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Abstract
From 27.02.2011 to 4.03.2011, the Dagstuhl Seminar 11091 “Packing and Scheduling Algorithms
for Information and Communication Services” was held in Schloss Dagstuhl Leibniz Center for
Informatics. During the seminar, several participants presented their current research, and on-
going work and open problems were discussed. Abstracts of the presentations given during the
seminar as well as abstracts of seminar results and ideas are put together in this paper. The
first section describes the seminar topics and goals in general. Links to extended abstracts or full
papers are provided, if available.
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Packing and scheduling are one area where mathematics meets puzzles. While many of these
problems stem from real-life applications, they have also been of fundamental theoretical
importance. In a packing problem given is a set of items and one or more (multi-dimensional)
bins. The objective is to maximize the profit from packing a subset of the items, or to
minimize the cost of packing all items. In a scheduling problem, given are a set of jobs and
a set of machines. One needs to schedule the jobs to run on the machines (under some
constraints) so as to optimize an objective function that depends on the order of the jobs, on
their completion times or on the machines by which they are processed.

Storage allocation in computer networks, cutting stock problems in various industries and
production planning are only few of the applications of packing and scheduling. With the
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growing impact of next generation technologies in information and communication services
(some examples are Video-on-Demand systems, web applications and wireless networks),
practitioners as well as theoreticians seek fast and efficient solutions for new variants of some
classic packing and scheduling problems, which are crucial for optimizing the performance of
these systems.

Since many of these problems are NP-hard, it is natural to seek efficient approximate
solutions. Traditionally, such approximations are obtained by using fundamental tools from
combinatorial optimization and mathematical programming. While for some of the problems
there exist algorithms which achieve the best possible approximation ratio, one major effort
of this community has been to close the gaps in running times between heuristic solutions,
which perform well in practice, and algorithms which are provably efficient in terms of
approximation ratio, but impractical in use. The large class of approximation schemes for
packing and scheduling problems has been the recent target of this effort.

Parameterized complexity uses refined measures for the approximability of a given problem,
by referring, e.g., to approximation with instance parameters, by defining performance
functions (instead of performance ratios) and by defining the quality of approximation as
parameter. Such measures provide further insight to the studied problems and lead to the
design of algorithms that work efficiently if the parameters of the input instance are small
(even if the size of the input is large). Efficient parameterization for packing and scheduling
problems is a major challenge on the way to obtaining practical algorithms.

During the 5 days of the seminar, 24 talks were given by the participants. Five of these
talks were two-hour tutorials and 60-minute survey talks on various topics:Kirk Pruhs gave
an exciting tutorial on the challenges faced by designers of algorithms for green computing;
Dániel Marx talked about several existing connections between approximation algorithms
and fixed-parameter algorithms; Ola Svensson gave an overview of the implications and
techniques of two fascinating hardness of approximation results for shops and precedence
constraints scheduling; Neal Young talked about using lagrangian-relaxation algorithms to
solve packing and covering problems, and Magnús Halldórsson gave an overview of recent
analytic work on scheduling wireless links.

The seminar successfully brought together both experts and newcomers from the areas
of packing and sequencing, combinatorial optimization, mathematical programming, and
parameterized complexity, with many interesting interactions. The talks left plenty of time
for discussion in the afternoon. An open problem session was held on Tuesday, and problems
raised there were discussed by different groups throughout the seminar and in a research
groups session on Friday. A session on current and future trends in scheduling was held on
Thursday, and brought up some exciting issues relating to this area.
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3 Overview of Talks

3.1 On Packing Resizable Items and Covering by Holes
Sivan Albagli-Kim (Technion, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sivan Albagli-Kim

Joint work of Albagli-Kim, Sivan; Shachnai, Hadas; Tamir, Tami

In next generation video services, movie files can be transmitted to the clients at different
encodings, thus enabling the system to degrade Quality- of-Service for bounded time intervals,
while increasing the number of serviced clients. Maximizing throughput in such systems can
be modeled as the following problem of packing a set of items, whose sizes may change over
time. Given is a set I of unit-sized items and a bin of capacity B > 1. The items need to
be packed in the bin for a fixed time interval. Each item j can be compressed to the size
pj ∈ (0, 1) for at most a fraction qj ∈ (0, 1] of its packing time. The goal is to pack in the
bin, for the given time interval, a subset of the items of maximum cardinality. This problem
of packing resizable items (PRI) is strongly NP-hard already for highly restricted instances.

In this paper we present approximation algorithms for two subclasses of instances of PRI
which are of practical interest. For instances with uniform compression ratio, we develop
an asymptotic fully polynomial time approximation scheme. For instances with uniform
compression time, we give an almost optimal algorithm, which packs at least OPT (I)− 1
items, where OPT (I) is the number of items packed by an optimal algorithm. We derive
our results by using a non-standard transformation of PRI to the problem of covering a
region by sliceable rectangles. The resulting problem, which finds numerous applications in
computational geometry, is of independent interest.

3.2 Secretary Problems via Linear Programming
Niv Buchbinder (Open Univ., IL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Niv Buchbinder

Joint work of Buchbinder, Niv; Jain, Kamal; Singh, Mohit

In the classical secretary problem an employer would like to choose the best candidate among
n competing candidates that arrive in a random order. This basic concept of n elements
arriving in a random order and irrevocable decisions made by an algorithm have been explored
extensively over the years, and used for modeling the behavior of many processes. Our main
contribution is a new linear programming technique that we introduce as a tool for obtaining
and analyzing mechanisms for the secretary problem and its variants. Capturing the set of
mechanisms as a linear polytope holds the following immediate advantages.

1. Computing the optimal mechanism reduces to solving a linear program. 2. Proving an
upper bound on the performance of any mechanism reduces to finding a feasible solution
to the dual program. 3. Exploring variants of the problem is as simple as adding new
constraints, or manipulating the objective function of the linear program.

We demonstrate the applicability of these ideas in several settings including online
auctions.
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3.3 Approximating the Non-Contiguous Multiple Organization Packing
Problem

Pierre-Francois Dutot (INRIA Rhôn-Alpes, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Pierre-Francois Dutot

We present in this paper a 5/2-approximation algorithm for scheduling rigid jobs on multi-
organizations. For a given set of n jobs, the goal is to construct a schedule for N organ-
izations (composed each of m identical processors) minimizing the maximum completion
time (makespan). This algorithm runs in O(n(N + log(n)) log(npmax)), where p max is the
maximum processing time of the jobs. It improves the best existing low cost approximation
algorithms. Moreover, the proposed analysis can be extended to a more generic approach
which suggests different job partitions that could lead to low cost approximation algorithms
of ratio better than 5/2.

3.4 Online Clustering with Variable Sized Clusters
Leah Epstein (Univ. of Haifa, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Leah Epstein

Joint work of Csirik, János; Epstein, Leah; Imreh, Csanád; Levin, Asaf
Main reference J. Csirik, L. Epstein, C. Imreh, A. Levin, “Online Clustering with Variable Sized Clusters ”,

MFCS’10, pp.282–293, LNCS.
URL http://dx.doi.org/10.1007/978-3-642-15155-2_26

Online clustering problems are problems where the classification of points into sets (called
clusters) is done in an online fashion. Points arrive at arbitrary locations, one by one, to
be assigned to clusters at the time of arrival. A point can be either assigned to an existing
cluster or a new cluster can be opened for it. We study a one dimensional variant on a line.
Each cluster is a closed interval, and there is no restriction on the length of a cluster. The
cost of a cluster is the sum of a fixed set-up cost and its diameter (or length). The goal is to
minimize the sum of costs of the clusters used by the algorithm. We study several variants,
all maintaining the essential property that a point which was assigned to a given cluster
must remain assigned to this cluster, and clusters cannot be merged. In the strict variant,
the diameter and the exact location of the cluster must be fixed when it is initialized. In the
flexible variant, the algorithm can shift the cluster or expand it, as long as it contains all
points assigned to it. In an intermediate model, the diameter is fixed in advance while the
exact location can be modified. We give tight bounds on the competitive ratio of any online
algorithm in each of these variants. In addition, for each one of the models, we also consider
the semi-online case, where points are presented sorted by their location. The paper is joint
work with J. Csirik, Cs. Imreh and A. Levin, and was presented in MFCS2010.
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3.5 Competitive Strategies for Routing Flow Over Time
Lisa K. Fleischer (Dartmouth College, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Lisa K. Fleischer

Joint work of Bhaskar, Umang; Fleischer, Lisa K.; Anshelevich, Elliot

The study of routing games is motivated by the desire to understand the impact of individual
user’s decisions on network efficiency. To do this, prior work uses a simplified model of
network flow where all flow exists simultaneously, and users route flow to either minimize their
maximum delay or their total delay. Both of these measures are surrogates for measuring
how long it takes to get all of your traffic through the network over time.

Instead of using these surrogates, we attempt a more direct study of how competition
among users effects network efficiency by examining routing games in a flow-over-time model.
We show that the network owner can reduce available capacity so that the competitive
equilibrium in the reduced network is no worse than a small constant times the optimal
solution in the original network using two natural measures of optimum: the time by which
all flow reaches the destination, and the average amount of time it takes flow to reach the
destination.

3.6 Potential Reduction Schemes in Structured Optimization
Michael D. Grigoriadis (Rutgers Univ., US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Michael D. Grigoriadis

Joint work of Grigoriadis,Michael D.; Khachiyan, Leonid G.; Villavicencio, J. U.

We study the performance of approximately computing a min-max [max- min] solution of a
given set of M convex [concave], nonnegative-valued and block-separable coupling inequalities
over the product of K convex compact “blocks”. The generality of the model allows for
a variety of specializations for applications in packing [covering] feasibility LPs, matrix
games, block angular LPs, routing in multicommodity flows, and others. Optimization
variants run within polylogarithmic factors. All of our FPTAS’s include a quadratic term of
1/epsilon. Working within the well-known Lagrangian decomposition framework, we replace
the underlying piecewise convex [concave] objective with its exponentially many breakpoints,
by a smooth approximation, such as an exponential or logarithmic potential function, which is
gradually improved. For implementations using the exponential potential, the original blocks
are further restricted by their part of the coupling inequalities, adjustable by a restriction
parameter. This helps in controlling the so-called “width”. In contrast, logarithmic potential-
based implementations are shown to be “width-free” and thus work with the unrestricted
(original) blocks. We show that best coordination complexities obtain by using the logarithmic
potential with unrestricted blocks for instances with roughly M < K logK, but switching
to the exponential potential with restricted blocks when M > K logK. The exponential
potential-based scheme solves (n,m)-matrix games A with elements in [-1,+1] to a prescribed
relative error in quadratic log(nm) time on an nm-processor EREW PRAM. In addition
there is a parallel randomized approximation scheme for solving such games to within a
given absolute accuracy, in expected quadratic log(n+m) time on an (n+m)/log(n+m)-
processor EREW PRAM, thus providing a sublinear support for such games. A roughly
quadratic expected speedup is obtained relative to any deterministic approximation scheme.
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Computational experiments show that optimal solutions of very large maximum concurrent
flow problems are computed routinely to 4-digit accuracy, several orders faster than modern
LP codes.

3.7 Wireless Scheduling in the Physical Model
Magnús M. Halldórsson (Reykjavik Univ., IS)

License Creative Commons BY-NC-ND 3.0 Unported license
© Magnús M. Halldórsson

I will survey recent work on analytic work on scheduling wireless links in the SINR model.
The first half will be focused on properties of the model, and on capacity (throughput)
maximization in the case of uniform power. The second half will look at the problems
involving power control, as well as other related issues, such as distributed algorithms.

3.8 A Polynomial Time OPT+1 Algorithm for the Cutting Stock
Problem with a Constant Number of Object Lengths

Klaus Jansen (Universität Kiel, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Klaus Jansen

Joint work of Jansen, Klaus; Solis-Oba, Roberto

In the cutting stock problem we are given a set T = T1, ..., Td of object types, where objects
of type Ti have integer length pi > 0. Given a set O of n objects containing ni objects of
type Ti, for each i = 1, ..., d, the problem is to pack O into the minimum number of bins of
capacity beta. In this talk we consider the version of the problem in which the number d of
different object types is constant and we present a polynomial time algorithm that computes
a solution using at most OPT + 1 bins, where OPT is the value of an optimum solution.

3.9 The Cutting-Stock Approach to Bin Packing: Theory and
Experiments

David S. Johnson(AT&T Research, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© David S. Johnson

We report on results of an experimental study of the Gilmore-Gomory cutting-stock heuristic
and related LP-based approaches to bin packing, as applied to instances generated according
to discrete distributions. We examine the questions of how best to solve the knapsack
problems used to generate columns in the Gilmore-Gomory approach, how the various
algorithms’ running times and solution qualities scale with key instance parameters, and how
the algorithms compare to more traditional bin packing heuristics.

No polynomial running time bound is known to hold for the Gilmore-Gomory approach,
and high-level empirical operation counts suggest that no straightforward implementation
can have average running time O(m3), where m is the number of distinct item sizes. Our
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experiments suggest that by using dynamic programming to solve the knapsack problems,
one can robustly obtain average running times that are o(m4) and are feasible for m well
in excess of 1,000. This makes a variant on the previously un-implemented asymptotic
approximation scheme of Fernandez de la Vega and Lueker practical for arbitrarily large
values of m and quite small values of ε.

In the process of performing these experiments we discovered two interesting anomalies:
(1) running time decreasing as the number n of items increases and (2) solution quality
improving as running time is reduced and an approximation guarantee is weakened. We
provide explanations for these phenomena and characterize the situations in which they
occur.

3.10 Disjoint-Path Facility Location: Theory and Practice
Howard Karloff (AT&T Research, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Howard Karloff

Internet service providers hope to provide their customers with superior Internet connectivity,
but do they always do so? How can an ISP even know what quality of service it’s providing
to its customers? To this end, researchers recently proposed a new scheme an ISP could use
in order to estimate the packet loss rates experienced by its customers.

To implement the new scheme, one has to approximately solve an interesting NP-Hard
optimization problem on the ISP’s network. Specifically, one must choose a small set of
network nodes such that from each customer node there are arc-disjoint paths to *two* of
the selected nodes. I will discuss recent work, mostly at ATT, attacking this problem and its
surprisingly good results, in light of the problem’s provable inapproximability in the worst
case.

3.11 Procrastination Pays: Scheduling Jobs in Batches to Minimize
Energy Usage

Samir Khuller (Univ. of Maryland, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Samir Khuller

Joint work of Chang, J.; Gabow, H.; Khuller, S.

We consider an elementary scheduling problem defined as follows. Given a collection of n
jobs, where each job Ji has an integer length li as well as a set Ti of time intervals in which it
can be feasibly scheduled. We are given a parallelism parameter P and can schedule up to P
jobs at any time slot in which the machine is “active”. The goal is to preemptively schedule
all the jobs in the fewest number of active time slots.

The machine consumes a fixed amount of energy per time slot, regardless of the number
of jobs scheduled at that slot (as long as the number of jobs is non-zero). In other words,
subject to li units of each job i being scheduled in its feasible region and at each slot at most
P jobs being scheduled, we are interested in minimizing the total time duration when the
machine is active.
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We present an O(n log n) algorithm for the case where jobs have unit length and Ti forms
a single interval. For general Ti (and unit jobs), we show that the problem is NP-complete
even for P = 3. However when P = 2, we show that it can be solved in polynomial time –
we also present several extensions: for example when the jobs have non–unit requirements
we can still solve this version in polynomial time.

No previous background knowledge on scheduling is expected. In addition, we will survey
some recent work on bundling jobs in batches.

3.12 An AFPTAS for Variable Sized bin Packing with General bin
Costs

Asaf Levin (Technion, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Asaf Levin

Joint work of Epstein, Leah; Levin, Asaf

In variable sized bin packing problems, bins of different sizes are to be used for the packing
of an input set of items. We consider variable sized bin packing with general costs. Each
bin type has a cost associated with it, where the cost of a bin may be smaller or larger than
its size, and the costs of different bin sizes are unrelated. For each bin type, this cost is
to be paid for each instance which is used for the packing of input items. This generalized
setting of the problem has numerous applications in storage and scheduling. We introduce
new reduction methods and separation techniques, which allow us to design an AFPTAS for
the problem.

3.13 Survey of connections between approximation algorithms and
parameterized complexity

Dániel Marx (HU Berlin, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Dániel Marx

Approximation algorithms and parameterized complexity are two well-studied approaches
for attacking hard combinatorial problems. In my talk, I overview the ways approximation
can be introduced into the framework of parameterized complexity, survey results in this
direction, and show how parameterized hardness theory can be used to give lower bounds on
the efficiency of approximation schemes.
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3.14 Vertex Cover in Graphs with Locally Few Colors and Precedence
Constrained Scheduling with Few Predecessors

Monaldo Mastrolilli (IDSIA - Lugano, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
© Monaldo Mastrolilli

In 1986 Erdös et. al. defined the local chromatic number of a graph as the minimum number
of colors that must appear within distance 1 of a vertex. For any fixed ∆ ≥ 2, they presented
graphs with arbitrarily large chromatic number that can be colored so that: (i) no vertex
neighborhood contains more than ∆ different colors (bounded local colorability), and (ii)
adjacent vertices from two color classes form an induced subgraph that is complete and
bipartite (local completeness).

We investigate the weighted vertex cover problem in graphs when a locally bounded
coloring is given as input. This generalizes in a very natural vein the vertex cover problem
in bounded degree graphs to a class of graphs with arbitrarily large chromatic number.
Assuming the Unique Game Conjecture, we provide a tight characterization. More precisely,
we prove that it is UG-hard to improve the approximation ratio of 2 − 2/(∆ + 1) if only
the bounded local colorability, but not the local completeness condition holds for the given
coloring. A matching upper bound is also provided. Vice versa, when both the above
two properties (i) and (ii) hold, we present a randomized approximation algorithm with
performance ratio of 2− Ω(1) ln ln ∆

ln ∆ . This matches (up to the constant factor in the lower
order term) known inapproximability results for the special case of bounded degree graphs.

Moreover, we show that when both the above two properties (i) and (ii) hold, the obtained
result finds a natural application in a classical scheduling problem, namely the precedence
constrained single machine scheduling problem to minimize the weighted sum of completion
times. In a series of recent papers it was established that this scheduling problem is a special
case of the minimum weighted vertex cover in graphs G of incomparable pairs defined in the
dimension theory of partial orders. We show that G satisfies properties (i) and (ii) where
∆− 1 is the maximum number of predecessors (or successors) of each job.

3.15 Min-Max Graph Partitioning and Small Set Expansion
Seffi Naor (Technion, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Seffi Naor

We study graph partitioning problems from a min-max perspective, in which an input graph
on n vertices should be partitioned into k parts, and the objective is to minimize the maximum
number of edges leaving a single part. The two main versions we consider are where the k
parts need to be of equal-size, and where they must separate a set of k given terminals. We
consider a common generalization of these two problems, and design for it an approximation
algorithm. This improves over an O(log2 n) approximation for the second version due to
Svitkina and Tardos [ST04], and roughly O(k log n) approximation for the first version that
follows from other previous work.
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3.16 Green Computing Algorithmics
Kirk Pruhs (Univ. of Pittsburgh, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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We are in the midst of a green computing revolution involving the redesign of information
technology hardware and software at all levels of the information technology stack. Such a
revolution spawns a multitude of technological challenges, many of which are algorithmic in
nature. The most obvious type of algorithmic problem arising from this green computing
revolution involves directly managing power, energy or temperature as a resource. Other
algorithmic problems arise because the new technology, which was adopted for energy and
power considerations, has different physical properties than previous technologies. I will try
to give a feel for the current state of green computing algorithmics research, and provide
some advice about how to contribute to this research.

3.17 Minimizing Busy Time in Multiple Machine Real-time Scheduling
Baruch Schieber (IBM TJ Watson Research Center, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Baruch Schieber

Joint work of Khandekar, Rohit; Schieber, Baruch; Shachnai, Hadas; Tamir, Tami

We consider the following fundamental scheduling problem. The input consists of n jobs
to be scheduled on a set of machines of bounded capacities. Each job is associated with a
release time, a due date, a processing time and demand for machine capacity. The goal is to
schedule all of the jobs non-preemptively in their release-time-deadline windows, subject to
machine capacity constraints, such that the total busy time of the machines is minimized.
Our problem has important applications in power-aware scheduling, optical network design
and customer service systems. Scheduling to minimize busy times is APX-hard already in
the special case where all jobs have the same (unit) processing times and can be scheduled
in a fixed time interval.

Our main result is a 5-approximation algorithm for general instances. We extend this
result to obtain an algorithm with the same approximation ratio for the problem of scheduling
moldable jobs, that requires also to determine, for each job, one of several processing-time vs.
demand configurations. Better bounds and exact algorithms are derived for several special
cases, including proper interval graphs, intervals forming a clique and laminar families of
intervals.

3.18 Bin Packing with Fixed Number of Bins Revisited
Ildiko Schlotter (Budapest Univ. of Technology & Economicsn, HU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ildiko Schlotter

Joint work of Jansen, Klaus; Kratsch, Stefan; Marx, Dániel; Schlotter, Ildiko

As Bin Packing is NP-hard already for k = 2 bins, it is unlikely to be solvable in polynomial
time even if the number of bins is a fixed constant. However, if the sizes of the items are
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polynomially bounded integers, then the problem can be solved in time nO(k) for an input of
length n by dynamic programming. We show, by proving the W[1]-hardness of Unary Bin
Packing (where the sizes are given in unary encoding), that this running time cannot be
improved to f(k) · nO(1) for any function f(k) (under standard complexity assumptions). On
the other hand, we provide an algorithm for Bin Packing that obtains in time 2O(k log2 k)+O(n)
a solution with additive error at most 1, i.e., either finds a packing into k + 1 bins or decides
that k bins do not suffice.

3.19 Balanced Interval Coloring
Alexander Souza (HU Berlin, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alexander Souza

Joint work of Souza, Alexander; Antoniadis, Antonios; Hüffner, Falk; Lenzner, Pascal
URL http://arxiv.org/abs/1012.3932

We consider the discrepancy problem of coloring n intervals with k colors such that at each
point on the line, the maximal difference between the number of intervals of any two colors
is minimal. Somewhat surprisingly, a coloring with maximal difference at most one always
exists. Furthermore, we give an algorithm with running time O(n log n + kn log k) for its
construction. This is in particular interesting because many known results for discrepancy
problems are non-constructive.

This problem naturally models a load balancing scenario, where n tasks with given start-
and end-times have to be distributed among k servers.

Our results imply that this can be done ideally balanced.
When generalizing to d dimensional boxes (instead of intervals), a solution with difference

at most one is not always possible. We show that for any d > 1 and any k > 1 it is NP-
complete to decide if such a solution exists, which implies also NP-hardness of the respective
minimization problem.

In an online scenario, where intervals arrive over time and the color has to be decided
upon arrival, the maximal difference in the size of color classes can become arbitrarily high
for any online algorithm.

3.20 Fast Separation Algorithms for Multidimensional Assignment
Problems

Frits C.R. Spieksma (K.U. Leuven, BE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Frits C.R. Spieksma

In polyhedral combinatorics, the polytope corresponding to an integer programming for-
mulation of a combinatorial optimization problem is examined in order to obtain families
of valid inequalities. To incorporate such families of inequalities within a cutting plane
algorithm requires an additional step: determining whether an inequality of a specific family
is violated by a given vector x (the separation problem). The idea put forward in this work
is to consider a compact representation of this given vector x, and to measure the complexity
of a separation algorithm in terms of this compact representation.
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We illustrate this idea on the separation problem of well-known families of inequalities
associated to the (multi-index) assignment polytope, and we show that for these families of
inequalities, better time-complexities than the current ones are possible.

3.21 Hardness of Shops and Optimality of List Scheduling
Ola Svensson (KTH - Stockholm, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
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We give an overview of the implications and techniques of the following hardness of approx-
imation results:

- Non-constant inapproximability results for various shop scheduling problems that
essentially match the best known approximation algorithm for acyclic job shops and general
flow shops.

- A 2 hardness assuming the unique games conjecture for the problem of scheduling jobs
with precedence constraints on identical machines so as to minimize the makespan. This
matches the classical 2-approximation algorithm by Graham from 66.

3.22 Scheduling with Bully Selfish Jobs
Tami Tamir (The Interdisciplinary Center - Herzliya, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
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In job scheduling with precedence constraints, i < j means that job j cannot start being
processed before job i is completed. In this paper we consider selfish bully jobs who do
not let other jobs start their processing if they are around. Formally, we define the selfish
precedence–constraint where i <s j means that j cannot start being processed if i has not
started its processing yet. Interestingly, as was detected by a devoted kindergarten teacher
whose story is told below, this type of precedence constraints is very different from the
traditional one, in a sense that problems that are known to be solvable efficiently become
NP-hard and vice-versa. The work of our hero teacher, Ms. Schedule, was initiated due
to an arrival of bully jobs to her kindergarten. Bully jobs bypass all other nice jobs, but
respect each other. This natural environment corresponds to the case where the selfish
precedence-constraints graph is a complete bipartite graph. Ms. Schedule analyzed the
minimum makespan and the minimum total flow-time problems for this setting. She then
extended her interest to other topologies of the precedence constraints graph and other special
instances with uniform length jobs and/or release times. Finally, she defined a generalization
of her problem, where the precedence constraints graph is weighted, and w(i, j) specifies the
minimal gap between the starting times of i and j. The paper was presented in FUN with
Algorithms 2010.
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3.23 How to use Lagrangian-Relaxation Algorithms to solve Packing
and Covering Problems

Neal E. Young (Univ. of California - Riverside, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Following a brief review of the history of Lagrangian-relaxation algorithms, I will summarize
recent results in the area in a concrete form that (hopefully) makes it easy to understand
how to apply the results.

Given any linear program (LP) that includes some packing constraints and/or some
covering constraints, the packing and/or covering constraints can be "dualized", replacing the
packing constraints by a carefully chosen linear combination of the packing constraints, and
likewise for the covering constraints. This replaces all m packing/covering constraints by just
one or two constraints, and gives an LP relaxation LP’ of the problem that is combinatorially
simpler than the original problem.

Given any algorithm alg’ for the simpler problem LP ′, there is a simple algorithm for the
original problem that calls alg′O(min(m,width) ∗ log(m)/epsilon2) times, then returns an
epsilon-approximate solution to the original problem.

I will illustrate the ideas using zero-sum matrix games, the Held-Karp lower bound on
TSP, the "configuration LP" for bin packing, and on multi-commodity flow problems.

3.24 A Truthful Constant Approximation for Maximizing the Minimum
Load on Related Machines

Rob van Stee (MPI für Informatik - Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Rob van Stee

Joint work of Christodoulou, Giorgos; Kovacs, Annamaria; van Stee, Rob

Designing truthful mechanisms for scheduling on related machines is a very important problem
in single-parameter mechanism design. We consider the covering objective, that is we are
interested in maximizing the minimum completion time of a machine. This problem falls into
the class of problems where the optimal allocation can be truthfully implemented. A major
open issue for this class is whether truthfulness affects the polynomial-time implementation.

We provide the first constant factor approximation for deterministic truthful mechanisms.
In particular we come up with a approximation guarantee of 2+eps, significantly improving
on the previous upper bound of min(m, (2 + eps)sm/s1).
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4 Discussion notes

4.1 Current and Future Trends in Scheduling
Alexander Souza (HU Berlin, DE), souza@informatik.hu-berlin.de

License Creative Commons BY-NC-ND 3.0 Unported license
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Notes of the discussion on “Current and Future Trends in Scheduling” that took place at
the Dagstuhl meeting 11091 on “Packing and Scheduling Algorithms for Information and
Communication Services” from 27.2.2011 to 4.3.2011.

Theory and Applications

To what extent do scheduling problems in theory and practice relate?
1. “No relation”, “There should be”, “There are”
2. Example of a project of a Steel company together with TU Berlin: Initiated at an OR

conference in Germany; Company approached TU Berlin; Solution was implemented
by TU Berlin, but no support was given; Approach was a dynamic programming
algorithm combined with heuristics.

What does it bring you to be attached to reality?
More satisfying research; Algorithm engineering; Per-Instance-Guarantees; Modeling as
an issue.

New Theoretical Promises and Challenges

Are there new theoretical problems that we need to work on?
(a) Inapproximability results: Long standing open questions; tight bounds
(b) New variants of classical problems: Measures; Models; Green IT; Cloud Computing
(c) Dynamic Aspects: Practically important; Maybe theoretically nice; Stochastic models;

Observed distributions; Technically difficult; Modeling again an issue; Communication
with other disciplines required (workshop); Availability of data; Storing solutions for
later reuse; Markov chain models (for online scheduling)

(d) Theoretical vs. practical results: Essentially same outline as with the Paging problem;
“Why something does well”

Sustainability Domain

1. Example: Land-lot purchase; Can have scheduling components
2. Currently well funded; For example Carla Gomes

http://www.cs.cornell.edu/gomes/

Per Instance Guarantees

1. Certificates of instance-wise approximation ratio
2. Without LP-bounds? Maybe by MILP solutions or lower bounds
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Insights from Game Theory

What are the new insights gained from game theoretic approach to scheduling (Does it
capture better than classic scheduling contemporary systems)?

(a) “Next question”
(b) Canonical examples from Game Theory are scheduling and network design problems
(c) Behavioral economics: Model how people behave; Maybe not accurately reflected in

scheduling (pain-scheduling at a dentist); Human aspect of scheduling; Interaction of
schedules with people; Indirectly done already; Find out criteria and objective function
is an issue; “User happiness” is the objective function (in order to have an impact)

Stochastic Scheduling and Robustness

Is stochastic scheduling the ‘right’ direction for future research? (Can this direction be
fruitful in view of the experience of the 70’s?)

(a) Contacts with industry: Combining scheduling and routing; Transportation problems
(b) Robustness: Varying data (small perturbations); Stable schedules

Integer Programming Approach in Scheduling

What do you think about integer programming as an approach for solving scheduling
problems?
(a) CSP’s are maybe better because more flexible
(b) Problem: CPLEX not available; “Black magic”; Free solvers available at TU Berlin;

Practical algorithms for large-scale scheduling problems are available
(c) ILP research mostly in OR, but not so much in CS; More collaboration between OR

and CS needed
(d) Formulations matter

Theoretical Knowledge in Companies

1. Theoretically good algorithms rarely implemented for critical systems; Mostly prototypes
2. Examples for benefit of theoretical knowledge in companies

a. Algorithm used for something it was not designed for, but it worked
b. Akamai; Theoretical knowledge went into applications
c. Start-up companies sometimes initiated by CS PhD’s (also theoretical)

Personal Motivation

What drives your interest in the area of scheduling?
(a) Open fundamental problems; Optimization of resources (also in real life); New problems;

Old problems; Get paid; Beauty
(b) Disconnect between “formal motivation” (the introduction of your paper) and “personal

motivation” (why you really do it)
(c) Playground for new questions; Models; Techniques
(d Can be explained to people
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5 Open Problems

Notes of the “Open problems” session that took place at the Dagstuhl meeting 11091 on
“Packing and Scheduling Algorithms for Information and Communication Services” from
27.2.2011 to 4.3.2011.

5.1 Implementing the Sum-of-Squares Bin-Packing Algorithm
David Johnson (AT&T, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© David Johnson

The Sum-of-Squares bin packing algorithm (SS) is designed for instances in which the bin
size B is an integer, as are all the item sizes. It is an online algorithm that chooses the bin
into which to place the next item as follows: Let c[i] be the number of bins in the current
packing whose gap (B minus the sum of the sizes of the items already packed in the bin)
equals i. Initially all the c[i]’s are 0. It chooses a bin into which to pack the item so as to
minimize

B−1∑
i=1

c[i]2,

where the choice can be either an existing bin or a new bin with initial gap B.
It is straightforward to implement this algorithm to run in time O(nB), where n is the

number of items, whereas the classical Best-Fit algorithm (place each item in a bin with
the smallest gap that will contain it) can be implemented to run in time O(n logB) by
maintaining a priority queue for the non-zero values of c[i].

For instances, when the number of item sizes is bounded by some constant J , SS can be
implemented in time O(nJ logB), by maintaining a priority queue for each item size. But
what if there is no such bound, or if J = Ω(B)?

Our question: Is there an implementation of SS that, for any fixed B and without
restriction on J , runs in time o(nB)?

For a detailed discussion of the Sum-of-Squares algorithm and its performance, see [1].

References
1 J. Csirik, D. S. Johnson, C. Kenyon, J. B. Orlin, P. W. Shor and R. R. Weber. On the

Sum-of-Squares Algorithm for Bin Packing. J. ACM 53, pp. 1–65, 2006).

5.2 Covering by Rectangles: Is Slicing Essential?
Sivan Albagli-Kim (Technion, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
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The following open problem explores the relation between packing resizable items (PRI)
and geometric covering. As shown in [1], PRI is equivalent to the problem of covering with
holes (CwH), defined as follows. Given is a set HI = {h1, · · · , hn} of n holes; each hole hj
is associated with a length 0 < qj < X and a width 0 < pj < Y . We want to determine
whether it is possible to cover an X × Y rectangle by holes in HI . A cover is a placement of
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the holes. For each hole hj , the solution specifies the x-interval Xj = [x1j , x2j ] in which hj
is spanned, such that x2j − x1j = qj . An X × Y rectangle is covered if, for any 0 ≤ t ≤ X,
the total width of holes whose x-interval contains t is at least Y . Note that the holes need
not be placed as rectangles and can be sliced along the y-axis. This type of cover models,
e.g., applications in which the x-axis corresponds to time, and the y-axis corresponds to a
resource whose allocation is not associated with specific location.

Figure 1 shows a cover of a 1× 1 rectangle by 7 holes. Note, for example, that hole h4
spans along [0.6, 1] and its width is 0.5. Similarly, hole h2 spans along [0, 0.6] and its width
is 0.3. We also note that it is possible to have overlapping holes, as well as holes whose
intervals span beyond the covered area.

3
1

2

2

4

4

7
5 

1

1

6

Figure 1 Covering a 1× 1-rectangle by 7 holes.

In the Covering with Rectangles (CwR) problem, given is a set RI = {r1, · · · , rn} of n
rectangles, such that each rectangle rj is associated with a length 0 < qj < X and a hight
0 < pj < Y . We need to determine whether it is possible to cover an X × Y rectangle
with rectangles in RI . A cover is a placement of the rectangles. For each rectangle rj , the
solution specifies the x-interval Xj = [x1j , x2j ] such that x2j − x1j = qj , and the y-interval
Yj = [y1j , y2j ] such that y2j − y1j = pj . A solution covers an X × Y rectangle if, for any
0 ≤ t ≤ X, the total hight of rectangles whose x-interval contains t is at least Y . Note that,
unlike the CwH problem, in CwR the rectangles are rigid (and therefore, cannot be sliced).

Let HI = RI . Clearly, for all X,Y , a positive answer for CwR implies a positive answer
for CwH. However, does the reverse hold, namely, does the existence of a solution for CwH
imply the existence of a solution for CwR?

This open problem was settled during the seminar. We thank Jiří Sgall for the following
example, which implies that the answer to the above is NO. The input consists of 8 holes:
(a)3× 2, (b)2× 1, (c)1× 4, (d)3× 2, (e)2× 1, (f)1× 4, (g)1× 3, (h)1× 1. The holes need to
cover a 4× 7 rectangle. As shown in Figure 2, there exists a solution for CwH (in which g is
sliced); however, there is no solution for CwR with this set of rectangles.

References
1 S. Albagli-Kim, H. Shachnai and T. Tamir. Approximation Algorithms for Packing Resiz-

able Items and Covering by Holes. Submitted.
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Figure 2 A solution for covering with holes in which slicing is essential.

5.3 Fixed-parameter Tractable Scheduling Problems
Dániel Marx (Humbold-Universität zu Berlin, DE)
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Recall that a problem is fixed-parameter tractable (FPT) with some parameter k if it can
be solved in time f(k) · nO(1), where n is the input size and f is an arbitrary computable
function depending only on k. Typically, if a problem is solvable in polynomial time for
every fixed value of the parameter k (for example, there is an algorithm with running time
O(nk)), then it makes sense to ask if the problem is FPT, i.e., if we can remove k from the
exponent of n and make it a multiplicative factor.

Compared to graph algorithms and other applications, there is surprisingly little work on
the fixed-parameter tractability of scheduling problems (see [1,2] for a few examples). One
problem is that it is not obvious how to choose relevant parameters that lead to interesting
positive results. For example, the number k of processors is an obvious choice for the
parameter, but a large fraction of the scheduling problems is NP-hard already for constant
number of processors (and hence unlikely to be FPT with respect to this parameter).

A parameter which looks much more promising for obtaining fixed-parameter tractability
results is the number of rejected jobs. Consider any scheduling problem that can be solved
optimally in polynomial time. Then we can extend the problem by allowing rejections:
the input contains an additional integer k, and the solution has to schedule all but k jobs.
Assuming that the original problem is polynomial-time solvable, it is clear that the extended
problem can be solved in nO(k) time: we first guess which k of the jobs to reject and solve
the problem optimally for the remaining jobs. However, it is not obvious if the extended
problem is fixed-parameter tractable parameterized by k. This question can be raised for any
polynomial-time solvable scheduling problem and could be potentially interesting to explore.
The open question is to find concrete scheduling problems, where the extended version with
rejected jobs is NP-hard, but fixed-parameter tractable.

References
1 Fellows, M., and McCartin, C. On the parameterized complexity of minimizing tardy tasks.

Theoretical Computer Science A 298 (2003), 317-324.
2 Bodlaender, H., and Fellows, M. On the complexity of k-processor scheduling. Operations

Research Letters 18 (1995), 93-98.
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5.4 Scheduling with Buffering on the Line
Adi Rosén (CNRS, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
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We consider directed linear communication networks. The linear network consists of n nodes,
{1, . . . , n}, and n− 1 directed edges, (i, i+ 1), for 1 ≤ i ≤ n− 1. The system is synchronous,
and at any time step, each edge can transmit one message. In one version of the problem,
each node can store at any time an infinite number of messages. We are given a set M,
|M| = M , of messages. Each message m = (sm, tm, rm, dm) ∈M consists of a source node
sm, a target node tm, a release time rm, and a deadline dm. For a message m, we define the
slack of m, σm, to be m = (dm − rm)− (tm − sm) (this is the number of steps the message
can be idle and still make it to its destination by its deadline.).We define Σ = maxm∈M σm.
We want to find a schedule for the messages that maximizes the number of messages that
arrive to their destinations by their respective deadlines.

The open problem is whether there exists a polynomial-time algorithm with constant
approximation ratio.

The problem is NP-hard [2]. A polynomial-time algorithm with approximation ratio
O(min{log∗ n, log∗ Σ, log∗M}) is known [3].

References
1 Micah Adler, Sanjeev Khanna, Rajmohan Rajaraman, and Adi Rosén. Time-constrained

scheduling of weighted packets on trees and meshes. Algorithmica, 36(2), pp. 123–152, 2003.
2 Micah Adler, Arnold L. Rosenberg, Ramesh K. Sitaraman, and Walter Unger. Scheduling

time-constrained communication in linear networks. Theory of Computing Systems 35(6),
pp. 599–623, 2002.

3 H. Räcke, A. Rosén, Approximation Algorithms for Time-Constrained Scheduling on Line
Networks. In Proc. of the 21st ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pp. 337–346, 2009.

5.5 Wireless Scheduling
Magnús Halldórsson (Reykjavik University, IS)
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Let p1, p2, . . . , pn be points on the real line with capacities c1, . . . , cn. The problem is to
partition P = {pi} into fewest sets P1, . . . , Pt, such that∑

p′∈Pi,p′ 6=p
|p− p′|3 ≤ ci, for each i and each p ∈ Pi.

We seek an O(1)-approximation.
This problem statement captures the most basic open question in scheduling wireless

links under the physical (or, SINR) model. Normally, links are given as sender-receiver
pairs, but it is known that when messages are all transmitted with the same uniform power,
we can blur the distinction between sender and receiver, by paying a constant factor. The
problem is usually specified on the plane, or in a general distance metric, but results for the
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one-dimensional case can typically be generalized relatively easily. The exponent “3”, known
as the path-loss constant, is situation dependent, and can be any number between 2 and 6.

An O(1)-approximation is known for the throughput problem of finding a single set
P1 of maximum cardinality within which all points satisfy the inequality above [1]. This
immediately gives an O(logn)-factor, but no better is known.
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Introduction

The Minimum Feedback Arc Set problem (MinFAS) is a fundamental and classical combinat-
orial optimization problem that finds application in many different settings that span from
circuit design, constraint satisfaction problems, artificial intelligence, scheduling, etc. (see
e.g. Chapter 4 in [19] for a survey). For this reason it has been deeply studied since the late
60’s (see, e.g., [17]).

Its input consists of a set of vertices V and nonnegative weights {w(i,j), w(j,i) : {i, j} ⊆ V }
for every oriented pair of vertices. The goal is to find a permutation π that minimizes∑
π(i)<π(j) w(i,j), i.e. the weight of pairs of vertices that comply with the permutation1. A

partially ordered set (poset) P = (V, P ), consists of a set V and a partial order P on V , i.e.,
a reflexive, antisymmetric, and transitive binary relation P on V , which indicates that, for
certain pairs of elements in the set, one of the elements precedes the other. In the constrained
MinFAS (see [23]) we are given a partially ordered set P = (V, P ) and we want to find a
linear extension of P of minimum weight.

MinFAS was contained in the famous list of 21 NP-complete problems by Karp [14].
Despite intensive research for almost four decades, the approximability of this problem
remains very poorly understood due to the big gap between positive and negative results.
It is known to be APX-hard [13], but no constant approximation ratio has been found yet.
The best known approximation algorithm achieves a performance ratio O(logn log logn)
[21, 10, 9], where n is the number of vertices of the digraph. Closing this approximability gap
is a well-known major open problem in the field of approximation algorithms (see e.g. [25],
p. 337). Very recently and conditioned on the Unique Games conjecture, it was shown [11]
that for every constant C > 0, it is NP-hard to find a C-approximation to the MinFAS.

Important ordering problems can be seen as special cases of MinFAS with restrictions on
the weighting function. Examples of this kind are provided by ranking problems related to
the aggregation of inconsistent information, that have recently received a lot of attention [1,
2, 15, 24]. Several of these problems can be modeled as (constrained) MinFAS with weights
satisfying either triangle inequalities (i.e., for any triple i, j, k, w(i,j) + w(j,k) ≥ w(i,k)), or
probability constraints (i.e., for any pair i, j, w(i,j) + w(j,i) = 1). Ailon, Charikar and

1 Different, but equivalent formulations are often given for the problem.
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Newman [2] give the first constant-factor randomized approximation algorithm for the
unconstrained MinFAS problem with weights that satisfy the triangle inequalities. When
the probability constraints hold, Mathieu and Schudy [15] obtain a PTAS. The currently
best known constant approximation algorithms for the (constrained) MinFAS with triangle
inequalities on the weights can be found in [1, 24]. Another prominent example is given by a
classical problem in scheduling, namely the precedence constrained single machine scheduling
problem to minimize the weighted sum of completion times, denoted as 1|prec |

∑
wjCj (see

e.g. [16] and [12] for a 2-approximation algorithm). This problem can be seen as a constrained
MinFAS where the weight of arc (i, j) is equal to the product of two numbers pi · wj : pi is
the processing time of job i and wj is a weight associated to job j (see [3, 4, 7, 8] for recent
advances).

The (constrained) MinFAS can be described by the following natural (compact) ILP using
linear ordering variables δ(i,j) (see e.g. [24]): variable δ(i,j) has value 1 if vertex i precedes
vertex j in the corresponding permutation, and 0 otherwise.

[FAS] min
∑
i6=j

δ(i,j)w(i,j) (1a)

s.t. δ(i,j) + δ(j,i) = 1, for all distinct i, j (1b)
δ(i,j) + δ(j,k) + δ(k,i) ≥ 1, for all distinct i, j, k (1c)
δ(i,j) = 1, for all (i, j) ∈ P (1d)
δ(i,j) ∈ {0, 1}, for all distinct i, j (1e)

Constraint (1b) ensures that in any feasible permutation either vertex i is before j or vice
versa. The set of Constraints (1c) is used to capture the transitivity of the ordering relations
(i.e., if i is ordered before j and j before k, then i is ordered before k, since otherwise by
using (1b) we would have δ(j,i) + δ(i,k) + δ(k,j) = 0 violating (1c)). Constraints (1d) ensure
that the returned permutation complies with the partial order P .

To some extent, one source of difficulty that makes the MinFAS hard to approximate
within any constant is provided by Constraint (1b). To see this, consider, for the time
being, the unconstrained MinFAS. The following covering relaxation obtained by relaxing
Constraint (1b) behaves very differently with respect to approximation.

min
∑
i 6=j

δ(i,j)w(i,j) (2a)

s.t. δ(i,j) + δ(j,i) ≥ 1, for all distinct i, j (2b)
δ(i,j) + δ(j,k) + δ(k,i) ≥ 1, for all distinct i, j, k (2c)
δ(i,j) ∈ {0, 1}, for all distinct i, j (2d)

Problem (2) is a special case of the vertex cover problem in hypergraphs with edges of sizes at
most 3. It admits “easy” constant approximate solutions, whereas problem (1) does not seem
to have any constant approximation [11]. Moreover, the fractional relaxation of (2), obtained
by dropping the integrality requirement, is a positive linear program and therefore fast
NC approximation algorithms exists: Luby and Nissan’s algorithm [18] computes a feasible
(1 + ε)-approximate solution in time polynomial in 1/ε and logN , using O(N) processors,
where N is the size of the input (fast approximate solution can also be obtained through the
methods of [20]). On the other side, the linear program relaxation of (1) is not positive.

In a recent (unpublished, but available upon request) paper we show that the covering
relaxation (2) is an “optimal” relaxation, namely, a proper formulation, for the unconstrained
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MinFAS when the weights satisfy the triangle inequalities. More precisely, we show that
any α-approximate solution to (2) can be turned in polynomial time into an α-approximate
solution to (1), for any α ≥ 1 and when the weights satisfy the triangle inequalities. The
same claim applies to fractional solutions. (We also observe that the same result does not
hold when the weights satisfy the probability constraints.)

Interestingly, a compact covering formulation can be also obtained for the more general
setting with precedence constraints. In this case we need to consider the following covering
relaxation2 which generalizes (2) to partially ordered sets P = (V, P ).

min
∑
i 6=j

δ(i,j)w(i,j) (3a)

s.t. δ(x1,y1) + δ(x2,y2) ≥ 1, (x2, y1), (x1, y2) ∈ P (3b)
δ(x1,y1) + δ(x2,y2) + δ(x3,y3) ≥ 1, (x2, y1), (x3, y2), (x1, y3) ∈ P (3c)
δ(i,j) ∈ {0, 1}, for all distinct i, j (3d)

Open problems

The constrained MinFAS problem admits a natural covering formulation with an exponential
number of constraints (see e.g. [5]):

min
∑
(i,j)

δ(i,j)w(i,j) (4a)

s.t.
c∑
i=1

δ(xi,yi) ≥ 1, for all c ≥ 2, (xi, yi)ci=1 s.t. (xi, yi+1) ∈ P (4b)

δ(i,j) ∈ {0, 1}, for all distinct i, j (4c)

The condition (xi, yi+1) ∈ P in constraint (4b) is to be read cyclically, i.e. (xc, y1) ∈ P . The
hyperedges in this vertex cover problem are exactly the alternating cycles of poset P (see
e.g. [22]).

We know that when the weights satisfy the triangle inequality then we can drop from (4)
all the constraints of size strictly larger than three. Generalizing, it would be nice to
prove/disprove the following statement that we conjecture to be true.
I Hypothesis 1. When the weights satisfy the k-gonal inequalities3, then there exists a
constant c(k), whose value depends on k, such that a proper formulation for the constrained
MinFAS problem can be obtained by dropping from (4) all the constraints of size strictly
larger than c(k).

Moreover, it would be nice to use the large literature and techniques developed for
covering problems to improve the best known ratios for MinFAS with (near-)metric weights.
This was actually the case for the scheduling problem 1|prec |

∑
wjCj : in [3, 8] it was first

shown that the structure of the weights for this problem allows for all the constraints of size
strictly larger than two to be ignored, therefore the scheduling problem can be seen as a
special case of the vertex cover problem. The established connection proved later to be very
valuable both for positive and negative results: studying this graph yielded a framework that

2 It is a relaxation to constrained MinFAS since if either Constraint (3b) or (3c) was violated then we
would have a cycle.

3 For all a1, . . . , ak ∈ V the following holds: w(a1,ak) ≤ w(a1,a2) + . . . + w(ak−1,ak).
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unified and improved upon previously best-known approximation algorithms [4, 6]; moreover,
it helped to obtain the first inapproximability results for this old problem [7] by revealing
more of its structure.
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