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Executive Summary

Formal methods are employed during system-development process to improve the quality
of the system, to increase the efficiency of the development process, or to derive guarantees
about qualities of the system. The term “formal methods” has traditionally been used for
a number of different approaches, including modelling and specification languages, as well
as methods and tools to derive properties of systems. Because of the vagueness of the term
“formal methods”, it may perhaps, be desirable to replace it by “modelling, analysis, and
verification”.

A good recent overview of industrial projects concentrating on the early phases of spe-
cification and design has been given in a recent survey article: Jim Woodcock, Peter Gorm
Larsen, Juan Bicarregui, John S. Fitzgerald: Formal methods: Practice and experience.
ACM Computing Surveys, 41(4), 2009.

The Dagstuhl Perspectives Workshop, held in December 2010, concentrated mostly on
methods for system analysis and verification. These are employed in the design phase as
well as in later phases of system development. Model checking, abstract interpretation,
equivalence checking, and verification by deduction –all developed in academia– are the
most impressive success stories.

After a very long gestation period, formal methods for the derivation of program pro-
perties have finally gained some measure of industrial acceptance. There are, however,
remarkable differences in the degree of this acceptance. There is a clear correlation between
the criticality of systems and the costs of failure, on one hand, and the degree to which
formal methods are employed in their development, on the other hand. Hardware manufac-
turers and producers of safety-critical embedded systems in the transportation industry are
examples of areas where applications of analysis and verification methods are perhaps most
visible. A semiconductor design gone wrong is just too costly for any cost argument against
the use of formal design and verification tools be acceptable. Threats of liability costs are
strong arguments for the use of formal methods in the development of safety-critical embed-
ded systems. Different application areas often entail different approaches to the use of formal
methods. Safety-critical systems call for the use of sound methods to dogmatically ensure
correctness. General-purpose software with strong time-to-market pressures encourage a
more pragmatic attitude, with emphasis on bug-chasing methods and tools.

Industrial domains with certification requirements have introduced tools based on for-
mal methods into their development processes. Most current certification regulations are,
however, still process-based; they regulate the development process and do not state the
required properties of the result. Critics describe this as “Clean pipes, dirty water.” The
trend to use formal methods will become stronger when certification standards move from
process-based assurance to product-based assurance. These new standards will specify the
guarantees to be given about system properties. Several current standards for transporta-
tion systems highly recommend abstract interpretation and model checking for systems at
the highest criticality level. “Highly recommend” actually means “required”. The loophole
is the “state-of-practice” argument. The developer can be exempted from using a highly
recommended method by arguing that it is not yet the state of practice.

Several participants of the workshop have expressed the important role of champions of
a formal method. A champion, enthusiastic about the potential of and competent in the
use of a verification method, is often needed to introduce the method and associated tool to
the development process. Often, once the champion leaves, the degree of adoption declines
dramatically.



Jörg Kreiker, Andrzej Tarlecki, Moshe Y. Vardi, and Reinhard Wilhelm 23

The expectations towards analysis and verification methods have always been very high,
often due to unrealistic promises. These unrealistic promises have mostly been the result
of the ignorance of the differentiation of roles. Three distinct roles are connected to a for-
mal method: the researcher develops the theoretical foundations of the method; the tool
developer implements the method; and the users apply the tool in an industrial setting.
The different analysis and verification methods have very different requirements imposed on
their users, which has implications for their acceptance in industry. Researchers and tool
developers often develop their methods and tools for their own use. Subsequently, they use
these tools with a high degree of expertise. The experience of such expert users is quite
different from that of industrial users, who do not have such degree of expertise. Thus,
reports by expert users are often quite rosy and create unrealistic expectations. The expec-
tations towards analysis and verification methods are astonishing in the light of the known
undecidability or intractability of the problems they are expected to solve; the methods
and tools are expected to be at the same time fully automatic, effective and efficient, and
easy to use. Disappointment is unavoidable. Nevertheless, the border between what can
currently be done and what is still out of reach is permanently moving, with significant
progress accomplished over the last 30 years.

One challenge for further advances is higher degree of automation: the different me-
thods require different degrees of user interaction and of user qualification. Currently, with
few exceptions, such as Microsoft Research’s Boogie platform, there is little integration
among different tools. Nevertheless, advances can be expected in the coming years from
tool integration, starting with information exchange between tools and common exchange
formats. Specifically, there is a high potential for improvement from a synergetic integration
of model-based design tools with analysis and verification tools.

Scalability of the methods and tools is still considered a problem. The exploitation of
large-scale parallelism may increase the size of verifiable systems. A clear identification
of application areas for the various methods rather than the search for universal methods,
doomed to fail, will avoid user disappointment.

The embedded-system industry has already realised that badly structured systems writ-
ten in obscure programming style cannot be effectively maintained. Similarly, it cannot
be expected that verification methods would cope with such systems. Systems should be
designed for verifiability.

While formal methods have often been dismissed by many as “Euro-Science” –a rather
abstract research with little chance for industrial adoption– decades of research, both basic
research and tool development have started to bear fruits, attracting an increasing level of
industrial interest. This interest is often accompanied by unrealistic expectations, but, at
the same time, provides an opportunity and challenge to researchers working in this area, as
more basic research and good tools engineering are needed to solve the challenges outlined
above.
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1 Introduction

Formal methods are employed during system-development process to improve the quality
of the system, to increase the efficiency of the development process, or to derive guarantees
about qualities of the system. After a very long gestation period, formal methods for the
derivation of program properties have finally gained some measure of industrial acceptance.
There are, however, remarkable differences in the degree of this acceptance. There is a clear
correlation between the criticality of systems and the costs of failure, on one hand, and
the degree to which formal methods are employed in their development, on the other hand.
Hardware manufacturers and producers of safety-critical embedded systems in the transpor-
tation industry are examples of areas where applications of analysis and verification methods
are perhaps most visible. Different application areas often entail different approaches to the
use of formal methods. Safety-critical systems call for the use of sound methods to dogma-
tically ensure correctness. General-purpose software with strong time-to-market pressures
encourage a more pragmatic attitude, with emphasis on bug-chasing methods and tools.

The expectations towards analysis and verification methods are astonishing in the light
of the known undecidability or intractability of the problems they are expected to solve;
the methods and tools are expected to be at the same time fully automatic, effective and
efficient, and easy to use. Disappointment is unavoidable. Nevertheless, the border between
what can currently be done and what is still out of reach is permanently moving, with
significant progress accomplished over the last 30 years.

One challenge for further advances is higher degree of automation: the different methods
require different degrees of user interaction and of user qualification. There is little integra-
tion among different tools. Nevertheless, advances can be expected in the coming years from
tool integration, starting with information exchange between tools and common exchange
formats. Specifically, there is a high potential for improvement from a synergetic integration
of model-based design tools with analysis and verification tools.

Scalability of the methods and tools is still considered a problem. The exploitation of
large-scale parallelism may increase the size of verifiable systems. A clear identification
of application areas for the various methods rather than the search for universal methods,
doomed to fail, will avoid user disappointment.

The embedded-system industry has already realised that badly structured systems writ-
ten in obscure programming style cannot be effectively maintained. Similarly, it cannot
be expected that verification methods would cope with such systems. Systems should be
designed for verifiability.

While formal methods have often been dismissed by many as “Euro-Science” –a rather
abstract research with little chance for industrial adoption– decades of research, both basic
research and tool development have started to bear fruits, attracting an increasing level of
industrial interest. This provides an opportunity and challenge to researchers working in this
area, as more basic research and good tools engineering are needed to solve the challenges
outlined above.

2 Concepts

Defining formal methods is easy. I did it 100 times.1

1 Adapted from a quote by Mark Twain on quitting smoking.
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We understand the area of modelling, analysis and verification to be mathematically
founded techniques and tools that aid humans to construct systems of a higher quality with
less resource usage.

Systems

Systems we consider consist of software, hardware, or a combination thereof. We use the
term data to abstract the interaction of systems with the physical world (such as input
from users or sensors). A system together with data executes, resulting in a (number of)
mathematically defined run(s) of the system.

Verification

(Functional) Verification is concerned with the behavior intended by the constructor : ‘A
system should do, what I want it to do’ Intended behavior is a set of acceptable runs.
Acceptable runs can be defined implicitly or explicitly. Explicit definitions of acceptable
runs are called specifications. Typically, specifications are (parts of) programs written in
a formal language. The verification of a system formally proves its conformance with its
specification.

Verification is the most abused term in this arena. Almost any activity to convince oneself
or a client of desired system properties is called verification or even formal verification.
Most notably (non-exhaustive) testing and bug finding sail under this false color. What
contributes to this confusion is the polyvalent nature of several formal-method approaches.
Model checking, advertised as a verification technique, is, for complexity reasons, mostly
used for bug finding. We will use verification in the strict sense, defined in Subsection 3.2.6.

Resources

We distinguish two kinds of resource. On the one hand, there are resources consumed during
the construction and for themaintenance of a system. On the other hand, there are resources
consumed during the runs of the system. Examples of resources are time, energy, person
months, and money.

Roles

Humans are involved with formal methods in several roles.
researchers develop the foundations of a formal method,
tool developers realize a tool based on some formal foundation,
users apply tools to systems under study.

Some tools are push-button tools. However, given the undecidability of the program veri-
fication problem, more or less input from the tool user is needed as will be detailed when
individual methods are described. The formal-methods area has long suffered from the fact
that the researcher was also the tool developer, and worse, the user. This type of user has
made unusually good experience with his own method and tool, and often raised too high
expectations.

Models

Systems are the end-product of a construction process. A model is then viewed as an
abstraction of a system. It should be formally defined (possibly in the same language as the
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Requirements

Specification
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Architecture
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Unit test, analysis

verification

Integration

System test, anal.

verification

Operation,

maintenance

Figure 1 The V cycle for software development

system). Formal methods study the relation between a model and the system implementing
the model.

Having introduced general definitions, we instantiate them with existing systems, speci-
fications and methods in the next section.

2.1 Development Process
The construction of systems is organized according to some development process. One such
process is depicted in Figure 1. Typically, different formal methods contribute to that process
and, typically, each step during the development is associated with preferred methods.

Modeling and specification languages are associated with the first three phases, Requi-
rements Specification, Design, and Architecture. Code synthesis in model-based approaches
is associated with Implementation. Model checking, abstract interpretation, and program
verification may be appplied at the model level during the Design phase and at the unit and
the system level.

3 A Survey of Formal Methods

In this section, we list typical formal methods in no particular order. It must be noted
that different application domains require different methods and that there is not one ideal
method. Therefore, we delineate typical application domains with each method.

Method Signatures

Following Dines Bjørners proposal at the workshop, we ask developers and users of formal
methods to provide a signature of their method. A signature is a type expression over the
type constructors: Sys, Model, Data, and Spec, →, and ×. As an example consider

compiler :: Model→ Sys.

That is, a compiler takes a model (here: a program) and produces a system (here: binary
code). Note that binary code could serve as a model (for instance in worst-case execu-
tion time analysis) and that a program could serve as a system (if one is interested in
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the development resulting in the program, say, from a higher specification by model-based
development).

3.1 Specification Languages
Specification languages, as the term indicates, are formalisms to write specifications that
capture properties required of the system (or better, of its behaviour). Therefore, the basic
functionality they offer is to built specifications that capture designer’s initial, informal ideas
about desired system behaviour:

specify :: Informal_Ideas→ Spec.

Once specifications are given, to make them of any use, it must be possible to determine
whether or not a given system satisfies a specification, or in other words, realizes it correctly:

correct :: Sys× Spec→ B.

Checking this relationship is the matter of verification of a system w.r.t. its specification.
Refinement is a relation between specifications, whereby a specification gets refined by

incorporating some further design and programming decisions, with the basic requirement
that any system that correctly realizes the refined specification satisfies the original specifi-
cation as well:

refines :: Spec× Spec→ B.

The approaches to capturing the required system behaviour (or some of its aspects) vary
vastly.

At one extreme, we have the use of standard (high-level) programming languages to define
a specific behaviour, which is then viewed as a presentation of the desired behaviour of the
system. This idea led to the development of model-oriented specification languages, where
a particular model of a system is built (whether using some programming formalisms, or
some more abstract mathematical notation) and then viewed as a specification: any system
that displays a behaviour conformant with that of the given model is its correct realization.
Development then takes a form of model refinement, or reduces to synthesizing a program
from a model. An archetypical example of a model-oriented specification formalism, which
heavily influenced further developments is VDM [20].

Model-based design is extensively used in the embedded-systems industry. It offers a
unique chance, namely that code generators are tailored towards analyzability and verifya-
bility. It is not the programmer who has to be forced to produce disciplined code. Code
synthesis, as experienced with several code generators for Scade, can be designed to guaran-
tee analyzability and verifiability.

Another corner is occupied by logical formalisms, where a specification is given by simply
listing the required properties as formulae of some logic. Specifications for programs-in-the-
small are often given in this form, based on a programming logic (with Hoare’s logic [19]
as a classical example). Not much more than pure formulae of some temporal logics have
traditionally been used in model checking. Finally, various algebraic languages were put
forward. The purpose was to specify abstract data types by listing axioms that link the
operations (and constants) of a data type with each other. They thus specify the behaviour
of functions that are to implement the operations [16]. These ideas spurred development
of property-oriented specification languages, like Z [33], which apart from such basic spe-
cifications, built by listing the axioms, offer various mechanisms to combine specification
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systematically, thus building them in a structured manner. This was perhaps first stressed
in the work on CLEAR [10] and developed in full in a whole line of algebraic specification
languages, with CASL [6, 26] as a relatively recent fully-fledged example of such a formalism,
with complete formal semantics, development and verification methodologies, and support
tools under intensive development.

The distinction between model- and property-oriented approaches to specifications was
blurred from the very beginning. Logic programming languages, as well as other declarative
languages viewed as specification tools found their early place between these two worlds. So
did many mature formalisms, like RAISE [17], that incorporate both approaches.

One problem any specification method has to face is how exactly the general specification
mechanisms used relate to the programs in a specific programming language. One solution
to alleviate this, perhaps first put forward in Larch [18], is to extend explicitly the generic
specification language by “interface languages” that link it to various programming lan-
guages. Another idea is to develop formalisms that interleave specification with programs,
with examples like a number of languages devoted to design by contract, like Eiffel [24] and
Extended ML [31, 21], or various extensions to programming languages to allow assertions to
be inserted, which underlie a number of program verification systems and tools, like JML [9].

As far as applications are concerned, a recent survey on the use of formal methods [37]
indicates that the specification/modeling activities were a crucial part of practically all re-
viewed projects that used any formal methods at all. No surprises here: even if the use of
formal methods stops at providing a precise specification (necessarily involving some specifi-
cation formalisms), the benefits of clear statement of the requirements on and properties of
the system or component cannot be overestimated. In the early Transputer project, just the
specification of the floating-point arithmetic [3] helped to discover problems with the stan-
dard to be implemented, and the full strength of the formal methods in use was highlighted
even more when it came to formal verification of its Occam implementation and develop-
ment of the chip microcode from it. Quite similar experience was brought for instance by
a project to specify and verify the AAMP5 microprocessor in PVS (a specification language
integrated with support tools and a theorem prover [28]). Two errors in the microcode were
identified when the specification was given, and then a verification of the microcode was
carried out [34].

These examples, as well as other examples (coming from different application areas, as
for instance listed in [37]), show that this indeed is a typical pattern: a precise formal spe-
cification, often used to identify and clarify problems with informal design, offers a precise
complete description of the systems (or their components) to be developed, a valuable asset
on its own. Then formal methods and tools, often very specifically linked with the specifi-
cation formalisms in use (with dependencies going in either direction) can be employed to
support the development and verification of the software; see subsequent sections on model
checking, verification, abstract interpretation, and the like. It is interesting that reports
in [37] do not give a uniformly positive view of the benefits of the use of specification for-
malisms and related formal methods: while everybody agrees that their use results in an
increased confidence and a higher quality of the product, their cost effectiveness is less clear.
The major cost factor is, however, the high learning curve necessarily involved at the early
stages of the project, when a (new) specification formalism is brought in and has to be
learned to build the specifications; clearly, this overhead should decrease considerably with
time when the use of a particular specification formalism is repeated and the use formal
methods in general becomes an expected and required standard.
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3.2 Verification Methods
We now describe briefly several major verification methods, abstract interpretation, model
checking, equivalence checking, and verification by deduction. The properties to be proven
are undecidable most of the time. In these cases, soundness—no false claim produced—
and completeness—every property that holds is actually derived—can not be reached at
the same time. The different methods deal with this in different ways. All are sound, will
not derive correctness claims if, indeed, the system is faulty (false positives). They may be
incomplete, producing warnings (false negatives) while, indeed, the system is correct, and/or
they may require input from the user.

3.2.1 Abstract Interpretation

Abstract interpretation [12] computes an approximation of the program semantics. Alter-
natively, one might say that it computes invariants, properties that hold of every run of the
system regardless of the environment. For example: At program line 17, variable x always
has value 5, or the memory load at program point p is always a cache hit. As a signature
we suggest

abstr_int :: Sys→ Spec.

Abstract interpretation per se typically works on implementations without knowledge of in-
put data and without specification. It infers properties that hold for all possible executions.
In particular, let abstr_int(s) = ϕ, and let R = [[ϕ]] be the set of runs denoted by ϕ. An abs-
tract interpretation is called an under-approximation, if R ⊆ [[s]] and an over-approximation
if R ⊇ [[s]]. An abstract interpretation is always an over- or an under-approximation of the
program semantics, [[s]]. As an example, consider the safe classification of memory accesses
as cache hits and cache misses as needed for a timing analysis of hard real-time programs des-
cribed below. To classify memory accesses as cache hits one needs an under-approximation
of the cache contents, while for cache misses one needs an over-approximation of the cache
contents.

3.2.1.1 Derived Properties

Often, the specification (invariant) inferred by abstract interpretation is not the one one is
actually interested in. Let ϕspec be the desired specification and let ϕinv be the inferred
one. An abstract interpretation is sound, if ϕspec ⇒ ϕinv. In this case, one may obtain
false positives, that is, indications that a specification is violated even though it is not. On
the other hand, soundness allows the proof of absence of defects. If ϕinv ⇒ ϕspec then the
abstract interpretation is complete. If an error is found, it is definitely an error. Such a
method is ideal for bug-hunting. On the other hand, a complete method might suffer from
false negatives, that is, it might fail to uncover an error. While possible sound and complete
abstract interpretations are possible, they are rare.

Often abstract interpretation is used with implicit specifications such as absence of bugs
like division-by-zero, array-out-of-bounds-accesses, stack-overflow, null-pointer-dereferences.
Typically, people deal with sound methods producing false positives rather than false ne-
gatives. On the other hand, abstract interpretation allows to prove the absence of certain
defects making it attractive for certification of systems with respect to authority standards
(e.g. in avionics).
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3.2.1.2 Four Tools

Probably the largest industrial systems to which abstract interpretation was applied were
safety-critical systems of the Airbus A380 plane. These systems consist of several hundred
thousand lines of code. The four abstract interptretation based static analyzers described
below, Polyspace Verifier, Astrée, Stackanalyzer, and aiT were able to analyze tasks of this
size in times acceptable for the developers in the aeronautics and automotive industries.

Astrée is a sound static analyser for the programming language C designed to prove the
absence of run-time errors such as division-by-zero, index-out-of-bounds, overflow and un-
derflow, null, mis-aligned or dangling pointers [8]. Astrée was also designed to be complete,
i.e., produce no false alarms, but only for the type of software found in critical real-time syn-
chronous embedded control systems (e.g. synthesized from Scade). Astrée2 has been used
with success in verifying aeronautic, aerospace, and automotive applications, such as electric
flight control or space-vessels maneuvers, on programs up to 106 lines of code, without false
alarms.

The sound static analysis tool with the largest user base is Polyspace Verifier3. It is in
routine use in a decent set of development laboratories of the safety-critical embedded sys-
tems domain. Polyspace Verifier is based on abstract interpretation and analyzes programs
written in C/C++ and Ada. Compared to Astrée it checks for absence of fewer errors and
is less configurable. Its policy, “Green follows Orange” means that the analysis continues
after a warning as if nothing happened. This means that several iterations are necessary to
discover all problems.

Stackanalyzer4 determines safe upper bounds on the size of system and user stacks. It
determines the worst-case stack usage of the tasks in in the code under verification and
displays the results as annotations of the call graph and control-flow graph.

Finally, aiT5 determines safe upper bounds on the execution time of real-time pro-
grams [14]. Several different abstract interpretations are used, the most complex being
the derivation of invariants about the set of all execution states of the execution platform.
These invariants are used to bound the execution times of instructions. Depending on the
complexity of the execution platform, aiT has shown an over-estimation of the execution
times of between 8% for simple microcontrollers and 25% for complex high-performance
mono-processors [35], while tasks of several million instructions can be analyzed within one
day.

3.2.1.3 Roles in Abstract Interpretation

An abstract interpreter, as realized by a tool developer (based on foundations laid by the
researcher) is able to analyze systems for a specific set of properties and nothing else. Any
given tool is not universal, in contrast to underlying theory. Hopefully, the tool developer
aims at the right set of properties for a relevant set of systems. The user, in principle,
gets a push-button system. However, the analysis results may be much better if he/she
gives a little help to the analyzer. This help may consist in configuring the system for the
particular characteristics of the system, e.g. describing the ranges for environment variables
and combining the right set of abstract domains for an embedded-control system in Astrée.

2 http://www.absint.de/astree/
3 http://www.mathworks.de/products/polyspace/
4 http://www.absint.de/stackanalyzer/
5 http://www.absint.de/ait/

10482

http://www.absint.de/astree/
http://www.mathworks.de/products/polyspace/
http://www.absint.de/stackanalyzer/
http://www.absint.de/ait/


32 Modeling, Analysis, and Verification – The Formal Methods Manifesto 2010

It may also consist in supplying necessary properties about the execution platform, e.g. the
type of used memory, or properties of the system under analysis, e.g. loop bounds, to aiT.

3.2.2 Model Checking

Model checking [11, 30] is understood by the following signature:

mc :: Model× Spec× Data→ B× [Run].

This means that given a model (or a system really) and a specification and input data,
a model checker either provides a run to witness a possible error or indicates a successful
check. Hence the signature has the “optional” result type [Run] with an extra bit representing
satisfiable/unsatisfiable.

3.2.2.1 Model Checking in Industry

The most widespread use of model checking is in the semiconductor industry. Typical use
cases were described by Cindy Eisner from IBM. A chip consists of several units. A unit is
the smallest component of a processor architecture that has a functionality. A specification
describing the functionality could be given for a unit. However, the state space to be
exhaustively elaborated by a model checker currently is too large. Instead, blocks, parts of
units, are checked. They may not have a specifiable functionality. So, only local properties
are checked; for instance 14,000 local properties for the Pentium 4. These local properties
express local correctness conditions.

Blocks have many different environments or contexts, in which they can be activated, in
fact, too many to do this exhaustively. So, currently blocks are checked for local properties
in restricted sets of environments.

Despite the dominance of model-checking use cases in hardware industry, there are
examples from software and other industries as well. The Static Driver Verifier Research
Platform [2] is a tool suite provided by Microsoft to verify Windows drivers. It is based on
the software model checker SLAM.

3.2.2.2 Roles in Model Checking

Model checking has a different distribution of obligations from that of abstract interpreta-
tion. It places a higher burden on the user, who has to write a specification in the form of a
finite-state machine or a temporal-logic formula, both not the native languages of most deve-
lopers. In some cases, the user also has to supply an abstract model of the system, an often
non-trivial task. This task may actually be alleviated by the recently begun cooperation of
static analysts and model checkers. Abstraction of systems may be done based on the theory
of abstract interpretation. The resulting abstract systems can then be model-checked.

3.2.3 Equivalence Checking

While model checking compares a model with its specification, equivalence checking com-
pares two models. An adequate signature for equivalence checking also takes into account
the provision of a counterexample in case that a difference between two systems is detected:

ec :: Spec1 × Spec2 → B× [Run].
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Spec1 is typically referred to as the Golden Implementation and plays the role of a
(formal) specification. Spec2 is referred to as Implementation. Equivalence checking is
mainly applied in the design of hardware systems, combinational or sequential circuits. The
Implementation may be the result of adapting an existing design to a new semiconductor
technology, performance optimization, compilation from register-transfer-level to gate-level,
and the like. Very often, Spec1 and Spec2 share a lot of structural similarities, smoothing
the way for the efficient application of graph-based data structures and algorithms (e.g.,
And-Inverter-Graphs or Binary Decision Diagrams) [22], as well as the application of SAT-
solvers (for solving a satisfiability problem) [32] and ATPG-tools (for solving Automatic
Test Pattern Generation problems), or combinations thereof [29].

3.2.4 Equivalence Checking in Industry

Industrial development processes of hardware designs routinely apply equivalence checking
during the design process. Incremental and fine-grained design steps (as coarsely sketched
in Fig. 1) ensure that the problem instances are manageable. Industrial applications of
equivalence checking still require high level of user expertise for setting up the equivalence-
checking framework, especially when implementations are delivered from outside customers
or subcontractors.

3.2.5 Roles in Equivalence Checking

The roles in equivalence checking seem to be separated more clearly than for the other
methods described in this section. The development team producing Spec1 is typically
different from the designers providing the implementation Spec2. In the are of hardware
development, the profession of a Verification Engineer was created. A verification engineer
integrates Spec1 and Spec2 into the equivalence-checking framework while taking care of
technological features, e.g., when some design features are deemed redundant with regard
to the equivalence-checking task. Nevertheless, the verification engineer must be in close
cooperation with the developers of the implementation, e.g., to get rid off false-negative
counterexamples.

3.2.6 Verification by Deduction

Most abstractly, we describe verification by the signature

vbd :: Sys× Spec→ B× [Proof].

More precisely, the boolean result is either a proof that a system satisfies a given property;
or a proof cannot be established. Logic is the lingua franca of verification by deduction.
While logic is used in other approaches too (say model checking) it is really universal in
verification. In interactive program verification, the user of a tool has to supply invariants
at cutpoints of the program.

3.2.6.1 Academic and Industrial Practice

Verification of functional correctness by interactive theorem proving is standard practice
for arithmetic units at processor manufacturers. This probably is the consequence of the
Pentium bug [27, 13].

Proving the correctness of a compiler is, one could say, the “mother” of all software-
verification attempts. The verification of the compiler guarantees that the safety properties
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proved on the source code hold for the executable compiled code as well. Xavier Leroy
developed and formally verified, i.e., gave a proof of semantic preservation, of a compiler
from Clight (a large subset of the C programming language) to PowerPC assembly code.
He used the Coq proof assistant both for programming the compiler and for proving its
correctness [23].

C.A.R. Hoare’s vision of the Verifying Compiler led to the Verified Software Repository
(VSR). This is an evolving collection of tools and challenges related to software verification.
It supports a community effort to develop technology to enable the mechanical certification
of computer programs [5].

The Verisoft project [1] was a research project funded by the German Federal Ministry
of Education and Research (BMBF). The main goal of the project was the pervasive formal
verification of computer systems. The correct functionality of systems, as they are used, for
example, in the automotive domain, in security technology and in medical technology, was
to be mathematically proved. The proofs are computer aided in order to prevent human
error by the scientists involved.

Finally, the verification effort developed within Microsoft Research cannot go unmen-
tioned. Microsoft makes use of its verification platform Boogie6. Specifically, Boogie is an
intermediate language generated by a number of front-end tools for specific purposes and
languages like Havoc (pointer verification in C) or Chalice (concurrent). Boogie is proba-
bly the first example of information-exchange between verification engines. It has a wide
selection of provers at its disposal to verify that programs adhere to their specs. Examples
include Z3, Simplify, or Isabelle/HOL.

4 Acceptance

This section addresses the acceptance of formal methods in industry. It is based on the
experience and observations of the participants, some industrial, some academic.

Compelling Needs

Different application domains have different requirements for verification and, therefore, call
for the application of formal methods at different degrees.

In general-purpose computing, time-to-market may be decisive, such that the additional
cost of applying formal methods may be considered inappropriate. Users may be willing
to tolerate system failures once in a while.
For safety-critical embedded systems, failure is not acceptable. However, it is unrealistic
to assume that complex systems consisting of millions of lines of code could be produced
free of bugs. High-integrity subsystems still may be required to be free of bugs. The
application of formal methods is mandatory to achieve the highest possible quality.
For high-security systems or system components with high-security requirements, the
existence of security loopholes is not tolerated. This area has the interesting feature that
bug chasing is done by an external community, whether the designer want this or not,
namely the hackers.

This classification is reflected in a recent survey of applications of formal methods in
industry, see [7]. It lists a large number of applications in the transportation sector where

6 http://research.microsoft.com/en-us/projects/boogie/

http://research.microsoft.com/en-us/projects/boogie/
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safety-critical subsystems have been developed using formal methods, followed by a good
number of applications in hardware design and several in the financial sector.

Motivating the Introduction of Formal Methods

Often, a formal method is introduced into industrial practice after a major desaster that
it could have prevented from occurring. A premier example is the Pentium bug. Formal
verification of the Pentium’s floating-point arithmetic unit could have saved Intel half a
billion Dollars. This experience boosted the application of formal verification in the hardware
industry. Similarly, several failures in medical instruments have cost the producers high
liability costs and led to the introduction of formal methods.

The Role of Champions

Participants from industry emphasized the importance of champions in industry being en-
thusiastic about and competent in a formal method. Without these, a formal method is
seldom introduced into industrial practice. On the other hand, an introduced method and
tool may fall again into oblivion once a champion leaves his or her position.

The Role of Education

It is decisive for the acceptance of a method and tool in industry that the competences
required from an industrial user are available or can be taught without too much effort.
Industrial participants emphasized that teaching student how to develop high-quality code
is more important than teaching them formal methods. This goes in the same direction as
our emphasis of the importance of the design for verifyability. Disciplined, well-structured
code will increase the applicability of formal methods and will allow for a higher degree of
automation. At the same time, it is important that students obtain adequate mathematical
background, enbaling them later to master the usage of formal-methods tools.

4.1 A Spectrum of Formality
The term verification is heavily abused, as was said above. Every activity expected to lead
to a better system quality is subsumed under it. To account for this, we describe a spectrum
of methods, not all considered “formal” that are used in practice.

Testing: Testing is still very popular despite C.A.R. Hoare’s statement that it can only
prove the existence and not the absence of bugs. In the terminology of Section 3.2, it is
unsound and imcomplete.

Unsound static analysis: This method may be very helpful in chasing bugs [4]. However,
it is neither sound nor complete and therefore not suitable for verification.

Model-based design: The most heavily used modeling languages have a brittle semantics,
in fact, different semantics defined by different code generators. Only the ones having a
formally defined semantics, e.g. Scade, would be subsumed under formal methods.

From lite to rigorous: Dines Bjørner in [7] describes a spectrum from lite, to rigorous, to
formal application. “Lite” means means specifying the problem and maybe the solution
in a formal specification language. “Rigorous” means to specify additional properties
and possibly the relation between different specifications. “Formal” requires proofs of
specified propositions.
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5 Challenges and Perspectives

Industry representatives applying formal methods issued the following wish list, mainly
concerning static-analysis tools.

Improvements in tool functionality: higher precision, i.e., less false alarms, support for
functionality analysis, better configurability, a way to trade precision for performance,
stronger automation, diagnosis of the error–not of the error symptom– and possibly
examples exhibiting the symptom.
Improvements in scalability: Coping with very large systems: full verification for smaller
programs, defect localization for large programs.
Process support: compliance with chracteristics of the development and the certifica-
tion processes, iterative and incremental verification, exploitation of model information
avaiable in model-based design of safety-critical software, support for code quality as-
sessments.
Tool cooperation: support for information exchange between tools exploiting synergy
between tools.

Keep it simple, predictable, actionable

Quoting from Tom Ball’s presentation at the workshop, we understand that tools implemen-
ting formal methods are still too hard to use. Simple counterexamples and simple proofs are
needed, as are predictable behavior to avoid wild swings in performance for small changes.
Tools should explain their failures so that users know what to do next. Type systems are
a particularly successful example satisfying these requirements. Finally, we should learn to
build on each other’s work and stop reinventing the wheel!

Design for Verifiability

A very recent area of research emerging from formal methods is design for verifiability. A
number of design decisions influence the possibility and if this is given, the ease of verifying
properties of systems. Traditionally, this is applied in programming-language design. The
programming language may have a strong influence on the possibility and the needed ef-
fort of system analysis and verification. It may enforce restrictions whose validation would
otherwise require an enormous effort. For example, a major problem in the analysis of im-
perative programs is the determination of dependences between the statements in programs.
The unrestricted use of pointers, as in the C programming language, makes this analysis of
dependences very difficult due to the severe alias-problem created through pointers.

Several coding guidelines have been proposed to lead to more disciplined code. They
typically restrict the use of the dark corners of the programming language, e.g. pointer
arithmetic and function pointers. One prominent example is MISRA C [25], the C coding
standard proposed by the Motor Industry Software Reliability Association. It bans the
worst features of C with respect to the software verification task. However, this does not
necessarily lead to programs whose timing behavior is precisely predictable [15].

The execution platform determines the analyzability of the timing behavior [36]. Most
emerging multi-core platforms will make timing analysis infeasible due to the interference
of threads on shared resources.

The transition from federated architectures—one computer per function—to integrated
architectures—several functions integrated on one platform—as currently under way in the
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Integrated Modular Avionics (IMA) and the AUTomotive Open System Architecture (AU-
TOSAR) standardization efforts offers a great chance to improve the verifiability of systems.
Temporal and spatial partitioning is used in IMA to avoid the logical interference of func-
tions. However, the existing implementations give away the chance to cleanly and efficiently
deal with the interaction on shared resources and the resulting non-composability of the
resource behavior. In the ideal case, design meets verification, that is, design only admits
systems that can be easily verified.

Limitations

However close we get to modelling real systems, we will always talk about models abstrac-
ting from some details. The same goes for specifications. Details left unmodeled and/or
unspecified cannot be verified, obviously, and remain a fundamental limitation.
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