Report from Dagstuhl Seminar 11021
Feature-Oriented Software Development (FOSD)

Edited by

Sven Apel!, William Cook?, Krzysztof Czarnecki®, and
Oscar Nierstrasz*

Universitidt Passau, DE, apel@uni-passau.de
University of Texas - Austin, US, wcook@cs.utexas.edu
University of Waterloo, CA, czarnecki@acm.org
Universitidt Bern, CH, oscar@iam.unibe.ch

W N =

—— Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 11021 “Feature-
Oriented Software Development (FOSD)”. FOSD is an emerging paradigm that aims at increasing
the level of automation, reuse, and variation in software development. The main goal of the
Dagstuhl Seminar on FOSD was to gather researchers and practitioners who are active in different
communities to discuss the roots, state of the art, and future directions of FOSD research and
practice. Additional goals were to strengthen the identity of the feature orientation community
and to relate FOSD to other software development paradigms. The report contains an executive
summary, abstracts of the talks held during the seminar, and summaries of special sessions.

Seminar 09.-14. January, 2011 — www.dagstuhl.de/11021
1998 ACM Subject Classification D.2.13 Reusable Software
Keywords and phrases FOSD, automation, software family
Digital Object Identifier 10.4230/DagRep.1.1.27

Edited in cooperation with Kacper Bak

1 Executive Summary

Sven Apel

William R. Cook
Krzysztof Czarnecki
Oscar M. Nierstrasz

License @ @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Sven Apel, William R. Cook, Krzysztof Czarnecki, Oscar M. Nierstrasz

Seminar Motivation

Feature orientation is an emerging paradigm of software development. It supports partially or
completely automated generation of software systems in a domain based on features—units
of functionality covering the domain. The key idea of feature orientation is to emphasize the
similarities of a family of software systems for a given application domain (e.g., database
systems, banking software, and text processing systems) by treating features as first-class
entities throughout the entire development lifecycle and across all the software artifacts, with
the goal of reusing software artifacts among the family members. For example, features of
a database system could be transaction management, query optimization, and multi-user
operation, and those of a text processing system could be printing, spell checking, and
document format conversions.

@@@@ Except where otherwise noted, content of this report is licensed

Ol under a Creative Commons BY-NC-ND 3.0 Unported license
Feature-Oriented Software Development (FOSD), Dagstuhl Reports, Vol. 1, Issue 1, pp. 27-41
Editors: Sven Apel, William Cook, Krzysztof Czarnecki, and Oscar Nierstrasz

\\v pagstunL Dagstuhl Reports
rReporTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/11021
http://dx.doi.org/10.4230/DagRep.1.1.27
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

28

11021 - Feature-Oriented Software Development (FOSD)

A key software engineering challenge is that a feature does not necessarily map cleanly
to an isolated module of code. Rather, it may affect (“cut across”) many components of a
modular software system. For example, the feature transaction management would affect
many parts of a database system, e.g., query processing, logical and physical optimization,
and buffer and storage management.

The concept of feature orientation is still in its infancy. However, a growing community
of researchers have been working on it for years, and there are related, well-known concepts
of software engineering with well-populated research communities, e.g., software product
lines, aspect-oriented software development, service-oriented architecture, and model-driven
engineering. The main goal of the Dagstuhl seminar on FOSD was to gather researchers and
practitioners who are active in these different communities to discuss the roots, state of the
art, and future directions of FOSD research and practice and to strengthen the identity of
the feature orientation community. We think that this seminar met this goal. A overview of
the seminar organization and a summary of results are given below.

Seminar Organization

As a warm-up for the seminar we conducted a survey on FOSD. The idea was to ask the
emerging community what they think FOSD was about. We asked the following seven
questions:

What do you think are the distinguishing concepts and ideas of FOSD?

What do you think are the major challenges in FOSD?

Which success stories of FOSD do you know?

What is missing in FOSD to adopt it in industry?

Is FOSD sufficiently visible in the software engineering community?

What do you expect to get out of the week?

What format and what kind of activities are you interested in (tutorials, demos, talks,
breakout groups, brainstorming, social events, etc.)?

Nookrwbd =

Based on the responses of 27 participants (available at the seminar’s website), we prepared
an introductory presentation on FOSD that aimed at “synchronizing” the participants, which
is especially important in a field that is still in its infancy. After the self-introductions of all of
the 49 participants and the introductory presentation, we allocated slots for the “hot” topics
in the field of FOSD. On Monday, we had a discussion session of feature modularity. Tuesday
was dedicated entirely to feature interactions. On Thursday, we had a mix of discussions
sessions on industry adoption, the relation of FOSD to other development paradigms, as well
as automatic product generation based on FOSD. On Tuesday and Thursday, we had demo
sessions in the evening; on Wednesday, we had breakout sessions and a social event. Finally,
on Friday, we had two wrap-up sessions, one concluding the individual discussions of the
breakout groups and one summarizing the seminar and discussing results and further action
items.

Seminar Results

From the organizers’ perspective, the seminar was successful, although the large number
of participants pushed the Dagstuhl concept to its limits. The topic attracted a lot of

Sven Apel, William Cook, Krzysztof Czarnecki, and Oscar Nierstrasz

interest (the seminar was fully booked), and during the seminar there were many very
lively and sometimes quite controversial discussions. Many participants contributed actively
by organizing mini-tutorials, discussion sessions, and breakout groups. The results of the
discussion sessions and the breakout groups are available at the seminar’s website.

The participants used the seminar as an opportunity to learn about each others work
and to establish collaborations, which will bear fruit in the years to come. As a first tangible
outcome, we would like to point out the list of resources that the seminar’s participants
developed in a team effort:

Key FOSD papers

Annotated bibliographies in the portal researchr.org
A suite of benchmark problems

Teaching material on FOSD

The details of this list are described on the seminar’s website. Further discussion points
were how to promote FOSD in the future, how to further strengthen the community, and
how to collaborate in an efficient manner.

In summary, we conclude that the seminar was constructive and largely met its goals.

Dagstuhl provided a productive and interactive atmosphere. It was certainly a key event in
the maturation of the FOSD community.
Acknowledgement

The editors would like to thank Kacper Bak for his help in collecting the summary material
from the participants and compiling this report.

29

11021

11021 - Feature-Oriented Software Development (FOSD)

2 Table of Contents

Executive Summary
Sven Apel, William R. Cook, Krzysztof Czarnecki, Oscar M. Nierstrasz.

Overview of Talks

Feature-Aware Verification
Sven Apel e

Feature Interactions: the Good, the Bad, and the Ugly
Joanne Atlee L

Clafer Demo
Kacper Bak e

FOSD—A Science of Software Design: A Personal and Historical Perspective
Don Batory

Model checking feature-based specifications with SNIP
Andreas Classen e e e e

Context-oriented Programming: First-class layers at runtime
Pascal Costanza e

Choice Calculus Mini Tutorial
Martin Erwig o o o e e e e e e e e e e

Re-Thinking Product Line Verification as a Constraints Problem
Kathi Fisler e e e e e e e

Type Checking entire Product Lines
Christian Kdstner o 0 e e

Modularity vs. Virtual Separation of Concerns in Feature-Oriented Implementations
Christian Kdstner. 0 e e

A Survey of Product Family Algebra
Bernhard Mdoller e

Testing Software Product Lines
Sebastian Oster

Event-B and Rodin Overview
Michael Poppleton e e e e e

FOSD Adoption in Industry (Plenary Session Summary)
Rick Rabiser. e

Feature-Oriented Requirements Engineering—An Integrated Modeling, Aspect and
Decision Based Approach
Reinhard Stoiber e e e e e e

Working Groups

Variability Representation (Breakout Session Summary)
Kacper Bgk e

Sven Apel, William Cook, Krzysztof Czarnecki, and Oscar Nierstrasz

Non-functional versus Function Properties in Feature-oriented Product Line Gener-
ation (Breakout Session Summary)

Charles Krueger o o 0 i e e 39

Feature Location (Breakout Session Summary)

Christian Kdstner. 39
Participants e 41

31

11021

32

11021 - Feature-Oriented Software Development (FOSD)

3 Overview of Talks

3.1 Feature-Aware Verification
Sven Apel (University of Passau, DE)

License © @ (® Creative Commons BY-NC-ND 3.0 Unported license
© Sven Apel
Joint work of Apel, Sven; Speidel, Hendrik; Boxleitner, Stefan; von Rhein, Alex; Wendler, Philipp; Beyer, Dirk

The verification of a software system is challenging. Verifying a software product line adds
two aspects to the challenge. First, a software product line represents a set of software
systems, and thus we have to verify that all products (distinguished in terms of their features)
fulfill their specifications. Second, we have to make sure that the features of a product work
properly together. Feature interactions —situations in which the combination of features
leads to emergent and possibly critical behavior— are a major source of failures in software
product lines. We propose feature-aware verification, a verification approach that is aware
of features and their combinations. It supports the specification of feature properties along
with the features in separate and composable units. We encode the verification problem (i.e.,
checking for critical feature interactions) such that we can apply off-the-shelf model-checking
technology. Furthermore, we integrate the technique of variability encoding, which allows
us to verify a product line, without generating and checking a possibly exponential number
of feature combinations. To demonstrate the feasibility of our approach, we implemented
feature-aware verification based on standard model-checking and applied it to a case study
that incorporates the domain knowledge of AT&T on e-mail systems.

3.2 Feature Interactions: the Good, the Bad, and the Ugly
Joanne Atlee (University of Waterloo, CA)

License © @® @ Creative Commons BY-NC-ND 3.0 Unported license
© Joanne Atlee

This talk will be an overview of the research on feature interactions from the perspective
of the FI community. It will include the “feature interaction problem” (which is NOT that
features sometimes interact), general approaches to detecting and resolving interactions, and
the trend toward architectural solutions.

3.3 Clafer Demo
Kacper Bgk (University of Waterloo, CA)

License © @ (® Creative Commons BY-NC-ND 3.0 Unported license
© Kacper Bak
Joint work of Bak, Kacper; Czarnecki, Krzysztof; Wasowski, Andrzej
Main reference Kacper Bak, Krzysztof Czarnecki und Andrzej Wasowski, “Feature and Meta-Models in Clafer:
Mixed, Specialized, and Coupled,” pp. 102-122, Software Language Engineering, LNCS 6563,
Springer-Verlag, 2011.
URL http://dx.doi.org/10.1007/978-3-642-19440-5_7

In the demo we present Clafer, a meta-modeling language with first-class support for feature
modeling. We designed Clafer as a concise notation for meta-models, feature models, mixtures

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-19440-5_7
http://dx.doi.org/10.1007/978-3-642-19440-5_7
http://dx.doi.org/10.1007/978-3-642-19440-5_7
http://dx.doi.org/10.1007/978-3-642-19440-5_7

Sven Apel, William Cook, Krzysztof Czarnecki, and Oscar Nierstrasz

of meta- and feature models (such as components with options), and models that couple
feature models and meta-models via constraints (such as mapping feature configurations
to component configurations or model templates). Clafer also allows arranging models into
multiple specialization and extension layers via constraints and inheritance. We show how to
model a car telematics product line in Clafer, and how to generate an instance of it in the
Alloy analyzer. Clafer models are translated to Alloy via clafer2alloy.

3.4 FOSD—A Science of Software Design: A Personal and Historical
Perspective

Don Batory (University of Texas at Austin, US)

License © @® (@ Creative Commons BY-NC-ND 3.0 Unported license
© Don Batory

I present a summary of my involvement with FOSD for the last 30 years, from a tutorial
perspective.

3.5 Model checking feature-based specifications with SNIP
Andreas Classen (University of Namur, BE)

License © @® (® Creative Commons BY-NC-ND 3.0 Unported license
© Andreas Classen

In software product line engineering, systems are developed in families and differences between
systems of a product line are expressed in terms of features. The model checking problem for
product lines is more difficult than for single systems because a product line with n features
yields up to 2" individual systems to verify.

We present SNIP, a tool for model checking product lines against temporal properties.

Contrary to existing approaches, SNIP relies on an efficient mathematical structure for
product line behaviour, that exploits similarities and represents the behaviour of all systems
in a compact manner. This structure is used to model check all systems of the product line
in a single step.

The tool comes together with an intuitive specification language based on Promela.

Variability in the behaviour is specified by guarding statements with features. A guarded
statement is only executed in products that contain the features of its guard. When checking
properties, SNIP takes these guards and the feature model into account. For this, it uses the
TVL feature modelling language.

SNIP puts the theoretical results of our ICSE 2010 paper "Model Checking Lots of Systems"
into practice and makes them available to engineers through an intuitive specification language
for behaviour and for feature models.

33

11021

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

34

11021 - Feature-Oriented Software Development (FOSD)

3.6 Context-oriented Programming: First-class layers at runtime
Pascal Costanza (Vrije Universiteit Brussel, BE)

License © @ (® Creative Commons BY-NC-ND 3.0 Unported license
© Pascal Costanza
Main reference Robert Hirschfeld, Pascal Costanza, Oscar Nierstrasz: "Context-oriented Programming", in Journal
of Object Technology, vol. 7, no. 3, March-April 2008, pp. 125-151.
URL http://dx.doi.org/10.5381/j0t.2008.7.3.a4

Context-oriented Programming is strongly related to Feature-oriented Programming in that
both approaches use layers as abstractions for expressing feature increments and behavioral
variations of a software system. However, in Context-oriented Programming, layers are
available as first-class entities at runtime that can be activated and deactivated with well-
defined scopes, in order to enable a software system to change its behavior depending on the
context of use.

I have presented a short overview of the notion of Context-oriented Programming, its
essential elements, and a concrete realization in the form of the programming language
ContextL.

3.7 Choice Calculus Mini Tutorial
Martin Erwig (Oregon State University, US)

License © @® @ Creative Commons BY-NC-ND 3.0 Unported license
© Martin Erwig
Joint work of Erwig, Martin; Walkinshaw, Eric
Main reference The Choice Calculus: A Representation for Software Variation, ACM Transactions on Software
Engineering and Methodology, 2011, to appear
URL http://web.engr.oregonstate.edu/ erwig/papers/abstracts.html#ATOSEM11

We describe the basic elements of the choice calculus, a formal representation for software
variation that can serve as a common, underlying representation for variation research,
playing a similar role that lambda calculus plays in programming language research. We will
sketch the syntax and semantics of the choice calculus and present several applications.

At the core of the choice calculus are choices, which represent different alternatives that
can be selected. Choices are annotated by names, which group choices into dimensions.
Dimensions provide a structuring and scoping mechanism for choices. Moreover, each
dimension introduces the number of alternatives each choice in it must have and tags for
selecting those alternatives. The semantics of the choice calculus is defined via repeated
elimination of dimensions and their associated choices through the selection of a tag defined
by that dimension.

The choice calculus obeys a rich set of laws that give rise to a number of normal forms
and allow the flexible restructuring of variation representations to adjust to the needs of
different applications.

Among the potential applications of the choice calculus are feature modeling, change
pattern detection, property preservation, and the development of change IDEs.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.5381/jot.2008.7.3.a4
http://dx.doi.org/10.5381/jot.2008.7.3.a4
http://dx.doi.org/10.5381/jot.2008.7.3.a4
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://web.engr.oregonstate.edu/~erwig/papers/abstracts.html#TOSEM11
http://web.engr.oregonstate.edu/~erwig/papers/abstracts.html#TOSEM11
http://web.engr.oregonstate.edu/~{}erwig/papers/abstracts.html#TOSEM11

Sven Apel, William Cook, Krzysztof Czarnecki, and Oscar Nierstrasz

3.8 Re-Thinking Product Line Verification as a Constraints Problem
Kathi Fisler (Worcester Polytechnic Institute, US)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Kathi Fisler
Main reference Colin Blundell, Kathi Fisler, Shriram Krishnamurthi, Pascal Van Hentenryck, “Parameterized
Interfaces for Open System Verification of Product Lines,” pp. 258-267, Proceedings of the 19th
IEEE International Conference on Automated Software Engineering, 2004.
URL http://dx.doi.org/10.1109/ASE.2004.53

Software product-lines view systems as compositions of features. Each component corresponds
to an individual feature, and a composition of features yields a product. Feature-oriented
verification must be able to analyze individual features and to compose the results into
results on products. Since features interact through shared data, verifying individual features
entails open system verification concerns. To verify temporal properties, features must be
open to both propositional and temporal information from the remainder of the composed
product. This talk argues that we can handle both forms of openness by viewing product-line
verification as a two-phase process of constraint generation and discharge, rather than as a
conventional verification problem.

3.9 Type Checking entire Product Lines
Christian Kastner (Universitat Marburg, DE)

License @ @ (Creative Commons BY-NC-ND 3.0 Unported license
© Christian Késtner
Joint work of Kastner, Christian; Apel, Sven

I propose to give a very brief (6-10 minute) overview of concept of checking the product line
instead of checking the derived products and how this can be applied to type systems. The
idea is to highlight a common research trend and stipulate discussions about adopting all
kinds of checks to check the entire product line.

In a nutshell, the idea of a variability-aware type system to check the product-line
implementation containing all variability (before product derivation) instead of checking
each (of potentially billions of) derived product in isolation. Although the number of
potential products may be exponential, variability-aware type systems exploit knowledge
about variability implementation and can separate intrinsic complexity from accidental
complexity. We are currently trying to scale such type system to type check the Linux
kernel with over 8000 features. We believe that moving analysis from derived products to
the product-line implementation is a common theme that can and should also be applied to
many other approaches.

35

11021

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1109/ASE.2004.53
http://dx.doi.org/10.1109/ASE.2004.53
http://dx.doi.org/10.1109/ASE.2004.53
http://dx.doi.org/10.1109/ASE.2004.53
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

36

11021 - Feature-Oriented Software Development (FOSD)

3.10 Modularity vs. Virtual Separation of Concerns in
Feature-Oriented Implementations

Christian Kdstner (Universitit Marburg, DE)

License © @ Creative Commons BY-NC-ND 3.0 Unported license
© Christian Késtner

When implementing features, the question of modularity arises. Interactions between feature
(intended and accidental) at domain level and implementation level pose serious questions of
how to divide a system into modules and what benefits a strict modularization brings. At
the same time, we argue that tool support can provide many benefits of modularity also for
other forms of implementation, such as the notorious conditional compilation used frequently
by practitioners.

In this talk, I like to give a brief overview of different implementation strategies, but
mostly focus on open questions regarding modularity to initiate a discussion. As one potential
solution I discuss some results of our experience with virtual separation of concerns and
related approaches.

3.11 A Survey of Product Family Algebra
Bernhard Moller (Universitit Augsburg, DE)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Bernhard Moller
Main reference Peter Hofner, Ridha Khédri, Bernhard Méller, “Supplementing Product Families with Behaviour.”
Accepted for publication in the International Journal of Software and Informatics.

Using the well-known concept of a semiring we develop an algebra of product families with +
standing for union and . for composition, like e.g. in regular expressions. The distributive
semiring laws allow factoring out commonality and, conversely, algebraically calculating all
possible products in a family. The algebra is enriched by a relation expressing that presence
of one feature necessitates or excludes that of another one. Finally the "syntactic" view
working only with feature names is supplemented by a semantic one, in which features are
programs with a soundly defined semantics, in such a way that the axioms of product family
algebra are still satisfied.

3.12 Testing Software Product Lines
Sebastian Oster (TU Darmstadt, DE)

License © @ (Creative Commons BY-NC-ND 3.0 Unported license
© Sebastian Oster
Main reference Sebastian Oster, Florian Markert, Philipp Ritter, “Automated incremental pairwise testing of
software product lines,” Proceedings of the 14th International Conference on Software product lines:
going beyond, pp. 196-210, Jeju Island, South Korea, Springer-Verlag, Berlin, Heidelberg, 2010.
URL http://dx.doi.org/10.1007/978-3-642-15579-6_ 14

Testing Software Product Lines is very challenging due to a high degree of variability leading
to an enormous number of possible products. The vast majority of today’s testing approaches
for Software Product Lines validate products individually using different kinds of reuse

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
file:Peter H�fner, Ridha Kh�dri, Bernhard M�ller, ``Supplementing Product Families with Behaviour.'' Accepted for publication in the International Journal of Software and Informatics.
file:Peter H�fner, Ridha Kh�dri, Bernhard M�ller, ``Supplementing Product Families with Behaviour.'' Accepted for publication in the International Journal of Software and Informatics.
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-15579-6_14
http://dx.doi.org/10.1007/978-3-642-15579-6_14
http://dx.doi.org/10.1007/978-3-642-15579-6_14
http://dx.doi.org/10.1007/978-3-642-15579-6_14

Sven Apel, William Cook, Krzysztof Czarnecki, and Oscar Nierstrasz

techniques for testing. Due to the enormous number of possible products, individual product
testing becomes more and more unfeasible.

Combinatorial testing offers one possibility to test a subset of all possible products. In
this contribution we provide a detailed description of a methodology to apply combinatorial
testing to a feature model of a Software Product Line. We combine graph transformation,
combinatorial testing, and forward checking for that purpose. Additionally, our approach
considers predefined sets of products.

3.13 Event-B and Rodin Overview
Michael Poppleton (University of Southampton, UK)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Michael Poppleton

We present the Event-B language for formal modelling, development and verification, and its
supporting Rodin toolkit. This is now a leading state-based Formal Method, supported by a
series of EU Framework STREP/IP grants. As introduction, the value added to a V-model
is outlined. An example development is outlined to demonstrate the modelling, refinement,
and V&V techniques, using the tools. Various Rodin plugin tools are described, those for
decomposition/ composition being of particular interest (to a FOSD audience)

3.14 FOSD Adoption in Industry (Plenary Session Summary)
Rick Rabiser (Universitit Linz, AT)

License @ @ (& Creative Commons BY-NC-ND 3.0 Unported license
© Rick Rabiser

In the discussion session FOSD Adoption in Industry three impulse talks were given about
experiences of using FOSD and product line engineering in industry. More specifically,
Christa Schwanninger reported experiences of feature-oriented development from Siemens
AG; Charles Krueger presented experiences of introducing feature-oriented tools by BigLever
Inc. in different large-scale organizations; and Paul Griinbacher reported project experiences
of maturing a PLE research tool for industrial application within Siemens VAI.

The presenters discussed different industrial challenges motivating the use of FOSD. For
example, the high number of configuration options in systems leading to long release durations;
the lack of agreement on the scope of systems; or the competition forcing companies to
perform explicit variability management. Main goals when applying FOSD in practice are to

harness complexity, to improve the efficiency of production, and to reduce the time-to-market.

The session then focused on two particular areas for discussion, i.e., What’s already done
in industrial practice? and What are the industrial challenges FOSD researchers should
work on?. The presentations and the discussion showed that FOSD is performed in different
degrees in practice.

Variability management is done for diverse artifacts and using different tools ranging
from simple spreadsheets to fully fledged PLE tool suites. Companies have their own and
often very specific ways to perform FOSD. However, participants reported many challenges
are remaining for FOSD researchers:

37

11021

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

38

11021 - Feature-Oriented Software Development (FOSD)

Handling of non-functional properties; feature-driven build management; standardization
(e.g., of variability modeling, cf. CVL); simplification (esp. of user interfaces); integration
with COTS apps and existing environments; support for industrial workflows; sharing of
models and project management data; security; deployment support.

3.15 Feature-Oriented Requirements Engineering—An Integrated
Modeling, Aspect and Decision Based Approach

Reinhard Stoiber (Universitit Zirich, CH)

License © @® @ Creative Commons BY-NC-ND 3.0 Unported license
© Reinhard Stoiber
Main reference Reinhard Stoiber, Martin Glinz, “Supporting Stepwise, Incremental Product Derivation in Product
Line Requirements Engineering,” pp. 77-84, Proceedings of VaMo0S’10: Fourth International
Workshop on Variability Modelling of Software-intensive Systems, Linz, Austria, 2010.
URL http://www.vamos-workshop.net/proceedings/VaMoS_ 2010_ Proceedings.pdf

Considering variability modeling in requirements engineering is essential for developing,
maintaining and evolving a software product line.

In this talk we introduce current techniques how practitioners and researchers typically deal
with variability and point out open challenges in requirements engineering. Based on a real-
world example, we demonstrate how our work on integrated requirements modeling, aspect-
oriented modeling and Boolean decision modeling can help to overcome these problems. Our
approach avoids information scattering of features over multiple diagrams, automates clerical
as well as intellectual tasks for extracting and composing the variability, and automatically
resolves and propagates variability constraints. This allows an easier creation of software
product line models, improves the understanding of variability and its impact, and leads to
an efficient and intuitive derivation of products that are correct by construction. Ongoing
work addresses tool optimizations and a comprehensive validation.

4 Working Groups

4.1 Variability Representation (Breakout Session Summary)
Kacper Bgk (University of Waterloo, CA)

License © @ (® Creative Commons BY-NC-ND 3.0 Unported license
© Kacper Bak

The variability representation session focused on languages for modeling variability in source
code and models. It started with an introduction to the choice calculus, a fundamental
language for representing software variations. The choice calculus aspires to play a similar
role for variation research as lambda calculus does in programming language research. The
presentation covered basic ideas behind the choice calculus (choices and dimensions) and
explained how choices get eliminated to derive a single product. The designers of the choice
calculus were challenged to show how to translate feature models to the choice calculus. Even
though the resulting models may be verbose, the translation is indeed possible.

Later the session turned to the Common Variability Language, which is the upcoming
OMG standard for introducing variability into existing models. CVL is composed of several
layers, of which two were particularly relevant to the session: variability realization and

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Sven Apel, William Cook, Krzysztof Czarnecki, and Oscar Nierstrasz

variability abstraction. The former includes variation points that have concrete impact on
the base model, while the latter shows variation at a higher level.

The main conclusion was that the choice calculus might be a suitable theory for variation
points.

The last part of the session concerned static versus dynamic variability. Static variability
is resolved at compile time, while dynamic features are loaded at the run-time. One question
discussed was this: What should happen when user loads a dynamic feature which is in
conflict with an existing feature? Participants discussed soft and hard constraints in the
context of mobile applications. Soft constraints can be violated, while hard constraints must
always hold. Mobile applications are user-centric, thus user preferences should also be taken
into account when two features are in conflict. A proposed solution was to use probabilistic
feature models to attach user preferences to features.

4.2 Non-functional versus Function Properties in Feature-oriented
Product Line Generation (Breakout Session Summary)

Charles Krueger (BigLever, Austin, US)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Charles Krueger

With feature-oriented product line engineering, stakeholders exploit feature models to un-
derstand and manage functional properties during the generation of a system. Although
functional behavior of a system is the primary concern, the associated non-functional prop-
erties — such as resource usage, performance, cost and perceived product value — are also
important concerns in industry settings.

The common scenarios include (1) adjusting functionality in order to bring one or more
non-functional properties with specified bounds, (2) expanding functionality to increase
system value by taking advantage of underutilized capacity in a non-functional property.
The relationship between features and non-functional properties may be hard or easy to
measure and control, additive, binary, non-monotonic or chaotic.

How can feature-oriented approaches simultaneously manage the desired functional and
non-functional properties of a system under generation? Measurements and statistical
modeling of non-functional properties relative to feature selections can be incorporated into
generators to provide guidance.

Adjacent fields that can contribute include operations research, Al and satisfaction solvers.

4.3 Feature Location (Breakout Session Summary)
Christian Kastner (Universitat Marburg, DE)

License @ @ (Creative Commons BY-NC-ND 3.0 Unported license
© Christian Késtner

In a breakout session on feature location, we assembled a group of people who pursue different
location strategies. After introducing the respective concepts or tools, we soon realized that
the goals differ significantly. We identified three main higher level goals: locating features
for maintenance tasks, for design decisions, and for reuse. Some participants pursue mainly
one of these goals, for example CodeX for maintenance, Portolio and CIDE for reuse, and

39

11021

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

40

11021 - Feature-Oriented Software Development (FOSD)

Feature Unweaving for Design, whereas several tools also pursued multiple goals at the same
time, e.g., Linux Analysis and the Requirements to Test mappings.

We concluded that many approaches are complementary and we discussed possible
integrations. A main outcome was the agreement to share case studies and the formulation of
a vision of an entire process that spans feature-location tasks from design to implementation.

Sven Apel, William Cook, Krzysztof Czarnecki, and Oscar Nierstrasz 41

Participants

= Sven Apel

Universitat Passau, DE

= Joanne Atlee

University of Waterloo, CA

= Kacper Bak

University of Waterloo, CA

= Don Batory

Univ. of Texas at Austin, US

= Thorsten Berger

Universitat Leipzig, DE

= Gotz Botterweck

University of Limerick, IE

= Andreas Classen

University of Namur, BE

= William R. Cook

University of Texas - Austin, US
= Pascal Costanza

Vrije Universiteit Brussel, BE
= Krzysztof Czarnecki
University of Waterloo, CA

= Ben Delaware

University of Texas - Austin, US
= Zinovy Diskin

University of Waterloo, CA

= Christoph Elsner

Universitdat Erlangen-Nirnberg,
DE

= Martin Erwig

Oregon State University, US

- Kathi Fisler

Worcester Polytechnic Institute,
US

= Martin Glinz

Universitat Ziirich, CH

= Gerhard Goos

KIT - Karlsruhe Institute of
Technology, DE

= Mark Grechanik
Accenture Labs - Chicago, US

= Paul Griinbacher
Universitdt Linz, AT

= Florian Heidenreich
TU Dresden, DE

= Robert Hirschfeld
Hasso-Plattner-Institut -
Potsdam, DE

= Christian Késtner
Universitdt Marburg, DE

= Kyo-Chul Kang
POSTECH - Pohang, KR

= Hans Koérber
FH Kaiserslautern-Zweibriicken,
DE

= Shriram Krishnamurthi
Brown University - Providence,
US

= Charles Krueger

BigLever- Austin, US

= Ingolf Kriiger

University of California - San
Diego, US

= Ralf Lammel

Universitdt Koblenz-Landau, DE
= Jaejoon Lee

Lancaster University, GB

= Thomas Leich

METOP GmbH - Magdeburg,
DE

= Christian Lengauer
Universitat Passau, DE

= Bernhard Moller
Universitdt Augsburg, DE

= Oscar M. Nierstrasz
Universitdt Bern, CH

= Sebastian Oster
TU Darmstadt, DE

- Holger Papajewski
pure-systems GmbH -
Magdeburg, DE

= Joe Politz

Brown University - Providence,
US

= Michael Poppleton
University of Southampton, GB
= Christian Prehofer

LMU Miinchen, DE

= Rick Rabiser

Universitdt Linz, AT

= Jorge Ressia

Universitdt Bern, CH

= Bernhard Rumpe
RWTH Aachen, DE

= Klaus Schmid
Universitat Hildesheim, DE
= Christa Schwanninger
Siemens AG - Erlangen, DE
= Steven She

University of Waterloo, CA
= Olaf Spinczyk

TU Dortmund, DE

= Reinhard Stoiber
Universitat Ziirich, CH

= Salvador Trujillo

Ikerlan Research Centre -
Arrasate-Mondragon, ES

= Eric Walkingshaw
Oregon State University, US
= Andrzej Wasowski

IT University of Copenhagen,
DK

11021

	Executive Summary Sven Apel, William R. Cook, Krzysztof Czarnecki, Oscar M. Nierstrasz
	Table of Contents
	Overview of Talks
	Feature-Aware Verification Sven Apel
	Feature Interactions: the Good, the Bad, and the Ugly Joanne Atlee
	Clafer Demo Kacper Bak
	FOSD—A Science of Software Design: A Personal and Historical Perspective Don Batory
	Model checking feature-based specifications with SNIP Andreas Classen
	Context-oriented Programming: First-class layers at runtime Pascal Costanza
	Choice Calculus Mini Tutorial Martin Erwig
	Re-Thinking Product Line Verification as a Constraints Problem Kathi Fisler
	Type Checking entire Product Lines Christian Kästner
	Modularity vs. Virtual Separation of Concerns in Feature-Oriented Implementations Christian Kästner
	A Survey of Product Family Algebra Bernhard Möller
	Testing Software Product Lines Sebastian Oster
	Event-B and Rodin Overview Michael Poppleton
	FOSD Adoption in Industry (Plenary Session Summary) Rick Rabiser
	Feature-Oriented Requirements Engineering—An Integrated Modeling, Aspect and Decision Based Approach Reinhard Stoiber

	Working Groups
	Variability Representation (Breakout Session Summary) Kacper Bak
	Non-functional versus Function Properties in Feature-oriented Product Line Generation (Breakout Session Summary) Charles Krueger
	Feature Location (Breakout Session Summary) Christian Kästner

	Participants

