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Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial
Intelligence. Over the years it has evolved significantly; more recently it has been challenged and
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future progress. We developed this manifesto based on the presentations, panels, working groups,
and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on
Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other
disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for
the next decade.
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2 Current and Future Challenges in Knowledge Representation and Reasoning

Executive Summary

Knowledge Representation and Reasoning (KR) is a field of Artificial Intelligence (AI) that
deals with explicit, symbolic, declarative representations of knowledge along with inference
procedures for deriving further, implicit information from these representations. Even though
KR is one of the oldest and best-established areas of AI, it continues to grow and thrive.
Most of the original research areas have evolved significantly, and have matured from the
discovery and exploration of foundations, to the development and analysis of systems for
emerging or established applications. Other areas, such as answer set programming and
argumentation, arose more recently and are now thriving areas of KR.

While progress in KR has been steady and often impressive, it has not kept pace with
the recent successes in AI in the use of statistical techniques and machine learning (ML). As
a result, much of the work in AI, and much of the public perception of AI, centres today on
machine learning and on statistical applications. Nonetheless, we take it as given that KR is
a vital, essential area of AI, and that research and development in KR remains crucial for
the overall development of AI and for its already wide and growing range of applications.
Indeed, despite the unquestionable successes in machine learning and statistical techniques,
limitations of these approaches are now emerging that, we believe, can only be overcome with
advances in KR. Indicative of this are, for instance, the recent interest in Explainable AI,
which requires a reference to declarative structures and reasoning over such structures, as well
as the need for enhancing current AI systems with commonsense reasoning capabilities. Thus,
in common with the majority opinion in AI, cognitive science, and philosophy, we espouse
the position that declarative representations of knowledge are essential for any ultimate,
general theory of intelligence.

For all of these reasons, a reassessment of the area of Knowledge Representation is
timely. The Dagstuhl Perspectives Workshop 22282 “Current and Future Challenges in
Knowledge Representation and Reasoning” had this as its objective. During the workshop,
the participants assessed the current state of KR along with future trends and developments.
Further, the workshop offered ideas for developing an innovative agenda for the next phase
of KR research. Key proposals targeted supporting a synergistic relationship with other
subareas of the rapidly-changing field of AI, and of computer science as a whole. The
workshop further identified research areas for emphasis, assessed prospects for practical
application of techniques, and considered how KR may address limitations of statistical
techniques and machine learning.

This manifesto, while representing the views of the authors and several other researchers
who offered input and comments, to a large degree is a reflection of discussions at the
Dagstuhl workshop. Its first section outlines the field of Knowledge Representation, briefly
characterising the area and explaining why a knowledge-based approach is important to
Artificial Intelligence, and arguably necessary for the development of general intelligent
agents. The following section reviews areas seen to be in KR, or related to it. Some of these
areas fall squarely within KR. Some others have a strong overlap with KR, while for yet
others there is a strongly felt need for their overlap with KR to grow. For each of these areas
we give a snapshot of their state (as it relates to KR), along with their research issues and
challenges. Where appropriate we indicate how KR may contribute to these areas, and how
they may in turn contribute to KR. The third section considers research challenges to the
field of KR as a whole: what these challenges are and how they may be met. The fourth
section discusses ways of promoting KR, including expanding the field and enhancing its
visibility. Section 5 provides a brief conclusion. While the history of KR is interesting and
instructive, we feel that a detailed history would overly lengthen the manifesto; we have
however included a brief history in the appendix.
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4 Current and Future Challenges in Knowledge Representation and Reasoning

1 Introduction to Knowledge Representation and Reasoning

1.1 What is Knowledge Representation and Reasoning?
Knowledge Representation and Reasoning (KR) is a field of Artificial Intelligence (AI) that
deals with explicit, symbolic, declarative representations of information along with inference
procedures for deriving further, implicit information from these representations. Typically,
these symbolic representations encode information on some domain of application. They may
also encode other forms of information. For instance, when describing knowledge of an agent,
they may encode that agent’s goals and preferences, beliefs about other agents, etc. This
collection of symbolic expressions is called a knowledge base (KB). The key idea is that the
information in a KB describes the domain, without specifying how information is to be used.
Accompanying a KB is a knowledge base manager consisting of a collection of procedures
that perform inferences on the knowledge base, possibly interacting with the external world
via sensors and actuators, and possibly modifying the knowledge base. Together, the KB and
the KB manager form a knowledge-based system. This general paradigm of building systems
based on knowledge is also referred to as the declarative approach to system building, in
contrast with a procedural paradigm, in which a system consists of a collection of specific
procedures or commands that determine its scope of functionality (as in an operating system,
for example).

1.2 Why Knowledge Representation and Reasoning?
The case for declarative representations was made early on in the history of AI, motivated
by analogies with how humans address a wide range of problems they encounter in everyday
life. A similar case was also made in other areas, including databases, information systems,
and logic programming. The arguments put forward in those areas provide a strong support
for declarative approaches to knowledge representation. We review some of them below.

First, a symbolic framework allows for a principled, formal account to both representation
and reasoning. The meaning of sentences in a KB can be defined via a semantic account,
while specialised inference procedures can be developed for the given semantics. Typically,
one seeks procedures that are sound and complete, the characteristics that establish their
formal adequacy for reasoning.1 Other important considerations are their termination and
efficiency.

Second, in the declarative paradigm the information in a KB represents what an agent
knows about a domain but does not constrain how to reason with this information: what
types of reasoning tasks one might want to perform and how to execute them. For example, in
a simple KB system in the form of a relational database, we have a declarative specification of
the knowledge given by the set of ground atoms in the language determined by the relational
schema. This representation leaves open what reasoning tasks (queries) the user might want
to execute, and how they are actually executed once posed to the system.

An important point about this separation of information from reasoning and its imple-
mentation is that a KB can easily be updated (new information added, information no longer
relevant removed, and erroneous information corrected), without requiring any changes to
inference procedures. For example, in a planning domain, information about a particular
planning problem can be modified, independently of how a plan is constructed.

1 A sound procedure is one that will derive true consequences from true premises, while a complete
procedure is one that can derive all true consequences of the premises.
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Next, a knowledge-based system is, in principle, able to explain and justify its behaviour,
based on its KB and the inference steps it took to arrive at a conclusion. For example a KB
may indicate that a specific drug was not prescribed for a patient, even though the drug is
effective against the patient’s ailment, because the patient is allergic to the class of drugs to
which the proposed drug belongs.

Another important consideration concerns the type of information one may want to have
in a knowledge-based system. This will clearly include the factual information pertaining to
a particular application domain. However, a KB may also contain any additional pertinent
information such as the agent’s (user’s) knowledge, goals, obligations, and preferences, or
that of other agents. Further, it can include hypothetical or counterfactual information, and
assertions regarding the past or future, and also information about actions available to the
agent (or agents).

At the same time, KB systems pose numerous challenges (in other words, there is no free
lunch). First, both the representation and reasoning problems in a KB may be extremely
challenging. A notable example is in commonsense reasoning, where simple assertions such
as “birds normally fly” but “penguins normally do not fly” have been the impetus for much
research, but where arguably we still do not know how to fully represent and reason with
such assertions.

Second, reasoning required by knowledge-based approaches is often inherently computa-
tionally hard. This stands in contrast with procedural representations which, when available,
are generally more efficient (for example, to find a shortest path, an agent is better off
using a specialised shortest-path algorithm rather than inference based on the declarative
specification of the concept of a shortest path).

Next, the information that humans have about the world is imperfect. The same is
true about the information stored in knowledge-based systems. Often this information is
incomplete, imprecise, inconsistent, inaccurate, or otherwise incorrect. Thus, a major research
direction is to design inference procedures to handle such challenges. But in many cases,
an agreement has not yet emerged on the appropriate choice of such inference mechanisms.
And even in cases where there is agreement, reasoning tasks may be undecidable and, when
decidable, often are intractable.

Given this, the desiderata of soundness and completeness for reasoning procedures can
be difficult or impossible to meet in practice. Hence in the interest of efficient reasoning, a
practical inference procedure might be unsound or incomplete in general, or a representation
language may be limited in expressibility (for example, in the case of first-order logic languages,
to Horn clauses), in return for guaranteed bounds on inference.

A separate issue concerns the matter of acquiring relevant knowledge, and effectively
structuring it in a KB. In some cases (for example, description logics) substantial progress has
been made, but in others the complexity of the tasks remain a hindrance to the development
of practical applications.

The challenge then is to create practical knowledge-based systems for managing complex,
real-world tasks. The fundamental problems of KR may be considered in two categories:
first, the development of sufficiently precise notations with which to represent knowledge
and, second, the development of effective procedures for deriving further knowledge. These
have been referred to as, respectively, the epistemological and heuristic adequacy [265] of a
knowledge-based system.

We conclude this section by looking at what is often taken as the ultimate goal of AI, that
is, developing a general artificially-intelligent agent. To this end, there is a stance, known
as the KR Hypothesis, that asserts that a knowledge-based approach is essential for the
construction of any generally intelligent agent. This was articulated by Brian Smith [339] as
follows:

22282



6 Current and Future Challenges in Knowledge Representation and Reasoning

“Any mechanically embodied intelligent process will be comprised of structural in-
gredients that
1. we as external observers naturally take to represent a propositional account of the

knowledge that the overall process exhibits, and
2. independent of such external semantical attribution, play a formal but causal and

essential role in engendering the behaviour that manifests that knowledge.”

That is, the KR Hypothesis claims that any intelligent agent will contain symbolic structures
(the knowledge base) where the symbols in these structures mean or represent something.
Moreover, the manipulation of these symbols will play an essential role in determining the
behaviour of the system. This stance (or thesis) directly points to the key role of knowledge
representation and reasoning for achieving general intelligence. It is worthwhile to note,
though, that some researchers, notably in the connectionist community, disagree. Thus,
at present, whether general intelligence is necessarily knowledge-based remains an open
question.

2 Areas In and Related to Knowledge Representation and Reasoning

KR is a broad area aiming to establish foundations and general principles for representing
knowledge in ways that make that knowledge usable by computers, and to develop effective
automated reasoning mechanisms. It can be broken down into several subareas, some of a
broad foundational nature, some concerned with specific formalisms and tools, and some
focused on applications. As one of the main areas in AI, KR is also related to several
important subareas of AI. It also has overlap with other areas in computer science such as
database and information systems. Finally, because of its significant use of logic and its
focus on the concept of knowledge, KR is also related to mathematical and philosophical
logic and, more generally, to philosophy.

In this section we offer an overview of KR and its main research efforts, both past and
current. These areas are presented in two rough groups. First are those that fall squarely
within KR, such as nonmonotonic reasoning. Second are those areas that are distinct from
KR but have strong overlap; these subsections have titles of the form “KR and . . . ”.

2.1 Non-monotonic Reasoning
Non-monotonic reasoning (NMR) [64] is one of the original areas of KR and a driving force
behind its early development. It remains a major area of KR today. Unlike other areas of KR,
such as reasoning about action (Section 2.4), description logics and ontologies (Section 2.5), or
argumentation (Section 2.7), NMR is not focused on any particular knowledge representation
language or any particular application domain. Rather, it concerns a major aspect of
commonsense reasoning, that of reasoning (and acting) based on incomplete information
by “filling in the gaps” of this missing information in some fashion. In such cases, when
additional information becomes available, it is natural that some conclusions that have
been reached earlier must be withdrawn. Thus in the standard example (some would say
hackneyed) of non-monotonic reasoning, if one learned that a certain animal was a bird, it
would be inferred that that animal can fly, and hence for example one would build a cage
with a cover on it. If one learned in addition that the animal was a penguin they the default
conclusion regarding flying would be withdrawn.
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This type of reasoning cannot be modelled in concise, natural ways in classical inference
systems such as first-order logic.2 Classical inference systems are designed to derive new
information only when the reasoning that leads to them is iron-clad and cannot be invalidated
when new facts become known. More formally, classical reasoning is monotone, that is, a
conclusion derived from a set of facts remains a conclusion when this set of facts is enlarged.
Defeasibility of human commonsense reasoning when complete information is not available
means that new information may render invalid some of the conclusions obtained in its
absence. Therefore, commonsense reasoning requires a new type of logic as its natural formal
expression, a logic whose inference mechanism lacks the monotonicity property that classical
inference systems have. Several such logics, commonly referred to as non-monotonic logics,
have been proposed and studied for their capacity to account for ways in which one may
draw non-monotonic (or defeasible) conclusions from incomplete or imprecise information.

An early non-monotonic mechanism is the closed world assumption [320], which expresses
the notion that a ground atomic fact can be assumed to be false if it can not be demonstrated
to be true. (This, of course, is how negation is handled in standard relational databases.)
Default logic [321] generalises the intuition behind the closed world assumption. It augmentes
classical logic theories (base theories) by a set of rules, called defaults whose applicability
depends on a consistency condition. Answer set programming (Section 2.2) in its most basic
form can be seen as a fragment of default logic, with its semantics directly traceable to that of
default extensions [41, 261, 42]. Circumscription [267], another major attempt at formalising
reasoning with incomplete information, expresses the notion that when faced with such
situations, humans make the extension of incompletely specified predicates as small as possible.
For example, a circumscriptive interpretation of “birds fly” would have the set of non-flying
birds be as small as consistently possible. Yet another line of research of non-monotonic
inferences was set in the language of modal logics. Two prominent examples of such logics are
the modal non-monotonic logics S4F [334] and KD45 [282]. The former has been shown to be
equivalent to default logic. The latter, broadly known as autoepistemic logic [283], formalises
reasoning of an introspective agent based on what she knew and what she did not know.
Over the years, a major research effort was extended to establish fundamental properties of
non-monotonic logics and their interrelations [262], and to understand the computational
complexity of reasoning with such logics [175, 132].

A different attempt to provide a direction for non-monotonic formalisms is to propose
axioms against which any non-monotonic consequence relation could be tested. A prime
example of this is the so called KLM approach to non-monotonic reasoning [229]. Seeking
semantic accounts of non-monotonic inference relations satisfying selected sets of KLM pos-
tulates, the authors proposed the so called preferential semantics and developed fundamental
characterisation results. Although that work focused on non-monotonic consequence for clas-
sical propositional logic, it was subsequently extended to study non-monotonic consequence
over conditional propositional logics [240]. This extension has given rise to a flurry of activity
in designing non-monotonic reasoning systems for versions of conditional logics going beyond
propositional logic, especially description logics [170, 50, 67] and other fragments of first-order
logic. While this work shows some progress, the transfer of results from propositional to
first-order logic or its decidable fragments remains a challenge. For example, the question of
how to properly account for the additional expressive power associated with quantifiers is
not yet resolved [306].

2 However, by expanding the underlying formal system, for instance to allow time-stamping of each
formula or moving to a second-order logic, we can capture some non-monotonic behaviour within
classical systems.

22282



8 Current and Future Challenges in Knowledge Representation and Reasoning

Over the years NMR has been taken to include, or apply to, commonsense reasoning,
answer-set programming, reasoning about action, query-answering in database systems,
description logics, argumentation, and belief change. Indeed following the early development
of domain-independent approaches, most work on non-monotonic reasoning has focused on
addressing non-monotonic reasoning aspects arising in the areas just mentioned. Current
research in NMR may be seen as further mapping out the phenomenon of NMR, investigating
its applications and relations to other areas of AI and information systems, and developing
further applications.

While research on non-monotonic forms of reasoning has contributed substantially to
progress in commonsense reasoning, the key question of how to ensure that the correct
inferences are drawn still remains a challenge [119]. At the centre of this challenge is the
question of the link between NMR and cognitive science with its two facets: potential
influence of NMR research to topics in cognition, and conversely, the extent to which work
in cognitive science can benefit NMR, whether by providing benchmarks or phenomena for
modelling [340, 317].

Another major area where NMR can make significant contributions is machine learning
(Sections 2.9 and 3.3). It is broadly recognised that a major limitation of machine learning
in applications is that they often require, but currently lack, common sense and an ability
to adjust to unanticipated or novel situations. As noted above, non-monotonic reasoning
seems to be a key tool to formalise and implement such abilities. However, this cuts both
ways. A successful KR system will require large amounts of real-world information, including
defeasible inference rules such as defaults. There is a growing evidence that machine learning
may be a primary tool for acquiring these rules.

For further information of current issues in NMR we refer to the materials of a Dagstuhl
Perspectives workshop in 2019 dedicated to non-monotonic reasoning [202].

2.2 Answer Set Programming
Answer Set Programming is a declarative formalism for modeling and solving search and
optimization problems specified in terms of constraints [65]. The modeling language is that of
logic programming, with the meaning of programs determined by the stable model semantics.

The stable model semantics that provided the theoretical underpinning to Answer Set
Programming (ASP) was introduced in the late 1980s [156]. The view of programs as
models of search problems was articulated about ten years later in the papers by Marek
and Truszczynski [263] and Niemelä [294]. Supported by the first computationally-promising
program-processing tools lparse and smodels [295, 348], it quickly attracted the interest of
researchers dealing with computational solutions to problems in knowledge representation
and constraint satisfaction. In the twenty years since its inception, ASP has grown into one
of the most vibrant areas of research in KR. A good introduction and an overview of the field
can be found in the survey paper by Brewka et al. [65] and in the issue of the AI Magazine
dedicated to ASP [66].

ASP continues to attract researchers. On the one hand, the theoretical foundations of
ASP abound in challenging problems motivated by its intended use as a tool for modelling
knowledge. On the other hand, the demonstrated power of ASP in addressing problems from
a broad spectrum of application domains draws those interested in tool development as well
as those who are interested in applying the tools. Below we list some of the current research
directions that we find particularly interesting or important.
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A thorough understanding of why ASP has proved to be so effective still eludes us. Recent
work by Hecher, comparing ASP restricted to normal logic programs with propositional logic,
provides some insights [188]. That work and several other related papers bring the concept
of tree width to the forefront of studies of the expressive power, computational complexity,
and algorithms for computing answer sets, promising a more nuanced understanding of the
inherent computational properties of the stable model semantics. A subsequent paper by
Fandinno and Hecher is a good representative of this line of research [139].

Another important line of research concerns extensions of the language of ASP with
aggregates. Such extensions are necessary to facilitate both knowledge modelling and program
processing. But these extensions invariably bring with them the challenge of defining the
“right” semantics. A good overview of this work can be found in the survey paper by Alviano
et al. [7]. Another perspective on the matter was proposed by Vanbesien et al. [361]. Finally,
extensions of the language by more general classes of constraints by integrating ASP and
constraint programming are also being actively researched [249].

An important emerging theme in ASP is to develop methods for counting answer sets
of programs. Recent papers by Fichte et al. [142], Kabir et al. [213], and Pajunen and
Janhunen [300] are good examples of this line of work. The work is motivated by possible
applications of ASP in settings requiring probabilistic reasoning, which is increasingly
attracting attention given the current emphasis in AI on probabilistic and neuro-symbolic
approaches [238, 377].

The success of ASP stems to a large degree from the availability of excellent computational
tools. Most notable here is the suite of tools developed under the Potassco project [310]. This
project is ongoing with the effort focused on improvements to its flagship programs gringo,
clasp and clingo. However, increasingly, the developers address requirements of emerging
extensions of ASP: plingo for probabilistic reasoning, aspirin for reasoning with qualitative
preferences, telingo for temporal reasoning, and plasp for planning. The main challenge
of this line of work lies in developing fast programs for model generation, or ASP solvers.
Successful research efforts, besides the Potassco project, include wasp [367] and dlv [126].

Computing the models of programs in ASP most often consists of executing two main
steps: grounding, which creates a propositional program with the same stable models as the
original one, and solving, where models of the grounded propositional program are computed.
In most situations, it is the second step that dominates the computational effort (the problem
involved is NP-hard). However, in some applications, the grounding step is the bottleneck –
while the problem admits polynomial-time algorithms, the order of the polynomial may be
high. Recent efforts to improve grounding tools include the development of grounders that
aim to minimise the size of the ground program [77], and lazy grounders [369] that delay
grounding of some parts of the program until those parts are needed for solving. Related
efforts are aimed at establishing formal foundations of grounding [182, 215].

A crucial aspect of making ASP easier to use and more effective is to develop tools for
program development and verification. The tutorial paper by Kaminski et al. [214] offers an
overview of the contributions of the Potassco project in this area. Other recent notable work
on tools for ASP include the development of IDEs [140, 73], debuggers [127] and visualisation
software [177]. These and other related projects are discussed in a survey paper by Lierler et
al. [250]. A major role in the recent advances in ASP program development and processing
tools has been played by the language standard ASP-Core-2 adopted by the community [76].

Thanks primarily to the availability of high quality grounders and solvers, ASP has
proved to be an effective technology in addressing problems arising in a wide range of
application domains. This continues to be a vibrant area of research. Papers by Erdem
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et al. [134] and Falkner et al. [138] provide good overviews of applications of ASP in
solving problems of practical interest. Recent interesting examples of applications of ASP
concern train scheduling [3], course scheduling [27], the stable roommates problem [133], and
robotics [133, 325].

2.3 Belief Revision
Belief revision addresses the problem of how an agent should change its beliefs in light of
new information. It began as an area of philosophy with the seminal work of Alchourrón,
Gärdenfors, and Makinson [6, 307] called, after its founders, the AGM approach. There are
two facets to this approach, somewhat analogous to the proof theory and semantics of a
classical logic. On the one hand, there is a set of belief change postulates that arguably any
intelligent agent should follow in changing its set of beliefs. On the other hand, there are
various formal constructions for specifying a belief change operator; these include orderings
over formulas in a language, called an epistemic entrenchment ordering, or orderings over
possible worlds. The belief change postulates and belief operator constructions are related
via a representation theorem, showing that an operator that satisfies the postulates can
be specified via a formal construction, and vice versa. These approaches don’t specify a
unique operator, but rather they guide the design of specific operators for implementing
belief change. The primary operators are belief revision, in which an agent consistently
incorporates a new belief into its belief corpus, and belief contraction in which an agent loses
belief in a formula without necessarily believing its negation. Given that belief revision deals
broadly with how an agent may change its beliefs in the face of new information, it is not
surprising that belief revision attracted attention in the KR community. Today, it is the
KR community that is responsible for most research in the area, including a comprehensive
exploration of the original AGM framework, and proposed modifications and extensions to
other forms of belief change such as belief merging [224, 223].

In a related development, researchers have investigated connections between belief revision
and non-monotonic reasoning. Firstly, Gärdenfors and Makinson [151] showed that belief
revision and the KLM style of non-monotonic reasoning [229] are in a certain formal way so
similar that they can be viewed as two sides of the same coin. More recently, Casini et al. [87]
proposed a framework for belief revision and belief contraction within a non-monotonic
formalism. That the latter even makes sense was somewhat surprising, since one of the basic
tenets in belief change used to be that it needs to be based on a monotonic logic.

The original AGM approach had nothing to say about how an agent’s epistemic state
changes following a belief change operation, and it considered the result of a single change
operation only. This issue was addressed by Darwiche and Pearl [111] who considered the
problem of iterated revision by developing a qualitative counterpart to Spohn’s [341] ordinal
conditional functions. In their approach, an agent’s epistemic state was represented by a total
preorder over possible worlds (with the agent’s beliefs characterised by the least set of worlds
in the preorder). Then, belief revision could be expressed in terms of the modification of the
total preorder. Jin and Thielscher [210], Booth and Meyer [53], as well as Nayak et al. [289]
subsequently expanded this line of research. In an orthogonal direction, the AGM approach
to revision has also been shown to be applicable in any logic [121], including those weaker
than classical propositional logic [54, 122, 120]. As a result, the original AGM approach has
been substantially broadened in recent years.
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Nonetheless, the area suffers from a number of limitations. Currently, the dominant
framework by far is the AGM approach, so much so that on occasion approaches that violate
one or another of the AGM principles are seen as being problematic or not really about
belief change. This is in contrast with non-monotonic reasoning (NMR), where a wide range
of approaches, based on differing underlying intuitions or motivation, have been developed.
While there are alternative approaches, such as based on distance between models or on
syntactic considerations, these approaches have attracted little attention, and it remains
an open question whether there are alternative, compelling accounts of belief change to
complement the AGM approach.

Perhaps the most significant problem with the area, at least from a computer science
perspective, is that research has been almost entirely theoretical in nature. The area
largely lacks compelling motivating examples, such as those that drove early work in NMR,
and it lacks benchmark problems or domains. While there have been some prototypical
implementations, these implementations are usually limited, do not scale well, and again
lack a compelling application. Thus, arguably, the major challenge facing the area is to
develop useful applications and implementations. Such applications would of course be
valuable in their own right. Further, they would provide a driver toward the development
of new formalisms, or the elaboration of existing ones. To this end, work on belief change
in description logics [276, 239, 385], or in reasoning about action [335, 96] show promise in
embedding belief change in potentially practical areas. In a similar vein, it is worth pointing
out that the subareas in description logic research known as axiom pinpointing [305] and
ontology repair [24] are closely related to belief change. Roughly speaking, axiom pinpointing
is concerned with identifying the statements needed to draw a conclusion, and can be used
as the basis for performing belief contraction. Similarly, ontology repair has as its aim the
removal, or weakening of description logic axioms in order to regain consistency, and can
therefore be viewed as a form of belief revision.

Lastly, belief change can be seen as a qualitative means of dealing with uncertainty and
the acquisition of new knowledge; consequently it would be very interesting to consider
belief change in the context of current work on uncertainty or in the use of machine learning
techniques toward the learning of contingent, qualitative information.

2.4 Reasoning about Action and Planning
Reasoning about action and change is one of the original areas in AI and KR, and it remains
an active and growing area of research within KR. Research in the area began with the
situation calculus [268], a formalism in which actions take one state of the world to another; it
was subsequently developed into a full theory by Reiter [322]. Other approaches include the
event calculus [227], and answer set-based action languages [157]. In contrast to reasoning
about action, work in planning is much more engineering-based. Research in this area goes
back to the early AI work using the STRIPS system [144]. Planning in general, and planning
to address the needs of autonomous agents, robots remains one of the core areas of AI. Many
issues in planning involve representing knowledge about the world, and reasoning about the
world as it changes. Nevertheless, today planning and reasoning about action in KR are two
largely separate areas of AI. Consequently, a major challenge remains that of (depending on
how one looks at things) generalising planners to incorporate the generality of KR theories of
reasoning about action or, alternatively, coming up with computational models of reasoning
about action that are the same order of efficiency as current planning systems.
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Within KR, an interesting trend is the convergence of reasoning about action and the
foundations of planning in AI on the one hand, and model checking, games on graphs, and
synthesis in formal methods, on the other. In particular, the rise of linear temporal logic on
finite traces [168, 169], which is particularly well-behaved computationally and applicable
in practice, has shed a new light on the interrelations among logic, automata, and games,
well-known in formal methods. It also provided a fertile ground for a new kind of advanced
research on reasoning about actions and strategic reasoning for autonomous agents, including
planning with temporally extended goals [117], self-programming agents [116], and strategy
logic and strategic reasoning [143].

Another trend, as exhibited by a corresponding series of workshops,3 is research on
generalisation in planning, where one is interested in general solutions for classes of problems,
instead of just solving single instances. In particular, instead of relying on plans in the form
of sequences of actions, solutions to generalised planning problems can be programs (policies,
controllers) that include control structures such as branches and loops. Two representative
examples of this research effort are contributions by De Giacomo et al. [160], who explore
controller synthesis in manufacturing scenarios based on first-order representations in the
situation calculus, and by Cui et al. [105], who present a framework for generalised planning
based on abstraction.

The trend to combine symbolic and machine learning approaches (see Section 3.3) also
arises in the area of planning and reasoning about action. One issue is that approaches to
planning and reasoning about action rely on representations of action models, which are
traditionally crafted by hand. Instead, one wants to be able to learn actions, affordances,
and game rules from data or observations. Asai and Muise [15] present an architecture
for end-to-end learning of STRIPS representations from images. Geffner [154] argues more
generally that symbolic target languages are to be preferred over inductive biases for learning
to act and plan.

One form of machine learning that lends itself particularly well to integration with
reasoning about action is that of reinforcement learning, where the goal is to train an agent
to act in an environment based on rewards administered after the execution of each action.
Here, symbolic representations can be used for representing the learned policies (for example,
in methods based on policy gradient search), or for the purpose of encoding reward functions
more succinctly, which can help to learn an optimal policy in a more sample-efficient manner.
Icarte et al. [205] explore the effectiveness of this approach based on a finite state machine
representation, while De Giacomo et al. [161] study “restraining bolts” expressed through
temporal logics over finite traces.

Below, we briefly discuss other research directions in reasoning about action and planning.

Goal Reasoning. Whereas classical planning is concerned with finding a sequence of actions
to achieve a given, fixed goal, dynamic multi-agent environments require that agents are also
able to reason about which goals to pursue. Hofmann et al. [195] elaborate on goal reasoning in
the context of the Robocup Logistics League (RCLL), where teams of autonomous robots have
to coordinate their actions in a simulated factory environment. Roberts et al. [326] present
ActorSIM, a general software framework for studying multi-agent goal reasoning in simulated
environments. Goal reasoning has also been addressed in the situation calculus [163].

Beliefs. Uncertainty is often connected to some notion of belief. It is helpful to explicitly
encode what an agent believes and does not believe, and consider how an agent’s beliefs
are affected by its acting and sensing. In this instance, action formalisms are extended

3 https://www.genplan.ai/resources/

https://www.genplan.ai/resources/
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by epistemic modalities, one prominent example being Dynamic Epistemic Logic (DEL).
For example, Bolander et al. [47] consider the application of DEL for epistemic planning
in the context of human-robot collaboration. While these formalisms traditionally rely on
qualitative notions of belief and uncertainty, probabilistic variants have been studied as well.
For example, Liu and Lakemeyer [254] study belief and meta-belief for a probabilistic action
logic based on a modal variant of the situation calculus.

Hybrid Reasoning. While traditionally most approaches make use of qualitative representa-
tions, many real-world applications require the ability to handle quantitative information
as well. Notable quantitative aspects include time as studied, for example, by Cabalar et
al. [74], who present an approach for incorporating metric time into Answer Set Programming
for the purpose of planning and scheduling. Another aspect is probabilistic uncertainty,
where Zarrieß [379], for instance, presents results on the projection of stochastic actions in a
probabilistic description logic.

Infinite-State Systems and the Situation Calculus. While most research in planning is
based on finite-state systems, important research has also been conducted on infinite-state
systems, most notably, at least in recent years, in the Situation Calculus [322]. This includes
decidable reasoning about actions through a bounded (FOL) state assumption [164], a
non-Markovian version of the situation calculus [165], research on abstraction in the situation
calculus [28], and controller/program synthesis in the situation calculus [160].

Ethics and Norms. Where embodied agents (such as mobile robots or autonomous cars)
act in physical environments that they share with human beings, it becomes increasingly
important that their actions are governed by social norms and moral guidelines. The subarea
of normative (multi-)agent systems [93] is concerned with the study of such agents. Many
approaches are based on integrating reasoning about actions with some form of deontic logic
to represent notions such as obligation, permission, and prohibition. For instance, Horty [199]
studies obligations in the context of an epistemic variant of stit (“see-to-it-that”) semantics.
Further, Lindner et al. [253] present an approach for incorporating ethical reasoning into a
planning system, distinguishing act-based from goal-based deontological principles.

2.5 Description Logics and Ontologies
Description logics (DLs) [20, 22] were first introduced in the 1980s as an attempt to create a
formal semantics for frames and semantic networks. Initially, DLs had limited expressive
power and were designed for polynomial time reasoning. However, today they have evolved
into a large family of languages that typically permit unary and binary relation symbols and
some form of universal or existential quantification. While some DLs also permit second-order
features like transitive closure or more general fixpoints, most DLs are fragments of first-order
logic and inherit its classical open world semantics. The research community generally agrees
that DLs should be decidable in order to enable effective and robust reasoning support.

The DL community meets annually at the Description Logic Workshop,4 which had its
35th jubilee in 2022. It closely interacts with many other research communities, including
the ASP and general non-monotonic reasoning community in efforts to combine the open
world semantics of DLs with closed world features required in many applications. As well, it

4 https://dl.kr.org/

22282

https://dl.kr.org/


14 Current and Future Challenges in Knowledge Representation and Reasoning

interacts with the datalog and rule-based reasoning community to develop ontology-mediated
data access. Because of its focus on decidable reasoning, the DL community also contributes
to ongoing efforts of mapping out the boundary between decidable and undecidable fragments
of first-order logic.

Currently, the main view of DLs is as an underpinning language for ontologies, regarded
in this document as logical theories that define the relevant classes, attributes, and relations
for a domain of interest and that specify the relationships between them by means of logical
axioms. Indeed, ontologies can be regarded as knowledge bases with a focus on terminological,
schema, or conceptual knowledge. The design of ontology languages together with efficient
reasoning engines has been a major research direction in DL. This research has led to
the World Wide Web Consortium (W3C) OWL ontology language [275] and its successor
OWL 2 [364] specifying three sublanguages, called profiles, of OWL [284]: OWL 2 EL, a
fragment with polynomial time reasoning complexity used for large scale ontologies and
based on the description logic EL [19], OWL 2 QL, designed to support efficient access to
data using ontologies and based on the description logic DL-Lite [78], and the rule-based
language OWL 2 RL.

A basic research challenge for any ontology language is to understand the trade-off
between expressivity and complexity of reasoning, and to develop, implement, and analyse
efficient reasoning systems. In what follows, we distinguish between two rather different types
of reasoning: terminological reasoning that aims at extracting knowledge from an ontology
by computing, for example, the induced concept hierarchy, and ontology-mediated querying
of data that supports access to data modulo an ontology. In the former case, ontologies are
typically very large and often it is not the full logical theory underpinning the ontology that
is needed in applications, but only the induced concept hierarchy or variants thereof. In
contrast, in the latter case, ontologies are typically much smaller and their main purpose is
to provide a schema for accessing, managing, and interpreting various types of data.

Regarding terminological reasoning, significant progress has been made over the past
15 years. There are now extremely powerful reasoning engines that compute the concept
hierarchy induced by very large ontologies formulated in OWL 2 EL (for example, ELK [217]),
in Horn extensions of OWL 2 EL, and even in very expressive description logics (for example,
HermiT [171], Pellet [338], or Konclude [342]). A typical application of this type of reasoning
is modelling support for SNOMED CT.5 Reasoners for OWL 2 are, by now, so highly
optimised that it is very challenging to implement novel optimisations into an existing
reasoner. Equally challenging is the development of novel competitive reasoners based on
new approaches. One possible direction is to investigate a reasoner that translates to SAT,
so that it can be computed by a state of the art SAT solver.

It remains a major research challenge to provide principled logic-based support for the
development and maintenance of large-scale ontologies. Active research areas include the
computation and presentation of explanations of subsumptions (or, even more challenging,
non-subsumptions) between classes [197, 172], automated support for modularisation and
module extraction [344], versioning and collaborative development of ontologies [209, 57], and
schema manipulation such as forgetting [222, 384]. All mainstream ontology languages in this
area are fragments of first-order logic. Extensions of these languages to deal with defeasible
knowledge and exceptions [281, 51], time [258], and uncertainty [257] remain important
research questions.

5 SNOMED CT (https://www.snomed.org/) is a comprehensive, multilingual clinical healthcare termin-
ology with more that 350,000 concepts and used in more than 80 countries. It enables the consistent
representation of clinical content in electronic health records.

https://www.snomed.org/
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If ontologies are to be used to access data, the main reasoning problems often have a
rather different flavour. In this case, reasoning becomes an extension of query answering over
data, a problem originally addressed in database research. As data stored on the web and
in data warehouses is often heterogeneous, distributed, and only partially structured, it is
often incomplete and even logically inconsistent. Dealing with such data requires complex
and expressive data representation models and dedicated reasoning services to support data
access, management, and interpretation. Hence the distinction between data and knowledge
bases has become blurred and the insights gained in KR research for dealing with issues
such as incomplete information and logical inconsistency have become directly relevant for
mainstream database applications.

A basic application of ontology-mediated query answering is to enrich an incomplete data
source with background knowledge in order to obtain a more complete set of answers to a
query. Another application is data integration, where an ontology is used to provide a uniform
view on multiple data sources abstracting from specialised schemata and implementation
details. Starting with DL-Lite [78], great progress has been made in understanding the
complexity of answering queries under DL ontologies [79, 45, 44] and under existential
rules [75]. Various types of systems such as Ontop and Vadalog have been developed that
support ontology-mediated query answering [373, 37, 374].

Many research challenges related to ontology-mediated data access remain to be solved,
however. Active research areas include dealing with inconsistency in ontology-mediated
querying-answering [43], temporal ontology-based data access [14, 365], and reverse engineer-
ing of queries from data examples [12, 212]. Moreover, research into crucial issues such as
privacy and data provenance under ontologies has only just begun.

2.6 Knowledge Graphs
In 2012 Google introduced the term knowledge graph to refer to a large collection of facts
accompanied by a basic ontology providing semantics. Since then, the term knowledge
graph has been used to denote a wide variety of data models, which have in common that
information is stored in a graph-like fashion, making use of labelled nodes and edges to
represent objects and entities, facts about them, and relationships between them (see the
paper by Hogan et al. [196] for a discussion of the basic concepts). These data models
have become an important paradigm in both industry and research, with applications, for
instance, in (web) search, as a backbone of Wikipedia through the structured knowledge in
Wikidata [363], and in personal assistants such as Alexa or Siri. Knowledge graphs are often
of impressive size. For example, Google’s knowledge graph started with public sources such
as Freebase, Wikipedia and the CIA World Factbook, but was quickly extended to contain
more than 500 million nodes and 3.5 billion facts and relationships. In 2020, Google reported
a size of 500 billion facts about five billion entities.6 Microsoft, in its Bing search engine, also
uses a knowledge graph.7 In 2015, that graph contained over one billion entities with more
than 21 billion facts associated to them and over 5 billion relationships between them. Apart
from numerous commercial knowledge graphs, Wikidata is an example of a large publicly
maintained knowledge graph.

6 https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/
7 https://blogs.bing.com/search/2015/08/20/bing-announces-availability-of-the-knowledge-

and-action-graph-api-for-developers/
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Knowledge graphs give rise to difficult but exciting research challenges, both for the
database and the knowledge representation community. From a database perspective, the
design of new query languages that can navigate graphs in ways that go beyond first-order
queries is ongoing [9]. From a knowledge representation perspective, a principled approach
to adding semantics to knowledge graphs without affecting the efficiency of query answering
is an important but very difficult problem. For instance, to enable the addition of logical
rules to knowledge graphs, highly optimised rule systems such as RDFox [291] and VLog [85]
have been developed. Further open research problems in this direction include dealing with
meta annotations and with restrictions on relations. For example, in many knowledge graphs,
relations are time-dependent; they are true for a certain amount of time, but not before or
after. Modelling this in standard description logics requires expensive workarounds such
as reification [183]. First steps towards new modelling languages dealing with such issues
are attributed description logics presented by Krötzsch et al. [231]. Another fundamental
problem is support for automated updating and revising knowledge graphs, as discussed by
Chaudhri et al. [90].

Finally, one of the main practical problems in the area is the need for robust automated
support for constructing and completing knowledge graphs. Standard ML approaches use
embeddings of entities and relations into continuous vector spaces; see, for instance, the
survey by Wang et al. [366]. These approaches, however, neither use nor respect the semantics
that knowledge representation adds to knowledge graphs. Recent approaches to deal with
this issue exploit textual knowledge within knowledge graphs in the form of literals [4] or
include background knowledge in the embedding [290].

2.7 Argumentation
Argumentation [30] is concerned with how arguments are supported or undermined by other
arguments, and how these arguments and their components (supporting or undermining
claims) interact. It addresses the resolving of conflicts among arguments along with measures
to evaluate an argument’s plausibility.

An argument may be stated as a logical formula, and studying argumentation in such
a setting is ongoing. However, arguably the most consequential development in the theory
of argumentation in KR has been the emergence of abstract argumentation [130]. This
approach does away with the structure of arguments and language-specific inference, and
focuses instead on the basic relation between arguments, in particular when one argument
attacks another. These relations can be represented as a directed graph, or (abstract)
argumentation framework, where arguments are given by vertices and the attacks relation is
a directed edge. The goal is to determine a set of accepted arguments, or extension, S, where
informally S has no internal attacks relation instance and if an argument in S is attacked by
another argument then that argument in turn is defended by an argument in S. How this is
to be done exactly is not clear, and has led to the development of a large number of different
semantics for specifying extensions [31].

Nonetheless, this approach has attracted attention of researchers in various fields of AI,
including multi-agent systems, natural language understanding, machine learning and, more
recently, explainable AI. Below, we outline some of the major, current research themes in
argumentation.

Computational aspects of argumentation. A major theme in argumentation research
concerns computational aspects, both regarding complexity of reasoning, and the design
and implementation of argumentation systems. Initial research was limited to the domain
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of abstract argumentation and its plethora of semantics. A comprehensive account of the
complexity landscape is presented by Charwat et al. [89] and Cerutti et al. [88]. However, it
is also clear that arguments in practical settings have structure, including their claims and
support not captured by abstract argumentation. Therefore, formalisms have been developed
in which this structure is represented explicitly. These formalisms include assumption-based
argumentation [52], ASPIC+ [279, 280], and deductive argumentation [39, 40], among others.
Recent papers include work by Lehtonen et al. [241], which provides a treatment of complexity
and algorithms for assumption-based argumentation, and Dvořák et al. [131], which deals
with the instantiation-based approach [174].

Argumentation for explainable AI. Decisions, choices and recommendations made by
humans or by decision-support systems must be explainable. AI software systems, whether
based on machine learning or logical rules and constraints, are often opaque and their
outputs do not come with human-understandable explanations. Explainable AI (XAI) aims
to address this shortcoming. One of the promising directions in XAI is based on the
concept of argumentative explanations, and focusses on the human perspective [10]. It
turns out that many forms of argumentative explanations can be cast in terms of current
argumentation frameworks [99, 318, 311]. This provides a setting for stating explanations
and computational tools for establishing them. The approach applies both when explaining
models in an argumentation formalism and when explaining machine learning models [107].
Argumentation-based XAI is in its early stages; one of its key challenges is to develop
human-computer interaction tools that will effectively construct argumentative explanations
in a human-understandable form.

Argument mining. This line of research studies techniques to extract, from text, arguments
and their components such as premises and claims. It studies methods to arrange this data
into abstract argumentation frameworks and applies inferential techniques to discover fallacies
and inconsistencies in the original text. The area can be traced back to the work of Teufel
et al. [350], as well as Mochales and Moenas [278]. The survey by Villata and Cabrio [362]
provides a good overview of the state of the art and a roadmap for the future. Recent work
by Goffredo et al. [173] showcases the potential of argument mining by identifying fallacious
arguments from the US presidential campaigns.

Applications. From its inception, research in argumentation has been driven by practical
applications. Currently, developing and implementing applications of argumentation is
one of the most actively pursued research directions by the community. For instance, in
medicine, argumentation is applied as a patient management tool [106] and for persuasion
to bring about changes in behaviour [201]; in shared governance, argumentation is used in
collaborative decision support systems [333]. Law is another area that shows particularly
strong connections with argumentation, both motivating research and benefiting from it [16].
At present no argumentation-based systems aimed at legal reasoning have been deployed in
practice, making law a particularly urgent and promising target area. Another emerging area
of applications is judgmental forecasting [381], a decision-making approach to situations when
statistical methods are not applicable. A recently proposed variant of an argumentation
formalism, a forecasting argumentation framework [206] is guided by forecasting research and
aims to support argumentation-based forecasting.
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2.8 Reasoning under Uncertainty
The unification of logic and probability has always been a major concern in AI. It is, therefore,
not surprising that John McCarthy, who was first to suggest the use of logic for representing
the knowledge of AI agents and the calculability of that knowledge, was also concerned
about the role of probability. However, he was not quite convinced that there is any easy
approach to adding probabilities to knowledge bases [271]. These concerns notwithstanding,
there is a great body of work on integrating knowledge representation and uncertainty, as
years of engineering efforts in knowledge representation have shown us that there is pervasive
uncertainty in almost every domain of interest. The upshot is that the “rigidity” (sentences
always evaluate to true or false), “brittleness” (sentences in the knowledge base must be
true in all possible worlds), and “discreteness” of classical logic have forced scientists to look
at formalisms such as fuzzy and probabilistic logics. Below we enumerate some of the key
developments and current research trends in this area.

Expressive probabilistic logics. Starting with Nilsson’s probabilistic logic [297], and Hal-
pern’s and Bacchus’ investigations on first-order logics of probability [179], we now have a
range of expressive modal propositional and first-order logics that allow us to reason about
meta-knowledge, actions, plans and programs [228, 299, 176, 32]. In recent years, there has
been interest in epistemic planning [29, 35], which can involve the modelling of mental states
of multiple agents in domains with noisy effectors and sensors.

Tractable probabilistic logics. Expressive probabilistic logics tend to be hopelessly unde-
cidable [1, 299], and so given the success of probabilistic graphical models [304], there has
been a happy marriage of finite-domain relational logic and Bayesian and Markov networks
[218, 329, 68], most recently further integrated with neural networks [259]. In particular,
to go beyond essentially propositional models, there has been considerable recent work on
probabilistic description logics [221], as well as probabilistic logic programs [316]. It is also
worth noting that from the database community, a related formalism called probabilistic
databases has emerged [346].

Learning of logical axioms. There is a considerable body of work on learning propositional
and relational formulas [220, 36], and in the context of probabilistic information, learning
weighted formulas [315], probabilistic automata [255], and grammars [236].

Neural reasoning. Given the increasing popularity of neural networks for low-level per-
ception tasks, an emerging concern in both the neural and logical communities is how the
two areas can be bridged. The resulting area of neuro-symbolic AI has now come to include
approaches such as fuzzy logic [25], logic-based regularisation [150, 192], and differential
statistical relational learning [259] and inductive logic programming [135].

For earlier work on reasoning under uncertainty, see the work by Pearl [303], while the
Russell and Norvig text [328] provides an extensive overview. For a more recent overview
and further details, see the work by Belle [33, 34].

2.9 KR and Machine Learning
The breakthroughs in machine learning (ML), in particular the emergence of deep neural
networks, have brought about a new area of research on combining machine learning with
symbolic or knowledge-based approaches. On the one hand, researchers expect KR methods
to help tackle ML problems. On the other hand, they expect ML to help address some of
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the challenges facing KR systems. Below we discuss how the two fields interact and list some
of the key challenges that arise. A more through discussion can be found in the paper by
Benedikt et al. [38].

KR for ML. Despite the undeniable success of deep learning, the ability of neural networks
to reason and to generalise in systematic ways has been called into question [155, 203,
382]. This view has led to the development of neuro-symbolic methods, which integrate
deep learning architectures with explicit symbolic reasoning processes [191]. For instance,
DeepProbLog [260] uses probabilistic logic programs to reason about the predictions of a deep
learning model. Similar combinations of neural networks with Answer Set Programming [377]
and Markov Logic Networks [264] have also been proposed. More broadly, the usefulness
of symbolic reasoning for machine learning has been studied in the context of Inductive
Logic Programming [286], and more recently, under the umbrella of Statistical Relational
Learning [158]. Machine learning models can benefit from reasoning components in at least
two different ways. First, the use of (rule-based) reasoning helps models to generalise in
predictable and systematic ways. Second, training neuro-symbolic methods in an end-to-end
fashion can help bridge the gap between the training data that is available, and the data
that would be needed for training the individual components of the system in isolation.
To illustrate, in DeepProbLog one can train a neural network to recognise hand-written
digits when provided only with training examples that specify the sum of two hand-written
digits [260].

Beyond reasoning, machine learning models can also benefit from symbolic knowledge in
other ways. For instance, the so-called knowledge injection methods use rules and constraints
to regularise neural network models [123, 247, 375]. The underlying idea is essentially to
discourage the model from making predictions that are incompatible with a given set of
(soft) rules. Rules are also sometimes used as a form of weak supervision, to deal with
a scarcity of labelled training examples [17]. While rules and constraints encode specific
semantic dependencies, simply knowing which concepts are relevant for a given domain can
also be important. For instance, Concept Bottleneck Models [219] use such knowledge to
ensure that the representation spaces that are learned by neural networks are semantically
meaningful, and to some extent interpretable. Other approaches aim to discover semantically
meaningful concepts, without prior knowledge, by designing models that learn vectors that
can be interpreted as prototypes of concepts [246]. These prototypes can then be used for
explanations.

Explainability and interpretability have become important topics within machine learning.
Explanations can take many forms, including sets of input features [343], linear combinations
of input features [324], or generated natural language sentences [371]. Given that transparency
is one of the key strengths of KR systems, it should come as no surprise that ideas from
KR often play a central role in this context. For instance, one problem with generating
explanations using language models is that such explanations are often not faithful [82]. One
possible solution is to develop models that infer the answer by incrementally constructing
the analogue of a proof tree [109]. Somewhat related, large language models are capable
of generating step-by-step derivations for answers that require reasoning (known as chains
of thought in this context), by generalising from a few examples of such derivations [368].
However, the proof strategies that are implicitly employed by these models are rather primitive
[330], which suggests that a hybridisation with KR methods would improve their capabilities.
Specific KR frameworks can also be used more directly. For instance, techniques from
argumentation have long been used for modelling explanations [108]. As another example,
when explaining entire models, rather than individual predictions, default rules often allow
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for significantly more compact explanations than decision trees or traditional rules [234].
Another potential application of KR methods is to formally verify properties of ML models,
such as their robustness against adversarial attacks [288, 287, 208].

ML for KR. The knowledge acquisition bottleneck is one of the core challenges in KR
(see also Section 3.2). KR systems need access to structured knowledge, encoded in some
formalism, but such encodings are not readily available for most domains, and tend to be
expensive to obtain. There are several ways in which ML techniques can be used to alleviate
this issue. ML models can be used, for instance, to identify and exploit statistical regularities
in existing knowledge bases. This has resulted in strategies for automatically extending
knowledge graphs with plausible triples [55, 376, 356, 347, 26] and methods for identifying
plausible missing subsumptions in ontologies [245, 91]. A large number of methods have been
developed for converting knowledge expressed in text into a structured format [84]. While
most work has focused on knowledge graph triples, learning more expressive knowledge has
also been considered [309]. More recently, the focus has shifted to extracting knowledge
directly from (large) language models [308, 180, 100]. The success of language models as
knowledge acquisition tools, however, extends beyond knowledge graphs. For instance, Hwang
et al. [204] use language models to capture social commonsense knowledge, while Jin et
al. [211] and Zellers et al. [380] induce script knowledge.

ML methods have also been proposed for improving reasoners, or even as an altern-
ative to the use of classical reasoners. One strand of work is focused on approximating
the entire reasoning process using neural networks, for instance to allow for efficient and
inconsistency tolerant reasoning with ontologies [2], or to heuristically search for solutions
to computationally intractable problems [312]. Another possibility is to use ML methods
within traditional reasoners, for instance, for guiding the proof process, e.g., through learning
suitable heuristics, (premise) selection strategies, or other techniques to better control the
search space [178, 248, 5, 94].

2.10 KR and Robotics
A robot is a physical agent that carries out tasks by interacting with the world via its sensors
and effectors. Prominent examples are vacuum robots or robots operating in warehouses,
and also include autonomous vehicles in urban environments. Given that robots need to be
given or to learn or acquire domain and general knowledge and to reason with this knowledge
to solve problems such as building plans, the field of robotics would appear to be a prime
application of KR. Indeed, in one of the first robotics projects in the late 1960s, the robot
Shakey made use of explicit representations of knowledge and was able to plan a course of
actions to move objects between rooms. While the reasoning techniques developed for Shakey
have long been superseded by more advanced techniques, it is remarkable that the planning
language STRIPS [144], which resulted from the Shakey project, has survived until today.
However, after Shakey, KR played almost no role in robotics for a long time, mainly because
more immediate problems like safe navigation in unknown environments needed to be solved
first. A breakthrough in this regard came about in the mid 1990s with the development of
probabilistic robotics [353]. It resulted in impressive artefacts like the museum tour guide
robots Rhino and Minerva [72, 352], and in the re-emergence of KR techniques like the action
language Golog [244] controlling the high-level behaviour of Rhino.

Around the same time, Ray Reiter and colleagues established a brand of Cognitive
Robotics where KR plays an essential role. To quote from a recent Dagstuhl report on the
area [189]:
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Cognitive Robotics is concerned with endowing robots or software agents with higher
level cognitive functions that involve reasoning, for example, about goals, perception,
actions, the mental states of other agents, collaborative task execution, etc. This
research agenda has historically been pursued by describing, in a language suitable
for automated reasoning, enough of the properties of the robot, its abilities, and its
environment, to permit it to make high-level decisions about how to act.

A concise summary of some of the early work on Cognitive Robotics based on the situation
calculus is given by Levesque and Lakemeyer [243]. Despite the advances of Cognitive
Robotics, it is fair to say that this vision of placing KR at the heart of robotics has not yet
been fully realised.8

Nevertheless, KR plays an important role in controlling the high-level behaviour of
many of today’s robotic systems. One of the best known KR frameworks for robots is the
KnowRob system [349], combining rich ontologies with specialised reasoners like temporal
and qualitative spatial reasoners. Planning techniques (see Section 2.4) have also played a
major role. While early work focused on domain-dependent planners like IxTeT [159] and
TAL [235], domain-independent PDDL planners like FF [193], TFD [136], and ROSPlan [86]
are now used routinely in robotic systems. More recently, Golog has been integrated with
PDDL planners [98]. Besides task-level planning, goal reasoning has also found its way
into the world of robotics. For example, Hofmann et al. [195] consider production logistics
scenarios, where robots need to concurrently entertain multiple goals (requests for products),
which may need to be prioritised and sometimes abandoned due to timing constraints or
failures. An interesting direction specific to robotics is the combination of both task and
motion planners (see [152] for a survey), which can help produce more robust plans, especially
in scenarios involving object manipulation. Extending this idea to conditional planning [298]
allows for handling incomplete information and partial observability.

When a robot has decided on a course of actions, their execution needs to be constantly
monitored. An early KR approach to execution monitoring in the context of Golog programs
was proposed by De Giacomo et al. [167]. More recently continual planning [63, 194] not
only tightly integrates planning and execution monitoring, but also allows for postponing
plan refinement until enough information is gathered at runtime. Regarding the diagnosis of
failures, model-based techniques with strong KR foundations have also been developed [378,
237]. While execution failures cannot be avoided in general, efforts are being made to make
robots safer, more robust, and trustworthy. In this regard, verification plays an important
role with many connections to KR. For a recent survey on verifying robotic systems, we refer
interested readers to the work of Luckcuck et al. [256].

Needless, many challenges remain when it comes to realising the vision of KR-based
cognitive robots. A list of many of these challenges can be found in the Dagstuhl report on
cognitive robotics [189].

2.11 KR and Information Systems
Ontologies and knowledge graphs (see Sections 2.5 and 2.6) are two key KR contributions
to information systems research and practice. In Section 2.5, we also considered ontology-
mediated data access, which addresses fundamental questions originating in database research

8 Indeed, the robotics community has developed other versions of Cognitive Robotics with much less
emphasis on KR techniques as in the work of Cangelosi and Asada [83].
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by utilising advanced KR techniques. Variants of datalog, description logics, and existential
rules are its main underpinning logical formalisms. Closely related to ontology-mediated data
access in terms of techniques and goals are declarative approaches to data exchange [137, 11]
(transform data structured under a source schema into a target schema using logical rules) and
data integration [242, 162] (combine data residing in different sources and provide users with
a unified view of them). Description logics have also been proposed as a logical underpinning
of standard database design formalisms such as ER and UML diagrams [147, 313]. Highly
optimised description logic reasoners discussed earlier are then used to check their consistency
and logical consequences. Recently, KR methods developed in non-monotonic reasoning and
description logics have been used to further develop the W3C standard SHACL (Shapes
Constraint Language) [301] for validating graph-based data against sets of constraints to
enhance semantic and technical interoperability [8].

These applications of KR methods to problems in information systems and databases have
the common feature that they are concerned with structural and static aspects of information.
In contrast, KR methods have only recently been applied when the dynamic behavior of
information systems is taken into account. This is despite the fact that the integration of
structural and behavioural aspects to capture how information systems dynamically operate
over data is recognised as one of the main challenges in business process management (BPM)
and, more generally, information systems engineering. Three aspects of BPM are particularly
relevant for KR and should be considered when KR methods are applied:
1. Business processes are modelled, configured, executed, and continuously improved based

on the so-called business process lifecycle, where every phase calls for reasoning support,
ranging from model-driven verification to the combined analysis of models and event data
tracing the actual process execution (known as process mining [358]).

2. Business processes vary depending on their complexity, predictability, and repetitiveness.
The modelling paradigms used in BPM reflect these differences, ranging for instance from
procedural to declarative approaches.

3. Business processes are specified in BPM using concrete modelling patterns. These should
guide the use of modelling restrictions needed to achieve decidability or tractability of
reasoning tasks.

We briefly discuss the state of the art of KR applications in this field. First, the integrated
modelling of processes and data yields infinite-state relational transition systems where
each state comes with a first-order interpretation. The analysis of standard properties
(such as reachability and safety), or more sophisticated properties expressed in variants
of first-order temporal logics have been studied both under complete [80] and incomplete
[97, 181] information over relational states, and also in the presence of read-only data [125].
Relevant KR techniques include reasoning about action [81] and planning [56].

Second, KR methods are suitable for the analysis of knowledge-intensive processes, where
flexibility is a key requirement [319]. Here methods developed in the context of decidable
first-order temporal logic [149, 21] and temporal conceptual modelling [13] are relevant.
Applications of KR approaches in declarative process modelling, management, and mining
are discussed by Di Ciccio and Montali [95], who make a strong case that KR methods should
be utilised to tackle new reasoning problems emerging from process mining. This should
facilitate the formal definition of tasks and the exploration of their decidability and complexity
status; and it should then also be possible to utilise automated reasoning techniques instead
of ad-hoc algorithmic approaches. Notable examples of logic-based techniques employed
already are planning [166], SAT [48], and SMT [141].
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2.12 KR and Logic/Philosophy
Classical first-order logic was originally developed in an attempt to formalise the foundations of
mathematics, with the monumental work of Russel and Whitehead perhaps being the primary
example [370]. A good selection of early papers has been collected by Van Heijenoort [360],
and an entertaining history of logic has been provided by Doxiadis and Papadimitriou [128].
Subsequent work in philosophy focussed on notions including strict vs. material implication,
necessity vs. contingent truth [200], issues concerning naming and reference [230], and the
like. So the use of logics – whether propositional, first-order, modal, relevance, or others –
to represent and reason about real-world domains can be regarded as a radical shift in the
application of logic in general. Indeed, it can be noted that the KR Hypothesis [339], which
asserts that a knowledge based approach is essential for the construction of any generally
intelligent agent, inextricably links logic and KR since it posits semantically meaningful
declarative structures in any generally-intelligent agent.

The relation between KR on the one hand, and philosophy and logic on the other hand,
has been a mutually beneficial one. The example of belief revision originating as part of
philosophy (Section 2.3) is but one of many. Very broadly, KR (and indeed AI as a whole)
has been a source of new problems and issues for logic, and through real-world applications
has served to sharpen such issues. On the other hand, formal logic has provided the tools
and direction for addressing such problems and issues. Indeed, much formal work in KR
involves the development and elaboration of new and existing logics.

Here, we merely provide a few illustrative examples of such benefits and synergies.
Interesting reasoning problems, such as the frame, qualification, and ramification problems
have been identified and addressed [271, 265, 351, 322]. Areas originating in philosophy,
such as belief revision (Section 2.3) and deontic reasoning [148], see much (if not most)
of their progress coming from the KR community. Much current work in modal logic is
driven by research in KR and computer science more broadly. Work in non-monotonic
reasoning has contributed significantly to “extended” logical reasoning, in particular fixed-
point semantics [124], and the preferential structures advocated for by Shoham [336] and
subsequently extended by others. Work in description logics has provided a broad and deep
analysis of useful fragments of first-order logic and attendant complexity properties [18]. In
the other direction, the realization that many description logics are syntactic variants of
modal logics [332] enabled the description logic community to draw on many of the theoretical
and technical results that have been developed for modal logics over the years.

2.13 Summary
The areas described in the preceding subsections is to be understood as a starting point for
a further, individual literature research; and, certainly, much further works exists within the
described areas, between them, and also beyond them. For example, dealing with uncertainty
(Section 2.8) is an important issue in essentially all other above described areas, while there
are further areas in or linked to KR such as in spatial and qualitative reasoning (see, for
example, the survey by Chen et al. [92]), epistemic logic (see, for example, the introductory
text by van Benthem [357]), or commonsense reasoning (see, for example, the work by Davis
and Marcus [114] or the recent book by Brachman and Levesque [60]).
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3 Major Research Challenges for KR

In the previous section, we presented several areas within or related to KR. We included in
that discussion research problems and challenges specific to individual areas. In this section,
we discuss major overarching challenges for KR that cut across several areas. In doing so, it
is useful to keep in mind the following questions that have always been fundamental to KR.

What knowledge does a system need to have in advance, as opposed to what can be
acquired by observations?
What is the language for representing and reasoning with the background knowledge and
observations?
What kind of semantics governs the updating of knowledge, given new and possibly
conflicting observations?
What impact does continual learning have on the entailments of a knowledge base?
What is the mechanism for requesting “shallow” versus “deep” reasoning (for example,
quickly reacting to a tiger versus reflecting on the nature of the universe)?
How does a system generalise from low-level observations to high-level structured know-
ledge? What effect might this have on the computational tractability of the overall
system?

As is clear from the remainder of this section, much work remains ahead of us, and these
are deeply challenging and exciting questions, where knowledge representation and symbolic
approaches more generally will have a significant role to play.

3.1 Commonsense Reasoning
Commonsense reasoning can be defined as reasoning in which an agent has “the ability
to make effective use of ordinary, everyday, experiential knowledge in achieving ordinary,
everyday, practical goals” [60]. Broadly speaking, this might be thought of as “what a typical
seven year old knows about the world, including fundamental categories like time and space,
and specific domains such as physical objects and substances; . . . humans, their psychology,
and their interactions; and society at large” [113].9 Clearly it is something that humans
possess and use effectively. It is broadly relevant in many areas of AI, including natural
language understanding, constructing visual interpretations, planning, and interacting with
the real world. In KR, different aspects of commonsense reasoning have been addressed by
means of concepts and techniques developed for non-monotonic reasoning, temporal and
spatial reasoning, approaches to action and change, qualitative reasoning, and others.

However, no successful commonsense reasoning system of substantial breadth has yet
emerged from KR research, efforts by projects such as CYC10 notwithstanding, and major
challenges remain. First, many domains are not well understood, and it is not clear how
they may be formalised, both with respect to representing commonsense knowledge and in
defining effective inference mechanisms. While substantial progress has been made in areas
such as temporal reasoning, and in reasoning about action and change, much remains to be
done with regards to physical processes, knowledge and mental attitudes, social mores and
attitudes, and the like.

9 Davis [113] gives a comprehensive survey of issues in commonsense reasoning from a KR perspective.
Several points below are drawn from this paper.

10 https://cyc.com

https://cyc.com
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Second, while some knowledge domains have a well-founded theoretical basis and come
with effective reasoning tools, combining them into a single coherent knowledge system
remains a challenge. It is so, for instance, when an application relies on different aspects or
instances of commonsense reasoning, in particular, when some of them concern qualitative
and some other quantitative knowledge and reasoning.

Third, in many formal settings such as mathematics, databases, information systems,
and most forms of declarative programming, reasoning is deductive, and is based on classical
logic, or a fragment thereof, as in description logics. However, in commonsense reasoning,
conclusions are rarely deductive, but rather are tentative and based on the best information
(and perhaps lack of information) available. So reasoning for the most part is plausible, and
conclusions may be retracted as other information is gleaned. Again, much progress has been
made, notably in non-monotonic reasoning on the one hand, and reasoning under uncertainty
on the other. But there is no comprehensive account of plausible reasoning in general, nor
any substantial understanding of how different approaches relate to each other.

Further, commonsense domains are subject to the so-called long tail phenomenon. While
general rules may account for a large proportion of domain instances, most often there is
also a large (arguably unbounded) number of exceptional instances. This crops up in, for
example, the notion of exceptional individuals in default reasoning, and in the qualification
problem in reasoning about action, wherein it is often impossible to list all preconditions
to an action. As Brachman and Levesque [60] note, even when an individual exceptional
condition occurs very rarely, there will usually be enough of them that some exceptional
circumstance will arise with reasonable likelihood. The challenge for a commonsense reasoner
is how to handle exceptional circumstances that are impossible to foresee.

Last, it is a natural question to ask whether generative systems such as ChatGPT, trained
on vast amounts of human knowledge, possess common sense and to what degree. Thus, an
interesting question arises as to how systems such as ChatGPT can be analysed for their
commonsense capabilities: where they display comprehensive and convincing commonsense
capabilities, and where they are lacking. Related to this is the question of how KR can be
used to enhance the commonsense capabilities of such systems. This emphasises another
major challenge for KR of developing frameworks to support integration of diverse systems,
both knowledge-based and non-declarative.

3.2 Knowledge Acquisition and Maintenance
One of the main challenges for knowledge representation and reasoning was and is the task of
knowledge acquisition and maintenance, that is, the formulation of suitable domain knowledge
by knowledge engineers and domain experts. While this challenge is not a new one, for
instance, Studer et al. discussed the challenges already in 1998 [345], it is still a challenge
today. In the area of ontologies, the presence of tools such as the Protégé ontology editor11

certainly helped to promote the area. In other KR-related areas, for example, planning, the
development of methods and tools for modelling support are currently starting to emerge
(see, for example, the work of Lin et al. [252] for plan modelling support). The presence of
tools for modelling support alone is, however, not sufficient to solve the knowledge acquisition
and maintenance problem.

11 https://protege.stanford.edu/
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Some large knowledge graphs are successfully built and maintained by a community, for
example, Wikidata [363], or are based on semi-automatic or automatic extraction (see, for
example, the work of Ji et al. [207] for a recent survey on knowledge graph acquisition and
use) and there are even some patents for knowledge acquisition in knowledge graphs.12 These
examples, however, typically use rather lightweight schema languages and stay away from
treating evolving knowledge as a belief revision task.

There are also approaches to learn schema axioms/rules in more expressive languages [372]
and first-order rule learning has been extensively studied in the area of Inductive Logic
Programming [285, 104]. Such learned knowledge, however, may be inconsistent or it may
come with a degree of uncertainty. In order to deal with this, a knowledge engineer could
check and disambiguate the learned knowledge, which is difficult, at least for some domains.
Another option is better support for reasoning with uncertainty (Section 2.8). Depending on
the domain, one might also need support for commonsense reasoning, which we discussed in
Section 3.1. Overall, better support for acquiring and maintaining large, complex, but still
consistent knowledge bases or better capabilities for reasoning with inconsistent knowledge
is a challenging but necessary task for demonstrating the use of KR techniques within
applications [49, 43].

Work on these topics generally requires empirical evaluations, rather than establishing
theoretical foundations. The KR community should support such efforts more actively.

3.3 KR and Hybrid Systems
The paradigms that have been developed in KR and ML clearly have complementary strengths.
Integrating approaches from both fields into hybrid systems, thus, is intuitively appealing
and, as described in Section 2.9, several works already go in this direction and many events
now provide special tracks, tutorials, or invited talks in this area.13 There are, however, still
a number of important and non-trivial challenges that need to be overcome. One issue is that
KR methods are typically designed to work with clearly defined and carefully formulated
knowledge. The knowledge generated by ML methods, on the other hand, is inevitably noisy.
Beyond the possibility of errors in the extracted knowledge, there are also issues related to
the vagueness of natural language concepts. KR approaches normally assume that predicates
have well-defined and precise meanings, even if these meanings can be application-specific and
sometimes somewhat arbitrary. When knowledge is obtained from text, we have no guarantees
that the concepts or predicates involved have the intended meaning. Similar problems arise
in the context of ontology alignment, but the informal nature of extracted knowledge tends to
make these problems more severe. In terms of reasoning, neuro-symbolic methods essentially
aim to reason about the output of a neural network model. This means that the learning
and reasoning components may be only loosely coupled. It would be beneficial to have a
tighter integration, where the steps of knowledge extraction and reasoning are intertwined.
There are also various challenges of a more practical nature. Work in this area would clearly
benefit from more easy-to-use implementations of reasoners, that are both scalable and that
can deal with uncertainty.

12 For example, patent US20180144252A1 “Method and apparatus for completing a knowledge graph” by
Fujitsu Ltd.

13 For example, the track “Reasoning, Learning, and Decision Making” and two of the invited talks at the
KR conference in 2024 go in this direction.
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In light of recent developments, a very important aspect to consider here is the case
of Generative Models and their relationship to KR. Software tools such as ChatGPT offer
a mapping from the vast amounts of information used to train them to well-structured,
understandable natural language responses to prompts (queries) also presented to it in
natural language. The scope of such systems is quite broad with no topic being off-limits.
They provide responses to prompts concerning all aspect of human daily life, respond to
questions concerning science and solve technical problems. These responses are often quite
accurate and detailed. They also demonstrate a good level of reasoning ability. While it
is not hard to find prompts that result in incorrect or confusing answers, the question is
whether these systems are (or ought to be viewed as) knowledge-based systems. If they
are, what are their weaknesses, and how can they be improved? That is, how can they be
analysed from a knowledge-based perspective? And if they aren’t, why not? Such questions
are now critically important as they could well determine the future direction of KR.

Finally, there are a number of unfortunate barriers between the KR and ML communities,
going from differences in terminology to differences in expectations for publications (for
example, in terms of the balance between theoretical development and empirical validation).

3.4 Explainable AI (XAI)
It has been argued that KR can address the central problem of explainable AI (XAI), which
is to develop tools and methods to interpret predictions or recommendations made by models
developed using machine learning and to present them in a human-understandable form [383,
354, 103]. Indeed, “interpreters” of machine learning models implemented as declarative,
rule-based knowledge representation systems would arguably allow us to build explanations
of decisions or recommendation, by employing the abductive reasoning capabilities of such
systems. Recent work in KR, for instance in the area of argumentation (see Section 2.7),
inductive logic programming [383], and ontologies and knowledge graphs [354, 103], supports
the view that KR is potentially a viable approach to XAI. XAI is, however, still in its infancy
and providing compelling evidence of applicability of KR for XAI remains an open problem.
One point of concern is whether one can build KR-based interpreters to machine learning
models that are accurate enough to provide a basis for building explanations. If one could,
they could be used instead of machine learning models in the first place.

Even for the more modest goal of explaining predictions and recommendations made
using symbolic KR methods, many challenges remain to be solved. In fact, recently there has
been a revival of interest in “explainable KR”, witnessed for instance by the workshop series
Explainable Logic-Based Knowledge Representation (XLoKR), which started in 2020.14 In
principle, if standard symbolic KR methods are used, predictions and decisions should be
easy to explain. For example, if knowledge is represented in (some fragment of) first-order
logic, and a decision is made based on the result of a first-order reasoning process, then one
can use a formal proof to explain a positive reasoning result, and a counter-model to explain
a negative result. Despite many years of research, however, in practice things are not so easy.
For example, proofs and counter-models may be very large or very hard to comprehend for
non-specialist users. To come up with good explanations, even in the symbolic case, many
challenges remain to be solved.

14 https://lat.inf.tu-dresden.de/XLoKR20/
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4 Promoting KR

Perhaps the single most important ingredient necessary for success of any field of science is
to have an exciting, relevant and potentially high-impact research program that promises to
advance broad societal and scientific needs. We have argued in previous sections that KR is
an active and important field, both as a subarea of AI, and as a contributor or partner to
other areas. Moreover we have suggested that KR is fundamental for the development of any
form of general artificial intelligence. Thus, the field of KR as outlined in this manifesto is
clearly in a position to continue its vibrant development.

Nevertheless, KR faces significant challenges. It has often been viewed by researchers
in AI and, more broadly, CS, as being highly theoretical, perhaps esoteric, and lacking
in practical applications. More recently, significant recent successes of machine learning
methods, showcased by compelling applications, have overshadowed work in KR. This has
resulted in a decrease in open academic positions in KR, as well as in the number of students
and researchers attracted to the field. It might also be the reason for a geographic imbalance
in KR research activity, with a stronger research contingent to be found in Europe than in
other parts of the world. In this section, we suggest a number of measures to promote KR,
so that it remains an attractive, relevant, and thriving research area.

4.1 Broadening the Scope of the KR Conference Series
The International Conference on Principles of Knowledge Representation and Reasoning,
that is, the KR conference series, has been one of the most significant vehicles driving
research in the area of knowledge representation. Consequently, it provides a major means
and opportunity for promoting KR research and development in the future. Here we make
some suggestions as to how this may be accomplished.

While previous conferences in the series have welcomed and encouraged papers on
applications, the conference should nonetheless strive to make more room for research
focusing on practical applications relevant to current societal needs and goals. It should
become a forum to discuss and showcase not just theoretical advances, but also successful
deployments of KR systems. As part of this effort we recommend that program committees
make a distinction between actual applications deployed and in use from work that is
mostly theoretical (although of course theoretical work should also be motivated by possible
future application). Further, as a step towards practical applications, the conference should
promote experimental studies by seeking submissions presenting data sets, and collections
of benchmark problems, and should sponsor KR system competitions as a mechanism for
achieving performance improvements necessary for moving proof-of-concept solutions to
practical and effective implementations.

As we argued, it is important to see KR in the broader context of other areas of AI and
beyond AI. To promote these synergies and strengthen research cutting across different fields,
the KR conference should seek productive collocations with other conferences such as AAAI,
ECAI, IJCAI, ISWC, ICAPS, TARK, and ICLP, as well as with prominent conferences in
machine learning. Further, the KR conference should continue to be open to participate in
federated conferences such as FLoC. Starting a federated conference series centred around
knowledge representation and with the KR conference as its centrepiece should also be
explored. The program of KR conferences should reflect the importance of promoting cross-
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area interactions by the strategic selections of invited speakers and tutorials from bordering
areas, and by holding panels and special topic sessions covering areas most promising for
successful integration with KR.

A related topic concerns the location of KR conferences. We suggest that KR conferences
should try to strike a balance between being located where they may benefit and have
an impact on the local KR community, and being easily reachable by train for many
participants to reduce travel emissions. While esoteric locations may make for interesting
travel destinations, they potentially cause significant travel emissions and are often expensive,
thus making it difficult for researchers, particularly students, to attend. As well, it is essential
that any conference location allows for low-cost accommodation. It should be a goal of the
conference to keep registration fees affordable; in selecting a conference venue, it may be
worthwhile considering less expensive settings, such as those that may be provided by a
university, in place of resorts or high-end conference facilities.

From its inception, the KR conference was distinguished by its emphasis on more mature
and in-depth research than typically found in major AI conferences. Consequently the page
limit for submissions has generally been 9-10 pages, as opposed to the more usual 5-7 pages
(double column, AAAI/IJCAI style). This has arguably resulted in a higher portion of
archival-quality papers. However, this higher threshold comes at a price. Authors eager to
present the most recent results of their research may find the technical depth expectation
hurdle hard to overcome, particularly in the presence of deadlines and with other highly
competitive venues with less stringent requirements for a submission. As well, papers that are
accepted for a KR conference may be already developed to the degree that makes extensions
required by a subsequent journal publication much harder. This has been addressed to
some extent by allowing short (4 page) submissions, where these short papers are otherwise
subject to the same reviewing criteria. We recommend that the KR steering committee
review the current full paper submission requirements, with an eye to increasing submissions
while not compromising technical quality. Here are a few suggestions to this end: First,
the KR submission requirements could be brought into line with other conferences such as
AAAI, ECAI, or IJCAI; however this might be seen as erasing part of KR’s unique character.
Second, the call for papers could be rephrased to emphasise that regular submissions need not
be of maximum length, stating something like “contributions are welcome for both regular
papers (in the range of 6 - 9 pages) and short papers (up to 4 pages). Regular papers that
are under 9 pages will not be penalised in the reviewing process”. (It is ironic that when a
conference talks about a page limit of n, while this is technically an upper limit, in practice
it is treated as a lower limit by authors and reviewers alike. This suggested change tries to
emphasis that shorter regular papers are welcome and encouraged.)

A third, intriguing possibility follows from the observation that accepted KR papers
are already at, or close to, the requirements for a journal submission. Consequently, the
steering committee should investigate whether there may be a simple process for having
regular accepted papers appear as journal articles with minimal additional effort. This is
not a new suggestions, and other conferences such as ICLP, SIGGRAPH, and VLBD have
been doing this for years. However, given KR’s emphasis on longer, mature submissions, KR
papers would be uniquely suited for such treatment. Which journal may be suitable for this
is open to debate, but it may be that JAIR or some other forum would be open to having a
special “Transactions in KR”, or some such stream.
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4.2 Broadening the KR Community
Another essential goal for the KR community is to ensure fresh cohorts of researchers who
consider KR an attractive, inspiring and exciting area. It is important to educate students in
KR related topics, and to engage them early on in research efforts. It is similarly important to
support young researchers, promote collaborations, and recognise research accomplishments.
Finally, it is critical to develop programs bringing awareness of KR and its central role in AI
research, especially outside of the geographic areas of current KR strength, now primarily
Europe and, to a lesser degree, North America. We believe, KR Inc. through its steering
committee is in a position to develop initiatives aiming to address these goals.

Beyond some notable exceptions, such as answer set programming and description logics,15

a general issue concerns a lack of introductory or overview material for areas of KR: the main
KR textbook [59] is nearly 20 years old, and the more technical Handbook of KR [359] is over
15 years old. A new textbook would be valuable as would an updated handbook, although
this would require substantial effort and it is not clear where such effort would come from.
One option would be to develop a repository of KR materials as has been done for example
for description logics.16 Regardless, instructional materials should be developed introducing
KR to undergraduate students and more advanced materials aimed at graduate students.
The KR steering committee should promote undergraduate research projects in KR and
showcase the best of them. It should encourage the KR community to develop tutorials and
summer schools on KR topics that would bring the area of KR closer to students and young
researchers outside of the regular academic curriculum. KR-themed tutorials at general AI
conferences would be particularly well suited for reaching a broader audience. When these
programs are offered in person, KR Inc. should offer travel support to students and young
researchers, especially from places with limited resources.

An in-person conference is unquestionably valuable, allowing one to meet and interact
with researchers, students, and other practitioners, and as an incubator of new research and
collaborations. However, recent years have shown that virtual events can be effective in
supporting research interactions and the exchange of ideas. These can be especially important
in bringing KR to research communities facing economic barriers, and in reaching researchers
from underrepresented groups and researchers with family conditions limiting their ability
to travel. Tutorials, summer schools, panels, and seminar series are examples of events
that lend themselves to virtual offerings. Further, even the KR conference might benefit by
incorporating some online events into its program. Most simply, conference presentations
can be recorded and made generally available. More radically the conference could switch to
a virtual event every two or three years. This is something that can be investigated by the
KR community through the KR steering committee.

5 Conclusions

This manifesto is based on the presentations, panels, working groups, and discussions at
the Dagstuhl Perspectives workshop 22282 “Current and Future Challenges in Knowledge
Representation and Reasoning”. To avoid an overly lengthy introduction, we deliberately

15 For instance, textbooks and tutorials for the former [153, 251, 214], and the DL handbook [20], the DL
textbook [22], or the shorter DL primer [232], for the latter.

16 https://dl.kr.org/

https://dl.kr.org/
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kept our introduction in Section 1 short. Interested readers may, however, continue with the
appendix, which covers the history of KR in more depth. The previous sections highlight
that KR is a central, longstanding, and active area of Artificial Intelligence. While some
sub-areas of KR have a long tradition, others, such as argumentation or hybrid systems,
evolved more recently as core KR research areas. In Section 2, we reviewed these different
areas within and related to KR, presented an account of the state of the art as well as
challenges within the sub-areas. Section 3 then took a higher-level perspective and introduced
general and major research challenges for KR as a whole. Finally, in Section 4, we concluded
with recommendations for promoting the area.
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A Appendix: History of Knowledge Representation and Reasoning

Today it is broadly acknowledged that knowledge is a fundamental aspect of intelligence. This
was arguably first stated by McCarthy and Hayes in their seminal paper “Some Philosophical
Problems from the Standpoint of AI [268]. They wrote there: “[...] intelligence has two
parts, which we shall call the epistemological and the heuristic. The epistemological part is
the representation of the world in such a form that the solution of problems follows from the
facts expressed in the representation. The heuristic part is the mechanism that on the basis of
the information solves the problem and decides what to do.” The epistemological component
corresponds to what we understand today as the problem of representation, and the heuristic
part is the reasoning problem. This stance was later restated by Brian Smith [339] in the
Knowledge Representation Hypothesis, discussed in the introduction.

It seems appropriate then to take the year 1969, the year when the paper by McCarthy
and Hayes was published, as marking the birth of KR. That paper not only pinpointed the
role of KR in AI but also identified many of the key concerns of this area, all of which remain
pertinent today. They are (quoting from the paper):
1. What kind of general representation of the world will allow the incorporation of specific

observations and new scientific laws as they are discovered?
2. Besides the representation of the physical world what other kinds of entities have to be

provided for? For example, mathematical systems, goals, states of knowledge.
3. How are observations to be used to get knowledge about the world, and how are the

other kinds of knowledge to be obtained? In particular what kinds of knowledge about the
system’s own state of mind are to be provided for?

4. In what kind of internal notation is the system’s knowledge to be expressed?
While some earlier developments such as Newell and Simon’s General Problem Solver [293,

292], and Robinson’s Resolution Principle anticipated important KR concerns, it was the
work by McCarthy and Hayes that first explicitly stated the challenges defining the field.17

That said, research in KR as a mature area of AI is commonly taken as being marked by an

17 Other early work in the area is summarised in Brachman and Smith’s 1980 survey [61] of KR.
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Artificial Intelligence Journal Special Issue on Non-monotonic Reasoning in 1980 [46]. In
1989 the Principles of Knowledge Representation and Reasoning Conference was founded,
providing a dedicated, specialised forum for research in the area.18

Over the years KR has grown into a mature field of cross-disciplinary ideas, with theoretical
results and implemented systems inspired by foundational concerns, as well as by practical
considerations stemming from the needs of concrete applications. The primary focus was
on developing languages for knowledge representation based on first-order logic, sometimes
extended by non-logical connectives and modal operators and, in some cases, assigned a
non-classical semantics. However, driven to a large degree by the need for efficient reasoning,
important early alternative approaches to knowledge representation emerged as well, most
notably frames [277], scripts [331], production rule systems, and graphical formalisms such
as conceptual graphs, inheritance networks, semantic networks, and Bayesian networks, the
latter to model uncertainty. Today, knowledge representation languages rooted in these early
proposals form the core of KR.

A.1 Logic and KR
The choice of logic as a formalism for knowledge representation was not arbitrary. We
have already mentioned McCarthy and Hayes’s 1969 paper; as well a series of papers by
McCarthy [265, 266] and Hayes [184, 185, 187, 186] implicitly or explicitly argued for this
position. A large part of knowledge is declarative and consists of statements describing
entities and relationships between them. And incorporating new knowledge is often as simple
as adding a new set of statements to the existing one. The language of logic, first-order
logic in particular, is well suited for modelling declarative knowledge. Statements describing
what is known can be modelled as logical formulas. The Tarskian semantics of first-order
logic provides a connection between a collection of formulas – a body of knowledge about
an application domain – and structures, which could be interpreted as abstractions of that
application domain with all its relevant entities and relationships. First-order logic is modular
and its statements can be arranged in hierarchies. Further, the concept of a formal proof in
first-order logic offers a way to derive new formulas from those given or established earlier.
And logic already proved its mettle helping establish formal foundations for the rich and
rigor-demanding edifice of mathematics.

Not surprisingly then, the influence of first-order logic can be seen in the Logic Theorist
by Newell, Simon and Shaw [293, 292], sometimes referred to as the first AI program, and
the specification of the Advice Taker by McCarthy [269]. The discovery of the resolution
proof method by Alan Robinson [327] and subsequent development of automated reasoning
further strengthened the position of logic as the formalism of choice for KR. That being said,
the early work on logic-based approaches to KR already pointed to limitations of first-order
logic. First, as it was already known since Gödel, first-order logic is undecidable. Moreover,
even under restrictions on the language that result in decidability, determining provability
(or entailment) is often inherently hard. Logic-based AI programs could serve as proofs of
concept or as a theoretical specification, but not as deployed systems working under time
constraints. Second, some aspects of knowledge proved stubbornly difficult to formalise in
first-order logic. In particular, commonsense reasoning, which McCarthy identified early
on as a critical capability of intelligent systems [269], turned out to be a source of several

18 https://kr.org/pastconfs.html
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challenging problems hard to capture within the first-order framework. Third, as argued by
several researchers, Minsky most notable among them, logic and its automated reasoning
machinery simply was not a good model of how the human brain works.

A.2 Objections to First-Order Logic as a KR Language
We will now consider these objections to first-order logic as KR language in more detail, as
each led to major research directions within KR.

A.2.1 Undecidability

The undecidability of first-order logic naturally pushed researchers to look for fragments of
first-order logic in which effective reasoning was possible.

Propositional Logic. Propositional logic is one such fragment. For its most commonly
considered clausal version, resolution refutation was proved to be complete and sound.
However, the problem of deciding whether a proof exists is coNP-complete while the dual
problem of satisfiability is NP-complete. Thus, there is little hope for the existence of fast
(polynomial-time bounded) algorithms for this problem. Nevertheless, because of impressive
advances made in propositional satisfiability, the role of propositional logic in KR has been
growing. It has left a strong mark among others in diagnosis, abductive reasoning, belief
revision and update, as well as in planning. It has suggested or directly provided reasoning
algorithms for answer-set programming, and spawned generalisations such as constraint
satisfaction.

Production Rules. Production rules are another formalism proposed for KR that is closely
related to a fragment of first-order logic known as Horn logic. Because of their restricted
form, reasoning with production rules can be highly efficient. They were used as the basis
of expert systems, one of the most successful class of AI programs built in the first golden
era of AI in the 1970s and 1980s [115]. This line of research started with expert systems
such as MYCIN [337, 70], DENDRAL [71, 69], PROSPECTOR [129], and R1 (Xcon) [274],
and evolved into building general purpose expert system shells. Important outcomes of this
research include identifying knowledge acquisition as a major bottleneck and a challenge for
KR, and establishing knowledge engineering as a subarea of KR.

Production rules emphasised the importance of the Horn fragment of first-order logic.
Specialised resolution proof methods such as the SLD resolution [226] made it possible to
think about logic as a declarative programming language [225]. On the practical side, it led
to the development of programming languages such as PLANNER [190] and PROLOG [102].
On the theoretical side it opened the key question of the semantics of programs (especially
programs with negation, which was allowed by the designers of those languages but only given
a procedural interpretation), and helped establish the field of logic programming. Originally,
logic programming and KR were developing side-by-side with few interactions between the
two communities. Eventually, however, strong connections between the two fields were
discovered. One of the outcomes of this coming together is answer set programming [65], one
of the most successful computational KR systems.

Description Logics. Another line of research emerged from the realization of a trade-off
between the efficiency of reasoning and expressiveness of the language [58]. It gave rise to
an area in KR known as description logics [20, 23]. Its origins can be traced to graphical
models such as semantic networks [314] and structured languages such as KL-ONE [62].
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However, it truly flourished once these earlier efforts were mapped onto fragments
of first-order logic. This led to a careful and systematic analysis of the complexity and
expressiveness and resulted in a broad range of description logics differing from each other in
these respects [20, 22]. A major push behind the development of description logics came from
the needs of the semantic web – the world wide web with its content converted to machine
interpretable formats. It resulted in the semantic web languages DAML, DAML+OIL [198]
and OWL [275]. Another important influence of description logics can be found in the areas
of databases and information systems.

KR Languages for Application Domains. Finally, we note that much of the research in
KR was driven by specialised application domains. One of the most influential ones concerns
modelling and reasoning about systems that evolve as a result of actions. It was identified
as an area of interest in AI by McCarthy in a technical report published by the Stanford
University in 1963 [270]. In that report McCarthy introduced the situation calculus, a first-
order logic language designed to model actions and their effects. This language was further
elaborated by McCarthy and Hayes [268] and developed into a full theory by Reiter [322].
The first two papers also introduced the key concerns to be addressed: in particular, the
famous frame problem as well as two other fundamental problems for KR, the ramification
problem and the qualification problem. Addressing these problems, especially the frame
problem, constituted major milestones in the development of KR. Elegant solutions were
proposed not only for the original framework of the situation calculus but also in a related
event calculus [227], and in non-classical formalisms for reasoning about action based on logic
programming with the stable model semantics [157].

Systems that change as actions are executed subsume planning problems. Automated
planning is as old as AI and some of the most influential early AI work concerns planning (for
example, the STRIPS language [144] and the robot Shakey [296, 233]). Planning in general,
and planning to address the needs of autonomous agents (robots), has been one of the core
areas of AI. Many concerns in planning are those of representing knowledge about the world,
and reasoning about that world as it changes. Hence, there are significant overlaps between
KR and planning. Nevertheless, today planning and KR are two separate areas of AI.

A.2.2 Addressing the Commonsense Reasoning Challenge

The second major objection to first-order logic as a KR formalism stems from difficulties
researchers discovered when attempting to use first-order logic to formalise commonsense
reasoning. Humans can naturally handle rules with exceptions, reason without full inform-
ation, represent and use normative statements, revise or update their knowledge (belief)
base when new information becomes available, they can reason qualitatively about physical
phenomena in the context of space and time, and they can represent and reason about
uncertainty. Not surprisingly, from the outset and continuing to today, researchers have
argued that formalising and automating common sense is necessary for artificial intelligence.
Yet, it is not possible to do so strictly within first-order logic. This realization motivated
several subareas of KR. We have already summarised current research and challenges in
nonmonotonic reasoning and belief revision; below we explore these areas, and their history,
in a bit more detail.

The types of reasoning mentioned above involve various non-logical reasoning principles
such as adopting the view that the world is, in some fashion, “normal” or making assumptions
based on the likelihood of a property or event. These non-logical principles make it possible
that deduced properties may become invalid in light of new information. This is clearly not
the case for inference supported by first-order logic. The need then arose for formalising such
non-logical principles into an inference mechanism in a principled fashion.
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The first such principle was the closed world assumption identified and studied by
Reiter [323]. Further developments came in 1980, when McCarthy introduced circumscription
[267], which incorporated the principle of reasoning in the context of minimal models only,
Reiter introduced default logic [321], which integrated non-classical inference rules (defaults)
conditioned upon what could reasonably be assumed as possible, while McDermott and Doyle
introduced a modal logic allowing for introspection [273]. This last approach was found
lacking. However, soon thereafter improved proposals for non-standard reasoning with modal
theories were made by McDermott [272], who introduced a single fixpoint principle to capture
non-classical inferences for all normal modal logics, and Moore, who proposed autoepistemic
logic [283]. Circumscription, default logic and modal logics of McDermott, Doyle and Moore
gave rise to the area of non-monotonic logics that soon became one of the main areas in
KR. A significant research effort expanded in that area explained the relationships between
different non-monotonic logics, and established a comprehensive picture of their expressive
power and complexity [262]. It also demonstrated the effectiveness of non-monotonic logics
in modelling abductive and diagnostic reasoning tasks [118]. An important contribution of
default logic is the semantics it suggested for logic programs with negation. That semantics,
known as the stable-model semantics, has been broadly accepted and is the foundation of
answer-set programming mentioned above.

A different attempt to address non-monotonicity in reasoning was provided by Kraus,
Lehmann, and Magidor [229]. In what has become known as the KLM approach to non-
monotonic reasoning, the authors proposed sets of axioms against which any non-monotonic
consequence relation can be tested. Although this work was initially focused on non-monotonic
consequence for classical propositional logic, it was subsequently extended to study non-
monotonic consequence over conditional propositional logics [240]. This extension has given
rise to a flurry of activity in designing non-monotonic reasoning systems for versions of
conditional logics going beyond propositional logic.

While logic was the most extensively studied framework to capture non-monotonic
reasoning, a significant effort was expanded in 1980s to extend semantic networks to handle
exceptions and defaults. This research effort evolved into the area of inheritance networks [355].
As inheritance networks could be mapped into (non-monotonic) logics, this line of research
gradually waned. It may receive soon renewed attention with the growing role of knowledge
graphs [207] in KR.

Human commonsense reasoning allows us to gracefully update or revise our knowledge
and beliefs once new information becomes available. Formalising this capability is essential
for intelligent behavior in a changing world, when a knowledge (belief) base has to be updated
to reflect a new situation, or revised, when the situation does not change but “better” (more
accurate) information is gained. The field that grew out of these considerations is called
belief revision but it includes also considerations that are more accurately referred to as
belief update. The major milestone for the area is the paper by Alchourrón, Gärdenfors and
Makinson [6]. That paper proposed a set of postulates, now known as the AGM postulates,
that any belief revision operator should satisfy. It was a way to address the unsettling
realization that belief revision could not be reduced to a single revision operator. In fact,
numerous operators were proposed that, arguably, adequately handled the task of revising
a knowledge base by a formula representing a new piece of information. The paper was
followed by papers characterizing, often in a constructive way, classes of operators satisfying
all (or some) of the AGM postulates. In another interesting development, Gärdenfors and
Makinson showed that KLM-style non-monotonic reasoning and AGM belief revision are
two sides of the same coin [151]. Informally, the link between the two formalisms is easy to
explain: B is a non-monotonic consequence of A whenever B is a classical consequence of the
knowledge base obtained from a revision of A.
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Additional concerns addressed or partially addressed over the years included iterated
revision, a major extension of the original framework that focused on a single act of revis-
ing [341, 111], and a more general problem of knowledge merging [224]. The field of belief
update was identified as separate from belief revision by Katsuno and Mendelzon [216], who
started it by proposing a set of postulates for belief update operators. In many respects its
development followed that of belief revision.

Qualitative reasoning is another type of commonsense reasoning humans are good at. It
concerns reasoning about “continuous” domains such as space and time. While phenomena
in such domains are most effectively modelled by systems of (partial) differential equations,
few of us maintain such systems in our mind and solve them when the need arises. Instead,
we have developed “commonsense” representations of such domains that allow us to reason
efficiently about time, space, motion and actions that might affect them, and with sufficient
accuracy to function [146, 112]. The main thrust of this work is to develop ontologies of
relevant concepts and develop reasoning techniques based on these ontologies. In this way,
the area can be mapped onto (a fragment) of first-order logic and can be developed exploiting
logical means. Two important subareas of qualitative reasoning focus on spatial [101] and
temporal [145] reasoning, respectively.

A.2.3 Beyond Logic
Much of what we discussed falls firmly in the domain of qualitative approaches based on the
language of logic. However, quantitative approaches also played a major role in KR research.
One of the most prominent examples is the formalism of Bayesian networks [302, 303, 110].
A Bayesian network consists of a directed acyclic graph representing variables of the problem
as nodes and direct influences among variables as edges, and of a collection of conditional
probability tables associated with each variable. The power of Bayesian networks comes from
an observation that valid inferences about probabilities of events or contributions of certain
events to cause events that occurred can be derived without constructing explicitly joint
distribution functions on all events involved. To make Bayesian networks an effective KR
tool, researchers developed methods to represent Bayesian networks, to compile them into
arithmetic circuits and propositional formulas, as well as algorithms to perform exact and
approximate inference. Another key research theme concerned methods to construct Bayesian
networks by standard knowledge engineering methods involving domain experts, by deriving
them from specifications exploring their structural regularity by learning. Today, Bayesian
networks form a dominant tool for reasoning with uncertain and incomplete information. An
important aspect of Bayesian networks has been their ability to model causality.

Finally, we note that not all knowledge is declarative. Much of what we know is procedural
or algorithmic, and stored as such procedures in our brains. Using this knowledge involves
little if any reasoning, just recalling from memory the right procedure for the occasion.
Knowledge needed to accomplish routine, frequently repeated tasks, in particular, scene and
speech understanding fall into this category. The ways human brains act to accomplish these
tasks are not fully understood. However, they inspired the so called connectionist models,
best known as neural networks, as a possible framework for not only representing algorithmic
knowledge but also for learning these representations from observations (examples). This
approach has been outside of the scope of KR for much of its history. This is beginning
to change. On the one hand, machine learning and neural network representations form
that part of AI that admittedly ignited imagination of both research communities and the
community at large. It is now by far the most vibrant branch of AI dwarfing all others.
On the other hand, it is not by itself sufficient to reach the point when machines will act
intelligently in ways humans do. For that these systems need knowledge and it is now
evident that further progress in AI depends on successful integration of machine learning
and knowledge representation.
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