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Abstract

“The fundamental laws necessary for the mathematical treatment of large part of physics
and the whole of chemistry are thus completely known, and the difficulty lies only in the
fact that application of these laws leads to equations that are too complex to be solved.” –
Dirac 1929

The digital world of Internet of Things (IoT) will provide a high-resolution depiction of
our physical world through measurements and other data - even high-definition “video,” if you
consider streaming data frames coming from a myriad of sensors embedded in everything we use.
This depiction will have captured our interactions with the physical world and the interactions
of digitally enhanced machines and devices. Tensors, as generalizations of vectors and matrices,
provide a natural and scalable framework for handling data with such inherent structures and
complex dependencies. Scalable tensor methods have attracted considerable amount of attention,
with successes in a series of learning tasks, such as learning latent variable models, relational
learning, spatio-temporal forecasting as well as training and compression of deep neural networks.

In a Dagstuhl Perspectives Workshop on Tensor Computing for IoT, we validated the fun-
damental suitability of tensor methods for handling the massive amounts of data coming from
connected cyber-physical systems (CPS). The multidisciplinary discourse among academics, in-
dustrial researchers and practitioners in the IoT/CPS domain and in the field of machine learning
and tensor methods, exposed open issues that need to be addressed to reap value from the tech-
nological opportunity. This Manifesto summarizes the immediate action fields for advancement:
IoT Tensor Data Benchmarks, Tensor Tools for IoT, and the evolution of a Knowledge Hub. The
activities will also be channeled to create best practices and a common tensor language across
the disciplines.

In a not so distant future, basic infrastructures for living will be mainly data-driven, auto-
mated by digitally enhanced devices and machines. The tools and frameworks used to engineer
such systems will ensure production-ready machine learning code which utilizes tensor-based,
hence better interpretable, models and runs on distributed, decentralized, and embedded com-
puting resources in a robust and reliable way. We conclude the manifesto with a strategy how to
move towards this vision with concrete steps in the identified action fields.
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Executive Summary

Cyber-physical systems (CPS), or the more consumerized Internet of Things (IoT) is a new
wave of embedding affordable computing and communication into our previously mechan-
ized world to enable for example adaptive energy efficient buildings fueled by renewable
energy sources and connected to smart power grids, factory automation that yields flexible
manufacturing and zero down-time connected to adaptive global supply chains, multi-modal
on-demand public transportation facilitated by car-sharing and even self-driving cars in the
near future.

After years of industrial research, we can pinpoint with confidence that all of the above
scenarios of IoT have the following common requirements emerging from a set of common
characteristics, i.e., they all require the extraction of actionable information for near real-
time automation from multidimensional, spatio-temporal data. This data is only partially
stochastic, as much as humans are involved as the users and operators. But mostly the data
comes from a human-engineered, but mechanically, increasingly digitally, automated network
such as electricity networks, supply chains/networks, transportation networks – commonly
referred to as flow networks. The digitalization of these flow networks is what we refer to
as CPS or IoT. Such digitalization includes ever more precise sensors, cheaper embedded
computing, ubiquitous connectivity, combined with massive amounts of historical data and
easy-to-spawn compute clusters in global data centers.

In April 2016, Dagstuhl hosted a Perspectives Workshop on Tensor Computing for the
Internet of Things by bringing together academic researchers from the tensor community,
distributed computing and machine learning as well as industrial researchers and practitioners
from the IoT/CPS domain. The goal of the workshop was to explore the tensor representations
and tensor computing as the basis for the machine learning solutions needed to turn massive
amounts of IoT/CPS data into useful and actionable information. Tensors, as generalizations
of vectors and matrices, provide a natural representation for data with many axes of variation,
e.g., multidimensional, spatio-temporal data. The workshop validated the suitability of tensor-
based computation for handling data coming from IoT/CPS and concluded with a vision
that tensors would be a crucial part of a bigger computational machinery supporting the
domain experts of IoT/CPS in the near future and supporting the machines and devices
in IoT/CPS in the long term. This manifesto discusses the immediate action areas, i.e.,
IoT Tensor Benchmark Data & Infrastructure, Tensor Tools for IoT, and Tensor Learn – a
knowledge hub, to move towards this vision, and concludes with strategic steps to be taken
within the three action areas.

The manifesto is intended for government and industry funding agencies as well as
academic and industrial researchers. The manifesto will draw the attention of funding
agencies to the open issues needed to be addressed for utilizing the massive amounts of
IoT/CPS data from a data science perspective by pointing to tensor computing as a crucial
tool. The manifesto will also address to academic and industrial researchers by emphasizing

16152

http://dx.doi.org/10.4230/DagMan.7.1.52


54 Tensor Computing for Internet of Things

the open research directions in tensor computing as well as in its use for production-level
development and deployment in IoT/CPS.
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56 Tensor Computing for Internet of Things

1 Introduction

In April 2016, Dagstuhl hosted a Perspectives Workshop on Tensor Computing for the
Internet of Things [2]. The prior year, industrial researchers had formulated the challenges
of gaining insights from multi-dimensional sensory data coming from large-scale connected
energy, transportation networks or manufacturing systems. The sheer amount of streaming
multi-aspect data was prompting us to look for the most suitable techniques from the machine
learning community: multi-way data analysis.

The workshop focused on the Internet of Things (IoT), i.e. devices, which have the
capability to sense, communicate, and even control or interact with their environments. These
devices are increasingly becoming parts of complex, dynamic, and distributed systems of
electricity or mobility networks, hence our daily lives. Various sensors enable these devices to
capture multiple aspects of their surroundings in real-time. For example, phasor measurement
units capture transient dynamics and evolving disturbances in the power system in high-
resolution, in a synchronized manner, and in real-time. Another example is traffic networks,
where a car today can deliver about 250 GB of data per hour from connected electronics
such as weather sensors within the car, parking cameras and radars. Experts estimate that
the IoT will consist of almost 50 billion objects by 2020 [36], which will trigger the Era
of Exascale computing necessitating the management of heat and energy of computing in
concert with more and more complex processor/network/memory hierarchies of sensors and
embedded computers in distributed systems.

Crucial for the extraction of relevant information is the format in which the raw data
from such systems is represented. Crucial for the practicability of information extraction in
IoT is which and how operations are used guaranteeing various attributes of resource use
and management. Tensors can be viewed as both multidimensional data structures and as
multilinear operators. The goal of the workshop was to explore tensor representations and
computing as the basis for machine learning solutions for the IoT. Tensors are algebraic objects
which describe linear and multilinear relationships, and can be represented as multidimensional
arrays. They often provide a natural and compact representation for multidimensional data.
In the recent years, tensor and machine learning communities - mainly active in the data-rich
domains such as neuroscience, social network analysis, chemometrics, knowledge graphs etc.
- have provided a solid research infrastructure, reaching from the efficient routines for tensor
calculus to methods of multi-way data analysis, i.e., tensor decompositions, to methods for
consistent and efficient estimation of parameters of the probabilistic models.

Some tensor-based models have the intriguing characteristic that if there is a good
match between the model and the underlying structure in the data, the models are much
better interpretable than alternative techniques. Their interpretability is an essential feature
for the machine learning techniques to gain acceptance in the rather engineering heavy
fields of automation and control of cyber-physical systems (CPS). Many of these CPS show
intrinsically multilinear behavior, which is appropriately modeled by tensor methods and
tools for controller design can use these models. The calibration of sensors delivering data and
the higher resolution of measured data will have an additional impact on the interpretability
of models.

Various presentations on tensor methods by established researchers at the workshop from
different application domains assured us that tensor methods are reaching a maturity tipping
point. However, knowledge of usage characteristics of tensor models is scattered. Discussions
of the currently independent perspectives on the usage of tensor methods showed a potential
for convergence, which we want to leverage through the action areas we are describing in
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this Dagstuhl Manifesto. During our discussions based on the presentations of the IoT
industrial researchers, it quickly became clear that we would need benchmark challenges for
cyber-physical systems and benchmark data in order to be able to replicate the successes in
machine learning for object recognition and natural language understanding.

The tensor computing community will equally benefit from the new types of data,
requirements, and multi-aspect characteristics of IoT, which can lead to techniques that
increase success rates of previous applications of tensor methods, as was the case with
the challenges of social network data analysis leading to better tensor models/algorithms
that can analyze data sets with missing entries, now used in many other fields in addition
to social network analysis. Additionally, as opposed to standardized machine learning
techniques, tensor computing currently lacks a common language and the homogeneity to
flexibly exchange models. Hence, a hub platform bringing data and domain knowledge
of cyber-physical systems together with various practitioners of tensor computing would
enhance increasing coherence of terms, best practices in data acquisition and structuring
methods as well as model benchmarking, cataloging, and exchange of methods.

In the following the Manifesto describes the three action fields of Benchmarks, Tools, and
Knowledge Hub, when put together, will make tensors a crucial part of a bigger computational
machinery. This machinery will enable first domain experts of IoT/CPS and at a future time
also the machines and devices in IoT/CPS to create efficient and sustainable infrastructures
for life. We conclude the Manifesto with this vision and a strategy how to move into the
right direction now.

2 IoT Tensor Benchmark Data & Infrastructure

Availability of benchmark data has been one of the reasons behind the recent advances in
machine learning, e.g. large collections of high-resolution imagery for image recognition in
computer vision tasks - or large corpus of written and spoken text for applications that need
natural language processing. Although the special - multi-relational - structure of data is
at the heart of tensor decompositions, there are no dedicated benchmark tensor data sets.
Benchmark data typically is chosen to shed light on an algorithm’s critical performance
aspects and compare it to other algorithms. Well-known problems with this approach are
the problem-specificity and that the computational performance and scalability remain still
untested for larger real-world problem data sets.

IoT may indeed bring with it the much needed tensor data in a benchmarkable envir-
onment for tensor computing. Until now most effective data sets are known to be from
chemometrics, telecommunications networks, neuroscience and social networks. Chemomet-
rics data mainly represent a “closed” environment, e.g. the make-up of a fluid consisting of
multiple components with different spectra. Application of tensor decompositions allows for
interpretable factorization and analysis results in such closed environments. Cyber-physical
systems are made up of such closed environments, which connected to each other build
wider networks/systems. Examples are IoT data sets on home energy usage, in which the
multi-aspect measurements of power parameters at the home breaker box capture the varying
characteristic spectra of all the electrical appliances contributing to a home’s energy usage, a
“closed” environment. Hence, the application of tensor decompositions to the problem of so
called non-intrusive load monitoring should yield similar interpretable analytic results as in
chemometrics applications. Furthermore a local power grid network consists of multiple such
closed environments, and links to other local grids to make up the bigger power distribution
and transmission system.
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Similar connectivist view of other CPS domains - such as in manufacturing with factories
and supply chains, or in mobility with connected vehicles and multimodal transportation
systems, etc. - and the promising nature of tensor methods motivates researchers and
potential data providers to organize so called “IoT Tensor Data Challenges,” which will

accommodate larger data sets on real-world problems of IoT/CPS,
curate for high-accuracy and high-resolution sensor data,
from a “closed” environment such that factorization yields interpretable results, as well as
have the potential to capture larger networks in the data

through the inherent connectivity of the IoT/CPS data challenge. The issues with current
benchmark data collections should be addressed by standardizing the “IoT Tensor Data
Benchmark Infrastructure” with following research & development aspects:

The infrastructure should enable users to filter problems based on technical similarity,
e.g. spatio-temporal problems, multi-class predictions etc. The infrastructure should also
enable to browse across others’ implementation of algorithms and compare effectively.
In addition to prediction accuracy, key performance indicators of benchmarking for
IoT/CPS applications are interpretability, computational resource consumption, robust-
ness in stream processing and potentially in highly distributed settings.
The interface to the infrastructure should also enable users to access metadata and
analyze metadata to understand how the algorithms perform, e.g. computation cost per
training, per prediction, etc.
Additionally, the interface should enable users to easily understand how different tensor
models and algorithms perform in different scenarios.

The organization of IoT Tensor Data Challenges will require coordinated efforts of this
community and their extended network. Whereas especially data from industrial partners
will be handled with care, and confidentially if required, as to lower the barriers to providing
data for the challenge. The design and development of the IoT Tensor Data Benchmark
Infrastructure requires an open and iterative approach, which will be improved with every
data challenge.

3 Tensor Tools for IoT

Data in many disciplines contains more than two axes of variation, e.g., spatial, temporal
and spectral dimensions of multi-channel electroencephalography (EEG) signals represented
in both time and frequency domains [3, 27], and can be represented as a multi-way array,
also referred to as a higher-order tensor. Exploiting the low-rank structure and capturing the
underlying patterns in such higher-order data sets are crucial in some domains in order to
extract information from complex data sets. Therefore, tensor factorizations, i.e., extensions
of matrix factorizations to multi-way data, have proved useful in a variety of applications, in
particular, in chemometrics, neuroscience, signal processing and data mining [4, 23, 34, 32].

In this section we discuss and identify open research questions in two parts: (a) regarding
models and algorithms and (b) regarding development for and deployment of these models
and algorithms in IoT/CPS.

Models and algortihms. Tensor factorizations have become a popular data mining tool in
the last decade. Inter-disciplinary conferences of the tensor community such as TRICAP
(Three-way Methods in Chemistry and Psychology) and TDA (Tensor Decompositions and
Applications) as well as workshops sponsored by AIM (American Institute of Mathematics)
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and NSF (National Science Foundation) have played a key role in promoting and advancing
the field by bringing experts from different fields together to identify and solve issues in tensor
computing. Significant efforts have been invested in developing tensor factorization models,
building algorithms and finding the right tensor models for applications of interest. Among
the variety of tensor factorization approaches, the CANDECOMP/PARAFAC (CP) model
[17, 11] has proved useful in applications, where the goal is to capture the underlying factors
uniquely and use them for interpretation. As a result of its uniqueness properties leading to
easily interpretable models, CP has been successfully used in neuroscience, chemometrics,
social network analysis and signal processing applications. The CP model has strong
assumptions about the underlying structure of the multi-way data, i.e., each slice of the
tensor should have the same factors but in different proportions. If there is a good match
between the data and the CP model, it is possible to summarize the data in a compact,
unique and meaningful way. If the data does not follow a CP model, more flexible tensor
factorization models such as a Tucker model [37] can be used for exploratory data analysis.
Also, in particular, when the goal is data compression, Tucker-based approaches have proved
to be effective. In addition to CP and Tucker models, there are many tensor models (see
surveys/books on tensor factorizations [4, 23, 34, 16, 32]), which may be preferred depending
on the goal of the application and the underlying structure of the data sets of interest.

While the analysis of data emerging from IoT/CPS applications will benefit from the
expertise of the tensor community, new types of data and requirements of the applications will
also call for further developments in tensor computing. The CPS/IoT systems are real-time,
distributed, networked, and show dynamic behavior. The data coming from the sensors
embedded into these systems is streaming, noisy, both high-frequency and high-volume, both
sparse and dense. We have identified the following open problems in tensor computing as
the challenges to primarily focus on in order to make tensor computations effective tools in
IoT/CPS applications:

Developing efficient streaming tensor models that can analyze real-time data,
Building algorithms scalable to high-volume data (for both sparse and dense),
Developing efficient distributed models and algorithms,
Automating the building blocks of tensor modeling, e.g., model order selection, model
selection, to decrease expert inputs in the analysis of IoT/CPS data,
Uncertainty quantification of model parameters for tensor factorizations,
Introducing new visualization methods in order to increase the interpretability of tensor
factorizations,
Developing data fusion models and their streaming versions that can jointly analyze
coupled heterogeneous data sets, i.e., data sets in the form of matrices and higher-order
tensors,
Building tensor factorization models that can incorporate prior knowledge such as the
connectivity structure (topology) of IoT systems,
Forming a common tensor computing language to facilitate the exchange of expertise.

Development and Deployment. During the workshop we also had the opportunity to
exchange on trends in tensor tools and emerging frameworks, which focus on development
and deployment support for production-level code. Tensor tools have come a long way since
the first version of Tensor Toolbox for Matlab over a decade ago [6].

Whilst new tools for Matlab have emerged with more focus on modularity, documentation
and getting users from other research fields up to speed on using tensors [38], more specialized
implementations such as Tensor Trains [31] or a distributed version of Tucker computations
[22] are increasingly being shared on github as open source. Open source does speed up
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research immensely since code and papers are instantly accessible to investigate, learn from,
and build upon. We believe that this trend will also assist in disseminating and in creating
the common tensor computing language across disciplines. Especially, when data scientists
will start adopting and porting some of these tensor-based models and algorithms for use in
their favorite programming language and numerical computation libraries.

Matlab is popular with mathematicians and scientists. However, data scientists and
machine learning researchers rarely use Matlab. Instead for the longest time Theano [9], a
numerical computation library in Python, has been the most popular open source framework.
Theano’s focus has been deep learning and efficient computations utilizing GPUs. Since
November 2015, Google open sourced their numerical computation library called Tensorflow
[1], which since then gained considerably in popularity. Tensorflow has Python bindings,
whilst the core is written in C++. Tensorflow aims to enable the creation of maintainable
production-ready code, which runs on distributed machines, hence highly targeted towards
industrial data scientists and applications which deal with massive amounts of data that no
single analytics machine can handle effectively. In this latter category of industry-focused
tools another framework worth mentioning exists: Deeplearning4J [21]. Deeplearning4J is also
a distributed deep learning framework suitable for major companies and large government
organizations, which to date still heavily rely on Java or a JVM-based system. Both
Tensorflow and Deeplearning4J are designed for use with distributed data management and
processing systems such as open source Hadoop and Spark [35] or in the case of Tensorflow
also naturally with Google’s proprietary cluster scheduling system called Borg [15].

Researchers in the intersection of tensor computing and machine learning have been
implementing and open sourcing tensor methods in Python [28] for use in Python projects,
or in Scala [18] for use with Spark, or in Julia [5], a language designed to address the needs of
high-performance numerical analysis and computational science while also being effective for
general-purpose programming, just to name a few. This is a typical sign of the search for a
dominant design in this newly converging field of machine learning and tensor computing. A
potential research & development direction is to create an abstraction layer. A well-designed
API would allow to build tensor-based learning models by clipping together high-level building
blocks of tensor decompositions and similar methods. The abstraction layer would be placed
on top of numerical computation libraries like Tensorflow or Deeplearning4J etc. TensorLab
has such a layer built-in but currently it is only on top of MATLAB.

At this point it is hard to predict, which languages and frameworks will prevail after more
experience has been gained in the intersection of machine learning and tensor computing. Yet,
the domain of IoT/CPS additionally demands the code deployment to be lightweight and the
programming language to be robust and efficient for embedded processors. Java is inherently
cross-platform, there is an embedded variant and OSGi suitable for some IoT application
classes. However, in CPS domains where the insights gained from tensor decompositions
shall translate into controller actions and other near real-time optimization, performance
will be the crucial factor. Whilst C++ as a systems programming language seems to be the
natural choice, it must be noted that C++ is difficult to optimize and maintain.

The skill set that can break down tensor-based machine learning models and algorithms
- even if only for inference - into reliable, high-performant, embedded code is very rare.
This realization is a definitive call for developing of frameworks that support the developers.
Tensorflow is the only framework, at the time of this writing, which is used in production
and supports direct deployment of trained models in embedded and mobile devices [39].
During research for the compilation of the Manifesto, we also found a new machine learning
framework called Leaf [26] written in Rust, which is an up and coming safe and parallel
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systems programming language that is easy to write and deploy. Interestingly, the initial
performance benchmarks affirm our discussions that Tensorflow may be too memory-intensive
for embedded environments. Ironically, Leaf’s development concluded in May 2016 due to
the rapidly increasing popularity of Tensorflow.

One very important realization which is just beginning to surface in the research com-
munity is that all of these frameworks depend on the same low-level libraries such as BLAS
for efficiently performing linear algebraic routines. BLAS is a library from the 70s, which
has added so-called levels over the years for vector operations (Level 1) for matrix-vector
operations (Level 2) and for matrix-matrix operations (Level3). BLAS Level 1 operations are
computed in linear time, Level 2 in quadratic and Level 3 operations are computed in cubic
time. Tensor operations have traditionally been implemented in terms of BLAS operations,
e.g. Matrix Multiplication, incurring both a performance and a storage overhead because
tensors must be flattened to use matrix-matrix operations and this procedure is repeated
multiple times depending on the model/algorithm, the dimension of the data as well as
layout of caches and processors of the hardware. This typical memory blowup problem might
have been a niche problem until now, but the more data is being processed and the faster
analytics result are being expected, the more critical it will become [8] [25]. A promising
abstraction we came across during the research after our Workshop is BLIS [40]. The BLIS
framework is not a single library or static API, but rather a nearly-complete template for
instantiating high-performance BLAS-like libraries.

At the hardware level most of the frameworks again depend on the same abstractions
for translating the algebraic routines onto machine instruction sets through libraries such as
CUDA and OpenCL. Whilst CUDA is a software layer that gives direct access to the GPU’s
virtual instruction set and parallel computational elements for NVIDIA hardware, OpenCL
aims to deliver comparable abstraction across heterogeneous platforms consisting of central
processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs),
field-programmable gate arrays (FPGAs) and other processors or hardware accelerators. In
the application domain of IoT/CPS we have heterogeneous architectures across hierarchies
of processors, memory, and network. In our discussions surrounding the workshop, we even
questioned traditional processor architectures with hardware managed cache hierarchy, a
design principal also from the 70s.

Indeed we are starting to see more innovation even at the processor level, because the
cost of moving data across hardware-managed memory layers starts to dwarf the useful
computation with that data. This difference was not significant in the early days of computing,
and was remedied by scaling techniques via increasing processor clock frequencies and now
increasing the number of cores integrated on a single chip. However, the difference in energy
used for moving data to the computation versus the energy used for the computation itself
becomes very costly when we have machine learning from massive amounts of data. The
cost increase is exponential when tensor operations on multidimensional data are necessary.
Google, accompanying the open sourcing of their Tensorflow framework for machine learning,
unveiled the Tensor Processing Unit (TPU) [10], a custom application-specific integrated
circuits (ASIC) built specifically for machine learning. TPUs “only” utilize a clever trick
for optimizing performance per watt by allowing the chip to be more tolerant of reduced
computational precision, which means it requires fewer transistors per operation. Others
redesign processors from the ground up such as the NEO chip from REX Computing [12].
The design of NEO relies on a range of hardware simplifications which are focused on exposing
low level functionality. Once a feature exists in software, the reshaping of the tensor could
be fused with internal layout of data and packing operations, requiring no explicit reshaping
operations or additional workspace and memory.
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In summary, we believe three R&D directions will crystallize in the following years in the
intersection of mass data-driven machine learning, tensor computing, and IoT/CPS:

High-level building blocks of tensor decompositions to be used on top of lower level
numerical computation libraries
Basic multilinear algebraic libraries with optimized tensor operations for the currently
heterogeneous processor architectures
New processor architectures redesigned to fundamentally improve balance between extreme
efficiency and reconfigurability

As a Tensor Computing for IoT community we will closely follow and co-develop in these
R&D directions to also feed in the IoT/CPS requirements for reliability, safety and robustness
in highly distributed systems.

4 Tensor Learn - Knowledge Hub

In a recent publication [33], co-authored by two of our participants, the authors state that
“After two decades of research on tensor decompositions and applications, the senior co-
authors still couldn’t point their new graduate students to a single ’point of entry’ to begin
research in this area.” There is this need to provide a comprehensive and deep overview
to young researchers and practitioners that will enable them to start developing related
algorithms and applying them also to IoT/CPS.

At the same time, another one of our participants has been recently recognized for the
two decades of dedication to transforming the process and food industry through actionable
insights gained by applying and refining tensor decomposition techniques on multi-way
chemometrics data collected in manufacturing facilities. There is this reward for both
researchers, industrial practitioners, as well as the society and organizations supporting
them - especially “in a time when there is a flood of data, but not the resources to draw out
valuable and socially beneficial information from it” [14].

In the few months since the Dagstuhl workshop, one of the organizers joined Amazon’s
Machine Learning team as principal research scientist, one organizer was called upon as
an advisor for the development of a new embeddable chip to disrupt exascale computing,
and yet another started her company to enable clean electricity usage and exchange at
zero-marginal cost through data-driven automation. These industrial activities signal not
only the renaissance but also to some extent the viability of tensor methods for dealing with
massive amounts of data coming from an increasingly digitalizing world.

By reviving the tensor decomposition application fields through varied challenges and
high-quality data from IoT/CPS, and by creating a focal point of knowledge consolidation
and dissemination, we believe that we can considerably shorten the time for breakthrough
research in socially beneficial fields such as energy, mobility, cities, and manufacturing to name
a few. Through digitalization these areas will be main sources of massive amounts of data
coming from high-precision sensors at higher speeds given the advances in communication
and computing infrastructures. Many of the established businesses in these areas, especially
small and medium enterprises, which do not have the resources for R&D but face the same
data deluge, will highly benefit from educational and open source resources available through
this international knowledge hub.

As an initial step towards creating the knowledge hub “Tensor Learn,” two of our
participants organized a workshop co-located with NIPS [24]. The workshop aimed to draw
the attention to this recent renaissance of tensor methods in machine learning, availability of
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new tensor numerical computation frameworks, and point towards open research questions.
In order to make the extension from workshop to Knowledge Hub, we aim to:

host IoT Tensor Data Challenges and
call for multidisciplinary discourse on the tensor applications for machine learning
whilst establishing the common tensor computing language to facilitate such discourse.

5 Vision & Strategy

In the short-term, tensors will be a crucial part of a bigger computational machinery
supporting the domain experts of IoT/CPS due to the ability of tensor frameworks to capture
and represent the multi-aspect information within raw data sets and streams. Further along
the line, also connected machines and devices will be supported by the same machinery
to carry on tasks in dynamic, (near) real-time environments along-side domain experts.
Data scientists, data engineers and system engineers are already building pieces of this
computational machinery.

We as a community will have reached a first milestone when we eventually can qualify
the most heard phrase: “It depends on the data”, e.g. through recipes and best practices.
For example, in IoT/CPS data is always analyzed over time and space. In IoT, prediction
(trending) is very important to detect anomalies that deviate from the prediction; e.g.
anomalies in massive streams of IP traffic data coming from interconnected routers, or
coming from interconnected machines in factories, or in the future from sensorized streets
accommodating self-driving cars. In CPS, additionally the control aspect comes into play:
Once connected machines and devices recognize objects and can classify those, then they
can learn through reinforcement within safe parameters how to interact with their multi-
dimensional environment.

Scalable tensor methods have attracted considerable amount of attention, with successes
in a series of learning tasks, such as learning latent variable models, relational learning,
spatio-temporal forecasting as well as training [19] and compression [20] of deep neural
networks. As a community we want to pave the way towards successful application of these
methods in IoT/CPS. Our milestones on this way are to:

Showcase suitability of tensor methods on real-world data coming from IoT/CPS that
have the inherent structures and complex dependencies that result from the networked
nature of IoT/CPS.
Identify the new research problems that dynamic, (near) real-time, and/or safety-critical
systems of energy, mobility, factories expose – especially w.r.t. deployment and performant,
robust computing.
Motivate our multidisciplinary network to take on these research problems by contributing
to tensor tools and frameworks for production-level development and deployment in
IoT/CPS.

In the following we depict the strategic and tactical steps within the three action areas:
Develop IoT Tensor Data Challenge & Infrastructure to be plugged into Tensor Learn

knowledge hub by
Communicating the potential and curating data from

open data initiatives of cities and regulated governmental bodies through our
extended network [7]
crowd-sourced open infrastructure data like opengridmap [29] (power system),
openstreetmap [30] (mobility) and
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open environmental sensing from open data APIs of hardware providers developers,
e.g. Enphase solar inverter cloud API, or data on public blockchains, e.g. solar
power generation data logged into Electricchain [13]

Forming partnerships with hardware/sensor providers/users who will benefit from
tensor decomposition for improving interpretability of sensor data analytics and for
compressed sensing and at the same time can explore how machine learning systems
improve with the availability of high-accuracy and high-resolution data.
Applying for an international research grant that allows us to work together on curating
the data and to create and host a benchmarking infrastructure, to extract and share
best practices discovered through the challenges.

Open Source contributions to available tensor tools alongside tutorials, recipes and best
practices of applications of these tensor methods listed along side the completed data
challenges/benchmarks on the Tensor Learn knowledge hub. The established communities
of available frameworks that we are extending can become sponsors and partners of the
researchers and practitioners of Tensor Computing for IoT.

Promote and position Tensor Learn as a knowledge hub that started as a workshop co-
located with NIPS in order to advance the multidisciplinary discourse between tensor
computing and its applications in machine learning. In the same manner we will co-
locate further workshops with renown IoT/CPS conferences of IEEE, ACM, and the
International Federation of Automation and Control (IFAC). Along the way gathering
significant curated data challenges and benchmarks for typical tasks in multi-aspect
IoT/CPS that can be automated through machine learning in a reliable and interpretable
way by utilizing tensor methods.
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