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The current and future trend to multi-core and many-core computing systems suggests that
within the next decade, concurrent multi-threaded programming will continue to replace
sequential programming as the standard programming paradigm. However, concurrency and
modern computer architecture do not go together easily:

Current programming language memory models are still incomplete. Mainstream lan-
guages such as Java increasingly promise sequential consistency for data-race-free programs.
However, how data races can be handled in a way that supports reasonable performance,
security, and debugability, is currently completely unknown.
Hardware specifications are so informal that it is very hard to know whether we have a
correct implementation of the language specs (if we knew how to specify those fully). It is
not clear that existing ISAs, which have a long history, are a good match for the language
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semantics we are developing. There is an argument that this misalignment continues to
encourage languages to support complex low-level constructs.
The concurrent algorithms that are now being developed, and which are key to exploiting
multiprocessors (via high-performance operating systems, hypervisor kernels, and con-
currency libraries), are very subtle, so informal reasoning cannot give high confidence in
their correctness.
While there is a rich literature on concurrency theory, and extensive prior work on
software verification for concurrency software (including process calculi, model-checking,
temporal logics, rely-guarantee reasoning, and separation logic), almost all of it assumes
a global notion of time, unrealistic though that is for these systems and algorithms.

Concurrency theory has a long tradition in investigating the foundational principles
of concurrent computation, devoted to parallelism and causality of operations. It has
created a wealth of models and notions readily applicable in this semantic challenge. Recent
developments in the research communities of programming languages and concurrency theory,
respectively, indeed show a growing trend towards cross-fertilization.

This seminar has fostered cross-fertilization of different expertises that will help to
develop novel practical and, at the same time, theoretically sound paradigms for multi-core
programming. It brought together concurrency theorists, memory model experts, computer
systems architects, compiler experts, and formal verification researchers. The aim of the
seminar was to adress in particular:

1. Survey of problem domain: state of the practice in multi-core-programming and state of
the art in memory consistency models.

2. Application of concurrency theory approaches to reveal underlying concepts of parallelism,
reordering, causality, and consistency.

3. Cross-fertilization across formal approaches to memory consistency models and semantics
of multithreaded programming.

4. Attack points for formal analysis and computer aided programmer support.

Many of the questions that stood at the outset of this seminar have not been conclusively
answered, thus yielding many potentials for further investigation. However, what makes
this seminar uniquely successful is that it initiated a vivid exchange between a multitude
of different scientific and industrial communities. During the seminar, it became clear that
the current and future challenges of multi-core programming and memory models design in
software and hardware can only be solved if the communities continue to exchange ideas and
will learn from each other.
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Schedule
Monday
Evening Session
19:00 Welcome
19:30-20:30 5 min intro talks

Tuesday
Morning session
9:00 Hans Boehm – Memory Models for Threads in Mainstream Programming Languages
10:40 Coffee Break
11:00 more 5 min intro talks
11:30 Scott Owens – x86-TSO

12:15 Lunch

14:00 rest of 5 min intro talks
15:00 Milo Martin – InvisiFence: Performance-Transparent Memory Ordering in Con-

ventional Multiprocessors
15:40 Coffee Break
16:30 Doug Lea – Some Weak Idioms
17:15 Mark Hill – Calvin: Deterministic or Not? Free Will to Choose
17:30 Vijay Saraswat – RAO Memory Model

Wednesday
Morning session (chair: Rob van Glabbeek)

9:00 Gerard Boudol – Why is True Concurrency Theory (Possibly) Relevant to the Study
of Relaxed Memory Models

9:45 Sarita Adve – Rethinking Parallel Languages and Hardware for Disciplined Parallelism
10.30 Coffee Break
11:15 Heike Wehrheim – Verifying Linearisability of a Lazy Concurrent Set
11:35 Maged Michael – Memory Ordering Tradeoffs
11:55 Alexey Gotsman – Modular Verification of Preemptive OS Kernels

12:15 Lunch

14:00 Hike

Afternoon session (chair: Hans Boehm)

15:30 Coffee Break
16:00 Susmit Sarkar – Understanding POWER Multiprocessors
16:45 Madan Musuvathi – A Case for a SC-Preserving Compiler
17:05 Luis Ceze – A Case for Concurrency Exceptions

18:00 Dinner

Evening session
19:30 Arvind – Commit-Reconcile and Fences (CRF): A Memory Model for Compiler

Writers and Architects
20:15 Brandon Lucia – Detecting, Avoiding and Understanding Errors in Concurrent

Programs
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14:00 Jaroslav Sevcik – Validity of Program Transformations (in the Java Memory

Model)
14:45 Michael Kuperstein – Partial Coherence Abstractions
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9:00 Lisa Higham – Specifying Memory Consistency Models for Write-Buffer Multipro-

cessors and Proving Them Correct
9:20 Gustavo Petri – Speculation for Relaxed Memory: Using “True Concurrency”
9:40 Sibylle Froeschle – True-Concurrency: Foundational Concepts
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3 Overview of Talks

3.1 Rethinking Parallel Languages and Hardware for Disciplined
Parallelism

Sarita Adve (University of Illinois - Urbana, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sarita Adve

Main reference DeNovo: Rethinking Hardware for Disciplined Parallelism, Byn Choi, Rakesh Komuravelli, Hyojin
Sung, Robert Bocchino, Sarita V. Adve, and Vikram V. Adve, Second USENIX Workshop on Hot
Topics in Parallelism (HotPar), 2010.

URL http://denovo.cs.illinois.edu/Pubs/10-hotpar-denovo.pdf

For parallelism to become tractable for mass programmers, shared memory programming
languages and environments must evolve to enforce disciplined practices that ban "wild shared-
memory behaviors;" e.g., unstructured parallelism, arbitrary data races, and ubiquitous
non-determinism. This software evolution is also a rare opportunity for hardware designers
to rethink hardware from the ground up to exploit opportunities exposed by such disciplined
software models. Such a co-designed effort is more likely to achieve many-core scalability
and large gains in power/performance than a software-oblivious hardware evolution. In
this talk, we first briefly overview the Deterministic Parallel Java (DPJ) language that
provides a disciplined shared-memory programming model. We then discuss DeNovo, a
hardware architecture motivated by languages such as DPJ. We show how a disciplined
parallel programming model can greatly simplify the cache coherence protocol and memory
consistency model, while enabling a more efficient communication and cache architecture.

Our programming model ensures data-race-freedom, so DeNovo does not need to deal
with protocol races and transient states, making it simpler and more extensible than software-
oblivious protocols. Our programming model makes shared-memory side effects explicit, so
each core keeps its cache coherent, eliminating the need for sharer-lists in a directory and
associated invalidation traffic. To evaluate simplicity, we verify a base version of DeNovo with
model checking and compare it with an otherwise equivalent state-of-the-art MESI protocol.
The DeNovo version entails 25X fewer reachable states and takes 30X less time to verify.
To evaluate extensibility, we add two sophisticated performance-enhancing optimizations
to DeNovo: flexible bulk transfers and cache-to-cache direct data transfers. These add
significant races and new protocol states with MESI, but not with DeNovo. With a simple
extension, DeNovo’s storage overhead breaks even with efficient MESI versions at about 30
core systems, but unlike MESI, it maintains scalability beyond that point. The net result is a
system that seamlessly integrates message passing-like interactions within a shared memory
programming model with improved design complexity, up to 67% reduction in memory stall
time, and up to 70% reduction in network traffic.

This talk covers joint work with Rob Bocchino, Nicholas P. Carter, Byn Choi, Ching-Tsun
Chou, Nima Honarmand, Rakesh Komuravelli, Robert Smolinski, Hyojin Sung, Vikram S.
Adve, Tatiana Shpeisman, Marc Snir, and Adam Welc.
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3.2 Fences in Weak Memory Models
Jade Alglave (University of Oxford, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jade Alglave

Joint work of Luc Maranget, Susmit Sarkar and Peter Sewell

We present a class of relaxed memory models, defined in Coq, parameterised by the chosen
permitted local reorderings of reads and writes, and the visibility of inter- and intra-processor
communications through memory (e.g. store atomicity relaxation). We prove results on
the required behaviour and placement of memory fences to restore a given model (such as
Sequential Consistency) from a weaker one. Based on this class of models we develop a
tool, diy, that systematically and automatically generates and runs litmus tests to determine
properties of processor implementations. We detail the results of our experiments on Power
and the model we base on them. This work identified a rare implementation error in Power
5 memory barriers (for which IBM is providing a workaround); our results also suggest that
Power 6 does not suffer from this problem.

3.3 Commit-Reconcile and Fences (CRF): A Memory Model for
Compiler Writers and Architects

Arvind (MIT, Cambridge, MA, USA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Arvind

The rise of multicores is forcing us to readdress one of the fundamental problems of multi-
threaded programming, namely memory models. Sequential Consistency (SC), in spite of its
simple definition, has been found wanting because of exorbitant performance overheads in
hardware implementations as well as opacity in reasoning at a high-level. Several weaker
memory models have been proposed, all of which are motivated primarily by implementation
concerns – in fact, the semantics of these memory models are given by the implementation
rather than by any abstract rigorous method and understood only by experts. In view of
this difficulty, many people think that we should just stick to Sequential Consistency as the
interface between hardware and software. The use of various synchronization primitives and
programming libraries has already made SC irrelevant for application programmers. There is
no reason for compilers and architectures to adhere to SC if the higher-layers do not require it.
We think that the Commit-Reconcile and Fences (CRF) memory model which was proposed
earlier has the desirable properties for our purpose: its definition is given in terms of algebraic
rules and it can directly model all the behaviors permitted by other relaxed memory models;
CRF can be implemented in a variety of ways by the underlying machine; whether it be an
in-order machine preserving sequential consistency or an aggressively out-of-order machine.
So the high level programs can be ported across machines with different memory models.
The talk will describe CRF and show how it could be used to give a meaningful semantics to
a memory model for Java.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
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3.4 Mathematizing C++ Concurrency
Mark Batty (University of Cambridge, UK)

License Creative Commons BY-NC-ND 3.0 Unported license
© Mark Batty

The next versions of C++ (C++0x) and of C (C1X) will have new concurrency features,
aiming to support high-performance code with well-defined semantics. Unfortunately, as
we near the end of the long standardization process, not all has been well. Unsurprisingly,
the prose specification style of the draft standards is poorly suited to describe the complex
design of the relaxed memory model, and in fact there have been significant problems.

I will discuss work on formalization of the memory model, what was broken, and some
resulting improvements to the C++0x draft standard. In addition I will present a tool,
Cppmem, for graphically exploring the semantics of small concurrent C++0x programs, and
describe a proof of the correctness of a compilation strategy targeting x86-TSO.

3.5 Memory Models for Threads in Mainstream Programming
Languages

Hans J. Boehm (HP Labs - Palo Alto, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Hans J. Boehm

Although multithreaded programming languages are common, there has been a surprising
amount of confusion surrounding the basic meaning of shared variables. There is finally
a growing consensus, both that programming languages should by default guarantee an
interleaving-based semantics for data-race-free programs, and on what that should mean.
We discuss the motivation for, and both implementation and user consequences of, this
guarantee.

Unfortunately, it is also increasingly clear that such a guarantee, though useful, is
insufficient for languages intended to support sand-boxed execution of untrusted code. The
existing solution in Java is only partially satisfactory. The solution to this problem is far less
clear.

3.6 Program Logics: We have come a Long Way, Baby
Richard Bornat (Middlesex University, GB) and Mike Dodds (Cambridge University, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Richard Bornat and Mike Dodds

My brief, given at the last minute, was to persuade the audience that program proof has
come a long way since Hoare logic was promoted in the 1970s. We were (and are) woefully
unprepared to give a fair survey of world work in the area: we are simple program provers.
The talk ended for an apology for that deficiency, and this abstract must start with one.

Hoare logic was not a solution to the ‘Software Engineering Problem’. Loops were
(necessarily) hard; there was no effective treatment of procedures; arrays were difficult to

11011
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deal with, and there was no treatment of pointers. Nevertheless it was the basis of successful
program verification work in the 80s and 90s, notably in B, Spark, JML and others.

Reynolds and O’Hearn, in 2000, built on work of Burstall’s (separated lists can be dealt
with separately) to make separation logic, an extension of Hoare logic which deals with access
and assignment to the heap, with local reasoning. An effective treatment of pointers led,
quite quickly, to a treatment of concurrency (O’Hearn’s CSL).

Separation logic has had an impact on program analysis and may (because of local
reasoning) be able to make an impact on the problem, much discussed in the workshop, of
detecting data races in Java programs. At present the Abducter tool (DiStefano) can analyse
the whole Linux kernel in 20 minutes, finding space leaks in list-manipulating procedures;
Windows device drivers can be handled in seconds, finding safety bugs (Yang, Cook).

In concurrency there are separation logic hand proofs of several intricate algorithms, and
work on automatic proof of linearisability.

In summary, there is much useful work which can be exploited. We also mentioned an
important negative point: ownership types don’t work. Ownership, as various proofs of
simple algorithms demonstrates, is dynamic not static.

3.7 Why is True Concurrency Theory (Possibly) Relevant to the Study
of Relaxed Memory Models

Gerard Boudol (INRIA Sophia Antipolis, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gerard Boudol

I briefly introduce "true concurrency" theory, and in particular the formalism of labelled
transition systems with independence which, I think, are appropriate to provide abstract
formalization of relaxed memory models.

3.8 Concurrent Revisions: A Strong Alternative to SC
Sebastian Burckhardt (Microsoft Research - Redmond, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sebastian Burckhardt

Main reference Sebastian Burckhardt, Alexandro Baldassin, Daan Leijen, “Concurrent programming with revisions
and isolation types”, pp. 691–707, OOPSLA’10, ACM, 2010.

URL http://dx.doi.org/10.1145/1869459.1869515

Although considered a strong memory model, sequential consistency (SC) is in fact still
weaker than desirable in the sense that the semantics is based on nondeterministic inter-
leavings. In contrast, Concurrent Revisions, a programming model for shared-memory
concurrency/parallelism, is deterministic: the semantics of shared memory accesses are based
on deterministic replication & conflict resolution rather than nondeterministic arbitration as
in SC.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1145/1869459.1869515
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3.9 A Case for Concurrency Exceptions
Luis Ceze (University of Washington, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Luis Ceze

We argue in this talk that concurrency errors should be treated as exceptions, i.e., have
fail-stop behavior and precise semantics. We propose an exception model based on conflict
of synchronization-free regions, which precisely detects a broad class of data-races. We show
that our exceptions provide enough guarantees to simplify high-level programming language
semantics and debugging, but are significantly cheaper to enforce than traditional data-
race detection. We also propose a new exception that enforces disciplined shared-memory
communication in a code-centric manner. To make the performance cost of enforcement
negligible, we propose architecture support for accurately detecting and precisely delivering
concurrency exceptions.

3.10 Extending the AMD64 Memory Model with an Advanced
Synchronization Facility

Stephan Diestelhorst (AMD - Dornbach, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stephan Diestelhorst

Joint work of Diestelhorst, Stephan; Christie, David; Hohmuth, Michael; Pohlack, Martin;
Main reference Jae-Woong Chung, Luke Yen, Stephan Diestelhorst, Martin Pohlack, Michael Hohmuth, David

Christie, Dan Grossman: ASF: AMD64 Extension for Lock-Free Data Structures and Transactional
Memory. MICRO 2010: 39-50

URL http://dx.doi.org/10.1109/MICRO.2010.40

Current general-purpose, high-performance microprocessor cores aggressively reorder in-
structions to increase throughput. With the wide availability of shared memory multi-core
systems, architects have to pay attention to the architecturally visible memory semantics
provided by these systems.

In our talk, we will look at how current AMD microprocessors provide strong memory
semantics while still allowing aggressive reordering on the microarchitectural level. We
will also highlight the functionality of the HyperTransport (tm) interconnect that connects
processors and provides cache coherence and contributes significantly to the overall memory
semantics.

On top of this foundation, we introduce AMD’s Advanced Synchronization Facility
(ASF), an experimental AMD64 ISA extension. ASF provides applications with speculative
regions, akin to transactions in transactional memory, which allow atomic read-modify-write
constructs on multiple independent memory locations. In the course of our presentation of
ASF, we highlight various design decisions and illustrate why and how extensions to existing
complex microarchitectures need to be simple.

References
1 Jaewoong Chung, Luke Yen, Stephan Diestelhorst, Martin Pohlack, Michael Hohmuth,

David Christie, Dan Grossman. ASF: AMD64 Extension for Lock- free Data Structures
and Transactional Memory. Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-43), 2010

2 Felber, P.; Riviere, E.; Moreira, W.M.; Harmanci, D.; Marlier, P.; Diestelhorst, S.;
Hohmuth, M.; Pohlack, M.; Cristal, A.; Hur, I.; Unsal, O.S.; Stenström, P.; Dragojevic, A.;
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3.11 Simpler Reasoning About Variables in Multithreaded Programs
Laura Effinger-Dean (University of Washington - Seattle, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Laura Effinger-Dean

Joint work of Effinger-Dean, Laura; Boehm, Hans-J.; Chakrabarti, Dhruva; Joisha, Pramod

We present a simple characterization of code regions for which we can prove that a given
shared variable cannot be modified by other threads in the system.

Following the new C++0x standard, we assume data-race-freedom. Our "interference-
free regions" expand on simple synchronization-free regions to include limited patterns of
synchronization operations. In particular, our observations demonstrate that it is legal
to eliminate a redundant variable access across a lock or unlock operation. By coalescing
the interference-free regions for multiple accesses to the same variable, we can extend this
characterization to complex control flow.
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3.12 True-Concurrency: Foundational Concepts
Sibylle Froeschle (Universität Oldenburg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sibylle Froeschle

In this talk I will give a short introduction to models and foundational concepts in concurrency
theory with an emphasis on true-concurrency.

In particular, I will mention the computational dichotomy of true-concurrency: truly-
concurrent versions of concepts such as behavioural equivalences can be computationally
hard but for classes with good structural properties they are often efficiently decidable.

I will speculate on some connections to the challenges of multi-core memory models.

3.13 Modular Verification of Preemptive OS Kernels
Alexey Gotsman (IMDEA Software - Madrid, ES)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alexey Gotsman

Most major OS kernels today run on multiprocessor systems and are preemptive: it is possible
for a process running in the kernel mode to get descheduled. Existing modular techniques for
verifying concurrent code are not directly applicable in this setting: they rely on scheduling
being implemented correctly, and in a preemptive kernel, the correctness of the scheduler is
interdependent with the correctness of the code it schedules. This interdependency is even
stronger in mainstream kernels, such as Linux, FreeBSD or XNU, where the scheduler and
processes interact in complex ways.

We propose the first logic that is able to decompose the verification of preemptive
multiprocessor kernel code into verifying the scheduler and the rest of the kernel separately,
even in the presence of complex interdependencies between the two components. This is
achieved by establishing a novel form of refinement between an operational semantics of
the real machine and an axiomatic semantics of OS processes, where the latter assumes an
abstract machine with each process executing on a separate virtual CPU. The refinement
is local in the sense that the logic focuses only on the relevant state of the kernel while
verifying the scheduler. Our logic soundly inherits proof rules from concurrent separation
logic to verify OS processes thread-modularly.We illustrate its power by verifying an example
scheduler, modelled on the one from Linux 2.6.11.

3.14 Selling Your Memory Model Ideas to HW Architects
Erik Hagersten (University of Uppsala, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Erik Hagersten

First, I will discuss how architect tells good ideas from bad ideas by weighing tradeoffs
between complexity (implying schedule slip), performance and power consumptions. Of the
1000s of the published architecture papers promising 10% performance improvement each
year, only a fraction can possible have impact since the performance improvement per year
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due to architectural improvement is roughly 20% and not 10 000%. This is often due to the
overwhelming complexity of the proposals.

Second, I will ask the formal method’s community for favors. 1) Do not define how
to implement the memory models: I will show examples of correct implementations for
coherence and sequential consistency that violate such definitions. 2) When verifying a
protocol, consider all transactions, not just the LD/ST/Atomics: They tend to only represent
10-20% of all transactions in a protocol. 3) Do consider all interacting protocols in the
system, not just one at a time. 4) Finally, I urge protocol verification to not only verify
coherence and memory models. Just as important (and often harder) properties to verify
include livelock and deadlock properties.

3.15 Specifying Memory Consistency Models for Write-Buffer
Multiprocessors and Proving Them Correct

Lisa Higham (University of Calgary, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Lisa Higham

Joint work of Higham, Lisa; Kawash, Jalal; Jackson, LillAnne
Main reference Lisa Higham, LillAnne Jackson, Jalal Kawash: Specifying memory consistency of write buffer

multiprocessors. pp. 2–42, ACM Trans. Comput. Syst. 25(1), 2007.
URL http://doi.acm.org/10.1145/1189736.1189737

Multiprocessor architectures employ various hardware components such as multiple busses,
write-buffers, and replicated memory to enhance the efficiency.

As a consequence, the computations that can arise satisfy guarantees substantially weaker
than sequential consistency. Given a specific multi-processor architecture, our goals are: 1)
to develop a simple, precise predicate that specifies exactly what computations can arise
from a multiprocessing program that executes on that architecture; and 2) prove that the
predicate is correct.

This talk illustrates our techniques for achieving this goal through a case study of shared
memory architectures that use write buffers.

3.16 Calvin: Deterministic or Not? Free Will to Choose
Mark D. Hill (University of Wisconsin - Madison, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Mark D. Hill

Calvin implements optional determinism with Total Store Order (TSO) compatibility for
about a 20% performance loss relative to a conventional system. This talk is a short
adaptation for non-architects of an upcoming HPCA 2011 paper
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3.17 Partial Coherence Abstractions
Michael Kuperstein (Technion - Haifa, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Kuperstein, Michael; Vechev, Martin; Yahav, Eran;

We present an approach for automatic verification of concurrent programs running under
relaxed memory models. Verification under relaxed memory models is a hard problem.
Given a finite state program and a safety specification, verifying that the program satisfies
the specification under a sufficiently relaxed memory model is undecidable. For somewhat
stronger memory models, the problem is decidable but has non-primitive recursive complexity.
In this paper, we focus on models that have store-buffer based semantics, e.g. SPARC TSO
and PSO.

We use abstract interpretation to provide an effective verification procedure for programs
running under this type of models. Our main contribution is a family of novel partial-
coherence abstractions, specialized for relaxed memory models, which partially preserve
information required for memory coherence and consistency.

3.18 Some Weak Idioms
Doug Lea (SUNY - Oswego, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Doug Lea

The design and implementation of core libraries and runtime systems entail several idio-
matic non-sequentially-consistent constructions. This talk illustrates some such techniques
encountered in publishing and transferring objects and messages.

3.19 A Unified Machine-Checked Model for Multithreaded Java
Andreas Lochbihler (KIT - Karlsruhe Institute of Technology, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andreas Lochbihler

I present a machine-checked formalisation of the Java memory model (JMM) and connect it
to an operational semantics for source and bytecode. It extends previous formalisations by
dynamic memory allocations, thread spawns and joins, infinite executions, the wait-notify
mechanism and thread interruption. I proved that the model provides the Java data race
freedom (DRF) guarantee.

I instantiated the JMM with JinjaThreads, a large subset of Java (bytecode), thereby
providing the missing link between operational semantics on statement and instruction level
and the JMM. To discharge the assumptions of the DRF proof, I constructed sequentially
consistent executions of source and bytecode.

11011

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


16 11011 – Multi-Core Memory Models and Concurrency Theory

3.20 Detecting, Avoiding and Understanding Errors in Concurrent
Programs

Brandon M. Lucia (University of Washington - Seattle, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Lucia, Brandon M.; Ceze, Luis;
Main reference Brandon, L.; Ceze, L.; “Finding concurrency bugs with context-aware communication graphs.”

Proc. of 42nd Int’l Symp. on Microarchitecture, pp. 553–563. Dec. 2009.
URL http://dx.doi.org/10.1145/1669112.1669181

Programmers are the weak link in the chain of concurrent software development.
People make mistakes that lead to subtle concurrency errors that are difficult to find and

fix. These errors degrade the reliability of software, and can lead to costly system failures.
The movement of accessible concurrent programming to the mainstream is dependent on a
solution to the problems posed by concurrency errors.

In this talk I will describe two different approaches to this problem.
First, I will discuss Bugaboo, a technique for automatically isolating patterns of inter-

thread communication that lead to buggy program behavior. The key contribution of
this work is the introduction of context-aware communication graphs, a new graphical
data-flow abstraction for program execution. These graphs encode communication between
instructions, and an abstract view of the order of communication events. By collecting
context-aware communication graphs from many different execution, we can use statistical
reasoning to identify communication events most likely related to a failure. Our reasoning
is simple: communication that occurs often in buggy executions, and rarely or never in
correct executions is likely related to the failure. We develop supervised and unsupervised
approaches to error identification. We also describe hardware extensions that enable graph
collection with negligible performance overhead.

Second, I will discuss ColorSafe and Atom-Aid, two similar techniques for avoiding
atomicity violation bugs. Atomicity errors are the result of incorrect program synchronization:
a programmer should have prevented a particular buggy interleaving of operations from
different threads, but failed to do so. Prior work has shown that the manifestation of
atomicity violations is characterized by an unserializable interleaving of memory accesses.
We leverage serializability analysis to find atomicity bugs. Each thread maintains a history
of locally performed memory accesses and a history of memory accesses performed by other
threads. Periodically, at the end of fixed length execution epochs, threads analyze the
serializability of recent memory access interleavings to find likely atomicity bugs. Upon
finding a likely violation, our system uses dynamic atomic regions (viz. transactions) to
prevent interleaving, thereby avoiding the buggy program behavior. In addition we describe a
technique for generalizing serializability analysis to simultaneously consider multiple memory
locations instead of single locations only. We develop simple hardware support to make these
techniques efficient.
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3.21 Generating Litmus Tests for Contrasting Memory Consistency
Models

Sela Mador-Haim (University of Pennsylvania, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Well-defined memory consistency models are necessary for writing correct parallel software.
Developing and understanding formal specifications of hardware memory models is a challenge
due to the subtle differences in allowed reorderings and different specification styles. To
facilitate exploration of memory model specifications, we have developed a technique for
systematically comparing hardware memory models specified using both operational and
axiomatic styles. Given two specifications, our approach generates all possible multi-threaded
programs up to a specified bound, and for each such program, checks if one of the models
can lead to an observable behavior not possible in the other model. When the models differs,
the tool finds a minimal “litmus test” program that demonstrates the difference. A number
of optimizations reduce the number of programs that need to be examined. Our prototype
implementation has successfully compared both axiomatic and operational specifications of
six different hardware memory models. We describe two case studies: (1) development of
a non-store atomic variant of an existing memory model, which illustrates the use of the
tool while developing a new memory model, and (2) identification of a subtle specification
mistake in a recently published axiomatic specification of TSO.

3.22 InvisiFence: Performance-Transparent Memory Ordering in
Conventional Multiprocessors

Milo M. K. Martin (University of Pennsylvania, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Blundell, Colin; Martin, Milo M.K.; Wenisch, Thomas F.;
Main reference Blundell, C.; Martin, M.M.K.; Wenisch, T.F.; InvisiFence: performance-transparent memory

ordering in conventional multiprocessors, Proc. of 36th Int’l Symp. on Comp. Architecture
(ISCA’09).

URL http://dx.doi.org/10.1145/1555754.1555785

A multiprocessor’s memory consistency model imposes ordering constraints among loads,
stores, atomic operations, and memory fences. Even for consistency models that relax
ordering among loads and stores, ordering constraints still induce significant performance
penalties due to atomic operations and memory ordering fences. Several prior proposals
reduce the performance penalty of strongly ordered models using post-retirement speculation,
but these designs either (1) maintain speculative state at a per-store granularity, causing
storage requirements to grow proportionally to speculation depth, or (2) employ distributed
global commit arbitration using unconventional chunk-based invalidation mechanisms.

In this paper we propose INVISIFENCE, an approach for implementing memory ordering
based on post-retirement speculation that avoids these concerns. INVISIFENCE leverages
minimalistic mechanisms for post-retirement speculation proposed in other contexts to (1)
track speculative state efficiently at block-granularity with dedicated storage requirements
independent of speculation depth, (2) provide fast commit by avoiding explicit commit
arbitration, and (3) operate under a conventional invalidation-based cache coherence protocol.
INVISIFENCE supports both modes of operation found in prior work: speculating only when
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necessary to minimize the risk of rollback-inducing violations or speculating continuously to
decouple consistency enforcement from the proces- sor core. Overall, INVISIFENCE requires
approximately one kilobyte of additional state to transform a conventional multiprocessor into
one that provides performance-transparent memory ordering, fences, and atomic operations.

3.23 Multi-Core Memory Models and Concurrency Theory: A View
from the Linux Community

Paul McKenney (IBM - Beaverton, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Paul McKenney

Main reference McKenney, Paul E., “Is Parallel Programming Hard, And, If So, What Can You Do About It?”,
kernel.org, Corvallis, OR, USA 2011.

URL http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

This talk presents multi-core memory models and concurrency theory from the viewpoint of
a practitioner with 20 years experience producing production-quality shared-memory parallel
code and with 10 years with the Linux kernel community. This experience has led to the
following conclusions: (1) although abstraction is valuable, intimate knowledge of underlying
software and hardware layers is equally valuable, (2) although general techniques are valuable,
specialized techniques resulting in excellent performance, scalability, real-time response, and
energy efficiency are equally valuable, (3) although concurrent-software validation techniques
are valuable, techniques drawn from hardware validation may well prove more valuable, and
(4) different levels of abstraction required different programming paradigms.

That said, within the Linux kernel community, organizational mechanisms are at least as
important as specific techniques and tools. These organizational mechanisms include the
maintainership hierarchy with its focus on quality assurance, an informal apprenticeship/-
mentoring model, a strong tradition of design and code review, and aggressive pursuit of
modularity and simplicity.

These mechanisms have the important side effect of focusing attention on techniques
that are known to work well in a given situation, which allows ordinary practitioners to
successfully produce production-quality parallel designs and code.

3.24 Memory Ordering Tradeoffs
Maged Michael (IBM TJ Watson Research Center - Yorktown Heights, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Attiya, Hagit; Guerraoui, Rachid; Hendler, Danny; Kuznetsov, Petr; Michael, Maged; Vechev,
Martin;

Main reference Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael, Martin T.
Vechev: Laws of order: expensive synchronization in concurrent algorithms cannot be eliminated.
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, 487-498

URL http://doi.acm.org/10.1145/1926385.1926442

It is often the case that in designing concurrent algorithms that it appears that avoiding both
atomic operations and store-load ordering is difficult. It is shown that it is impossible such
patterns in algorithms for methods that are strongly non-commutative. The SNC condition
can be avoided by specification relaxations, such as limiting concurrency , limiting the API,
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relaxing determinism, or relaxing the requirement of linearizability. This result opens the
door for trade-offs between synchronization overhead and specification.

3.25 Compilers and Memory Models – Selected Topics
Samuel P. Midkiff (Purdue University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Samuel Midkiff

This talk discusses three important topics related to memory models. First, we argue that
static compiler analyses are insufficient, and will always be insufficient, to certify programs
as race-free. Thus, memory models for general purpose languages that depend on programs
being race-free for correctness will almost certainly require some runtime checking. Second,
we present some results showing the effectiveness of a tool that helps programmers to identify
transaction regions, and thus help the programmer in the creation of race free programs.
We also argue that analyses such as this one, lock assignment and other transformations
handling programs with pointers benefit from the use of semantic information about standard
library code. Semantic information we used included information about destructive data
structure operations, commutativity of operations on the data structure, and whether the
data structure is thread-safe. These properties follow directly from the specification of the
code, and thus are trivially easy to specify for routines that implement the specification.
Finally, we discuss the benefit of hardware that provides isolation for code regions in threads.
We show that allowing the compiler to set and know regions that are excited in isolations, as
is done in the BulkSC architecture, allows a sequentially consistent memory model to be
implemented with an increase in performance.

3.26 A Case for a SC-Preserving Compiler
Madan Musuvathi (Microsoft Corp. - Redmond, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Madan Musuvathi

In this talk, I will argue against relaxing memory models in the compiler. I will demonstrate
that a SC-preserving compiler, one which guarantees that every SC behavior of the binary
is a SC behavior of the source program, is feasible with acceptable performance overhead.
Time permitting, I will also demonstrate how static and dynamic analyses can further reduce
this overhead.

3.27 x86-TSO
Scott Owens (University of Cambridge, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Scott Owens

Exploiting the multiprocessors that have recently become ubiquitous requires high-
performance and reliable concurrent systems code, for concurrent data structures, operating
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system kernels, synchronisation libraries, compilers, and so on. However, concurrent pro-
gramming, which is always challenging, is made much more so by two problems. First,
real multiprocessors typically do not provide the sequentially consistent memory that is
assumed by most work on semantics and verification. Instead, they have relaxed memory
models, varying in subtle ways between processor families, in which different hardware
threads may have only loosely consistent views of a shared memory. Second, the public
vendor architectures, supposedly specifying what programmers can rely on, are often in
ambiguous informal prose (a particularly poor medium for loose specifications), leading to
widespread confusion.

In this talk we focus on x86 processors. We review several recent Intel and AMD
specifications, showing that all contain serious ambiguities, some are arguably too weak to
program above, and some are simply unsound with respect to actual hardware. We present
a new x86-TSO programmer’s model that, to the best of our knowledge, suffers from none
of these problems. It is mathematically precise (rigorously defined in HOL4) but can be
presented as an intuitive abstract machine which should be widely accessible to working
programmers. We illustrate how this can be used to reason about the correctness of a Linux
spinlock implementation and describe a general theory of data-race-freedom for x86-TSO.
This should put x86 multiprocessor system building on a more solid foundation; it should
also provide a basis for future work on verification of such systems.

3.28 Speculation for Relaxed Memory: Using “True Concurrency”
Gustavo Petri (INRIA Sophia Antipolis, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gustavo Petri

We present a semantic framework to describe speculative computations of parallel programs.
An important ingredient of our framework is the definition of valid speculation, for which
we use standard true concurrency techniques. Interestingly, the effects of speculations are
similar to those observed in relaxed memory models. We briefly show how to instantiate the
TSO, PSO and RMO memory models of Sparc using this framework.

3.29 Generative Operational Semantics for Relaxed Memory Models
James Riely (DePaul University - Chicago, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Models”, ESOP 2010, pp. 307–326.
URL http://dx.doi.org/10.1007/978-3-642-11957-6_17

The specification of the Java Memory Model (JMM) is phrased in terms of acceptors of
execution sequences rather than the standard generative view of operational semantics. This
creates a mismatch with language-based techniques, such as simulation arguments and proofs
of type safety.

We describe a semantics for the JMM using standard programming language techniques
that captures its full expressivity. For data-race-free programs, our model coincides with the
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JMM. For lockless programs, our model is more expressive than the JMM. The stratification
properties required to avoid causality cycles are derived, rather than mandated in the style
of the JMM.

The JMM is arguably non-canonical in its treatment of the interaction of data races and
locks as it fails to validate roach-motel reorderings and various peephole optimizations. Our
model differs from the JMM in these cases. We develop a theory of simulation and use it to
validate the legality of the above optimizations in any program context.

3.30 RAO Memory Model
Vijay A. Saraswat (IBM TJ Watson Research Center - Hawthorne, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Vijay A. Saraswat

Talk describes essence of the RAO Model presented in PPoPP 2007.

3.31 Understanding POWER Multiprocessors
Susmit Sarkar (University of Cambridge, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Susmit Sarkar

IBM POWER multiprocessors have a very relaxed memory model (ARM is similar), including
instances in which programmers can observe non-atomicity of stores, register shadowing, and
speculative executions past branches. I will describe joint (ongoing) work with Peter Sewell,
Jade Alglave, Luc Maranget, and Derek Williams on our extensive testing of Power G5, 5, 6,
and 7, producing some perhaps-surprising results, and on an abstract-machine semantics
that explains these results.

3.32 Validity of Program Transformations (in the Java Memory Model)
Jaroslav Sevcik (University of Cambridge, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jaroslav Sevcik

In this talk, I will give an overview of validity of compiler transformations in the Java Memory
Model, Sequential Consistency and the DRF guarantee. I will also explain several interesting
examples of transformations that are problematic for the Java Memory Model. Finally, I will
show that there are program transformations that are valid under SC but not under TSO or
DRF.
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3.33 Verifying Linearisability of a Lazy Concurrent Set
Heike Wehrheim (Universität Paderborn, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Heike Wehrheim

Joint work of Derrick, John; Schellhorn, Gerhard; Wehrheim, Heike;

Linearisability is the key correctness criterion for concurrent implementations of data struc-
tures shared by multiple processes.

In the seminar we presented a proof of linearisability of the lazy implementation of a
set due to Heller et al. The lazy set presents one of the most challenging issues in verifying
linearisability: a linearisation point of an operation (here, contains) set by a process other
than the one executing it. For this we have developed a proof strategy based on refinement
which uses thread local simulation conditions (the proof obligations talk about at most two
processes at a time) and the technique of potential linearisation points. The former allows us
to locally prove linearisability for arbitrary numbers of processes, the latter permits disposing
with backward reasoning. The operation contains may get several potential linearisation
points (including some set by e.g. the remove operation of another process), only the last
one is a valid one. As contains is not modifying the abstract data structure (the set), this
type of reasoning is sound for proving linearisability.

All proofs (including the one showing soundness of our proof obligations) have been
mechanically carried out using the interactive prover KIV.

References
1 J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified proof obligations for

linearizability. ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 33, no. 1 (2011).

2 J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanizing a correctness proof for a lock-free
concurrent stack. In FMOODS 2008, volume 5051 of LNCS, pages 78–95.
Springer, 2008.

4 State of the Art and Open Problems

The field of relaxed memory models, unusually, cuts across many areas of Computer Science:
Computer Architecture, Programming Languages, Compilation, Concurrent Algorithms,
Concurrency Theory and Semantics, Hardware Verification, and Software and Algorithm
Verification. Real progress in the development and understanding of memory models in a
multi-core/shared-memory world can only be achieved by taking a holistic view. In this
concluding note we summarise some discussion at the workshop of the state of the art and
open problems in the area. This is at best an outline and idiosyncratic summary, far from
complete.

Models for Mainstream Hardware

A basic question is that of establishing usable and rigorous models for today’s mainstream
multiprocessors, which include ARM, Itanium, Power, Sparc, x86, and IBM zSeries. The
state of the art varies for each of these: Sparc TSO has long had a precise model; for x86,
Power and ARM we heard in the workshop about recent work that covers common-case
programming, though further work is needed to cover the full architecture in each case;
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and for Itanium the vendor specification is reasonably precise, and there has been various
academic work, though we are not aware of extensive empirical testing.

One might also consider more ‘exotic’ hardware: Tilera, the Intel SCC, Cray machines
(influencing OpenMP), and various GPUs.

Some other hardware architectures are of less current interest: Alpha is no longer made,
though a few machines remain and it has influenced the Linux kernel memory barriers; Sparc
RMO and PSO are not used for Sparc systems; PA-RISC is no longer made (but said to be
SC).

Simple Hardware Deltas

A line of discussion throughout the workshop concerned ‘simple’ proposals for hardware
developments, i.e., those which a hardware vendor might reasonably incorporate into near-
term revisions of their architecture. For example, there was discussion of: adding explicit
synchronisation variables to an ISA; support for race detection, using the above (perhaps
not so ‘simple’); faster store fences; and lightweight (limited) transaction memory support.

Radical Hardware Deltas

More long-term questions include: determining how much one gains from a relaxed hardware
model (difficult to establish as a vast amount of hardware and software has been co-designed
in the current ecosystems); considering different APIs for hardware coherence mechanisms,
exposing more of the hardware (between coherent shared memory and message passing); and
considering how scalable coherent memory can be made.

Hardware Verification

Multiprocessor relaxed memory model behaviour is an emergent property of an entire
multiprocessor design, involving both core behaviour (especially speculation) and memory
communication fabrics. This leads us to ask how one can prove that a realistic microarchitec-
ture does implement an architectural memory model, whether better memory model testing
can be introduced into the hardware design process, and, more generally, whether it would
be useful to work routinely with the formal ‘abstract microarchitecture’ models that one
would use for such verification.

Models for Mainstream Programming Languages

Despite very extensive work on programming language memory models, it is arguable that
none are yet fully satisfactory.

The semantically simplest option is SC, but providing SC requires one to limit compiler
optimisation and to make use of hardware synchronisation primitives (barriers etc.). Folklore
suggests that, at least on high-performance compilers, the cost of those is substantial, but
there were interesting preliminary results to the contrary presented at the workshop.

A more efficiently implementable alternative is “DRF and catch-fire”: guaranteeing SC
behaviour for programs that are race-free (in some sense) in an SC semantics, but providing
no guarantees at all for other programs. This permits a wide range of optimisations (the
verification of those was discussed at the meeting), and arguably matches programmer
intuition for most code except low-level concurrent algorithms, but raises development
problems: pragmatically, given that almost all software is buggy, how can race-freedom be
ensured?
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That brings us to “DRF and abort” models, which are similar except that one has a
guarantee that any such race (or, in some cases, any race that matters) will force termination
or raise an exception; there was discussion of how this can be implemented.

Statically, one might instead have type systems that exclude races altogether, or even
that establish determinacy, but that are flexible enough for a wide range of code, and in
general one might establish better concurrent programming models, perhaps with explicit
ownership transfer and explicit treatment of data and computation locality.

DRF and catch-fire is at the heart of the C++0x/C1x memory model, a formal devel-
opment of which was presented at the meeting; an open technical question here is how one
should allow close-to-the-hardware non-SC synchronization, and yet still forbid causal cycles
and thin-air reads.

The Java Memory Model was also discussed. Java aims to provide SC behaviour for
race-free code, but additionally (and in contrast to C++/C) to guarantee some basic security
properties for arbitrary code. The current JMM is flawed in the sense that it prohibits
certain compiler optimisations that implementations do in fact perform; how best to admit
those optimisations while still ensuring the security properties is an open question.

Semantics, Verification, and Reasoning

Basic Semantic Questions

For any well-motivated relaxed memory model, we should ask some basic questions: how to
characterise observational congruences; whether we can make effective use of noninterleaving
semantics; what the expressiveness of various sublanguages is; and the decidability and
complexity of various problems.

Concurrent Algorithm Verification

For algorithm verification, several directions are being pursued: interactive proof (directly
above a semantics), program logics, automatic methods, and linearisability proofs. There
is a great need for effective compositional methods in this domain, especially to show that
libraries using weakly ordered atomic operations can encapsulate that weakness, giving SC
behaviour as far as any client can observe.

Compiler Verification

We heard in the meeting of first steps in verifying complete compilers, e.g., from a C-
like language with TSO semantics to x86 with its TSO-based semantics, and of verifying
compilation of executions from C++0x to x86. There is much more to be done, on verifying
optimisations w.r.t. particular models, targetting the weaker and more subtle hardware
models, and extending these results to full-scale languages.

Dynamic Verification

There are many properties that are difficult to prove but useful to check, especially if this
can be done with reasonable performance: better dynamic race detection, atomicity, and
more general concurrency error detection.
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Radical models
Finally, when one looks beyond the largest conventional coherent shared-memory machine
that one can reasonably build, one can simultaneously ask about the (co)design of hardware,
programming model and language, compilation techniques, algorithms, and semantics.
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