 Need to Explain Decisions and Gaining User’s Trust

It will be desirable for machine learning algorithms to explain their decisions. Unfortunately, it
is often difficult to devise algorithms that are capable of automatically generating explanations
that are meaningful for the user. In the context of computer games, explanations can help
game developers understand the reasoning behind gaming decisions made by automated
players and thereby correct potential flaws in the reasoning process. They also help understand
capabilities and limitations in the decision making process and tune scenarios accordingly.

The lack of a capability to explain itself can lead to its decisions not being trusted,
making it more difficult for machine learning techniques to be accepted. Game companies
are often reluctant to add learning elements to their games for fear of “losing control” over
the gameplay that might emerge with learning. Since there are many examples in machine
learning of systems honing in on an exception or exploiting unanticipated by the developer of
the system, this concern is not baseless. Examples of potentially problematic learning would
include a non-player character (NPC) that is essential to the storyline learning something
that destroys the storyline or an NPC that discovers an exploit, revealing it to human players.
In the first case, the behaviors subject to learning would need to be controlled. In the second
case, one can argue that human players will eventually discover exploits anyway, so this may
be a non issue.

It’s good to remember that the primary reason to add learning to a game would be that
the learning could make the game more enjoyable for the player. One facet of this might be
to relieve monotony, and another might be to adapt the play level to the player to make the
game appropriately challenging (and possibly, to help the player learn to play the game).
The issues of monotony might kick in with non-player characters (NPCs) having overly
scripted actions; additionally, player enjoyment is often heightened when the player does not
know for certain that they are playing against a bot. While adding an NPC that can adapt
during gameplay has the potential to lessen predictability of the NPC, a concern is that an
adaptive NPC could also learn ridiculous or malicious behaviors. However, if the facets of
behavior that the agent is allowed to learn over are controlled, adaptivity has the potential
to increase player enjoyment. For example, an NPC opponent that adapts its “skill level” to
the human player, allowing just enough challenge. Whether opponent or teammate, an NPC
with adaptive skill levels could in effect work with the player to help the player improve
their own gameplay. The key to controlling the learning is to limit the facets of behavior
that it is applied to. Part of the difficulty is that some of the learning mechanisms such
as evolutionary computation (see Section 2) make intricate computations that are difficult
to explain to the game developer. For example, the game developer might see that some
of the resulting strategies are effective but might be puzzled by other strategies generated.
Without even a grasp of how and why these techniques work, it will be difficult for the game
developer to adopt such a technique. This is doubtless a significant challenge but one that if
tackled can yield significant benefits.

H. Muiioz-Avila, C. Bauckhage, M. Bida, C.B. Congdon, and G. Kendall 39

3.2 Issues with Using Machine Learning Algorithms

Another challenge is that there is no simple answer if a game developer asks the question
about which machine learning approach to use. Take for example, classification tasks, a
subfield of machine learning where an agent must learn a function mapping input vectors
to output classes. There is no such a thing as the best classifier algorithms; some classifier
algorithms work well in some data sets but not in others. The sheer number of potential
algorithms to use for classification tasks can be overwhelming for game practitioners that
might be looking for a quick fix.

Another difficulty is obtaining the data for input to test the machine learning algorithms.
There is no clear value added for a commercial company to gather and share the data. This
is reminiscent of a “chicken and egg” problem, whereby the data is needed to demonstrate
potential capabilities but without some proof that these techniques might work it is difficult
to collect the data needed.

Part of the problem is that if a gaming company has money to invest in a game, aspects
such as graphics will get prioritized simply because it is unclear what the benefit is from
investing in machine learning.

Finally, some games are designed for the player to spend a certain number of hours.
Having adaptable AI can make the game replayable for a long time and hence it might be
undesirable for those kinds of games.

3.3 Reward versus Having Fun

One of the challenges of applying machine learning is the difficulty of eliciting adequate
target functions. Machine learning algorithms frequently have an optimality criterion defined
by a target function. For example, in reinforcement learning, an agent is trying to maximize
the summation of its future rewards (this target function is called the return in reinforcement
learning terminology). In an adversarial game, the reward can be defined as the difference in
utility U(s) — U(s") between the current state s and some previous state s’. One way to define
the utility of an state is by computing Score(ourTeam) — Score(opponent). Intuitively, by
defining the return in this way, the reinforcement learning agent is trying to maximize the
difference in score between its own team and its opponent.

While clearly having such a target is sensible in many situations such as a machine versus
machine tournament, such target functions omit an crucial aspect in games: players want to
have fun and this is not necessarily achieved by playing versus an opponent optimized to
defeat them. "Having fun" is an intangible goal, difficult to formalize as a target function.
This is undoubtedly one of the most interesting and challenging issues of applying machine
learning to games.

4 Opportunities

We identify three opportunities for machine learning techniques including:

4.1 Balancing Gaming Elements

Many games have different elements such as factions in a real-time strategy games (e.g.,
humans versus orcs) or classes in a role-playing game (e.g., mages versus warriors). Machine
learning could help with balancing these elements. One example of games that could benefit
from machine learning techniques is collectible card games with the most notable example
Magic: The Gathering. These games often feature a complex set of rules and thousands of

Chapter 03

40

Learning and Game Al

different cards with different abilities that are then used by players in their strategies. The
goal of the developers of these games is to balance the gaming elements so no particular
strategy will work in all cases. Some of these developers released online versions of their games
(e.g. Magic: The Gathering) that omit the need of the players to own real cards, moving
everything to virtual world. These online versions of games could provide the developers
with invaluable statistics of a) the trends in the game - e.g. which strategy is used the most,
b) strength of the card, e.g. when the player plays “the blue Viking” in the second turn he
has 60% probability to win the game or ¢) general patterns in player strategies that could
then be used to train competitive Al for these games. This would help the developers to
improve the game in terms of gameplay and potentially make the game more desirable for
players. While points a) and b) are more data mining and statistics processing, the point ¢)
could benefit from one of the machine learning algorithms that are currently available.

4.2 Balancing Game Difficulty

In games such as those that are open-ended such as massive multiplayer online (MMO)
games, a difficulty is how to tailor the game simultaneously towards dedicated players (e.g.,
players who play 20+ hours per week) and casual players (e.g., players who play 10 hours or
less a week).

An important potential for adding learning to games is in adjusting the game difficulty
to the player. Players will lose interest in a game that is markedly too easy or too hard for
them, so the ability for an element of the game to adapt to the player will reasonably increase
player engagement. Additionally, the same mechanism would allow a game to be enjoyed
by different family members, with different profiles and histories for each. Furthermore, an
adaptive approach to game difficulty includes the potential to help develop player skills,
allowing a player an extended enjoyment of the game.

4.3 Finding Design Loopholes in Games

Pattern recognition techniques can be used to detect common patterns in game logs and
then use these patterns to detect outliers. Such techniques will enable developers to detect
anomalies (e.g. exploits in MMOs) much faster than it is currently done, which is done
manually for the most part. MMORPG games often feature complex worlds with rich sets
of rules. In these worlds it is often hard to predict general trends in the means of player
strategies or economy prior to launch of the game. More often than not, these kinds of
games need tweaking and balancing after launch preventing the exploitation of features not
intended by game developers. These problems are often detected “by hand”, by honest
players reporting the issue, or by dedicated game developers, who monitor the game and
check for these kinds of exploits. However, these processes could be partially automated by
applying a) simulation, b) data mining and ¢) machine learning algorithms. For example
the algorithm would gather data such as “gold gain per hour per level” for all of the players.
Then all the players that would exceed certain threshold over average value would be tagged
as suspicious and developers would be notified to further check the issue. This approach can
be extended to almost any feature of the game, such as quest completion, difficulty of the
enemies, etc. Moreover, methods of auto-correction by machine learning methods could be
applied, e.g. I see that this player defeats that enemy every time, but this is not supposed to
be, so we increase the difficulty of this particular enemy for this particular player.

H. Muiioz-Avila, C. Bauckhage, M. Bida, C.B. Congdon, and G. Kendall

4.4 Making Timely Decisions

One of the most difficult challenges of applying Al to games is twofold. First, that Game Al
is typically allocated comparatively little CPU time. Most CPU time is devoted to other
processes such as pathfinding or maintaining consistency between the GUI and the internal
state of the game. Second, the time for developing the game Al is comparatively short; other
software development tasks such as graphics and level design take precedence. This makes it
very difficult to design and run a deep Game Al. As a result frequently game Al is generally
not as good as it can be [13].

Machine learning offers the possibility to learn and tune capable Game AI by analyzing
logs of game traces (e.g., player versus player games during beta testing). Indeed in Section
2.1, we discussed some of systems. For example, [29] reports on a system capable of eliciting
game playing strategies that were considered novel and highly competent by human experts
in a board game. [33] reports on a learning system that controls a small squad of bots in an
FPS game and rapidly adapts to opponent team’s strategy. In these and other such learning
systems, the resulting control mechanism is quite simple: it basically indicates for every
state the best action(s) that should be taken. Yet because it captures knowledge from many
gameplay sessions it can be very effective.

5 Conclusions

In this work, we have explored the state of the art in machine learning research and challenges
and opportunities in applying machine learning to commercial games. For the state of the
art we have explored research on evolutionary computation, as an example of a machine
learning technique that shows a lot of promise while at the same time discussing limitations.
We explored three basic challenges: (1) lack of explanation capabilities which contribute to a
lack of trust on the results of the machine learning algorithms, (2) other issues with machine
learning such the difficulty of getting the data needed because of perceived cost-benefit
tradeoffs, and (3) modeling "fun" in machine learning target functions. Finally, we explored
opportunities for machine learning techniques including using machine learning techniques
for (1) balancing game elements, (2) balancing game difficulty, (3) finding design loopholes
in the game, and (4) making timely decisions.

Acknowledgments. This chapter presents an extension of the discussions that a group of
researchers had on the topic of machine learning and games at the Dagstuhl seminar on the
topic Artificial and Computational Intelligence in Games that took place in May 2012. This
work is funded in part by National Science Foundation grants number 1217888 and 0642882.

—— References

1 Jonty Barnes and Jason Hutchens. AI Programming Wisdom, chapter Testing Undefined
Behavior as a Result of Learning, pages 615-623. Charles Media, 2002.

2 Christian Bauckhage, Christian Thurau, and Gerhard Sagerer. Learning human-like oppo-
nent behavior for interactive computer games. Pattern Recognition, LNCS 2781:148-155,
2003.

3 Christian Bauckhage, Christian Thurau, and Gerhard Sagerer. Learning human-like oppo-
nent behavior for interactive computer games. Pattern Recognition, pages 148-155, 2003.

4 Bruce Blumberg, Marc Downie, Yuri Ivanov, Matt Berlin, Michael Patrick Johnson, and
Bill Tomlinson. Integrated learning for interactive synthetic characters. Proceedings of the

41

Chapter 03

42

Learning and Game Al

10

11

12

13
14

15

16

17

18

19

20

21

22

29th annual conference on Computer graphics and interactive techniques — SIGGRAPH 02,
21(3):417-426, 2002.

Slawomir Bojarski and Clare Bates Congdon. REALM: A rule-based evolutionary compu-
tation agent that learns to play mario. In IEEE Computational Intelligence and Games,
pages 83-90, 2010.

C Brom, M Preuss, and D Klement. Are educational computer micro-games engaging and
effective for knowledge acquisition at high-schools? A quasi-experimental study. Computers
& Education, 57(3):1971-1988, 2011.

Benoit Chaperot and Colin Fyfe. Improving Artificial Intelligence In a Motocross Game.
2006 IEEE Symposium on Computational Intelligence and Games, pages 181-186, May
2006.

Gifford Cheung and Jeff Huang. Starcraft from the stands: Understanding the game
spectator. In CHI, 2011.

Nicholas Cole, Sushil J. Louis, and Chris Miles. Using a genetic algorithm to tune first-
person shooter bots. Proceedings of the 2004 Congress on Evolutionary Computation (CEC
2004), 1:139-145, 2004.

Adam Dziuk and Risto Miikkulainen. Creating intelligent agents through shaping of co-
evolution. IEEE Congress on Evolutionary Computation (CEC 2011), pages 10771083,
2011.

David J. Gagne and Clare Bates Congdon. Fright: A flexible rule-based intelligent ghost
team for ms. pac-man. In IEEE Computational Intelligence and Games, 2012.

Stephen Grand, Dave Cliff, and A Malhotra. Creatures: Artificial life autonomous software
agents for home entertainment. The First International Conference on Autonomous Agents
(Agents '97), pages 2229, 1997.

Stephen Grand, Dave Cliff, and A Malhotra. A gamut of games. AI Magazine, 2001.

Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley. Evolving content in the Galactic
Arms Race video game. 2009 IEEE Symposium on Computational Intelligence and Games,
pages 241-248, September 2009.

Philip Hingston and Graham Kendall. Learning versus evolution in iterated prisoner’s
dilemma. Evolutionary Computation, 2004. CEC2004., 1:364-372, 2004.

Rudolf Kadlec. Evolution of intelligent agent behavior in computer games. Masters thesis,
Charels University in Prague, Czech Republic, 2008.

George Konidaris, D Shell, and N Oren. Evolving neural networks for the capture game.
Proceedings of the SAICSIT 2002 Post-graduate Research Symposium, 2002.

Michelle McPartland and Marcus Gallagher. Reinforcement learning in first person shooter
games. IEEE Transactions on Computational Intelligence and Al in Games, 3(1):43-56,
Mar 2011.

Chris Miles, Juan Quiroz, Ryan Leigh, and Sushil J. Louis. Co-Evolving Influence Map
Tree Based Strategy Game Players. 2007 IEEE Symposium on Computational Intelligence
and Games, pages 8895, 2007.

Jeff Orkin and Deb Roy. The restaurant game: Learning social behavior and language from
thousands of players online. Journal of Game Development, 3:39-60, 2007.

Matt Parker and Gary B. Parker. The Evolution of Multi-Layer Neural Networks for
the Control of Xpilot Agents. 2007 IEEE Symposium on Computational Intelligence and
Games, pages 232-237, 2007.

Mike Preuss, Nicola Beume, Holger Danielsiek, Tobias Hein, Boris Naujoks, Nico Pi-
atkowski, Raphael Stuer, Andreas Thom, and Simon Wessing. Towards intelligent team
composition and maneuvering in real-time strategy games. IEEE Transactions on Compu-
tational Intelligence and Al in Games, 2(2):82-98, 2010.

H. Muiioz-Avila, C. Bauckhage, M. Bida, C.B. Congdon, and G. Kendall

23

24

25

26

27

28

29

30

31

32

33

34

35

Steffen Priesterjahn, Oliver Kramer, Alexander Weimer, and Andreas Goebels. Evolution
of human-competitive agents in modern computer games. Evolutionary Computation, 2006.
CEC 2006, pages T77-784, 2006.

Jan Quadflieg, Mike Preuss, Oliver Kramer, and Gunter Rudolph. Learning the track and
planning ahead in a car racing controller. Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games, pages 395-402, August 2010.

Ryan K. Small and Clare Bates Congdon. Agent smith: Towards an evolutionary rule-based
agent for interactive dynamic games. In IEEE Congress on Evolutionary Computation,
pages 660-666, 2009.

Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Evolving neural network
agents in the NERO video game. Proceedings of the IEEE 2005 Symposium on Computa-
tional Intelligence and Games (CIG’05), pages 182189, 2005.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Fvolutionary Computation, 10(2):99-127, 2002.

Ivan Tanev, Michal Joachimczak, and Katsunori Shimohara. Evolution of driving agent,
remotely operating a scale model of a car with obstacle avoidance capabilities. Proceedings
of the 8th annual conference on Genetic and evolutionary computation — GECCO ’06, pages
1785-1792, 2006.

Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM, 38(3):58—
68, March 1995.

Christian Thurau, Christian Bauckhage, and Gerhard Sagerer. Synthesizing movements
for computer game characters. Pattern Recognition, LNCS 3175:179-186, 2004.

Julian Togelius, Renzo De Nardi, and Simon M. Lucas. Towards automatic personalised
content creation for racing games. 2007 IEEE Symposium on Computational Intelligence
and Games, pages 252259, 2007.

Julian Togelius and Simon M. Lucas. Evolving Controllers for Simulated Car Racing.
Proceedings of the 2005 Congress on Evolutionary Computation (CEC 2005), 2:1906-1913,
2005.

Lee-Urban S. Vasta, M. and H. Munoz-Avila. Retaliate: Learning winning policies in
first-person shooter games. In Proceedings of the Seventeenth Innovative Applications of
Artificial Intelligence Conference (IAAI-07). AAAI Press., 2007.

Krzysztof Wloch and Peter J. Bentley. Optimising the performance of a formula one car
using a genetic algorithm. Parallel Problem Solving from Nature-PPSN VIII, pages 702-711,
2004.

GN Yannakakis and J Hallam. Evolving opponents for interesting interactive computer
games. From Animals to Animats, 8:499-508, 2004.

43

Chapter 03

	Introduction
	Sample State-of-the-Art Applications and Research
	Machine Learning for Game AI
	A Discussion of Evolutionary Computation Applications

	Challenges
	Need to Explain Decisions and Gaining User’s Trust
	Issues with Using Machine Learning Algorithms
	Reward versus Having Fun

	Opportunities
	Balancing Gaming Elements
	Balancing Game Difficulty
	Finding Design Loopholes in Games
	Making Timely Decisions

	Conclusions

