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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 11051 “Sparse Rep-
resentations and Efficient Sensing of Data”. The scope of the seminar was twofold. First, we
wanted to elaborate the state of the art in the field of sparse data representation and correspond-
ing efficient data sensing methods. Second, we planned to explore and analyze the impact of
methods in computational science disciplines that serve these fields, and the possible resources
allocated for industrial applications.
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Modeling of data is the crucial point in enabling various processing of it. This modeling can
take many forms and shapes: it can be done in a low-level way that ties the data samples
directly or in higher levels that search for structures and constellations. The task of modeling
data is so fundamental that it is underlying most of the major achievements in the fields of
signal and image processing. This is true also for processing of more general data sources.
Indeed, the field of machine learning that addresses this general problem also recognizes the
importance of such modeling. In this realm of models, there is one that stands out as quite
simple yet very important this is a model based on sparse description of the data. The core
idea is to consider the data as a sparse linear combination of core elements, referred to as
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atoms. This model has attracted huge interest in the past decade, with many mathematicians,
computer scientists, engineers, and scientists from various disciplines working on its different
facets, and building a set of tools that lead all the way from pure mathematical concepts
to practical tools to be used in other computational sciences as well as applications. Using
this model, researchers have shown in recent years a wide battery of computational research
disciplines and applications that directly benefit from it, leading to state-of-the- art results.
Various reconstruction problems, data compression, sampling and sensing, separation of
signals, cleaning and purifying data, adaptive numerical schemes, and more, all require the
utilization of sparse representations to succeed in their tasks.

The goals of the seminar can be summarized as follows:
Establish communication between different focusses of research
Open new areas of applications
Manifest the future direction of the field
Introduce young scientists

To reach these seminar goals, the organizers identified in advance the most relevant fields of
research:

Sampling and Compressed Sensing
Frames, Adaptivity and Stability
Algorithms and Applications

The seminar was mainly centered around these topics, and the talks and discussion groups were
clustered accordingly. During the seminar, it has turned out that in particular ‘generalized
sensing’, ‘data modeling’, and corresponding ‘algorithms’ are currently the most important
topics. Indeed, most of the proposed talks were concerned with these three issues. This
finding was also manifested by the discussion groups. For a detailed description of the
outcome of the discussion, we refer to Section 4.

The course of the seminar gave the impression that sparsity with all its facets is definitely
one of the most important techniques in applied mathematics and computer sciences. Also
of great importance are associated sampling issues. We have seen many different view points
ranging from classical linear and nonlinear to compressive sensing. In particular, new results
on generalized sampling show how to design effective sampling strategies for recovering
sparse signals. The impact of these techniques became clear as they allow an extension
of the classical finite dimensional theory of compressive sensing to infinite dimensional
data models. Moreover, it was fascinating to see how sampling and sparsity concepts are
by now influencing many different fields of applications ranging from image processing /
compression / resolution to adaptive numerical schemes and the treatment of operator
equations/inverse problems. It seems that the duality between sparse sampling and sparse
recovery is a common fundamental structure behind many different applications. However,
the mathematical technicalities remain quite challenging. As algorithmic issues were also
discussed quite intensively, we could figure out that we are now essentially at some point where
`1-optimization is competitive speed-wise with classical linear methods such as conjugate
gradient.

Summarizing our findings during the seminar, we believe that the research agenda can
be more focused on the actual bottlenecks, being in problem/signal modeling, design of
sampling and recovery methods adapted to specific problems, and algorithmic improvements
including performance bounds and guarantees.
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3 Overview of Talks

3.1 Multivariate Periodic Function Spaces
Ronny Bergmann (Universität zu Lübeck, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Bergmann, Ronny; Prestin, Jürgen

In this talk we present patterns P(M) based on invertible matrices M ∈ Zd×d as multivariate
generalizations of the equidistant points on [0, 1). We present different properties of the
patterns, e.g. the classification of subpatterns and a dual group, that is used to define a
discrete Fourier transform with respect to M.

Using the pattern to generate translates of a square integrable function f defined on the
d-dimensional 2π-periodic torus, we introduce a translation invariant space V f . This space
can be characterized by the Fourier series of f and the aforementioned Fourier transform on
P(M). The same is possible for subspaces that are generated by different translates of f or
even translates of other functions in V f . Finally this yields properties for a decomposition of
V f into two orthogonal subspaces that are translation invariant with respect to a certain
subpattern of P(M).

3.2 Random tight frames and applications
Martin Ehler (National Institutes of Health – Bethesda, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Ehler, Martin; Galanis, Jennifer
Main reference M. Ehler, J. Galanis, “Frame theory in directional statistics,” Stat. Probabil. Lett., in press.

URL http://dx.doi.org/10.1016/j.spl.2011.02.027

It is known that independent, uniformly distributed points on the sphere approximately form
a finite unit norm tight frame. In this talk, we introduce probabilistic frames to more deeply
study finite frames whose elements are chosen at random. In fact, points chosen from any
probabilistic tight frame approximately form a finite tight frame; they do not have to be
uniformly distributed, nor have unit norm. We also observe that classes of random matrices
used in compressed sensing are induced by probabilistic tight frames.

Finally, we merge directional statistics with frame theory to elucidate directional statistical
testing. Distinguishing between uniform and non-uniform sample distributions is a common
problem in directional data analysis; however for many tests, non-uniform distributions exist
that fail uniformity rejection. We find that probabilistic tight frames yield non-uniform
distributions that minimize directional potentials, leading to failure of uniformity rejection for
the Bingham test. We apply our results to model patterns found in granular rod experiments.

Related references are:

References
1 M. Ehler, “Random tight frames,” arXiv:1102.4080v1.
2 M. Ehler, K.A. Okoudjou, “Minimization of the probabilistic p-frame potential,”

arXiv:1101.0140.
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3.3 Alternating Direction Optimization for Imaging Inverse Problems
with Sparsity-Inducing Regularization

Mario Figueiredo (TU Lisboa, PT)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Figueiredo, Mário; Bioucas-Dias, José; Afonso, Manya

Most modern approaches (regularization-based or Bayesian) to imaging inverse problems lead
to optimization problems. These (usually convex) problems have features that place them
beyond the reach of off-the-shelf optimization methods and have stimulated a significant
amount of research. In particular, the presence of regularizers encouraging sparse solutions
imply the non-smoothness of the objective function, which together with its typical very high
dimensionality constitutes a challenge.

Examples of this include frame-based regularization (either in an analysis or synthesis
formulation), where the classical regularizer involves the `1 norm.

This talk will cover our recent work on the application of a class of techniques known
as "alternating direction methods" to several imaging inverse problems with frame-based
sparsity-inducing regularization, namely: (a) standard image restoration/reconstruction from
linear observations with Gaussian noise; (b) image restoration from Poissonian observations;
(c) multiplicative noise removal.

In all these cases, the proposed methods come with theoretic convergence guarantees and
achieve state-of-the-art speed, as shown in the reported experiments. To further illustrate
the flexibility of this class of methods, we show how it can be used to seamlessly address
hybrid analysis/synthesis formulations as well as group-norm regularizers (with or without
group overlap).

The work described in this talk was co-authored by José M. Bioucas-Dias and Manya
V. Afonso, and reported in the following publications:

References
1 M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented Lagrangian approach to

the constrained optimization formulation of imaging inverse problems", IEEE Transactions
on Image Processing, vol. 20, pp. 681–695, 2011.

2 M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “Fast image recovery using variable split-
ting and constrained optimization", IEEE Transactions on Image Processing, vol. 19, pp.
2345–2356, 2010.

3 J. Bioucas-Dias, and M. Figueiredo, “Multiplicative noise removal using variable splitting
and constrained optimization", IEEE Transactions on Image Processing, vol. 19, pp. 1720–
1730, 2010.

4 M. Figueiredo and J. Bioucas-Dias “Restoration of Poissonian images using alternating
direction optimization", IEEE Transactions on Image Processing, vol. 19, pp. 3133–3145,
2010.
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3.4 Adaptive wavelet methods for inverse parabolic problems
Ulrich Friedrich (University of Marburg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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We combine adaptive wavelet techniques for well-posed problems and regularization theory
for inverse problems. We are concerned with identifying certain parameters in a parabolic
reaction-diffusion equation from measured data. The PDE describes the gene concentrations
in embryos at an early state of development. The forward problem is formulated as an
evolution equation, and the analytical properties of the parameter-to-state operator are
analyzed. The results justify the application of an iterated soft-shrinkage algorithm within
a Tikhonov regularization approach. The forward problem is treated by means of a new
adaptive wavelet algorithm which is based on tensor wavelets. A generalized anisotropic
tensor wavelet basis dealing with complicated domains is given. This leads to dimension
independent convergence rates. An implementation of this procedure involving the new
adaptive wavelet solver is proposed and numerical results are presented.

3.5 A Majorization-minimization algorithm for sparse factorization and
some related applications

Onur G. Guleryuz (DoCoMo USA Labs – Palo Alto, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Given a data matrix, X, we are interested in its approximations of the form X̂ = TC where
T and C are two sparse matrices. The optimization setup is

min
T,C
||X − TC||2 subject to ||T ||0 + ||C||0 ≤ κ.

The problem arises in
(a) accelerating matrix multiplication where an a priori known X is to be multiplied with a

dense matrix S, with S only available online.
(b) approximation where X = Y + W , with Y = TC, and the goal is to recover Y (i.e.,

structured signal under noise, structured signal with missing data, etc.)
(c) compression, with T as the data-adaptive basis, C as the matrix of coefficient vectors,

and assuming one is using a nonlinear-approximation-based compression algorithm.
X is specified in a domain spanned by two known orthonormal matrices which we call
the presentation basis. Many disciplines approach these applications using the SVD of X,
disregarding the last twenty-plus years of research. Our aim is to move toward “generic
signal processing” where DSP techniques can be used to match/better existing results with
minor or no domain-specific information.

References
1 M. Döhler, S. Kunis, and D. Potts. Nonequispaced hyperbolic cross fast Fourier transform.

SIAM J. Numer. Anal., 47:4415 – 4428, 2010.
2 M. Aharon, M. Elad, and A.M. Bruckstein, The K-SVD: An Algorithm for Designing of

Overcomplete Dictionaries for Sparse Representation, IEEE Trans. On Signal Processing
54(11) (2006), 4311-4322.
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3 J. Zujovic and O. G. Guleryuz, Complexity Regularized Pattern Matching, Proc. IEEE
Int’l Conf. on Image Proc. (ICIP2009), Cairo, Egypt, Nov. 2009.

4 Rubinstein, R., Zibulevsky, M. and Elad, M., Double Sparsity: Learning Sparse Dictionaries
for Sparse Signal Approximation, IEEE Transactions on Signal Processing 58(3) (2010).

5 E. Chou and O. G. Guleryuz, A Majorization-minimization algorithm for sparse factoriza-
tion and related applications, (in preparation).

6 O. G. Guleryuz, Nonlinear Approximation Based Image Recovery Using Adaptive Sparse
Reconstructions and Iterated Denoising: Parts I and II, IEEE Transactions on Image
Processing, (2006).

3.6 Stable discretizations of the hyperbolic cross fast Fourier transform
Stefan Kunis (Universität Osnabrück, DE)
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A straightforward discretization of problems in d spatial dimensions with 2n, n ∈ N, grid
points in each coordinate leads to an exponential growth 2dn in the number of degrees of
freedom.

We restrict the frequency domain to the hyperbolic cross

Hd
n =

⋃
j∈Nd

0 ,‖j‖1=n

(−2j1−1, 2j1−1]× . . .× (−2jd−1, 2jd−1] ∩ Zd,

and ask for the fast approximate evaluation of the trigonometric polynomial

f(x) =
∑

k∈Hd
n

f̂k e2πikx, (1)

at nodes x` ∈ Td, ` = 1, . . . ,M .
We note that the reduced problem size is cd2nnd−1 ≤ |Hd

n| ≤ Cd2nnd−1 and a classical
result states the computation of (1) for all sparse grid nodes takes at most Cd2nnd floating
point operations.

This has been generalized for arbitrary spatial sampling nodes and both algorithms are
available in the Matlab toolbox nhcfft.

I Theorem 1. [1] The computation of (1) at all nodes x` ∈ Td, ` = 1, . . . , |Hd
n|, takes at

most Cd2nn2d−2(| log ε|+ logn)d, where ε > 0 denotes the target accuracy.

More recently, we analyzed the numerical stability of these sampling sets and in sharp
contrast to the ordinary FFT which is unitary, we found the following negative result.

I Theorem 2. [2] The computation of (1) at the sparse grid has condition number

cd2
n
2 n

2d−3
2 ≤ κ ≤ Cd2

n
2 n2d−2.

Although random sampling offers a stable spatial discretization with high probability if
M ≥ C|Hd

n| log |Hd
n|, the fast algorithm [1] relies on an oversampled sparse grid and thus

suffers from the same instability.
Ongoing work [3] considers lattices as spatial discretization for the hyperbolic cross fast

Fourier transform. These turn out to have quite large cardinality asymptotically but offer
perfect stability and outperform known algorithms by at least one order of magnitude with
respect to CPU timings for moderate problem sizes.
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3.7 Optimally Sparse Image Approximations Using Compactly
Supported Shearlets

Wang-Q Lim (Universität Osnabrück, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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It is now widely acknowledged that analyzing the intrinsic geometrical features of a func-
tion/signal is essential in many applications. In order to achieve this, several directional
systems have been proposed in the past. The first breakthrough was achieved by Candes
and Donoho who introduced curvelets and showed that curvelets provide an optimal approx-
imation property for a special class of 2D piecewise smooth functions, called cartoon-like
images. However, only band-limited directional systems providing an optimal approximation
property have been constructed so far, except adaptive representation schemes.

In this talk, we will show that optimally sparse approximation of cartoon-like images can
be achieved using compactly supported shearlet frames in both 2D and 3D. We then briefly
discuss our ongoing work to construct a compactly supported directional system which is not
only a tight frame but also provides optimally sparse approximation of cartoon-like images.

3.8 Exact test instances for Basis Pursuit Denoising
Dirk Lorenz (TU Braunschweig, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Main reference Dirk A. Lorenz, “Constructing test instances for Basis Pursuit Denoising,” submitted for
publication, 2011.

URL http://arxiv.org/abs/1103.2897

The number of available algorithms for the so-called Basis Pursuit Denoising problem (or the
related LASSO-problem) is large and keeps growing. Similarly, the number of experiments
to evaluate and compare these algorithms on different instances is growing. However, many
comparisons lack of test instances for which exact solutions are known. We propose to close
this gap by a procedure which calculates a right hand side from a given matrix, regularization
parameter and a given solution. It can be shown that this can be accomplished by means
of projection onto convex sets (POCS) or quadratic programming. The method has been
implemented in MATLAB and is available as part of L1TestPack from http://www.tu-
braunschweig.de/iaa/personal/lorenz/l1testpack.
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3.9 Cosparse Analysis Modeling – Uniqueness and Algorithms
Sangnam Nam (INRIA – Rennes, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
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In the past decade there has been a great interest in a synthesis-based model for signals, based
on sparse and redundant representations. Such a model assumes that the signal of interest
can be composed as a linear combination of few columns from a given matrix (the dictionary).
An alternative analysis-based model can be envisioned, where an analysis operator multiplies
the signal, leading to a cosparse outcome. In this work, we consider this analysis model, in
the context of a generic missing data problem (e.g., compressed sensing, inpainting, source
separation, etc.). Our work proposes a uniqueness result for the solution of this problem,
based on properties of the analysis operator and the measurement matrix. We also considers
two algorithms for solving the missing data problem, an L1-based and a new greedy method.
Our simulations demonstrate the appeal of the analysis model, and the success of the pursuit
techniques presented.

References
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3 E. J. Candès, Y. C. Eldar, D. Needell, and Y. Ma, “Compressed sensing with coherent and
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9 M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab Software for Disciplined Convex Program-
ming,” http://cvxr.com/cvx, August 2008.
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3.10 Space Splittings and Schwarz-Southwell Iterations
Peter Oswald (Jacobs University – Bremen, DE)
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Joint work of Griebel, Michael; Oswald, Peter

The talk reviews joint work in progress with M. Griebel [1], which continues our collaboration
on iterative solvers for symmetric elliptic variational problems that are based on Hilbert
space splittings, so-called additive and multiplicative Schwarz methods. Note that Hilbert
space splittings underlying the theory of Schwarz methods have lately reappeared as fusion
frames. See [2] for a review of previous work.

While in the standard theory of multiplicative Schwarz methods the order of subproblem
traversal is fixed, in the new versions the ordering is chosen in a weak greedy fashion,
e.g., according to the size of subproblem residuals, or randomly. For linear systems and
Gauss-Seidel methods (a special instance of multiplicative Schwarz methods) the greedy
ordering goes back to Gauss and Seidel, and has been popularized by Southwell in the
1940-50ies. The method has been theoretically analyzed in the framework of coordinate
descent methods for convex optimization methods, and has lately been revived in the context
of sparse approximation.

Given these developments, we decided to first formulate and prove convergence results for
Schwarz-Southwell methods for the case of splittings into N subproblems. The main result is
an exponential energy error decay estimate of the form

‖u− u(m+1)‖2E ≤ (1− γ

N
)‖u− u(m)‖2E , m ≥ 0,

where γ depends on the spectral bounds characterizing the space splitting, the relaxation
parameter ω, and the weakness parameter β of the weak greedy step. The result shows that
greedy strategies can slightly improve the performance of multiplicative Schwarz methods.
We also state a similar estimate for the expected convergence rate if the subproblem ordering
is randomized. Investigations on infinite splittings are still at their beginning, they benefit
from the theory of greedy algorithms in infinite-dimensional Hilbert and Banach spaces
developed by Temlyakov and others. We hope that a better understanding of this topic will
shed new light on adaptive multilevel methods such as the early work by Rüde.

References
1 M. Griebel, P. Oswald, Schwarz-Southwell Methods. In preparation.
2 P. Oswald, Stable space splittings and fusion frames. In Wavelets XIII (V.K. Goyal, M.
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3.11 Sparse Approximation of Images by the Easy Path Wavelet
Transform

Gerlind Plonka-Hoch (Universität Göttingen, DE)
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The Easy Path Wavelet Transform (EPWT) has recently been proposed as a tool for sparse
representations of bivariate functions from discrete data, in particular from image data.
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The EPWT is a locally adaptive wavelet transform. It works along pathways through the
array of function values and it exploits the local correlations of the given data in a simple
appropriate manner.

Using polyharmonic spline interpolation, we show that the EPWT leads, for a suitable
choice of the pathways, to optimal N -term approximations for piecewise Hölder smooth
functions with singularities along curves.

3.12 Quadrature errors, discrepancies and variational dithering
Gabriele Steidl (Universität Kaiserslautern, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Main reference M. Gräf, D. Potts and G. Steidl, Quadrature errors, discrepancies and their relations to halftoning
on the torus and the sphere, Preprint TU Chemnitz, Fakultät für Mathematik, Preprint 5, 2011.

URL http://www.mathematik.uni-kl.de/ steidl

The stippling technique places black dots such that their density gives the impression of tone.
The original idea for considering minimizers of this functional as ’good’ dot positions

comes from electrostatic principles. This talk is related to the continuous version of the
above attraction-repulsion functional with more general functions ϕ : [0,∞)→ R:

Eϕ(p) := λ

2

M∑
i,j=1

ϕ(‖pi − pj‖2)−
M∑
i=1

∫
[0,1]2

w(x)ϕ(‖pi − x‖2) dx, (2)

where w : [0, 1]2 → [0, 1] and λ := 1
M

∫
[0,1]2 w(x) dx. The function ϕ(r) = −r was used in as

well as ϕ(r) = − log(r). In another paper, the authors mentioned ϕ(r) = −rτ , 0 < τ < 2
and ϕ(r) = r−τ , τ > 0 for r 6= 0. In this talk we relate stippling processes with the classical
mathematical question of finding best nodes for quadrature rules. We provide theoretical
results on the connection between seemingly different concepts, namely quadrature rules,
attraction-repulsion functionals, L2–discrepancies and least squares functionals. For the later
approach we provide numerical minimization algorithms. In the theoretical part, we start
with worst case quadrature errors on RKHSs in dependence on the quadrature nodes. While
in the literature, this was mainly done for constant weights w ≡ 1, see [5], we incorporate
a weight function related to the image into the quadrature functional. The corresponding
quadrature error errK(p) which depends on the reproducing kernel K can be defined for
RKHSs on X ∈ {R2, [0, 1]2} as well as for RKHSs on compact manifolds like X ∈ {T 2, S2}.
We aim to minimize this quadrature error in order to obtain optimal quadrature nodes p. It
turns out that for special kernels K (on special spaces X ) this quadrature error (or at least
its minimizers) covers the following approaches:
1. Attraction-Repulsion Functionals

An interesting case of RKHSs appears for radial kernels K(x, y) = ϕ(‖x− y‖2) depending
only on the distance of the points. We will show that in this case the quadrature error
errK(p) can be considered as a generalization of (2) which works not only on [0, 1]2 but
also to compact manifolds. Hence our approach goes far beyond the setting in [1] or [2].

2. L2–Discrepancies
We prove that for X ∈ {[0, 1]2, T 2, S2} and discrepancy kernels K, the quadrature errors
on RKHSs defined by these kernels coincide with L2–discrepancy functionals. For various
applications of L2–discrepancy functionals, see [5] and the references therein. Note
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that a relation between the distance kernels K(x, y) = ‖x− y‖2 on T 2 and S2 and the
corresponding discrepancy kernels was shown numerically in [3].

3. Least Squares Functionals
Finally, we consider RKHSs of bandlimited functions with bandlimited kernels on X ∈
{T 2, S2}. The reason for addressing these spaces is that we want to approximate functions
on X by bandlimited functions in order to apply fast Fourier techniques. We prove that
for these RKHSs the quadrature error can be rewritten as a least squares functional.

In the numerical part we approximate functions and kernels on X ∈ {T 2, S2} by their
bandlimited versions and minimize the corresponding quadrature error which takes in this
case the form of a least squares functional. Due to the page limitation we restrict our
attention to the sphere S2. We are not aware of any results on S2–stippling in the literature.
We propose a nonlinear CG method on manifolds to compute a minimizer of the least squares
functional on S2. This method was also successfully used for the approximation of spherical
designs, i.e., for w ∼ 1 in [4] and is generalized in this paper. In particular, each CG step
can be realized in an efficient way by the nonequispaced fast spherical Fourier transform
(NFSFT). This reduces the asymptotic complexity of the proposed algorithm drastically,
e.g., from O(MN2) to O(N2 log2N +M log2(1/ε)) arithmetic operations per iteration step,
where ε is the described accuracy and N corresponds to the bandwidth. In other words, only
by the help of the NFSFT the computation becomes possible in a reasonable time.
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3.13 Compressive sensing and inverse problems
Gerd Teschke (Hochschule Neubrandenburg, DE)
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Joint work of Teschke, Gerd; Herrholz, Evelyn
Main reference Evelyn Herrholz, Gerd Teschke, “Compressive sensing principles and iterative sparse recovery for

inverse and ill-posed problems,” Inverse Problems, vol. 26, no. 12, 125012.
URL http://dx.doi.org/10.1088/0266-5611/26/12/125012

We shall be concerned with compressive sampling strategies and sparse recovery principles for
linear inverse and ill-posed problems. As the main result, we provide compressed measurement
models for ill-posed problems and recovery accuracy estimates for sparse approximations
of the solution of the underlying inverse problem. The main ingredients are variational
formulations that allow the treatment of ill-posed operator equations in the context of
compressively sampled data. In particular, we rely on Tikhonov variational and constrained
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optimization formulations. One essential difference to the classical compressed sensing
framework is the incorporation of joint sparsity measures allowing the treatment of infinite
dimensional reconstruction spaces. The theoretical results are furnished with a number of
numerical experiments.

We rely on a signal model, Xk = {x ∈ X, x =
∑
`∈I,|I|=k

∑
λ∈Λ d`,λa`,λ, d ∈ (`2(Λ))m},

in which we assume that the coefficients d`,λ share a joint sparsity pattern (only k out
of m sequences {d`,λ}λ∈Λ do not vanish). The space Xk can be seen as a union of (shift
invariant) subspaces. One approach to recover d was suggested in [Y. C. Eldar. Compressed
Sensing of Analog Signals in Shift-Invariant Spaces. IEEE Trans. on Signal Processing,
57(8), 2009.]. We propose an alternative by solving adequate variational problems. The
essential idea to tackle the support set recovery problem is to involve the joint sparsity
measure Ψq,r(d) = (

∑m
`=1(

∑
λ∈Λ |d`,λ|r)

q
r )

1
q . This measure promotes a selection of only

those indices ` ∈ {1, . . . ,m} for which ‖{d`,λ}λ∈Λ‖`r(Λ) is large enough, i.e. where the size
of the coefficients d`,λ indicates a significant contribution to the representation of x. In order
to define an adequate variational formulation, we have to introduce a suitable sensing model.
Assume the data y are obtained by sensing Kx through Fs (a compressed version of Fv), i.e.
y = FsKx = FsKF

∗
a d = AFK∗vF

∗
a d, where K is an ill-posed but bounded linear operator

and A a sensing matrix satisfying a 2k-RIP with isometry constant δ2k. If the ansatz systems
Φv and Φa diagonalize K, we can write a noisy measurement scenario as follows

yδ = (TD)d+ z with ‖z‖(`2(Λ))m ≤ δ ,

where T describes the application of A with respect to each λ and where D describes the
diagonal matrix performing the application of K. To derive an approximation d∗ to the
solution d of the inverse problem, we propose to solve the following constrained optimization
problem

min
d∈B(Ψ1,2,R)

‖yδ − (TD)d‖2(`2(Λ))p + α‖d‖2(`2(Λ))m . (3)

The minimizing element d∗ of (3) is iteratively approximated by

dn+1 = PR
(
D∗T ∗(yδ − TDdn)γ

n

C
+
(

1− αγn

C

)
dn
)
. (4)

We can provide the following accuracy estimate for d∗.
I Theorem 1. Assume R was chosen such that the solution d of problem y = (TD)d does
not belong to B(Ψ1,2, R) and that 0 ≤ δ2k < (1+

√
2)κ2

min−κ
2
max+

√
2α

(1+
√

2)κ2
min

+κ2
max

. Then the minimizer d∗

of (3) satisfies

‖d∗ − d‖(`2(Λ))m ≤ C0k
−1/2Ψ1,2(dk − d) + C1‖L(d† − d)‖(`2(Λ))m + C2δ + C3

√
αR ,

where the constants C0, C1, C2, and C3 are given explicitly and where dk denotes the best
k-row approximation.

3.14 Sampling in the Age of Sparsity
Martin Vetterli (EPFL – Lausanne, CH)
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Sampling is a central topic not just in signal processing and communications, but in all fields
where the world is analog, but computation is digital. This includes sensing, simulating, and
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rendering the real world.
The question of sampling is very simple: when is there a one-to-one relationship between

a continuous-time function and adequately acquired samples of this function? Sampling has
a rich history, dating back to Whittaker, Nyquist, Kotelnikov, Shannon and others, and is
an active area of contemporary research with fascinating new results.

The classic result of sampling is the one on bandlimited functions, where taking meas-
urements at the Nyquist rate (or twice the maximum bandwidth) is sufficient for perfect
reconstruction. These results were extended to shift-invariant subspaces and multiscale
spaces during the development of wavelets, as well as in the context of splines.

All these methods are based on subspace structures, and on linear approximation. Recently,
non-linear methods have appeared. Non-linear approximation in wavelet spaces has been
shown to be a powerful approximation and compression method. This points to the idea
that functions that are sparse in a basis (but not necessarily on a fixed subspace) can be
represented efficiently.

The idea is even more general than sparsity in a basis, as pointed out in the framework
of signals with finite rate of innovation. Such signals are non-bandlimited continuous-time
signals, but with a parametric representation having a finite number of degrees of freedom
per unit of time. This leads to sharp results on sampling and reconstruction of such sparse
continuous-time signals, namely that 2K measurements are necessary and sufficient to
perfectly reconstruct a K-sparse continuous-time signal. In accordance with the principle
of parsimony, we call this sampling at Occam’s rate. We indicate an order K3 algorithm
for reconstruction, and describe the solution when noise is present, or the model is only
approximately true.

Next, we consider the connection to compressed sensing and compressive sampling, a
recent approach involving random measurement matrices. This is a discrete time, finite
dimensional set up, with strong results on possible recovery by relaxing the `0 into `1
optimization, or using greedy algorithms.

These methods have the advantage of unstructured measurement matrices (actually, typ-
ically random ones) and therefore a certain universality, at the cost of some redundancy. We
compare the two approaches, highlighting differences, similarities, and respective advantages.

Finally, we move to applications of these results, which cover wideband communications,
noise removal, distributed sampling, and super-resolution imaging, to name a few. In
particular, we describe a recent result on multichannel sampling with unknown shifts, which
leads to an efficient super-resolution imaging method.

3.15 Digital Shearlet Transform on Pseudo-Polar Grids
Xiaosheng Zhuang (Universität Osnabrück, DE)
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We developed a rationally designed digital shearlet theory which is the digitization of the
existing shearlet theory for continuum data. Our implementation of the digital shearlet
transform is based on utilization of the pseudo-polar Fourier transform, which provide a
natural implementation for digital shearlets on the discrete image domain. The pseudo-polar
Fourier transform without weighting is generally not an isometry. Isometry can be achieved by
careful weighting of the pseudo-polar grid, yet it is difficult to obtain such a weight function.
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We showed how efficient weight functions can be designed and obtained on the pseudo-polar
grids so that almost isometry can be achieved. In addition, we discussed the software
package ShearLab that implements the digital shearlet transform. The ShearLab provides
various quantitative measures allowing one to tune parameters and objectively improve the
implementation as well as compare different directional transform implementations.

4 Discussion Groups and Further Challenges

During the seminar we had three discussion groups. The outcome shall be briefly reviewed
in the following three subsections.

4.1 Sampling and Compressed Sensing
Martin Vetterli (EPFL – Lausanne, CH)
Hans-Georg Feichtinger (University of Vienna, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
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A consensus emerged that there is a fundamental difference between discrete, compressed
sensing problems, and continuous, sampling problems. Ignoring this difference will lead to
low performance. Several talks highlighted this in the workshop (e.g. Hansen, etc.). The
issue of ‘designer matrices’ for compressed sensing split the audience. On the one hand, some
people (e.g. Pfander) said they did not want another discussion on what are good sensing
matrices, while others, more concerned about applications, pointed out the importance of
fixed (deterministic) and structured (fast) sensing matrices. Random but cyclic matrices
where mentioned as a possible alternative. The importance of looking at infinite dimensional
problems was reiterated, as well as modeling the underlying physics correctly. This comes
into play both in acquisition or analysis (inc. astronomy and parameter estimation) and
simulation or synthesis. In sampling and compressed sensing, the role of adaptivity was
pointed out as an open problem by Teschke and there was an agreement, even if efficient
and/or practical methods have yet to be found. The link to information based complexity
was made, since this is a general framework for function class approximation from samples.
However, this is a non-constructive theory. Learning problems, be it dictionary learning for
compressed sensing or smoothing kernels (point spread functions) for sampling, play also an
important role for sparse methods to become practical.

In sum, a certain maturity has been reached, and it is much more clear where compressed
sensing or sparse sampling can be used and when not. The research agenda can thus be more
focused on the actual bottlenecks, being in modeling, design of methods adapted to specific
problems, or algorithmic improvements including performance bounds and guarantees.
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4.2 Frames, Adaptivity and Stability
Rob Stevenson (University of Amsterdam, NL)
Peter Oswald (Jacobs University - Bremen, DE)
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M. Fornasier pointed to adaptive methods for frame expansions and mentioned to consider
hybrid frames as redundancy by itself does not improve the rate of convergence. There is
an requirement of using additional structure for obtaining faster convergence. A basic idea
could be to use principles from compressed sensing, i.e. use union of bases from sufficiently
diverse types, e.g smooth and non-smooth, quarkonians. The questions arises how to define
optimality. P. Oswald answered that there can’t be a proper definition of optimality besides
checking for particular examples. The idea came up to add another parameter for redundancy,
i.e. just enrich existing frames and use a measure for mutual in-/coherence. M. Fornasier
reminds of work of Bruno Torresani (acoustic signal of ’Glockenspiel’ including a transient):
when a hammer attacks, followed by a harmonic, best N-term approximation needs bases
of different types, and alternating optimization with respect to these different bases, i.e.
algorithmic issues have to be taken into account. R. Stevenson reported on numerical tests
for Laplace problems using an adaptive scheme (effect of Richardson extrapolation, results
depend on sparsity structure on coarse scales). P. Oswald asked the question differently:
don’t ask which frames (union of two bases) should be used, but rather ask: given a frame,
which signals can be approximated efficiently. M. Fornasier mentioned that the typical
criterion for choosing the next building block is based on checking the residual, which is
justified in case of wavelets and other bases due to incoherency. P. Oswald answered that
just looking at incoherence doesn’t solve the problem, it just reports numerical examples. U.
Friedrich said that the choice of ‘different’ bases is application driven; he also asked whether
there is a theoretical founded approach, which also allows to prove optimal approximation
rates? P. Maaß answered: for convergence rates for solving inverse problems one requires
a source condition of type Aw ∈ ∂Rp(u†) has to be satisfied, i.e. the choice of the frame
has to be linked to the operator. This would lead to ‘natural’ frames in the range of A,
however they are poor for approximating u†. R. Steveson added to the requirements for
choosing frames: the approximation properties have to be better than for each individual
bases, computation must be computationally effective, frames must be sufficiently incoherent
in order to allow for adaptive schemes (report on numerical tests using Schwarz iteration
for overlapping grids (similar to old Randy Bank paper in the late 90’s)). T. Raasch said
that the ‘communication’ between the frame and the residuals is of great importance and
requires the incoherence of cross-correlation between frame elements. O. Holtz pointed to
connections to ‘deterministic’ compressed sensing approaches (conjecture of Bougain). P.
Oswald asked how to design frames which are able of capturing both, transport and diffusion
simultaneously in physical application).
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4.3 Algorithms and Applications
Michael Unser (EPFL – Lausanne, CH)
Bruno Torresani (Université de Provence – Marseille, FR)
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The development of efficient algorithms for large-scale sparse signal recovery is probably one
of the greatest practical benefits of the intense research effort around the theme of compressed
sensing. In addition to CS, these methods are relevant for a large variety of conventional
imaging and inverse problems in general, often delivering state-of-the-art performance.
Iterative soft-thresholding algorithms (ISTA) were introduced by image processing pioneers
about a decade ago and have been improved systematically since then. An important step was
to recognize that a good part of the required mathematical machinery for convex optimization
(proximal operators, backward-forward splitting techniques) had been established in the
70s and was directly transposable to the present class of problems. We now have at our
disposal a large number of variants of ISTA some of which provide orders of magnitude speed
improvements. While the discussion group recognized the pressing need for a general purpose
and highly-performant algorithm for `1-type optimization, they also felt that a point of
saturation had been reached and that it would difficult to come up with much faster schemes.
What is also required is some careful benchmarking and critical comparison of methods. Yet,
the participants also felt that there would still be space for creative engineering to come up
with optimized schemes that take advantage of the specificities of certain classes of problems.
More important than the algorithm is the problem formulation; in particular, the way of
introducing prior information on the class of desirable solutions. It was pointed out that
imposing sparsity analysis constraints would generally yield better results than the typical
synthesis formulation (sparse generative model) that is central to CS. This is in line with the
older concept of regularization as well as the Bayesian formulation of the reconstruction task.
The panel did identify the following research challenges:

the development of efficient large-scale optimization methods for extended classes of
non-convex functionals
the search for better sparsifying transforms and dictionaries (synthesis vs. analysis)
the design of better regularization functionals
(non-Gaussian) Bayesian formulations and the derivation/characterization of optimal
estimators
error and sensitivity analysis.

It was also pointed that it is in principle harder to design data-driven dictionaries for analysis
purposes rather than synthesis. The concept of sparsity promotes simplicity; it provides a
data-processing version of Occam’s razor that is most attractive for algorithm design and
probably here to stay (once the hype around CS has settled down). There are still many
opportunities ahead for applying those techniques to real-world imaging and signal processing
problems, beyond the typical tasks of denoising, deblurring and in-painting.

We are now essentially at the point where `1-optimization is competitive speed-wise with
the classical linear methods such as conjugate gradient.
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5 Seminar schedule

Monday Vetterli Sampling in the Age of Sparsity
Hansen Generalized Sampling and Infinite Dimensional Compressed Sensing
Unser Stocastic models for sparse and piecewise smooth signals
Pfander Sensing, Local Approximation and Quantization of Operators with

Bandlimited Kohn-Nirenberg Symbols
Ehler Random tight frames in directional statistics
Pezeshki Compressed Sensing for High Resolution Image Inversion

Tuesday Oswald Space Splittings and Schwarz-Southwell Iterations
Raasch Quarkonial frames of wavelet type - Stability and moment conditions
Starck Reconstructing and Analyzing Astrophysical Dark Matter Mass Maps

using Sparsity
Lim Optimally sparse image approximations using compactly supported

shearlet frames
Zhuang The Digital Shearlet Transform on Pseudo-polar Grids
Lorenz Basis pursuit denoising: Exact test instances and exact recovery for

ill-posed problems
Discussion groups

Wednesday Potts Parameter estimation for exponential sums by approximate Prony
method

Kunis Stable discretisations for sparse fast Fourier transforms
Figueiredo Alternating Direction Optimization for Imaging Inverse Problems with

Sparsity-Inducing Regularization
Thursday Plonka-

Hoch
Sparse Approximation of Images by the Easy Path Wavelet Transform

Bergmann Multivariate Periodic Function Spaces
Steidl Halftoning, Quadrature Errors and Discrepancies
Wojtaszczyk How `1 -minimisation for RIP matrices reacts to measurement errors?
Nam Cosparse Analysis Modeling
Schiffler Sparsity for ill-posed and ill-conditioned problems

Summary of discussion groups
Friday Guleryuz A Majorization-minimization algorithm for sparse factorization and

some related applications
Friedrich Adaptive wavelet methods for inverse parabolic problems



Stephan Dahlke, Michael Elad, Yonina Eldar, Gitta Kutyniok, and Gerd Teschke 127

Participants

Ronny Bergmann
Universität zu Lübeck, DE

Martin Ehler
National Institutes of Health -
Bethesda, US

Michael Elad
Technion - Haifa, IL

Hans Georg Feichtinger
Universität Wien, AT

Mario Figueiredo
TU Lisboa, PT

Massimo Fornasier
RICAM - Linz, AT

Ulrich Friedrich
Universität Marburg, DE

Onur G. Guleryuz
DoCoMo USA Labs - Palo Alto,
US

Anders Hansen
University of Cambridge, GB

Evelyn Herrholz
Hochschule Neubrandenburg, DE

Olga Holtz
TU Berlin, DE

Stefan Kunis
Universität Osnabrück, DE

Gitta Kutyniok Universität
Osnabrück, DE

Wang-Q Lim
Universität Osnabrück, DE

Dirk Lorenz
TU Braunschweig, DE

Peter Maaß
Universität Bremen, DE

Sangnam Nam
INRIA - Rennes, FR

Peter Oswald
Jacobs University - Bremen, DE

Ali Pezeshki
Colorado State University, US

Götz E. Pfander
Jacobs University - Bremen, DE

Gerlind Plonka-Hoch
Universität Göttingen, DE

Daniel Potts
TU Chemnitz, DE

Thorsten Raasch
Universität Mainz, DE

Stefan Schiffler
Universität Bremen, DE

Jean-Luc Starck
CEA - Gif sur Yvette, FR

Gabriele Steidl
Universität Mannheim, DE

Rob Stevenson
University of Amsterdam, NL

Gerd Teschke
Hochschule Neubrandenburg, DE

Bruno Torresani
Université de Provence, FR

Michael Unser
EPFL - Lausanne, CH

Martin Vetterli
EPFL - Lausanne, CH

Przemyslaw Wojtaszczyk
University of Warsaw, PL

Xiaosheng Zhuang
Universität Osnabrück, DE

11051


	Executive Summary Stephan Dahlke, Michael Elad, Yonina Eldar, Gitta Kutyniok, and Gerd Teschke
	Table of Contents
	Overview of Talks
	Multivariate Periodic Function Spaces Ronny Bergmann
	Random tight frames and applications Martin Ehler
	Alternating Direction Optimization for Imaging Inverse Problems with Sparsity-Inducing Regularization Mario Figueiredo
	Adaptive wavelet methods for inverse parabolic problems Ulrich Friedrich
	A Majorization-minimization algorithm for sparse factorization and some related applications Onur G. Guleryuz
	Stable discretizations of the hyperbolic cross fast Fourier transform Stefan Kunis
	Optimally Sparse Image Approximations Using Compactly Supported Shearlets Wang-Q Lim
	Exact test instances for Basis Pursuit Denoising Dirk Lorenz
	Cosparse Analysis Modeling – Uniqueness and Algorithms Sangnam Nam
	Space Splittings and Schwarz-Southwell Iterations Peter Oswald
	Sparse Approximation of Images by the Easy Path Wavelet Transform Gerlind Plonka-Hoch
	Quadrature errors, discrepancies and variational dithering Gabriele Steidl
	Compressive sensing and inverse problems Gerd Teschke
	Sampling in the Age of Sparsity Martin Vetterli
	Digital Shearlet Transform on Pseudo-Polar Grids Xiaosheng Zhuang

	Discussion Groups and Further Challenges
	Sampling and Compressed Sensing Martin Vetterli and Hans-Georg Feichtinger
	Frames, Adaptivity and Stability Rob Stevenson and Peter Oswald
	Algorithms and Applications Michael Unser and Bruno Torresani

	Seminar schedule
	Participants

