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Abstract
We describe the state-of-the-art in performance modeling and prediction for Information Retrieval
(IR), Natural Language Processing (NLP) and Recommender Systems (RecSys) along with its
shortcomings and strengths. We present a framework for further research, identifying five major
problem areas: understanding measures, performance analysis, making underlying assumptions
explicit, identifying application features determining performance, and the development of predic-
tion models describing the relationship between assumptions, features and resulting performance.
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Executive Summary

This workshop brought together experts from information retrieval (IR), recommender systems
(RecSys), and natural language processing (NLP). Common to these three neighboring fields
is the challenge of modeling and predicting algorithm performance under varying application
conditions, measured in terms of result quality. A particular challenge is that these methods
create or affect a human experience, and so performance ultimately depends on human
judgment of the quality of experience and performance. Progress in performance modeling
and prediction would allow us to better design such systems to achieve desired performance
under given operational conditions.

In this manifesto, we first consider the state of prediction in the three research disciplines,
and then describe a general framework for addressing the prediction problem.

Research in IR puts a strong focus on evaluation, with many past and ongoing evaluation
campaigns. However, most evaluations utilize offline experiments with single queries only,
while most IR applications are interactive, with multiple queries in a session. Moreover,
context (e.g., time, location, access device, task) is rarely considered. Finally, the large
variance of search topic difficulty make performance prediction especially hard.

NLP has always engaged in both intrinsic evaluation of the steps in the language processing
pipeline (e.g., language identification, tokenization, morphological analysis, part-of-speech
tagging, parsing, entity extraction, classification, etc.) and in extrinsic, application-oriented
evaluation (such as information retrieval, machine translation, and so on). The different
goals of different applications mean that there is no one best NLP processing system, and
also call into doubt the usefulness of intrinsic evaluations alone, since the improvement of
one pipeline step might have little influence on broader application performance. Added to
this, the performance of an NLP system in a new language or domain can be hard to predict,
as it may depend on the existence of language resources to implement these pipelines.

RecSys generate predictions and/or recommendations for a particular user from a set
of candidate items, often for a particular context. Like the other two areas, the field has a
legacy of metrics, user experimentation research, benchmarks, and datasets. At a general
level, current RecSys research aims at distilling the current large body of empirical knowledge
into more systematic foundational theories and at learning from cumulative research. More
specific issues include topics like auto-tuning of systems, exploration vs. exploitation, coping
with context-dependent performance, and algorithm vs. system performance.

For a general framework for performance prediction, we identified 5 problem areas:
1. Measures: We need a better understanding of the assumptions and user perceptions

underlying different metrics, as a basis for judging about the differences between methods.
Especially, the current practice of concentrating on global measures should be replaced by
using sets of more specialized metrics, each emphasizing certain perspectives or properties.
Furthermore, the relationships between system-oriented and user-/task-oriented evaluation
measures should be determined, in order to obtain improved prediction of user satisfaction
and attainment of end-user goals.

2. Performance analysis: Instead of regarding only overall performance figures, we should
develop rigorous and systematic evaluation protocols focused on explaining performance
differences. Failure and error analysis should aim at identifying general problems, avoiding
idiosyncratic behavior associated with characteristics of systems or data under evaluation.

3. Assumptions: The assumptions underlying our algorithms, evaluation methods, datasets,
tasks, and measures should be identified and explicitly formulated. Furthermore, we need
strategies for determining how much we are departing from these assumptions in new
cases and how much this impacts on system performance.
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98 How to Turn IR, NLP, and RecSys into Predictive Sciences

4. Application features: The gap between test collections and real-world applications
should be reduced. Most importantly, we need to determine the features of datasets,
systems, contexts, tasks that affect the performance of a system.

5. Performance Models: We need to develop models of performance which describe how
application features and assumptions affect the system performance in terms of the chosen
measure, in order to leverage them for prediction of performance.

These five problem areas call for a research and funding agenda where basic research
efforts should address the first three items above by laying new foundations for the IR, NLP,
and RecSys fields and adopting a multidisciplinary approach to bridge among algorithmics,
data management, statistics, data analysis, human-computer interaction, and psychology.
Once these foundations are laid, subsequent research efforts should leverage them and exploit,
for example, machine learning and artificial intelligence techniques to address the last two
items in the above list.

Overall, the above research agenda outlines a set of “high risk, high gain” research
topics and promises to deliver a major paradigm shift for the IR, NLP, and RecSys fields,
by embracing a new radical vision of what should be at the foundations of those fields
and targeting a technological breakthrough able to change the way in which academia and
industry invent, design and develop such kind of systems.
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1 Introduction

Predictability is a fundamental attribute of daily life: we expect familiar things to behave
in familiar ways. In science, predictability has taken on more specific meanings; our under-
standing of a system, model, or method is validated by our ability to predict performance or
outcomes, often in a quantified form. A particular challenge for the systems regarded here is
that, ultimately, they create or affect a human experience.

Questions we might like to answer in this context include the following:
How reliable will a system perform over different tasks?
What test materials (and at what scale) are required to establish performance to standards
that imply predictability?
Will the current performance of a system be robust to changes in its data or use, and
what parameters or limits would indicate whether there is a risk to performance?
Can performance uncertainty be quantified?
How can we plan a move from a laboratory prototype to a system in operation?
To what extent do performance metrics match user perceptions and experiences?
What resources or configuration might be required to adapt a system to a new context or
a new application?
What resources might be required to maintain a system or confirm that it is continuing
to perform?

In this paper, we first discuss the state of performance prediction in the areas of Inform-
ation Retrieval (IR), Recommender Systems (RecSys), and Natural Language Processing
(NLP). Then we present a general framework for addressing the prediction problem, and
point out the corresponding research challenges.

2 Information Retrieval

2.1 Motivations for Prediction in IR
An IR system is successful if it provides the information that a user needs to complete a task,
supports them in learning, or helps the user accomplish a goal. That is, the purpose of an
IR system is to have impact on a cognitive state, and thus the value or correctness of an
outcome is inherently subjective. A related challenge is that, typically, a single system is
often relied on by a user for a wide range of unrelated activities, and that similar interactions
from different users may be the consequence of different intents. This is in part a consequence
of the fact that tasks can be underspecified, or ill-formed; or may be fluid, shifting during
the course of an interaction; or may be progressive.

Validation via users, and inconsistencies in that validation, are therefore an inherent
component of prediction. These validations are inherently more complex than specific
questions such as comprehensibility of a text or ease of use of an app. [49] describes prediction
as a challenge for evolving IR to an engineering science, but the problem in IR is even more
complex, referring to human judgment rather than to measurement of certain technical
properties.
Several types of prediction may be relevant in IR. One case is that we have a system and
a collection and we would like to know what happens when we move to a new collection,
keeping the same kind of task. In another case, we have a system, a collection, and a kind of
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task, and we move to a new kind of task. A further case is when collections are fluid, and
the task must be supported over changing data.

Current approaches to evaluation mean that predictability can be poor, in particular:
Assumptions or simplifications made for experimental purposes may be of unknown or
unquantified validity; they may be implicit. Collection scale (in particular, numbers of
queries) may be unrealistically small or fail to capture ordinary variability.
Test collections tend to be specific, and to have assumed use-cases; they are rarely as
heterogeneous as ordinary search. The processes by which they are constructed may rely
on hidden assumptions or properties.
Test environments rarely explore cases such as poorly specified queries, or the different
uses of repeated queries (re-finding versus showing new material versus query exploration,
for example). Characteristics such as “the space of queries from which the test cases have
been sampled” may be undefined.
Researchers typically rely on point estimates for the performance measures, instead of
giving confidence intervals. Thus, we are not even able to make a prediction about
the results for another sample from the same population. A related confound is that
highly correlated measures (for example, Mean Average Precision (MAP) vs normalized
Discounted Cumulated Gain (nDCG)) are reported as if they were independent; while,
on the other hand, measures which reflect different quality aspects (such as precision and
recall) are averaged (usually with a harmonic mean), thus obscuring their explanatory
power.
Current analysis tools are focused on sensitivity (differences between systems) rather
than reliability (consistency over queries).
Summary statistics are used to demonstrate differences, but the differences remain
unexplained. Averages are reported without analysis of changes in individual queries.

Perhaps the most significant issue is the gap between offline and online evaluation.
Correlations between system performance, user behavior, and user satisfaction are not well
understood, and offline predictions of changes in user satisfaction continue to be poor because
the mapping from metrics to user perceptions and experiences is not well understood.

2.2 Successes in Prediction in IR
The IR field has always had a strong evaluation focus. Because we are always trying to measure
what we do, and furthermore working on analyzing the measures and the methodologies,
we have a lot of experience in thinking about what we would like to predict. Also, IR is
fundamentally about supporting people working to complete some kind of task. For example,
modeling IR as a ranking problem already makes an assumption on how to present results
and how users will access the output of the system. Even when evaluation is abstracted away
from the actual user, we realize this measurement gap must be bridged.

Shared evaluation campaigns (TREC1, CLEF2, NTCIR3, FIRE4) have always played
a central role in IR research. They have produced huge improvements in the state-of-
the-art and helped solidify a shared systematic methodology, achieving not only scholarly

1 http://trec.nist.gov/
2 http://www.clef-initiative.eu/
3 http://research.nii.ac.jp/ntcir/
4 http://fire.irsi.res.in/
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impact [9, 103–105] but also economic impact [94]. The model has been adopted by other
areas, and the IR field has successfully expanded into broader Information Access problems.
Scalability has always been a major concern in the field that has been pushed by evaluation
campaigns, and it is not as much a critical problem in prediction for IR systems as it is in
other areas of Information Systems.

As a result of a strong evaluation focus, we have built a lot of datasets, and these datasets
have closely related characteristics: common data types, common tasks, common experimental
setups, common measures. This has let us appreciate the difficulty of predicting effectiveness
on unseen data, tasks, or applications. There is extensive research on test collection building
and evaluation methodologies, e.g. on robustness of the pooling methodology [117], the
sensitivity and reliability of our measures [16,98], the impact of inter-assessor agreement [109],
how many topics to use [97], just to name a few, although it is not easy to extract general
lessons from it.

These test collections have allowed us to study what types of queries can be predicted to
work well [27] and to discover other characteristics of queries (such a temporal distribution of
the topic [66]) that can also be used to predict precision on some queries. Query performance
prediction [19, 61] is thus concerned with predicting how difficult a query will be rather than
the performance of a system for a given query but it can be a useful starting point for more
advanced types of prediction.

Modeling score distribution, i.e. determining how relevant and not relevant documents are
distributed, can be considered an another potential enabler for prediction, as also suggested
by recent work which explicitly links it to query performance prediction [28].

On a more theoretical level, Axiomatics (the formal definition of constraints in a space
of solutions for a problem) have been successfully used to predict the performance of IR
models [34], to understand the properties and scales of evaluation measures [36–39] and to
reduce the search space of available quality metrics [6–8].

Reproducibility is becoming a primary concern in many areas of science [48] and, in
particular, in computer science as also witnessed by the recent ACM policy on result and
artifact review and badging5 [42]. Increasing attention is being paid to reproducibility also
in IR [40, 118] where discussion is ongoing: use of private data in evaluation [18]; evaluation
as a service [59]; reproducible baselines [75] and open runs [110]; considering it as part of
the review process of major conferences and in dedicated tracks, such as the new ECIR
Reproducibility Track; and, the inception of reproducibility tasks in the major evaluation
campaigns6 [43]. All these aspects contribute a better understanding and interpretation of
experimental results and clarify implicit and explicit assumptions made during IR system
development, which are key enablers for prediction.

2.3 Priorities for IR Experimentation
The considerations sketched out above, analyzed against existing successes, suggest four broad
priorities that should be reflected in experimental methodologies: uncertainty, offline versus
online, failure analysis, and reproducibility. Other aspects include use features (of topics,
documents, and context), the roles of measures, domain adaptation, and more application-
specific issues such as individual queries versus sessions. We consider each of these in turn
below.

5 https://www.acm.org/publications/policies/artifact-review-badging
6 http://www.centre-eval.org/

https://www.acm.org/publications/policies/artifact-review-badging
http://www.centre-eval.org/
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2.3.1 Priorities

Uncertainty

Our measures typically produce a point estimate, without confidence intervals or effect
sizes. Statistical significance is not predictive, and does not quantify uncertainty, although
researchers use them that way. We need measures that indicate bounds as well as averages,
where we can indicate confidence bounds in the performance of a system on unseen data.

Offline versus online

Offline metrics at best weakly predict online effectiveness and user satisfaction. We need to
understand how online effectiveness can be predicted more reliably, and what factors are
responsible for the inconsistency. A particular factor is the single-query nature of most offline
evaluation, while online experiences are iterative or progressive, that is, involve a session.
Thus, the result of the complete session is what matters for users.

Failure Analysis

Failure analysis typically focuses on individual tasks where performance is extremely bad.
The RIA workshop [15] followed this approach, but did not arrive at general conclusions
for improving the systems considered. Instead, it was acknowledged that there are topics
of varying difficulty, and thus various approaches for estimating query difficulty have been
proposed (see e.g. [91]). However, the core problem is still unsolved: which methods would
be suitable for improving the results of ‘difficult’ queries?

Reproducibility and replicability

The ACM policy on Artifact Review and Badging7 distinguishes between replicability
(different team, same experimental setup) and reproducibility (different team, different
experimental setup). Reproducibility is a key ingredient for prediction since not only
it enables the systematic replication and understanding of experimental results – a key
aspect to ensure robustness of prediction – but also studies how robust experimental results
can be ported to new contexts and generalized. However, we still lack commonly agreed
methodologies to ensure the replicability, reproducibility and generalizability of experimental
results, as well as protocols and measures to verify and quantify the reproducibility of
experimental results.

2.3.2 Other open issues

Measures and resources

It is clear that measures vary with regard to predictability. We need to develop good practice
recommendations for selecting and using evaluation metrics: which metrics are suitable for a
given task, scenario, or dataset? How should we interpret inconsistent quality signals? How
should we deal with multiple, complementary quality signals (e.g. Precision and Recall)?

System comparisons are somewhat stable on typical small sets of topics, but concerns
about the sampling population mean that to increase our understanding we need vastly

7 https://www.acm.org/publications/policies/artifact-review-badging
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larger topic sets; and arguably these should be characterized by kind of task and kind of
interaction.

Finally, we also need a better understanding of what IR evaluation measures are and
what their properties are. Indeed, we need to go beyond what we empirically [16, 17, 96] and
theoretically [6,7,36,38,100] know today about IR evaluation measures and turn this into
knowledge about evaluation measures affect prediction.

Contexts

What factors affect domain adaptation? Is it reasonable and effective to consider a domain
as comprised of a number of tasks, where each has its own success criteria that, in turn, is
reflected into a measure? What would constitute an actionable description (by means of
features, tasks, collections, systems, and measures) of what is required to move from one
domain to another? A specific example is the difference between language-dependent and
language-independent factors, both at system level and at domain level, since they may
require different kinds of prediction techniques.

3 Natural Language Processing

Current research in NLP emphasizes methods that are knowledge-free and lack explanatory
power, but are demonstrably effective in terms of task performance. This has the consequence
that small changes in the application scenario for an NLP system has an unpredictable
impact on performance. We need to make the process of developing NLP systems more
efficient.

3.1 Motivations for Prediction in NLP
We regard predictability of Natural Language Processing (NLP) system performance as
the capacity to take advantage of known experiences (methodologies, techniques, data) to
minimize the effort to develop new high performing systems. A key issue that impacts our
ability to predict the performance of an NLP system is portability. Under this perspective
we need to consider the following portability aspects:

cross-language portability
cross-corpus portability
cross-domain portability
cross-task portability

As an anecdotal example that motivates the interest in predictability, we can look at
a project [52] for automatic classification of radiological reports in a hospital department.
It was developed as a supervised system, which required a significant annotation effort by
domain experts. The same technology was then proposed to the same department of another
hospital, which asked for an estimate of the annotation effort, i.e. time of domain experts
needed for adapting the system to a different classification schema. At this point it became
clear that there was a lack of predictive methodologies and tools. At the end of the day, the
new hospital was not convinced to invest in the technology due to the unclear investment
that would be required.
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Another anecdotal example with a more positive outcome is the Software Newsroom [65]
which is a set of tools and applied methods for automated identification of potential news
from textual data for an automated news search system. The purpose of the tool set is to
analyze data collected from the Internet and to identify information having a high probability
of containing new information. The identified information is summarized in order to help
understanding of the semantic content of the data, and to assist the news editing process.
The application had been developed for English and initially did not transfer well into
Finnish. The problem was attributed to the fact that data was collected from Internet
discussions and that the language was probably substandard. Attempts to fix this did not
yield performance improvements. Later it became clear that words with certain syntactic
and semantic properties are effective when building topic models for English, at which point
it could be demonstrated that words with similar properties in Finnish are useful as well.
Correctly extracting such words required knowledge about the special characteristics of the
Finnish language.

A challenging aspect of typical NLP components, e.g. part of speech tagging, named
entity recognition, parsing, semantic role labeling, is that they require a significant amount
of human supervision, in the form of annotated data, to train reliable models. This an issue
clearly impacts the portability of both individual components and more complex systems
that depend on pipelines of such components. Several efforts are being made in the NLP
field to reduce and to predict the amount of such supervision, moving towards less supervised
algorithms. We mention a few of these research directions:

the use of unannotated data and distributional representations of words, i.e. embeddings,
as features for machine learning algorithms;
distance learning approaches, exploiting the role of available resources, e.g. taxonomies,
dictionaries, background knowledge to infer training examples;
active learning techniques, in order to select instances to be manually annotated to
optimize the performance of a system;
projections of annotations across aligned corpora, from one source language (typically
English) to a target language, to reduce the effort to develop training data.

Although the above research streams are producing significant advancements in terms of
portability, we feel the need for fundamental research where predictability of NLP systems is
addressed in the broader context of cross-language linguistic phenomena, characteristics of
corpora, domain coverage and particular properties of the task.

3.2 Successes in Prediction in NLP
One traditional technique for predicting performance is to perform post-hoc data degradation.
In TREC-4 (1995), the ‘Confusion Task’ compared performance of query retrieval using
corrected OCR text against text with 10% and 20% recognition errors [67]. In this way,
given an evaluation of the recognition rate of an OCRed collection, one could predict the
performance degradation compared with a corrected collection. Similarly, TREC-9 analyzed
the effect of spelling errors on retrieval performance, and the absence of word translations in
cross-language information [79]. More recently, this method of post-hoc corpus degradation
was used to show that at least 8 million words of text is needed to achieve published results
in word embedding tasks, such as similarity and analogy [56].

This degradation technique provides a negative prediction of relative performance to a
known system and known input testbed, but does not allow us to predict how well a given
technique will work on a new language, or a new corpus, or a new domain.
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Retrospective analysis can show that different domains have different measurable charac-
teristics that correlate with some system performance. For example, biological texts have a
greater entropy that correlates with a degraded performance of named entity recognition
compared with performance on edited newspaper text [85]. Word sense disambiguation has
been shown to degrade across a number of factors that can be calculated before experimenta-
tion [114].

The Software Newsroom [65] is an example of adapting a news discovery system from
English to Finnish where there was a need to know linguistics and language technology
to understand which parts were similar and which parts needed to be adapted. Similarly,
evaluation of NLP tools applied across domains demonstrates that adaptation is required to
port tools, e.g. from general English to a more specialized context such as biomedicine [107].

Work in adapting NLP technology to new languages, particularly to low-resource languages,
begins with the problem of complex requirements for building NLP systems, including both
annotated data sets and tools for analysis of linguistic data at various levels, such as the
lexical, syntactic or semantic level. Recent research in transfer or projection learning has
shown that it is possible to leverage data in one language to develop tools for the analysis
of other, even quite linguistically distinct, languages [31]. However, this research has also
demonstrated the need for resources to facilitate transfer, ranging from complementary
resources such as parallel corpora and bilingual dictionaries to broad overarching frameworks
such as the Universal POS Tagset [88] and the Universal Dependency representation [84]. In
short, NLP system development requires either task-specific annotated data sets, a strategy
for inferring annotations over data that can be leveraged, or a framework that facilitates
model transfer through shared representation.

Current attempts at learning morphological reinflection for various languages have met
some initial success using Deep Learning where it has been shown that approx. 10000 training
cases can render a performance around 95% correct results for many languages [25]. Some of
the systems benefited from additional unannotated data to boost performance.

In a keynote talk at GSCL 2017 (http://gscl2017.dfki.de/), Holger Schwenk (Facebook,
Paris) presented recent advances in deep learning in the field of NLP, showing how Machine
Translation could be understood as a cross-lingual document search. As deep learning is
performing feature extraction and classification in an automatic fashion, this technology can
be deployed in various NLP tasks, for example machine translation. Word embeddings, neural
language models and sentence embeddings are leading to an application of multilingual joint
sentence embeddings, supporting high quality translation. The further development of such
approaches could lead to a better integration of NLP systems, using the generated vector
spaces for cross-language, cross-corpus, cross-domain and cross-task information sharing.

3.3 Priority Next Steps in NLP Research
We believe that, in order to improve predictability of NLP systems, research in the next
years should focus on innovative, fine-grained, shared, methodologies for error analysis.
We advocate evaluation measures as well as techniques able to provide both quantitative
and qualitative data that explain the behavior of the system under specific experimental
conditions. We expect to move from ad-hoc and mainly manual error analysis to shared and
automatic tests through which we determine reliable predictability indicators.

Particularly, it is expected that new error analysis methods can provide empirical evidence
of system failures based on the whole complexity of the context in which the system operates,

http://gscl2017.dfki.de/
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including linguistic cross-language phenomena, the properties of the data (corpora, resources,
knowledge), the domain characteristics, the specific task the system is supposed to addresses,
and the role of the human users that interact with the system. Test suites, as discussed in
Section 5.5.2, could support error analysis structured by cases.

The kind of expected error analysis has to be enough fine-grained to give precise insight
about the causes for a system/tool not to deliver the expected results, including:

Are the corpus/data sets or other (domain) resources appropriate?
Has the right/adapted algorithm been selected?
Is the selected/developed gold standard the relevant one?
Are we using the right metrics/measures?
Are we using the right amount of (linguistic) knowledge?
Are we using the right type of representation of the data and the features, also in
combination with data/tools that are not specific to NLP?
Check the validity of the assumptions of what the system should deliver and at what
level of quality, taking into consideration IT-performance, but not focusing only on the
measures.

3.3.1 Desiderata

In the last few years, the increasing availability of large amounts of language data for a subset
of natural languages as well as the availability of more powerful hardware and algorithmic
solutions, has supported the re-emergence of machine learning methods that in certain
applications, for example Neural Machine Translation (NMT), has relevantly improved
performance in terms of objective measures. In the light of those developments, we need to
re-think the way we develop and deploy NLP systems, taking into account not only linguistic
knowledge but also technological parameters. Conversely, excitement about the performance
of neural network approaches should not close our eyes on specific linguistic features and
language properties. We need to embark on a new theory of the field of natural language
processing.

To sum up, the NLP field is missing a comprehensive diagnostic theory for NLP systems.
A consequence of using powerful diagnostic tools will be a substantial rethink of the way we
develop and make NLP systems more adaptable to new languages, data, tasks, applications
and scenarios, including when this involves other types of technologies. A long-term oppor-
tunity in this direction is that of NLP systems able to auto-adapt themselves to a changing
environment, predicting adaptations on the base of diagnostic tools.

4 Recommender Systems

4.1 Motivations for Prediction in RecSys
Introduction and History. Even in the earliest days of recommender systems, predicting
performance was seen as critical. The earliest recommender systems companies hired “sales
engineers” whose job was to evaluate the potential gain prospective customers would have
from deploying a recommender in their applications. A typical example was reported in talks
by John Riedl. The recommender systems company Net Perceptions sent a team of sales
engineers to work with a large catalog retailer. To make the sale, they had to import the
retailer’s database into their system and run side-by-side experiments with phone operators
making suggestions from the legacy or new system. It was a multi-week, multi-person effort
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that fortunately led to a successful sale and deployment. Not all such efforts were successful,
highlighting the desirability of predictive models of performance that can more efficiently
support deployment and tuning decisions. This section reviews examples of cases where such
prediction is needed.

Case 1: ROI Improvement for Mobile News. A company develops start screens for mobile
devices providing news items that are pushed to their users once they turn on their devices.
They have a few million users and agreements with news agencies in various countries.
Typically they provide a list of 8 items when the user turns on the device. Their business
model is based on user clicks, so they are interested to improve the Click-Through Rate
(CTR) and user engagement. They want to examine whether personalization of the provided
list of items would improve these measures and if the investment in the development and
implementation of personalization would be returned (ROI). Currently they provide the list
based on the nationality of the user, recency of items and some notions of popularity. Several
algorithms were considered: variations of content-based and collaborative algorithm, and
diversity to expose more items and enhance the ranking of popular items. Performed off-line
analysis yielded interesting results that were not always consistent for different parts of the
data. A/B tests are very costly and can be done very selectively, since they don’t have an
experimental infrastructure, thus deploying algorithms and testing different variations places
huge effort on production. The challenge is to predict which algorithm or the combination of
algorithms would provide the expected ROI. Is it possible to predict for the company if they
should invest in personalization. Can that be inferred from the offline test results, from the
dataset, task, algorithm features, or from success and failure stories.

Case 2. To Personalize at All? An online education company has a large and expanding
library of courses, and currently has no personalized mechanisms for recommending courses to
their learners. Their system is based on three forms of discovery: (a) search for courses that
match relevant keywords, (b) lists of most-popular courses, both overall and within broad
top-level categories (e.g., “most popular computer science courses”), and (c) marketer-selected
lists of courses to promote in themes (e.g., the April theme was “new beginnings”) with a
set of promoted introductory courses in different categories. The company is interested in
determining whether there would be significant benefits to adding a personalized recommender
system to their site.

Given the characteristics of the education company’s dataset (number of learners and
courses, distributions of courses-taken and learners-enrolled, etc.), can we model and predict
the performance of a recommender system for this application? Today, we cannot. Our
choices are to offer “advice from experience” or to offer instead to go through the data
engineering effort to implement the recommender in order to justify its feasibility. Neither is
a particularly satisfying alternative for a company (or expert) hoping to make an informed
decision to invest without incurring substantial cost.

Case 3. How Much Value Do We Have from Certain Data? Data collection is both
expensive and potentially interfering with the privacy of clients. With increasing regulation
on which data and how data is stored, such as General Data Protection Regulation (GDPR)
in the EU, this may also be difficult in practice. In some cases, however adding the right
amount and kind of data can improve the quality of predictions. At the moment, we do not
have a formal way of assessing how much, and what kind, of data will translate to a specific
return. While there is some heuristic consensus on which dimensions may be relevant, and
that these depend on dimensions of the domain, client, and tasks, this knowledge is not
systematically structured or cataloged.
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4.2 Successes in Prediction in RecSys
This section outlines key areas of success with regard to prediction in recommender systems,
outlining the state-of-the-art and gaps to motivate the priority areas in Section 4.3.

This section discusses the following topics.
Noise and inconsistency
Data Sets
Metrics and Evaluation Protocols
Toolkits
Subjective evaluation
Meta-learning

4.2.1 Noise and inconsistency

Accuracy of prediction is limited by the by noise (e.g., so called shilling malicious ratings [74]),
anchoring effects due to original ratings [2], as well as by the inconsistency of rating by
end-users [4].

Progress has been made in terms of detecting noise, and in the development of de-noising
techniques both in terms of algorithms [5] and interface design [1]. There is an understanding
that prediction accuracy may be restricted by the upper bounds of such factors. However, the
nature of noise and its role in relation to prediction accuracy is not completely understood.
For example, it is still not clear to which extent changes in rating behavior are due to
inconsistency, versus how much reflects a genuine change in opinion.

4.2.2 Data Sets

Recommender research been advanced by many public data sets containing user consumption
data, suitable for training collaborative filters and evaluating recommender algorithms of
various forms. These have enabled direct comparison of algorithms in somewhat standardized
environments. These include:

EachMovie [78], movie ratings from a movie recommender system operated by the Digital
Equipment Corporation (DEC).
MovieLens [60], a series of movie rating data sets released from the MovieLens movie
recommender system operated by GroupLens Research at the University of Minnesota.
Recent versions include the Tag Genome [108], a dense matrix of inferred relevance scores
for movie-tag pairs.
Jester [54], a set of user-provided ratings of jokes.
NetFlix [13] (no longer available), user-provided ratings of movies in the NetFlix DVD-
by-mail system; this data set was the basis for the NetFlix Prize, which awarded $1M
for a 10% improvement in prediction accuracy over NetFlix’s internal recommendation
algorithm.
BookCrossing [116], book ratings harvested from an online book community.
Yahoo! Research publishes a number of data sets, including movie ratings and music
ratings.
CiteULike provided access to user bibliographies of research papers.
Amazon rating data collected by [62].
Yelp regularly provides data sets of business ratings [115].
The Million Song Dataset is a freely-available collection of audio features and metadata
for a million contemporary popular music tracks. [14].
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In addition, the RecSys Challenge has regularly made new data sets on news, jobs, music,
and other domains available to the research community, and there are suitable data sets
through a number of Kaggle competitions and other sources, such as the NewsReel labs
within CLEF [70,76].

The “challenge” format around many data sets has provided a boost of energy in recom-
mender systems research, with teams competing to provide the best performance around a
single data set.

4.2.3 Toolkits

The recommender systems research community has a long history of publicly available or
open-source software for supporting research and development. Early work on item-based
collaborative filtering was supported by SUGGEST [30, 69]. Throughout the last decade,
a number of open-source packages have been developed. Currently-maintained packages
that are used in recommender research include LibRec [58], RankSys [99], LensKit [32], and
rrecsys [119, 120]; Rival [95] provides cross-toolkit evaluation capabilities. These toolkits
provide varying capabilities: some focus on algorithms or evaluation, while others provide
both; some support primarily offline operation and batch evaluation while others have direct
support for live use in online systems. There have also been a number of toolkits in the
past that are no longer being maintained, such as MyMediaLite [51], and others that have
pivoted away from a focus on recommendation such as Apache Mahout [10], in addition to
algorithm-specific packages such as SVDFeature [22] and non-recommender-specific software
such as XGBoost, Torch, and TensorFlow.

4.2.4 Subjective Evaluation

The goal of a recommender system is to provide personalized support for users in finding
relevant content or items. If we want to predict or model whether that goal is actually
achieved, researchers have realized that we should move beyond accuracy metrics to see if
algorithmic improvements actually change the experience users have with the system [80].
This has led to several conceptual models that also provide subjective measures and scales
of users’ quality perceptions and evaluations of recommender systems [89, 113]. Building
on this earlier work and other work on technology acceptance and attitude models, [73]
argue that their user-centric framework [72] provide an “EP type” theory than can [E]xplain
and [P]redict user behavior given the specific conditions of the recommender system under
investigation. In other words, the framework goes beyond user studies that only qualitatively
inspect user satisfaction or large scale A/B tests that only quantitatively look at the impact
of a system change on user behavior. It aims at determining the factors why particular
experimental conditions (i.e. a change in objective diversity of the algorithm) can change
user experience (i.e. choice satisfaction) and user interaction behavior (increased engagement)
by looking at the intermediate concept of subjective system perceptions (e.g., subjective
perceptions of diversity and accuracy). For example a study [112] shows that user perceptions
of accuracy and diversity mediated the effect of the diversification of recommender output on
the experienced choice difficulty and user satisfaction showing that only if these subjective
perceptions are changing, we can predict user experience to change.
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4.2.5 Meta-Learning

Recommender system algorithms can be complex. Usually, they are configured specifically
for specific data, users, and tasks and are optimized for specific desired measures. The
construction and tuning of RecSys algorithms is typically done manually by human experts
through try-and-err testings. It is desired to automatically explore the vast space of possible
algorithms with the vision of enabling the prediction of which algorithms will perform well for
a given dataset, a set of users, task, and performance metric using meta-learning techniques.
A combination of features extracted from a given dataset, task, users, along with algorithm
configuration, and the discretized result of a specified performance metric would make a
labeled meta-training learning instance. One major challenge would be to learn the set of
features of the dataset, users, tasks, that can affect the results. Another major challenge
would be to collect enough instances for a large variety of datasets, algorithms, tasks and
measures that would enable valuable learning. For this challenge the following possible
sources can be considered: 1) a corpus of datasets and the corresponding learning results
that will be provided collected by the community as a joint effort that should be promoted
2) data and information extracted from machine learning competitions (e.g. Kaggle). It may
be possible to extract relevant information also from academic paper results. Nevertheless,
to address the challenge of learning in the vast search space of possible algorithm and their
specific configurations, ML techniques should be designed to allow a system to learn and
capture insights and experiences in order to guide the selection of algorithms. Previous
research showed that meta-learning can be successfully used for selecting the best model
for decomposing large learning tasks such as [93], selecting the best setting for multi-label
classification tasks and even recently for selecting the best collaborative filtering model for
recommender systems However, to have the supervised meta-learning successful, a joint
community effort to collect learning instances could be beneficial.

4.3 Priority Next Steps in RecSys Research
This section outlines the identified priority next steps. These are organized into three broad
categories:

Developing the Foundations for Rigor
Learning from Cumulative Research
Specific Challenges

4.3.1 Developing the Foundations for Rigor

There are several prerequisites that the field needs to achieve in order to place the remainder
of the research we propose on a rigorous foundation.

4.3.1.1 Taxonomizing Cases

Today recommender systems are used in many domains and for different purposes. For
example, in addition to recommending content for consumption, researchers have also started
using those systems to incentivize user to create content e.g. [53]. Given this broad spectrum
of use cases and applications, performance evaluation protocols are often tailored or anchored
in the context of the recommender system use case. In order to learn from these cases, we
need a rigorous and consistent way of describing them.
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There are two levels of description needed in order to facilitate rigorous learning from
cases. The first is agreement on the things necessary to describe a case, which we take to
mean a set of research findings in a particular recommendation situation. The case consists
of at least the following properties:

The domain
The system or experiment goals
The target users
The user task(s) within the domain
The user’s characteristics considered for recommendation
The data
The algorithms
The experimental design and evaluation protocol (online or offline)
The metrics and statistical analysis

The second level is the means of describing each of these properties. Significant research,
detailed in later sections, will be needed in order to make this possible. For example, we
need to know what properties of a user task and characteristics need to be captured in order
to facilitate generalization and learning. Different tasks can have very different requirements,
changing even the direction of certain optimization criteria; while recommending songs in a
music recommender that a user has listened to before will usually have a positive impact on
user satisfaction, recommending old news in a news recommender system will have a negative
impact on satisfaction. We believe it is critical for the future success of recommender systems
to develop a taxonomy of tasks that will lend itself to create task models connecting user
goals of recommender systems with their objective, subjective evaluation metrics and output
metrics. Herlocker et. al. [63] developed an initial description of end user goals and tasks of
recommender systems (e.g. annotation in context, find good items, recommend sequence,
. . . ). We suggest evaluating this research as a starting point for the development of a more
formal taxonomy and evaluate literature since then to also develop different dimensions of a
taxonomy of tasks (e.g. domain, time-sensitivity, content creation, or cost to consume).

Developing this shared understanding will enable the field to move forward and develop
predictive knowledge from the current and future body of research findings.

4.3.1.2 Standardizing Evaluations

To ensure the replicability and comparability of results, the field needs to establish standards
for measures and evaluation protocols. There are too many different ways to calculate what is
labeled as the same measure. Even well-understood metrics such as Root Mean Square Error
(RMSE) have important differences in their application: how unscorable items are handled
and whether scores are averaged per-user or globally. The community needs to establish
standard definitions and protocols for both metrics and for best practices in managing the
broader evaluation (e.g., how to split data for cross-fold validation to evaluate performance
on common tasks). Further research is needed to establish some of the standards, for example
how best to mitigate popularity bias [12] and misclassified decoys [26, 33] and the role of
time in splitting data sets. As metrics are standardized, the community should also provide
standard test cases for use in acceptance tests to validate new implementations. A standard
resource for recomputing or labelling historical results could also be used to assess new
individual implementations.

There will likely always be the need to occasionally deviate from standard calculations
to answer particular research questions. A standardization effort, however, can lay out the
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option space and describe defaults and best practices for standard tasks; authors should
provide clear justification when they deviate from the defaults the community agrees upon.

The standardization also needs to lay the decision points in experimental designs, such
as what happens when an algorithm cannot produce recommendations for a user: does it
get ‘forgiveness’ and have that user ignored in its assessment, does it get penalized as if it
recommended nothing useful, or does it use some fallback method to ensure all users receive
recommendations? There is not necessarily a best answer to these questions. Community
guidelines should lay them out so that authors are aware that they need to make, describe,
and justify a decision about each of them instead of relying on accidental properties of
implementation details, and guidance on sensible defaults for common recommendation
scenarios would help future researchers.

As the community decides upon standards, toolkit implementers should implement them
and ideally make them the default operation, with appropriate thought given to backwards
compatibility for their users.

There are two additional immediate first steps to promote rigor even before standardization
is achieved. Paper authors should report sufficiently complete details on their evaluation
protocols, algorithm configuration, and tuning to enable readers to reproduce them with exact
replication of original decisions. Toolkit implementers should document the expected
evaluation results of well-tuned versions of their algorithms on common data sets to provide
a reference point for authors and reviewers to assess claimed baseline performance.

4.3.2 Learning from cumulative research

To enable us to learn from previous and ongoing research, we are assuming that there is a
definition of a case. Such a case may include a description of the case, a description of the
dataset (underlying assumptions, algorithm parameters, outputs, etc.) as well as a link to
the resulting paper).

This repository should be both collaborative and machine readable. Users may add
and remove content, with moderation of who can edit the repository, and how information
is removed, to ensure completeness and consistency. A not trivial aspect in building this
repository is the analysis of the existing body of research in order to transform it to standard
case descriptions; this can be done either manually, requiring quite a lot of effort, or
automatically, even if this is going to be a challenge. However, once this repository has been
bootstrapped, adding new cases will require just a low-cost (for humans) and standardized
procedure to be followed.

The repository will open up several new interesting possibilities:
Meta-analysis is a well-understood technique in domains such as medical studies, where
statistical confidence accrues through aggregating the evidence from numerous research
studies. Medical research has the benefits of both more controlled studies and a long
tradition of publishing results in a manner that explicitly supports such meta-analysis.
Recommender systems will need to evolve its research to support these techniques,
including such steps as:

developing standard templates for reporting results from recommender system eval-
uations and experiments and a disciplinary culture of reporting these with research
results
developing characteristic parameters for datasets, users, and tasks
developing and testing predictive models over the diverse characteristics of these

Creating a mechanisms for comparing commonalities and variabilities among cases, in order
to support researchers in making decisions. This will help us identify recurring successful
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cases, and failure cases, and the characteristics of both kinds of cases. Moreover, analysis of
previous cases will also allow us to identify aspects of cases that are not sufficiently covered
by current research. With time, this mechanism may become increasingly automated.
As we aim at being able to predict the level of success of a recommender system before
using it and even before developing it, failure analysis becomes of major importance
as a tool to fix our prediction models. Given the actual results vs. the expected we
should be able to reason about the causes of the mismatch or failure. Indeed, failure
analysis/correction can be done either by analyzing the model that was discussed or by
adding it as a case for deep-learning based meta-analysis where cases of systems that
include data characteristics, task characteristics, algorithmic characteristics objective and
subjective measures are analyzed to identify “successful” or “to be” systems.

Finally, to keep the repository a primary tool for research, we need to envision mechanisms
to encourage contributions to it such as dedicated workshops and tutorials, both physical and
online. These workshops will focus on cases analysis in the areas identified as gaps or failures.
These workshops will also enable us to share what can be learned from the repository, as
well as continue to help grow the case base.

Properties of data sets and algorithms

Different recommender algorithms attempt to exploit different properties of the data, e.g.
user-based collaborative filtering leverages the assumption that people who are similar will
like similar things. Content-based filtering uses textual features to represent items with the
hopes of finding related items. However, the performance of these individual algorithms will
depend heavily on the data set and the distribution of the properties being exploited and
how they relate to each other. For example sparse datasets mean neighborhood algorithms
perform poorly unless some latent factorization model is employed. Similarly, if content
filtering is using a textual representation of items or people but if those base feature vectors
don’t accurately represent or reflect the items or user preferences then no tuning of the
similarity measure or ranking will create significant additional value for the user.

Connecting this back to a more formal task taxonomy, we need to create a clear list of
measures and distributions that will help guide the identifying the right family of algorithms
based on the properties of their dataset and the class of task to be evaluated. By linking
the performance of individual classes of algorithms, simply looking at the distribution and
measures of the data can help predict performance and identify possible weaknesses before
requiring a complete end-to-end evaluation.

Predictability limitations in data sets

Differing assumptions, measures and testing strategies lead to wildly varying performance
across datasets. One issue which can be addressed is exploring how much information can
realistically be exploited by any algorithm based on the properties of the data. This issue
has started to be addressed in the complex networks community, for example Song et. al.
explored the limits of predictability in human mobility to test the assumption on whether
prediction is truly possible [101]. More recently Marting et al [77] have asked the same
question for social systems in general highlighting that “the central question of this paper —
namely to what extent errors in prediction represent inadequate models and/or data versus
intrinsic uncertainty in the underlying generative process — remains unanswered”. If a
clear process was in place to test the limits of predictability in the underlying data, then
circumstances where experiments demonstrate unrealistically high prediction rate can be
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identified as having some flawed experiment design properties. For example if a recommender
algorithm can accurately predict a users movie choice 99% of the time but the underlying
data shows almost random behavior, then something is awry.

4.3.3 Specific Challenges

This section identifies a set of specific challenges that are central to advancing the goal
of predicting system performance or to achieving the above priorities related to rigor and
learning.

Auto-tuning. Adding to the challenge of recommender system selection and performance
prediction is the difficulty of tuning the underlying algorithms. Nearest neighbor algorithms
include a variety of parameters related to neighborhood size, weighting based of extent of
commonality, and in the case of model-based approaches the size and truncation of the model.
Similarly, latent factor models have extensive parameters in both training and use.

A consequence of the challenge of tuning is that researchers often fail to compare like
with like. As parameters can depend on data distributions, it is increasingly important to
identify standard ways to tune algorithms–and particularly baseline algorithms for compar-
ison. Fortunately, tuning can be framed as a combination of parameter space exploration
and understanding the response curves and sensitivity to parameters. With a systematic
exploration of algorithms, we should also explore empirically-tested auto-tuning to ensure
both fair comparisons and more efficient exploration.

Exploration vs. Exploitation. Two key challenges in recommender systems are discovering
changes or inaccuracies in models of user preference and the cold-start item problem of
learning to recommend new items. Both of these can be addressed interactively by presenting
users with some set of “exploratory” recommendations – recommendations based not on
their current tastes but on the system’s need for information. For example, a music player
may identify a target set of users to whom a new song should be played to identify the right
audience for that song. Or a news recommender may periodically recommend a randomly
selected news article to validate or update the user’s preference model.

The trade-off between exploration and exploitation–both algorithmically and as a matter
of user experience–needs further study. In particular, we may need to create metrics of
“realistic user experience” that incorporate system-wide exploration as well as targeted
exploitation of profiles.

Temporality and Dependency. Little work has been done in the recommender system
community to address changes of user preferences over time, for example, Moore et al. [82]
modeled temporal changes of preferences in music recommendation. We need to more
systematically explore how we can detect patterns of change and exploit those in our
performance prediction models in multiple domains across our use cases. Closely related
to the challenge of temporal changes of user preferences is the ability to understand how
recommendations based on user preferences influence and change preferences, i.e. we need to
take this dependency into account in our performance models. For example, low level measures
such as diversity or exploratory recommendations will have an impact on preferences.

Underlying theoretical assumptions in recommender algorithms. Recommender algo-
rithms (and evaluation protocols) are built on statistical and mathematical models that
incorporate underlying theoretical assumptions about the distributions and patterns of data.
These range from the high-level assumptions of all collaborative filtering algorithms (stable
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or predictable preferences, past agreement predicts future agreement) to more complex distri-
butional assumptions (e.g., exponential popularity distributions to support neighbor-finding)
to issues of temporal stability (e.g., whether offline evaluation has to be ordered vs, random).
These theoretical limitations are often at most informally expressed, and they are rarely
explicitly checked or analyzed. Rather, experiments are put in place, and empirical evidence
is drawn from them confirming or refuting the effectiveness of recommendation approaches
at the end of the algorithmic development pipeline.

An explicit and precise identification and a deeper understanding of the essential assump-
tions would help assess and document the scope of algorithmic performance evidence and
predictions. In practice, recommender algorithms have often “worked well enough” when
assumptions are violated, but such boundaries should be tested and understood.

We find it a worthy endeavor to research what the precise (core, simplifying or otherwise)
assumptions in the algorithms really are; finding means for checking them in particular cases
(data, tasks, users, etc.); and understanding the impact in the algorithm effectiveness to
the extent that the assumptions are not met, or not fully. This should help enable and
guide principled algorithmic development, diagnosis, deployment and innovation, beyond
just assumption-blind trial and error.

Likewise, we should understand whether, to what extent or in what direction the biases
may distort the experimental measurements. Further implicit assumptions are made on the
purpose for which a recommender system is to be deployed when evaluation metrics are
developed and chosen. Understanding and analyzing the consistency between metrics and
the ultimate goals the system is conceived for are key to make sure the right thing is being
measured.

Algorithm vs. System Performance. One of the major issues in evaluating the performance
of a RecSys in a realistic setting, by real users, is the users’ inability to distinguish between
the system as a whole and the recommendation algorithm itself. Indeed, many of the most
successful advances in studying algorithm differences have come from individual research
systems where the same system interface could be used with different algorithms.

A challenge today, however, is general lack of access to such systems for the typical
researcher. While industry has access to large user bases, companies rarely will allow external
researchers to experiment with those users.

We therefore propose a community-wide effort to build and maintain a high-quality,
usable recommender system specifically to support the research community. This system
would have the ability to integrate different algorithms, and would include instrumentation
to allocate users to experimental conditions, record user interaction, log system performance,
and administer user experience surveys where needed. Most important, it would report
metrics and export data according the to the community-agreed standard.

Such an effort could be launched ab initio or could involve creating a consortium to
enhance, open, and maintain pre-existing recommender systems for the research community.

5 Cross-Discipline Themes

In order to predict performance, a number of research issues has to be addressed central to
all domains (IR/NLP/RecSys), which are sketched in figure 1. First we have to choose the
performance criteria and define corresponding measures. When performing experiments with
different test collections and observing the system’s output and the measured performance, we
will carry out a performance analysis. For that, we will look at violations of the assumptions
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Figure 1 An overarching performance prediction framework.

underlying the method applied. Also, characteristics of the data and tasks will have an
important effect on the outcome. Finally, we aim at developing a performance prediction
model that takes these factors into account.

Different fields have traditionally focused on evaluating specific aspects in this frame-
work, but we believe that understanding the relations between these tasks is essential in
achieving adequate performance prediction. Moreover, we have mentioned several times
the importance of reproducibility for improving our experimental evaluation practices. It
should be understood that reproducibility is just another side of the coin when it comes to
performance prediction. Indeed, the possibility of replicating the same results in the same
experimental condition, the capability of reproducing them in different conditions, and the
ability to generalize them to new tasks and scenarios are just another way of formulating the
performance prediction problem.

Once these tasks are well understood we can begin to try and predict performance in
an unseen situation if enough of the above still hold. Expecting to be able to test and tune
all aspects of this pipeline is a limiting factor for exploring new ideas and solutions. It is
our hope that by abstracting stages within the framework, recurrent patterns will emerge to
support prediction for unseen cases (combinations of the above aspects).

In the following, we discuss each of these aspects in detail. Besides describing open
research issues, we will also point to out some cases where weak current scholarly practices
impair our understanding of the matter.

5.1 Measures
5.1.1 What and Why

In this section, we focus on two aspects, namely the definition of the low-level metrics, and
the link between low-level and system-level performance evaluation, meant as the connection
between more objective and engineering-like measures with more subjective ones, ultimately
representing the user satisfaction and experience with a system.
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Figure 2 Low- and high-level performance measures.

Metrics definition

The definition of a metric relies on several alternatives and decisions, which happen before
the actual measurement takes place, also to avoid any post-hoc bias.

We first have to choose the criteria that reflect the goals of our evaluation, for instance
relevance, diversity, or novelty. However, as said before, the performance of a system is
not only a matter of goals but also of the “utility” delivered to users. Therefore, we need
to identify/choose a prototypical user behavior; for example, when ranking is involved,
a stopping point, after which no more recommended items or retrieved documents are
considered, introduces a clear separation between seen and unseen items, where only the
former influence the measurement outcome. Instead of a deterministic behavior, we might
also assume a stochastic model for this aspect as done, for example, by [21,35,81]. We also
have to define the user’s preferences concerning the items seen, like e.g. the total number of
useful items, or the ratio between useful and useless items.

Finally, we have to choose an aggregation method like arithmetic or geometric mean,
where the former focuses on absolute differences, and the latter on relative changes, paying
attention that the aggregation method is admissible when considering the scale properties –
ordinal, interval, ratio scales – of a measure [39,50]

Overall, current research often neglects the fact that each metric represents a specific
user standpoint, and often the standpoint may be context-dependent. Thus, an evaluation
focusing on a single low-level metric will either ignore many user standpoints, or represent
an intransparent mixture of different standpoints.

From low-level to system-level performance

Figure 2 shows a closer look at the measurement aspect, where we distinguish between
low-level evaluation measures and expected high-level system outcomes. We see the range of
inputs and performance measurements that reflect the performance of a diversity of systems,
including IR, NLP, and Recommender Systems. In this section we focus on the link between
low-level and system-level performance evaluation, and in turn on the challenge of not just
building predictive models but also incorporating and building a deeper understanding of
the factors that lead to system-level results.
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This deeper understanding is essential to crafting complete systems. For example, to have
more effective automated summarization, we need to understand what low-level properties
of these summarizations lead users to perceive fluent text. Similarly, this enables us to
understand how diversity of a search or recommender result affects the user’s confidence in
having found the correct result, or help them learn about the scope of possible results.

The model behind this understanding combines statistical analysis with existing theory
to posit and evaluate hidden aspects (e.g., perceptions of coverage or fluency) and to measure
the relationships among the low-level measurements, the hidden aspects, and the system-level
performance measurements. A good model will highlight the most significant links, identify
causation when possible, and provide mechanism to both predict the impact of system changes
and reverse direction to identify target system changes to achieve desired system-level results.

5.1.2 How

5.1.2.1 Low level performance measures

Most of the research in algorithmic evaluation has focused on low level performance measures
such as precision and recall. Our model tries to link low level measures to system level
measures, potentially explained by the hidden aspects will tell us what low level measures
can best identify system level successes (or failures). Some low level measures might directly
relate to system level performances, for example, we might find that a measure of precision
directly influences click through rates, but in many cases the relations between low and
system level measures might be opaque and can only be understood by unraveling the
underlying hidden aspects.

5.1.2.2 Hidden aspects

Hidden aspects are aspects that cannot directly be measured objectively, but that can be
measured subjectively from users via surveys or observations. Hidden aspects allow us to
understand relations between low level performance measures and system level measures.
For example, a particular low-level measure (e.g. novelty) might relate to several hidden
aspects in directionally different ways (e.g. improving the perceived diversity but reducing
the perceived accuracy of a recommendation or search result). These hidden aspects in turn
might either positively or negatively influence system-level performance measures. What
hidden aspects to account for and how to measure these is a question for which theoretical
understanding of the problem is crucial.

5.1.2.3 System-level performance measures

On the system side, many measures can reflect system performance. We must consider
behavioral measures, which can be short-term effects such as click through rates, measures of
what items users access or read and when they consume the items, as well as long-term effects
reflecting the system’s success such as long-term retention or users unsubscribing from a
service or reduced or increased usage of the service. Subjective measures such as satisfaction
that cover the user experience are also important to measure and predict system-level
performance and can be both short-term (are you satisfied with the choice you just made)
as well as long-term when measuring overall user satisfaction using infrequent higher-level
surveys (e.g. are you happy with our service in the last three months). Sometimes subjective
measures can even outperform behavioral measures in predicting, for example user segments
of a website [55]. The challenge will be to understand which direct short-term measures best
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predict long-term satisfaction and system success. Optimizing the system for any one single
short-term measure may in fact harm long-term performance. For example maximizing the
number of clicks from a user in a news reading service may actually not reflect they are
reading more, it may mean they are trying to find something of interest to read and are
failing, so a combination of number of clicks and pause time on the page in combination
are better predictions of user satisfaction. Subjective measures such as surveys maybe used
to provide training data for machine learning models to capture the complex relationship
between system level measures and predicting good user retention and satisfaction.

5.1.2.4 Understanding the relations between the measures via path modeling

Our model explicitly models the hidden aspects as intermediate concepts relating the low-level
aspects to the high-level measures. Statistical methods such as path modeling and structural
equation modeling allow us to model structural relations between the variables in one single
model. This approach in essence just regresses system-level measures on hidden aspects and
low-level aspects, and shows whether effects of low level on system-level measures are direct,
or indirect and thus mediated by the hidden aspects. As the model fits all relations at once,
their relative contributions can be better understood and estimated then one could do by
just correlating all measures without a clearly-defined underlying structure. Moreover, the
path modeling will allow us to test which underlying structure provides the best explanation
and find missing relations. For example, if hidden aspects relate to system level measures
but no low level measures directly affect these particular hidden aspects, this will indicate
that either better low level measures might be needed or that other external factors might
influence our system level measures that are not under our control. Such external factors
can be partially controlled for by testing the model in a controlled experiment in which we
only manipulate a particular aspect of our algorithms and keep the rest of the system the
same, such that we can tease out the one aspect we are interested in. Structural equation
modeling moreover allows for hidden aspects to be latent constructs that can be measured
through several questionnaire items, rather than by single indicators. This is important
when measuring psychological constructs such as perceived diversity or satisfaction, because
single items lack ’content validity’. Each user might interpret an item differently and by
measuring concepts with several slightly differently phrased items a better measurement of
the underlying latent construct can be achieved.

5.1.3 Next Steps

Here we suggest some key next steps that should be undertaken and supported in order
to cover the full range from low-level and system-oriented measures to high-level and user-
oriented ones:

Creating a dictionary of higher-level and hidden-aspect measures, including validated and
reusable measures that can support comparative research and accumulation of results
across studies. We note that certain sub-areas have a longer tradition of higher-level
evaluation metrics, and that other sub-areas will need to be engaged to understand the
key success measures for their systems.
Building a library of case studies–examples with constructed models. These cases should
be collected in a standard format to promote further analysis and meta-analysis.
Encourage the study of complex cases–including cases that span more than one technology.
To build our understanding of how user perceptions affect performance of complex systems,
we need to study a wide range of increasingly complex cases.
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Perform both manual and automated analyses to seek patterns in the case library. By
exploring common subgraph patterns, we can develop evidence-based theory to govern
system design. The most interesting patterns will likely be ones where the subgraphs
depend on specific system attributes (e.g., certain relationships may exist in systems
where users have a particular goal in mind, but not in ones where users are simply
exploring).
Ensure the availability of long-standing user cohorts, who can assess over time the systems
and whose outcomes can be traced to validate predictions. We will require different user
cohorts for different domains/contexts, so that it becomes possible to develop a matrix
arrangements of systems across cohorts which can be leveraged for cross-predictability
either column-wise, i.e. changing domain/cohort, or row-wise, i.e. changing systems within
different rounds of the same cohort. An open question is how to map user cohorts to real
users? How good is their external validity?

5.2 Performance Analysis
Reporting of averages and average improvements is often unhelpful, and is uninformative in
terms of explaining what system elements contributed to success, what data and queries the
method is applicable to, and for which data and queries the method fails. That is, instead
of focusing on statistically significant differences in the average from control to treatment,
we need to move to understanding the changes in specific tasks and task types, and to
understanding the contributions of individual system components.

In this context, researchers also should no longer ignore the problems of multiple testing
and sequential testing: When performing multiple significance tests on the same data set,
they must adjust the significance level accordingly, using e.g. Bonferroni’s method8 [50].
Even more problematic is the sequential testing case, where the same data is used by other
researchers, who have learned from previous results on the same test collection, and then
perform significance tests for their new method(s), not considering the large number of tests
carried out before. As shown in [20], this usually leads to totally random results. As a
consequence, statistically meaningful results cannot be expected from heavily re-used test
collections. A similar statement might also hold for multiple qualitative analyses on the same
data set. Thus, re-use of a test collection is problematic, which leads to the need for more
(and more diverse) collections.

Another important viewing angle is the consideration of measures representing different
user standpoints: instead of focusing on universal performance, more emphasis should be
put on performance differences wrt. different metrics. E.g., in retrieval, many users will
look at the top ranking documents only (e.g. in Web search), while others are aiming at
locating all potentially relevant documents (e.g. patent search). Thus, instead of looking at
overall performance only, it is more interesting to identify methods that support specific user
standpoints.

Classic failure analysis inspects individual tasks where performance is significantly altered,
but other data interrogation methods, such as systematic addition of noise, can illustrate the
robustness and vulnerabilities of the system that is under investigation.

8 https://en.wikipedia.org/wiki/Multiple_comparisons_problem
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5.3 Documenting and Understanding Assumptions
5.3.1 Role of assumptions

Any method or model is based on certain assumptions, some of which are explicit; usually,
there is an even larger number of implicit assumptions. The performance of a method in an
application depends mainly on the extent to which these assumptions are true in this setting.
Thus, we have to solve three problems:

Identify the underlying assumptions (make implicit ones explicit).
Devise methods for determining if or to what extent these assumptions are fulfilled in an
application.
Develop a model that tells us how the violation of an assumption affects performance.

Only when we have answers to these three questions, we are able to make reasonable
predictions.

5.3.2 Assumption categories

Assumptions come into play at many points in the design and evaluation of recommender,
IR, and NLP systems. At each point, there are at least two broad categories of assumptions:
fundamental assumptions and convenience assumptions. These two categories are transversal
to different kinds of assumptions which we can distinguish according to the role they play
in data, algorithms/techniques, evaluation protocols and metrics, and their implications on
system performance and the validity of research findings. Overall, they determine a taxonomy
which we can use to systematically check and make them explicit.

Convenience assumptions are simplifications (or approximations) intended to make prob-
lems tractable, reduce their complexity and/or enable evolving some starting point theoretical
expression (e.g. a probability) into a computable form (counting things and doing math upon
numbers). Examples include the mutual feature independence assumption in Naïve Bayes (of
which pairwise word independence in text IR can be seen as a particular case), whereby joint
probabilities are decomposed into products of simpler distributions; user, time and context
independence as a means to eliminate variables from IR and recommendation problems; or
document relevance independence assumption, which enables the definition of simple and
easy to compute metrics such as precision. Convenience assumptions may be violated, and
yet the algorithm or the metric may still work reasonably. On the other hand, performance
differences between collections may be traced back to the violation of certain assumptions.

Convenience assumptions typically represent an opportunity to define new research
problems consisting of the elimination of a particular simplifying assumption and dealing
with the corresponding complexity. An example is personalized IR, which takes the user
variable back into the problem and copes with it; or IR diversity, which removes the document
relevance independence assumption; or time-aware or context-aware IR, which do the same
with time and context.

By fundamental assumptions we mean hypotheses that algorithms or metrics themselves
build upon – they are intrinsic to the underlying model. For instance, content-based
recommendation assumes item features can partially explain user choices; IR language model
algorithms assume language similarity is related to relevance; most text IR models assume
term frequency matters; proximity search algorithms assume word order matters too; metrics
like precision assume users want to get relevant documents; average search length (rank of first
relevant document) assumes users need just one relevant document or item; recommendation
diversity metrics may assume people enjoy variety; novelty metrics assume users wish to be
surprised; an experimental protocol may assume each and every user has a non-empty set of
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training (or test) observations. When fundamental assumptions fail to be met, the algorithm
or the metric may no longer be effective or valid. Content-based recommendation is as good
as random if user choices are unrelated to item features; a novelty metric is irrelevant if users
are just willing to stick to familiar experiences; lack of data for a single user may result in an
undefined evaluation outcome.

Becoming aware of and understanding fundamental assumptions enables a better and
more consistent use of the tool (algorithm, metric, protocol) that builds upon them, and may
prevent unintentional misuse. It can also help detect spurious confounders (biases that cause
the hypothesis to hold for misleading reasons) and experimental flaws that can easily go
unnoticed (e.g. a recommendation algorithm’s accuracy skyrockets simply because we forgive
it refusing to deliver recommendations to certain users; depending on the characteristics of
these users, this may result in discriminatory quality of service).

5.3.3 Understanding Violations to Assumptions

A critical aspect in explaining and predicting performance is to understand whether and
to what extent the assumptions our methods are based upon have been complied with or
violated.

This understanding should happen at both theoretical and experimental level. At
theoretical level, among the various assumptions, we should be able to differentiate those
that are crucial for a method and whose violations seriously hamper its application from
those that are somehow desirable. At experimental level, we should have techniques for
assessing each assumption and understand whether and how much it has been violated.

We need to develop commonly agreed scales to quantify how much an assumption has
been violated. However, given the wide range and diversity in the type of assumptions we
have, we should aim at developing assumption checking methods and scales that hold, at
best, for families of related assumptions rather than hoping for a single general solution
where one-fits-all.

Then, we need to research on the relationship between the severity of departures from
assumptions, quantified in the above mentioned scales, and the observed and predicted
performances. The final goal is to understand how much resilient are our methods to such
violations and how much this impacts on explanation, first, and prediction, after.

Violations of algorithm or technique assumptions are perhaps the easiest to assess: run
the algorithm on a data set that violates its assumption(s) and measure its performance
and behavior. Violations of evaluation and data assumptions are more challenging, as they
undermine the tools by which we measure the behavior of the system in the first place. To
assess the impact of these assumptions, we need techniques that allow us to peek behind
the curtain and understand the behavior of these components of the experimental process
under a range of possible truths, in order to relate their output to our confidence about the
relationship of the data and evaluation to the underlying truth and intended task.

An area we can take inspiration from is statistics and the notion of robustness in statistical
testing, meant as “insensitivity to small deviations from the assumptions” [64]. Robustness
is developed both a theoretical level, e.g. by studying it under a null and an alternative
hypothesis [68], and defining indicators such as, for example, the breakdown point, i.e. the
proportion of incorrect observations an estimator can handle before giving an incorrect result.

Furthermore, simulation and resampling are particularly promising tools for quantifying
the importance of assumptions to components of the information processing and evaluation
pipeline. Measuring results on different data sets is useful, but only provides a few data
points regarding the behavior of a method or evaluation technique, and does not change the
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relevant variables in a controlled fashion; further, the data set’s relationship to underlying
ground truth cannot be controlled and may not be known. Simulation and resampling allows
a range of possibilities – some within assumptions, some outside – to be tested, and the
relationship of data to truth to be controlled, allowing us to precisely characterize the system
response to targeted violations of its assumptions. These experiments can take multiple
forms, including wholly-synthetic data, resampling of traditional data sets, and sampling
of specialized data sets such as ratings collected on complete or uniformly sampled sets of
items. As one example, [106] employed simulation to study the robustness of information
retrieval evaluations to violations of statistical assumptions about the underlying data sets
and their topic distributions.

5.3.4 Increasing awareness in our communities

We note that across our communities there is a large variance on how assumptions are
managed and on the perception itself of their importance. A general recommendation is
pushing in any possible way our communities to a greater awareness of the need for making
assumptions explicit and clear. Inserting in all scientific works a clear statement permitting
a precise identification and a deeper understanding of the essential assumptions made and
their scope of validity should become a universal practice. To this regard we recall the effort
currently conducted in the IR community toward reproducibility of results [40,41]: after a
consciousness campaign last several years, we now have a reproducibility track in one of the
main IR conferences (ECIR), and reproducibility tasks have been just launched in the major
evaluation campaigns9.

The awareness on such an important aspect impacting the validity and reproducibility
of results can be disseminated and increased in several ways. A first recommendation is
adding an explicit reference to the clarity and completeness of assumptions made in the call
for paper and the paper review forms of all conferences. This can have the double effect
of educating the reviewers to reserve a particular attention to assumption clarity and, on
the other hand, to increase author’s awareness on them. Papers claiming results involving
assumptions that are not explicitly voiced or understood should not be deemed as solid since
no strong conclusion can be drawn from them. As a second step, after a systematization of
assumptions and a greater understanding have been reached, the emerging best practices
can give origin to commonly accepted requirements to be integrated in the call for papers of
specific tracks.

It is significantly harder to test the importance of assumptions in user-facing aspects of the
system, such as the presentation of results or the task model, as it is prohibitively expensive
to simulate arbitrarily many versions of a system and put them before users. System utility
can be remarkably robust to violations of core assumptions – for example, e-commerce
vendors obtain great value from collaborative filtering techniques that assume items are
functionally interchangeable even when they clearly are not – but rigorous empirical data on
this robustness is difficult to obtain. However, measuring hidden factors (cf. Figure 2) might
help explain why particular versions of a system perform better, directly testing underlying
assumptions.

9 http://www.centre-eval.org/

http://www.centre-eval.org/
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5.4 Application features
One common feature of Natural Language Processing, Information Retrieval and Recom-
mender Systems is the wide space of data and task characteristics that have to be accounted
for when designing a system. Adapting existing systems to a new domain, a new data set,
or a new task, and then predicting their performance in this new setting is particularly
challenging in our research fields because there is always some degree of mismatch between
testing and development conditions (either in laboratory or real-world settings) used to create
the existing systems and new application area.

As a result, measuring only effect sizes and statistical significance is of little help for
predicting out-of-the-lab performance. Even moving between two test collections which
apparently share the same features often results in different experimental outcomes. In
order to have predictive power, evaluation methodologies need a much higher emphasis on
explanatory analysis: why, where and how systems fail is more relevant than effect sizes on
average measures.

In this section we begin by reviewing a few measurable characteristics that make prediction
possible but challenging in our research fields, and we then move to advocating explanatory
analysis.

5.4.1 Task & Data features

How will an existing method, algorithm or system perform under conditions different from
the ones in which it was tested? There are some easily identifiable features related to the
data or the task that, if changed, may affect predictability.

With respect to the task, some relevant characteristics are the language involved in the
task. Will the task be performed using monolingual or multilingual data. Will the output be
in a different language from the input (cross-linguistic)? Or is the task language independent?
Are there the necessary language resources for the task? Does the task involve some dialect
for which these resources have to be adapted? Is the data based on speech, on written text?

Another characteristic of the task is it dynamicity: are we dealing with a static collection,
or a stream of data? Is the task a one-off, ad-hoc task, or a long standing task, such as
filtering a news stream with a static query? Is the task offline, or online, performed with an
active user? Does the task change over time as the user performs it?

Task context also plays an important role in many situations: Current Web search
engines consider already user history, location, time and end device when computing the
search result. The same might be true for other types of tasks.

We can characterize the data as curated, for example scientific papers, or edited news
stories, or as naturalistic, for example, stemming from social media, or transcribed speech.
In the latter case, one can sometimes measure the expected error rate, such as the frequency
of spelling errors, or transcription errors. Many language processing tools were developed for
curated language, without such errors.

Another dimension of data is its connectedness or structure. Can each data item be
considered as a separate item, or are there links between items? For example, web pages link
to other web pages. A collection of movies can contain a series of implicitly linked sequels.
Users in a social network have both explicit and implicit connections to other users. Each data
item can have internal structure (metadata such as timestamps, hand-assigned classification
codes, numerical data; or internal structure, such as abstract, body, supplemental material).

With respect to (textual) data, some measurable features are: readability and compre-
hensibility; domain; users’ expertise; how source and target data correlates; verifiability
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of answers; dependence on assumptions to construct ground truth; richness of features;
external validations; existence of corner cases and stress factors; parameterizations that
impact performance; quality of domain resources (ontologies, dictionaries, taggers, etc.)

These characteristics, however, are not likely to be sufficiently predictive: even when they
are the same in the new application as in laboratory conditions, often components of the
systems perform differently. One of the main shortcomings of our experimental methodology
is the lack of adequate explanatory methods.

5.4.2 Bias and Scaling

Test collections are often not a representative sample of a larger population. Instead, they
have been compiled under certain restrictions (e.g. in IR test collections, rather specific or
too general topics are not considered). We need to understand the limitations and bias of
our sampling methodology across topics, documents, and systems. Can we determine when
differences are due to bias, or when we are sampling from separate distributions?

Another problem to be investigated is the effect of scale: methods doing well on small
test collections might not work on collections orders of magnitude larger, and vice versa.

5.5 Modeling Performance
Trying to explain and model the performance of systems over different datasets and tasks is a
preliminary yet indispensable step towards envisioning how to predict the performance of such
systems. However, this is often difficult to do due the lack of appropriate analysis techniques
and the need for careful experimental designs and protocols, which may be complex and
demanding to carry out.

There is therefore a need for further research providing us with the methods for analyzing
and decomposing the performance into those of the affecting factors, such as system compon-
ents, datasets, tasks, and more. These explanatory models will then constitute the basis for
developing predictive models.

Performance prediction can take different forms. We commonly wish to make an ordinal
prediction, of which of two systems will be superior for a kind of task over a class of collections.
For a single system, we might aim at an interval prediction, giving us a confidence interval
for a certain metric; the most simple case would be a prediction for another sample from
the same population. While these two approaches target at average performance, we may
alternatively wish to estimate risk or uncertainty, that is, predict a likelihood of failure.

5.5.1 Performance factor analysis in IR

In the case of IR, over the years, there have been examples of attempts to decompose
performance into constituting factors, based on the use of General Linear Mixed Models
(GLMM) and ANalysis Of VAriance (ANOVA).

[11,102] have shown how to break down the performance of an IR system into a Topic
and a System effect, finding that the former has a much bigger impact than the latter.

By using a specific experimental design, [45, 46] also broke down the System effect
into those of its components – namely stop lists, stemmers, and IR models. They further
demonstrated that we are not actually evaluating these components alone, even when we
change only one of them and keep all the rest fixed. Rather, we are evaluating whole pipelines
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where these components are inserted and with which they may have positive (or negative)
interaction, boosting (or depressing) their estimated impact.

The difficulty in estimating the Topic*System interaction effects is the lack of replicates for
each (topic, system) pair in a standard experimental setting. Therefore, [92] used simulation
based on distributions of relevant and not relevant documents to demonstrate the importance
of the Topic*System interaction effect. Very recently, [111] exploited random partitions of
the document corpus to obtain more replicates of each (topic, system) pair, obtaining an
estimation of the Topic*System interaction effect which allowed for improved precision in
determining the System effect.

Finally, [44] conducted preliminary studies on the effect of Sub-Corpora and the
System*Sub-Corpus, showing their impact and how they can be exploited to improve
the estimation of the System effect.

All these GLMMs are not connected yet, meaning that they tackle the problem separately
from different viewpoints but there is not yet a single model integrating all these facets. So a
first required step toward performance prediction is to unify all these explanatory models into
a single one. Then, the next step is to turn these models into predictive ones, e.g. by using
some of the features discussed in Section 5.4 to learn how to predict the factors described in
these models.

5.5.2 Controlled experimentation in NLP

NLP components are often combined into more complex NLP systems (e.g. part of speech
detection, entity recognition etc. being used as part of a summarization task). The need
to understand both the individual performance of components of pipeline NLP systems, as
well as interactions between them, has resulted in evaluation methods involving controlled
experimentation with systems in terms of these component parts.

Systematic component evaluation. Evaluating adaptivity by “decomposing” and evaluat-
ing it in a “piece-wise” manner can also be adapted from evaluations of interactive adaptive
systems [87]. This can be done in a number of ways such as component substitution, ablation,
and oracle input data.

Component Substitution: One strategy for doing this is to perform experiments that
involve substitution of alternative components for a single component of the pipeline, to
measure the impact on that component on the overall system performance.

Ablation: A related approach is the use of “ablation” (also called lesion) studies, in which
sets of features, or combinations of feature sets, are systematically removed, in order to
determine the most effective representation for a given task [24,83]. This is commonly used
in evaluation of machine learning-based methods which make use of substantial feature
engineering.

Oracle input data: Pipelining components introduces a ceiling for each component that
limits the performance of the overall system. To focus evaluation on a specific component in
isolation, the performance of a target component can be measured by assuming that perfect
input data is derived from earlier stages of processing. In user studies, this is sometimes also
called a “wizard-of-oz” approach, where the component being evaluated is facing an end-user.
Most commonly in these systems, the oracle is a human operating as system.

As an example, the performance of a relation extraction system that depends on a named
entity recognition system as a precursor step will be limited by the performance of that
earlier step. In the BioNLP-Shared Task relation extraction evaluations, gold standard entity
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annotations are provided as input for the relation extraction systems [90] to control for this
problem. While this represents idealized conditions for the overall system, it allows isolation
of the relation extraction algorithms from performance effects resulting directly from the
entity recognition step.

Test suites: Test suites have long been used by the NLP community to structure the
evaluation of the functionality of specific tools [86], and also to structure efficient development
of NLP systems [47]. In this approach, specific test cases are created based on controlled
variation of pre-determined phenomena.

Recently, this approach has seen some revival, on the basis that articulation of specific
cases identified in linguistic data can be used to guide finer-grained evaluation of systems that
process that data, and that evaluation of purely natural data is dominated by high-frequency,
possibly “simple” cases [23,29,57].

It can be argued that producing meaningful test cases is itself a challenging, resource-
intensive activity [71], and also that the corner cases are not possible to define in advance.
Nevertheless, this approach may provide a useful strategy to consider for deeper characteriz-
ation of system performance and performance predictability, by characterizing the types of
data that are expected to be seen by a system, and their varying distributions in natural
data sets.

6 Conclusion

Performance prediction in the areas of IR, NLP and RecSys is a research problem that has
been ignored for many years. In this manifesto, we have presented a framework for starting
research in this area. Some problems might require substantial resources before they can
be addressed. For instance, the analysis of performance-determining application features
requires a large number of testbeds. Most of the problems, however, require primarily a
more analytic approach. Instead of focusing only on performance improvement/system
tuning, researchers should aim at improving our understanding of why, how and when the
investigated methods work.

This manifesto should not only be regarded as a useful account of an important research
challenge. We hope that it will also produce valuable fall-outs, such as bringing these issues in
the research agenda of the involved communities (as it recently happened in the case of IR [3]),
helping funding agencies in envisioning appropriate funding instruments for addressing these
challenges, and spurring researchers on to overcome today’s limitations.
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