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Abstract
This Dagstuhl seminar brought together researchers with a wide range of interests and back-
grounds related to plan and activity recognition. It featured a substantial set of longer tutorials
on aspects of plan and activity recognition, and related topics and useful methods, as a way of
establishing a common vocabulary and shared basis of understanding. Building on this shared
understanding, individual researchers presented talks about their work in the area. There were
also panel discussions which addressed questions about how to best foster progress in the field
— specifically how to improve our ability to compare different plan and activity recognition algo-
rithms — and address the question of whether to assume rationality in the modeled agents (a
question that is of great concern in many fields at this time). This report presents a summary
of the talks and discussions at the seminar.
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Plan recognition, activity recognition, and intent recognition all involve making inferences
about other actors from observations of their behavior, i.e., their interaction with the
environment and with each other. The observed actors may be software agents, robots, or
humans. This synergistic area of research combines and unifies techniques from user modeling,
machine vision, intelligent user interfaces, human/computer interaction, autonomous and
multi-agent systems, natural language understanding, and machine learning. It plays a
crucial role in a wide variety of applications including:

assistive technology
software assistants
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computer and network security
behavior recognition
coordination in robots and software agents
e-commerce and collaborative filtering

This Dagstuhl seminar brought together researchers with a wide range of interests and
backgrounds related to plan and activity recognition. It featured a substantial set of longer
tutorials on aspects of plan and activity recognition, and related topics and useful methods,
as a way of establishing a common vocabulary and shared basis of understanding. These
were:

Plan recognition and discourse;
Plan recognition and psychology;
Probabilistic methods;
Plan recognition and learning;
Grammatical methods and
Planning and plan recognition.

The common ground constructed by these tutorials provided a basis that individual researchers
could build upon when sharing their specific interests and developments.

One challenge to progress in plan recognition is that there has not been a shared agreement
about what constitutes plan recognition: what are its inputs and outputs, and what constitutes
a good answer. In particular, this has inhibited progress because it is difficult to clearly
compare new work in plan recognition with preceding work (quantitative comparisons are
almost impossible), there is a paucity of shared data sets, etc. Coming into the seminar, the
organizing committee proposed that the field might be improved by the introduction of a
plan recognition competition, modeled on competitions in AI planning (the International
Planning Competition), SAT solving, etc. Discussions at the seminar concluded that it would
be premature to introduce such a competition at this time. Participants felt that a more
productive use of community resources would be to develop a shared repository of plan and
activity recognition data sets. A number of participants volunteered to provide their data
sets, and there has been movement towards establishing a common public repository.

Plan Recognition: background
The earliest work in plan recognition was rule-based; researchers attempted to come up
with inference rules that would capture the nature of plan recognition. However without an
underlying formal model these rule sets are difficult to maintain and do not scale well.

In 1986, Kautz and Allen (K&A) published an article, “Generalized Plan Recognition” [7]
that framed much of the work in plan recognition to date. K&A defined the problem of
plan recognition as the problem of identifying a minimal set of top-level actions sufficient to
explain the set of observed actions. Plans were represented in a plan graph, with top-level
actions as root nodes and expansions of these actions into unordered sets of child actions
representing plan decomposition. To a first approximation, the problem of plan recognition
was then a problem of graph covering. K&A formalized this view of plan recognition in
terms of McCarthy’s circumscription. Kautz [6] presented an approximate implementation of
this approach that recast the problem as one of computing vertex covers of the plan graph.

A number of early plan recognition systems used techniques such as rule-based systems [9],
vertex covering, etc. Such techniques are not able to take into account differences in the a
priori likelihood of different goals. Observing an agent going to the airport, this algorithm
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views “air travel,” and “terrorist attack” as equally likely explanations, since they explain
(cover) the observations equally well.

To the best of our knowledge, Charniak was the first to argue that plan recognition
was best understood as a specific case of the general problem of abduction, or reasoning
to the best explanation [3, e.g.,]. Charniak and Goldman (C&G) [2] argued that, viewing
plan recognition as abduction, it could best be done as Bayesian (probabilistic) inference.
Bayesian inference supports the preference for minimal explanations, in the case of equally
likely hypotheses, but also correctly handles explanations of the same complexity but different
likelihoods. For example, if a set of observations could be equally well explained by two
hypotheses, theft and bragging being one, and theft alone being the other, simple probability
theory (with some minor assumptions), will tell us that the simpler hypothesis is the more
likely one. On the other hand, if as above, the two hypotheses were “air travel” and “terrorist
attack,” and each explained the observations equally well, then the prior probabilities will
dominate, and air travel will be seen to be the most likely explanation. There have been
many similar approaches to the problem, based on cost minimization, etc.

Another broad area of attack on the problem of plan recognition has been to reformulate
it as a parsing problem [10, e.g.,]. Parsing-based approaches to plan recognition promise
greater efficiency than other approaches, but at the cost of making strong assumptions about
the ordering of plan steps. The major problem with parsing as a model of plan recognition is
that it does not treat partially-ordered plans or interleaved plans well. Approaches that use
statisical parsing [11, e.g.,] combine parsing and Bayesian approaches.

Finally, there has been a large amount of very promising work done using variations of
Hidden Markov Models (HMMs) [1], techniques that came to prominence in signal processing
applications, including speech recognition. These approaches offer many of the efficiency
advantages of parsing approaches, but with the additional advantages of incorporating
likelihood information and of supporting machine learning to automatically acquire their plan
models. Standard HMMs seem to be insufficiently expressive to capture planful behavior,
but a number of researchers have extended them to hierarchical formulations, that capture
more complicated intentions. Conditional Random Fields [8], dynamic Bayes nets, and other
probabilistic models have also been used.

Much of this latter work has been done under the rubric of activity recognition. The early
work in this area very carefully chose the term activity or behavior recognition to distinguish
it from plan recognition. The distinction to be made between activity recognition and plan
recognition is the difference between recognizing a single (possibly complex) activity and
recognizing the relationships between a set of such activities that result in a complete plan.
Much of the work on activity recognition can be seen as discretizing a sequence of possibly
noisy and intermittent low-level sensor readings into coherent actions that could be treated
as inputs to a plan recognition system.

Several researchers have been interested in using plan recognition to improve team
coordination [4, 5]. That is, if agents in a team can recognize what their teammates are
doing, then they can better cooperate and coordinate. They may also be able to learn
something about their shared environment. For example, a member of a military squad who
sees a teammate ducking for cover may infer that there is a threat, so that it also takes
precautions.

References
1 H. Bui and S. Venkatesh and G. A. W. West. Policy recognition in the abstract Hidden

Markov Model. In Journal of Artificial Intelligence Research, vol. 17, pages 451–499, 2002.
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3 Overview of Talks

3.1 From Motion to Text and Back for Humanoid Robots
Tamim Asfour (KIT – Karlsruhe Institute of Technology, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Tamim Asfour

Joint work of Asfour, Tamim; Dillmann, Ruediger
URL http://his.anthropomatik.kit.edu/english/65.php

Semantic representations are a prerequisite for the development of cognitive capabilities and
understanding in robots as well as for cooperation, interaction and communication with
humans. Building such representations from sensorimotor experience rely on organizing the
system’s sensorimotor experience to provide data structures which can be used at different
levels of the systems hierarchy and breaks through the gap between sensorimotor level and
symbolic level.

In this talk, we present our recent work on building humanoid robots able to act, interact
and autonomously acquire knowledge in the real world. Results are presented towards the
implementation of integrated 24/7 humanoid robots able to 1) perform complex grasping
and manipulation tasks in a kitchen environment 2) autonomously acquire object knowledge
through active visual and haptic exploration and 3) learn actions from human observation
and imitate them in goal-directed manner.

Further, we discuss how a motion library can be built from observation of human
demonstration and how the elements of such library can be represented and enriched by
additional constraints such as objects involved in an action, forces applied to an object and
agents involved in interaction and cooperation tasks.

The resulting data structures, together methods of natural language processing will
facilitate the link between sensorimotor experience and linguistic representations.

3.2 Bayesian Theory of Mind: Modeling Joint Belief-Desire Inference
Chris L. Baker (MIT - Cambridge, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Chris L. Baker

Joint work of Baker, Chris L.; Saxe, Rebecca R.; Tenenbaum, Joshua B.
Main reference Baker, C.L., Saxe, R.R., Tenenbaum, J.B., “Bayesian Theory of Mind,” Proceedings of the

Thirty-Second Annual Conference of the Cognitive Science Society, to appear.

We present a computational framework for understanding Theory of Mind (ToM): the human
capacity to make joint inferences about the beliefs and desires underlying the observed actions
of other agents. Bayesian ToM (BToM) formalizes the concept of intentional agency at the
heart of ToM as a partially observable Markov decision process (POMDP), and performs
Bayesian inference over this structured model to reconstruct an agent’s joint belief state and
reward function given observations of its behavior in some environmental context. We test
the BToM framework by collecting people’s joint inferences of agents’ desires and beliefs
about unobserved aspects of the environment in response to stimuli of agents moving in
simple spatial scenarios. BToM performs substantially better than two simpler variants: one
in which desires are inferred without reference to an agents’ beliefs, and another in which
beliefs are inferred without reference to the agent’s dynamic observations in the environment.

11141

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://his.anthropomatik.kit.edu/english/65.php
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
file:Baker, C.L., Saxe, R.R., Tenenbaum, J.B., ``Bayesian Theory of Mind,'' Proceedings of the Thirty-Second Annual Conference of the Cognitive Science Society, to appear.
file:Baker, C.L., Saxe, R.R., Tenenbaum, J.B., ``Bayesian Theory of Mind,'' Proceedings of the Thirty-Second Annual Conference of the Cognitive Science Society, to appear.


8 11141 – Plan Recognition

3.3 Eliciting Plan Recognition Cues by Provoking Opponents in RTS
Games

Francis Bisson (Université de Sherbrooke, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Francis Bisson

Joint work of Bisson, Francis; Kabanza, Froduald; Benaskeur, Abder Rezak; Irandoust, Hengameh
Main reference Bisson, F., Kabanza, F., Benaskeur, A. and Irandoust, H., “Provoking Opponents to Facilitate the

Recognition of their Intentions,” Proceedings of the AAAI Student Abstract and Poster Program,
2011.

URL http://planiart.usherbrooke.ca/ bisson/papers/aaai2011-poster.pdf

For agents evolving in adversarial environments such as RTS games, it is necessary to be
able to recognize the goals of their opponents in the environment. However, most adversarial
plan recognizers rely on a passive observation of the opponents, gathering and analyzing cues
related to their goals. In contrast, in this talk I will present preliminary results for a plan
recognition approach that can provoke the opponents in order to observe their reactions, and
use the resulting cues to disambiguate the current set of hypotheses on their goals.

3.4 Knowledge-rich Plans – How they Enable Explanation,
Recognition, and Repair

Susanne Biundo (Universität Ulm, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Susanne Biundo

Hybrid planning combines the traditional planning paradigms of hierarchical task network
(HTN) and partial-order causal-link (POCL) planning. The resulting systems are able to use
predefined standard solutions like in pure HTN planning, but can also develop (parts of) a
plan from scratch or modify a default solution in cases where the initial state deviates from
the presumed standard. This flexibility makes hybrid planning particularly well suited for
real-world applications.

Based on a completely declarative description of actions, tasks, and solution methods,
hybrid planning smoothly integrates reasoning about procedural knowledge and causalities
and allows for the generation of knowledge-rich plans of action. The information those plans
comprise includes causal dependencies between actions on both abstract and primitive levels
as well as information about their hierarchical and temporal relationships. By making use of
this information, as well as of the underlying declarative domain models, capabilities like the
generation of courses of action on various abstraction levels, the stable repair of failed plans,
plan recognition, and the explanation of different solutions for a given planning problem can
be implemented by advanced automated reasoning techniques.
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3.5 Thinking about Evaluation and Corpora for Plan Recognition
Nate Blaylock (IHMC – Pensacola, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Nate Blaylock

Joint work of Blaylock, Nate; Allen, James

Lately, many fields of AI have benefited from labeled corpora as common resources for
training and evaluating performance. I will discuss some of the issues of creating corpora for
plan recognition and argue that this would be a worthwhile investment for our community. I
will also discuss a range of metrics for evaluating the performance of plan recognizers.

3.6 “The gist of the matter”: On plan understanding, behaviour
prediction, and referring expressions

Michael Brenner (Universität Freiburg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Michael Brenner

The talk discussed the problem of understanding the purpose of a plan. I argued that this
is more than recognising the goal state it tries to achieve, but rather a characterisation
of the plan in relation to "deficits" in (and other constraints on) the initial state. Such a
characterisation (called a "gist") can be described indepently of the specific initial state by
making use of referring expressions, similarly to their use in natural-language processing.

The talk then discussed cost measures for gists and some initial ideas for recognising
them given an observed plan.

3.7 AbRA: An Abductive, Rationalizing Agent for Plan Recognition
Will Bridewell (Stanford University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Will Bridewell

Joint work of Bridewell, Will; Langley, Pat
Main reference Bridewell, W., & Langley, P., “A computational account of everyday abductive inference,”

Proceedings of the 33rd Annual Meeting of the Cognitive Science Society, 2011.

Plan recognition is a naturally abductive task. That is, looking at the actions of an agent,
one must make assumptions about its underlying plan. AbRA is a novel, logic-based system
for carrying out socially aware, abductive inference.

This system emphasizes cyclic, online operation, incremental extension of explanations,
a shifting focus of attention, and a data-driven inference mechanism. Guided by local
coherence, AbRA constructs an explanation/plan that ties the observations into a plausible,
although not necessarily correct or even optimally rational, story. Here I provide an intuitive
description of the system, report preliminary results on a complex plan recognition domain,
and plot our current research trajectory.
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3.8 Plan Recognition for User-Adaptive Interaction
Cristina Conati (University of British Columbia – Vancouver, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Cristina Conati

I will first give some examples of how we use plan/goal/activity recognition in user-adaptive
interactive systems. I will then introduce two directions we are exploring to improve the
accuracy and usability of user-adaptive interaction: (i) using eye-gaze information to inform
plan recognition; (ii) Explaining to the user aspects of the system’s reasoning to increase
user trust in the system’s adaptive interventions

3.9 Activity Recognition for a Knowledge Worker Assistant
Thomas Dietterich (Oregon State University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Thomas Dietterich

Joint work of Dietterich, Thomas; Shen, Jianqiang; Bao, Xinlong; Keiser, Victoria; Bui, Hung
Main reference Dietterich, T. G., Bao, X., Keiser, V., Shen, J., “Machine Learning Methods for High Level Cyber

Situation Awareness,” In Jajodia, S., Liu, P., Swarup, V. and Wang, C. (Eds.) , “Cyber Situation
Awareness”. Springer, 2009, pp. 227–247.

URL http://web.engr.oregonstate.edu/ tgd/publications/csa-dietterich-bao-keiser-shen.pdf

Knowledge workers execute hundreds of simple digital workflows in a typical work week.
We will describe three forms of activity recognition that seek to assist knowledge workers
with these workflows. The first is the TaskTracer Project Predictor, which attempts to
infer which project the user is working on based on observed desktop activity. The second
is the TaskTracer Folder Predictor, which predicts which folder the user wishes to access
when opening or saving a file. Experimental studies show that Folder Predictor reduces by
50desired folder. The third is a method for discovering and recognizing workflow executions
as part of an effort to provide proactive assistance to desktop knowledge workers.

3.10 Tutorial: Plan Recognition via Inverse Reinforcement Learning
Thomas Dietterich (Oregon State University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Thomas Dietterich

Reinforcement learning methods seek an optimal policy for an unknown Markov Decision
Process by interacting with that process to learn the transition and reward functions. Inverse
Reinforcement learning is given the transition function and the optimal (or expert) policy and
seeks to find the reward function. More generally, Inverse RL can be viewed as attempting
to infer the goals underlying observed behavior. A closely-related task is to infer a expert’s
policy from demonstrations.

The components of an MDP (reward function, policy, value function, state visitation
probabilities) are inter-related, and Inverse RL methods can be categorized based on the
primary component that they attempt to learn. Given observed behavior, there are multiple
reward functions and value functions consistent with it (even asymptotically), which makes
direct attempts to learn these components ill-defined. In contrast, methods that seek to
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directly learn the policy or the state visitation probabilities appear to be more successful,
because these are uniquely specified by observed behavior (at least asymptotically). This
tutorial surveys several methods for learning reward functions, state visitation probabilities,
and policies and concludes that learning state visitation probabilities is the most promising
approach.

3.11 Plan Recognition and Collaborative Assistants
George Ferguson (University of Rochester, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© George Ferguson

This talk discusses the roles of plan recognition in the design and implementation of collabo-
rative assistants—intelligent systems that interact naturally to help people solve problems.
Two key roles are identified: (1) the disambiguation of natural language input to support
mixed-initiative interaction and learning from demonstration, and (2) tracking user per-
formance during execution to support both mixed-initiative interaction, task- and context-
sensitive help, and overt instruction or teaching. These roles are illustrated with examples
from systems we have implemented in the past. We also describe a new research thrust based
on combining natural language description with low- level sensor data for learning models of
real-world tasks performed by humans.

3.12 Planning and Plan Recognition
Hector Geffner (Universidad Pompeu Fabra – Barcelona, ES)

License Creative Commons BY-NC-ND 3.0 Unported license
© Hector Geffner

Joint work of Geffner, Hector; Ramirez, Miquel
Main reference M. Ramirez and H. Geffner, “Probabilistic Plan Recognition using off-the-shelf Classical Planners,”

Proc. AAAI-2010.
URL http://www.dtic.upf.edu/~hgeffner

Plan recognition is like planning in reverse: while in planning the goal is given and a plan
is sought; in plan recognition, part of a plan is given, and the goal and complete plan are
sought. Until recently, however, plan recognition has been addressed using methods which
are not related to planning such as parsing algorithms, Bayesian network procedures, and
specialized methods.

In almost all cases, the space of possible plans or activities to be recognized is assumed
to be given by a suitable library or set of policies.

Recently, an approach that does not require the use of a plan library and which uses
planning technology, as been developed by Baker, Saxe, and Tenenbaum, on the one hand,
and by Ramirez and Geffner, on the other. In this approach, the plan recognition problem
is mapped into a collection of planning problems that can be solved with off-shelf-planners.
The posterior distribution over the possible goals given the observation is inferred from basic
probability lows and costs derived from the use of a planner. The approach has been used
to perform planning recognition over classical planning models, Markov Decision Processes
(MDPs), and Partially Observable MDPs (POMDPs).
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In this invited talk, I review the relevant ideas from AI Planning and their use for
formulating and solving the plan recognition problem.

3.13 Grammatical Methods for Plan Recognition
Christopher W. Geib (University of Edinburgh, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christopher W. Geib

This talk is an overview of prior and current work on viewing plan recognition as a parsing
task given a formal grammar and a sequence of observations. It covers work in using: regular,
context free, probabilistic state-dependent, plan tree, tree adjoining, and combinatorial
categorial grammars.

3.14 Plan recognition: a historical survey, part I
Robert P. Goldman (SIFT – Minneapolis, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Robert P. Goldman

The seminar opened with a historical survey of plan recognition. We present a taxonomy of
plan recognition problems, including the conventional distinction between keyhole, intended,
and adversarial plan recognition, but touching on other dimensions such as fallible versus
ideal agents, complete versus partial observability, open versus closed worlds, static versus
evolving sets of intentions, and expressiveness of plan representation. After outlining the
dimensions of plan representation, we proceeded to review methods used in the early history
of plan recognition. We began with early techniques, based on rule-based systems, then
moved on to discuss the formalization of the field, based on Kautz and Allen’s generalized
theory of plan recognition, and Vilain’s parsing-based complexity analysis of the theory.
We discussed systems inspired by this work, including techniques based on parsing and on
minimal graph cover.

We concluded the first part of this talk with a discussion of techniques based on Bayes
networks.

3.15 Behavior Recognition and Demonstration for Human/Robot
Cooperation

Tetsunari Inamura (NII – Tokyo, JP)

License Creative Commons BY-NC-ND 3.0 Unported license
© Tetsunari Inamura

Main reference Tetsunari Inamura, Keisuke Okuno, “Robotic Motion Coach: Effect of Motion Emphasis and
Verbal Expression for Imitation Learning,” Proc. 3rd International Conference on Cognitive
Neurodynamics, p.186, 2011.

Behavior Recognition and Demonstration for Human-Robot Cooperation In this talk, devel-
opment of a robotic coaching system is discussed. recognition and reproduction of human’s
whole body motion patterns are focused towards establishment of natural human-robot
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cooperation through demonstration of motion and speech conversation. A robotic coaching
system should be a target application because the robot should recognize user’s motion,
demonstrate modified motion according to user’s level of skill, and generate advice with
verbal expression. Abstract of motion pattern using HMMs and a phase space are proposed.
Using the phase space, motion emphasis and generation of verbal expression are integrated. A
robotic simulator platform is also introduced towards a basis of evaluation of plan recognition
for human-robot interaction application.

References
1 Tetsunari Inamura and Keusuke Okuno. Robotic Motion Coach: Effect of Motion Empha-

sis and Verbal Expression for Imitation Learning. The 3rd International Conference on
Cognitive Neurodynamics, p.186, 2011.

3.16 Plan recognition challenges in real-time strategy games
Froduald Kabanza (Université de Sherbrooke, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Froduald Kabanza

Main reference Kabanza, F., Bellefeuille, P., Bisson, F., Benaskeur, A., and Irandoust, H., “Opponent Behaviour
Recognition for Real-Time Strategy Games,” Proc. of AAAI Workshop on Plan, Activity and
Intent Recognition (PAIR), 2010.

URL http://planiart.usherbrooke.ca/kabanza/publications/10/pair10-opponent.pdf

In real-time strategy (RTS) games, players recruit and manoeuvre army units in order to
defeat their opponents. The victory condition may vary from one game or scenario to another,
but it usually involves destroying some or all of the opponent’s assets. A key component of
the player’s situation awareness in this context is the recognition of his opponent’s intent
and plans. This presentation covers some of the main challenges posed by the intent and
plan recognition problems in RTS games and sketch the main building blocks of a conceptual
plan recognition method geared towards addressing these challenges. The method is still a
concept in the early development stage, and the presentation will be aimed at stimulating a
discussion and encouraging the audience to comment on it rather than demonstrating its
effectiveness. The RTS domain is used for concrete scenarios, but the fundamental intent
and plan recognition problems that we are addressing remain relevant to other adversarial
domains.

3.17 Survey of Probabilistic Activity and Plan Recognition
Henry A. Kautz (University of Rochester, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Henry A. Kautz

We provide an overview of probabilistic plan recognition methods. These include:
HMM
Layered HMM
Dynamic Bayesian Networks
Stochastic Grammars
Conditional Random Fields
Relational Markov Model
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Markov Logic
Bayesian Inverse Planning
Inverse Reinforcement Learning
N-Gram Models

3.18 Mobile Intention Recognition And Spatially Constrained
Grammars

Peter Kiefer (Universität Bamberg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Peter Kiefer

Main reference Peter Kiefer, “The Mobile Intention Recognition Problem And An Approach Based On
Spatially-Constrained Grammars,” PhD Thesis, to appear 2011.

Mobile intention recognition differs from the general plan and intention recognition problem
by the availability of spatial context information for each input behavior. This talk proposes
to use the specific properties of spatial context, such as continuity and hierarchies, for the
disambiguation of mobile behavior sequences.

Most current approaches for interpreting mobile behavior focus on activity recognition,
not on (high-level) intentions. This talk argues that formal grammars, enhanced with
spatial information, are well-suited for representing high-level intentions. Formal grammars
make expressiveness properties explicit, are cognitively comprehensible, and allow for easy
geographic portability - a requirement crucial in mobile assistance domains.

Many mobile assistance domains require us to represent behaviors and intentions with
formal grammars of higher expressiveness than context-free grammars. This talk proposes
to enhance the mildly context-sensitive Tree-Adjoining Grammar formalism, well-known in
natural language processing, with spatial constraints, yielding in a spatial grammar specifically
useful to express the Visit-/Revisit-pattern frequently occuring in mobile assistance.

3.19 Probabilistic Plan Recognition
Kathryn B. Laskey (George Mason University – Fairfax, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Kathryn B. Laskey

Plan recognition is naturally viewed as a problem in inference under uncertainty. From
observations of an agent’s actions (or effects actions), a plan recognition system attempts
to infer the agent’s goal and explain the actions in terms of a plan for achieving the goal.
Typically, there are multiple explanations for any sequence of actions. Probability is a natural
approach to weighing the relative plausibility of alternative explanations.

Attractive features of probability include its strong theoretical foundation, its unified view
of inference and learning, and its practical success in a growing body of applications. On
the other hand, probabilistic inference and learning are NP-hard, and achieving sufficiently
expressive yet tractable representations is a major challenge. This talk provides an overview
of major probabilistic representations used for plan recognition, describes common exact and
approximate inference methods, and identifies research challenges.
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3.20 Plan Recognition Using Multi-Entity Bayesian Networks and
PR-OWL

Kathryn B. Laskey (George Mason University – Fairfax, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Kathryn B. Laskey

Joint work of Carvalho, Rommel N.; Costa, Paulo C. G.; Laskey, Kathryn B.; and Chang, KuoChu
Main reference Carvalho, Rommel N.; Costa, Paulo C. G.; Laskey, Kathryn B.; Chang, KuoChu, “PROGNOS:

Predictive Situational Awareness with Probabilistic Ontologies,” Proceedings of the Thirteenth
International Conference of the Society of Information Fusion (FUSION 2010).

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5711970

Increasingly expressive languages are emerging for representing and reasoning with probability.
Multi-Entity Bayesian Networks (MEBN) is a first-order language for specifying probabilistic
knowledge bases as parameterized fragments of Bayesian networks. MEBN fragments
(MFrags) can be instantiated and combined to form arbitrarily complex graphical probability
models. An MFrag represents probabilistic relationships among a conceptually meaningful
group of uncertain hypotheses. The PR-OWL probabilistic ontology language, based on
MEBN, extends OWL to allow expression of uncertainty about attributes and relations. An
example is given of a MEBN theory for maritime domain awareness and its implementation
as a PR-OWL probabilistic ontology.

3.21 Plan Recognition in/with Agent Programming Languages
Yves Lespérance (York University – Toronto, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Yves Lesperance

Joint work of Lesperance, Yves; Goultiaeva, Alexandra
Main reference Goultiaeva, A. and Lespérance, Y., “Incremental Plan Recognition in an Agent Programming

Framework,” In Working Notes of the AAAI 2007 Workshop on Plan, Activity, and Intent
Recognition (PAIR’07), Vancouver, BC, July, 2007.

URL http://www.cse.yorku.ca/~lesperan/papers/PAIR07.pdf

In the talk, I discuss how agent programming languages can be used for specifying plans for
plan recognition, and also how plan recognition capabilities could be usefully added to such
languages. I focus on the ConGolog agent programming language, based on the situation
calculus. I review an account of plan recognition for this setting [1], where ConGolog plan
libraries are used. This provides a very expressive language for specifying plans.

It supports several forms of nondeterminism and allows sketchy plan templates to be
specified. Also it is closed under union, intersection, and complementation, so one can specify
the set of runs that are part of the plan in a completely compositional way. I discuss how the
account can be simplified by restricting attention to situation-determined programs, where
the remaining program after a partial execution is uniquely determined [2].

References
1 Goultiaeva, A. and Lespérance, Y., “Incremental Plan Recognition in an Agent Program-

ming Framework.” In Working Notes of the AAAI 2007 Workshop on Plan, Activity, and
Intent Recognition (PAIR’07), Vancouver, BC, July, 2007.

2 De Giacomo, G., Lespérance, Y., and Muise, C., “Agent Supervision in Situation-
Determined ConGolog.” To appear in Working Notes of the 9th International Workshop
on Nonmonotonic Reasoning, Action and Change (NRAC-2011), Barcelona, Spain, July,
2011.
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3.22 Yappr: From LL parsing to plan recognition
John Maraist (SIFT – Minneapolis, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© John Maraist

Joint work of Geib, Christopher W.; Goldman, Robert P.; Maraist, John
Main reference Christopher W. Geib, John Maraist, Robert P. Goldman, “A New Probabilistic Plan Recognition

Algorithm Based on String Rewriting,” Proc. of the 18th International Conference on Automated
Planning and Scheduling (ICAPS-2008), Sydney, Australia, 2008.

We present the probabilistic HTN plan recognition algorithm Yappr by evolution from its
motivating classical parsing algorithm. We begin with a simple stack-based automaton
for nondeterministic LL parsing, and identify the three refinements which produce Yappr:
precompilation of plans for efficient, deterministic retrieval; replacement of the parser
stack with a graph allowing multiple application points; and maintenance of multiple
explanations rather than a single parse. We conclude with a look forward at the advantages
and disadvantages of moving from an LL-based to an LR- based approach.

3.23 No More Plan Libraries – The Case for a Structureless World
David Pattison (The University of Strathclyde – Glasgow, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© David Pattison

Joint work of Pattison, David; Long, Derek

Plan Libraries have always gone hand-in-hand with Plan Recognition. Having a concise set
of possible plans to map to an agent’s observed actions allows for reliable goal recognition,
next-action prediction, intermediate states and further prediction and analysis.

The problem is that these libraries don’t exist in the real world. Construction of a
plan/goal library by hand is a labour-intensive process with a highly bespoke output. In
the past 10 years work has moved towards the generation of these libraries at runtime, but
computer-generated plans can never be truly perfect, with invalid or unwanted entries an
unavoidable side-effect. In this talk I will discuss my own work on Goal Recognition as
a Planning problem as an example of such a model, and the need to move away from a
library-based standard in recognition.

3.24 Modeling Theory of Mind as Plan Recognition
David Pynadath (University of Southern California – Marina del Rey, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© David Pynadath

Human social interaction relies on our ability to model each other as (mostly) rational actors.
Despite the uncertainty we may have of another’s intentions and subjective beliefs, our theory
of mind provides valuable leverage that we exploit whenever possible. Thus, multiagent
modeling of social situations can benefit from a computational implementation of theory of
mind. I present one such implementation where an agent reuses its own decision-theoretic
planning to generate expectations about the behavior of others. By combining its uncertain
beliefs about the possible mental states of others with a planning mechanism, it becomes
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straightforward to recast this problem as plan recognition. Inverting the planning process
generates abductive reasoning that an agent can use to update its beliefs about others as it
observes their behavior. While such recursive beliefs can become prohibitively complex as
the number of agents increases, I also show that the decision-theoretic context gives each
agent a utility-based metric for deciding what it can safely ignore about everyone else.

We have implemented these algorithms within a social simulation framework, PsychSim,
that has supported simulations of various scenarios, including bilateral negotiation, language
and cultural training, and urban stabilization operations.

3.25 Intentions in Collaboration: Insights from Meaning
Matthew Stone (Rutgers University – Piscataway, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Matthew Stone

Conversation is one of many cases where we want to attribute intentions to agents exhibiting
improvised, fluid, expert strategic behavior. Understanding an utterance, on the received
view, is just recognizing the speaker’s communicative intention. But does this make sense?
Any action could implicitly prepare for an open-ended array of contingencies, reflecting an
open-ended array of expectations its agent brings to the situation. And agents may well
choose those actions through heuristic problem solving and learned strategies—processes
that fit poorly with the intuitive notions of deliberation and commitment used by intention
theorists. How can we actually carve out recognizable intentions from such a complex
ensemble of factors? Think of recognizing the intention of the Roshambo player you see
throw Rock, who might specifically intend to make a throw chosen at random, to play best
response against you, or both.

In this talk, I will try to clarify both the received view of meaning as intention and
the place of intention recognition in collaborative activity. We have surprisingly strong
judgments about what people can and cannot mean with individual utterances, and about
how those meanings fit together over the course of a conversation. These judgments motivate
a specific kind of collaborative intention: a system of public categories of action, coordinated
across agent and teammates, classifying each action based on the content of the mental
representation that immediately underpins its performance. Playing Rock fits in such a
system, playing at random or playing best response do not. I close by sketching how an
implemented agent—one that might not actually meet traditional standards for having
individual or shared intentions—could use such categories to pursue its utterances in a
meaningful and collaborative way.
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3.26 Assuming the Human’s Cognitive State as Basis for Assistant
System Initiative

Ruben Strenzke (Unibw – München, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ruben Strenzke

Joint work of Strenzke, Ruben; Schulte, Axel
Main reference Strenzke, Ruben; Schulte, Axel, “Modeling the Human Operator’s Cognitive Process to Enable

Assistant System Decisions,” Proc. of Goal, Activity and Plan Recognition (GAPRec) Workshop in
conjunction with International Conference on Automated Planning and Scheduling (ICAPS) 2011.

URL http://icaps11.icaps-conference.org/proceedings/gaprec/strenzke.pdf

In the Manned-Unmanned Teaming application a transport helicopter commander is also
controlling multiple reconnaissance unmanned aerial vehicles (UAVs) that shall reduce the
risk of the transport mission. This human operator is therefore responsible of planning
and re-planning a multi-aircraft mission under situation-dependent time pressure. To lower
the workload generated thereby, he/she shall be supported by a cognitive assistant system
that is designed with respect to the Cooperative Automation and mixed-initiative planning
approaches.

In order to decide, whether, when, and in which way to take initiative, the assistant
system has to know about the human operator’s goal, assume his/her plan, and evaluate
his/her activity. The latter is also necessary in order to estimate the current workload
situation.

In our implementation the assistant system assumes the human plan by taking into
account the mission order (goal constraints) and the partial or complete plan entered by the
human into the system (plan constraints). The assistant system then checks, if this plan is
feasible, complete, and compare this plan with what itself has planned automatically. On
this basis the assistant system can decide to take initiative to urge the operator to improve
plan quality and enforce timely plan execution.

For another task of this human operator (identification of vehicles during route reconnais-
sance by UAVs) there have been workload estimation experiments based on operator activity,
i.e. his/her manual and visual interaction with the system.

The workload estimation can be accomplished by HMMs per operator task and per
workload level. In case of workload higher than normal, so-called self-adaptive strategies are
observable, which alter the human behavior.

The great challenge remains the combination of methods like used in the two approaches
mentioned. This would allow to assume the operator’s cognitive state in a broader context,
which makes sense because in the cognitive planning process the goals lead to the plan, the
plan leads to choosing action, action leads to behavior, and workload leads to errors induced
in the different steps of this process.
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3.27 Coupling Plan Recognition with Plan Repair for Real-Time
Opponent Modeling

Gita Reese Sukthankar (University of Central Florida – Orlando, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Sukthankar, Gita Reese; Laviers, Kennard
Main reference Kennard Laviers, Gita Sukthankar, “A Real-time Opponent Modeling System for Rush Football,”

Proceedings of International Joint Conference on Artificial Intelligence, July 2011.

One drawback with using plan recognition in adversarial games is that often players must
commit to a plan before it is possible to infer the opponent’s intentions. In such cases, it is
valuable to couple plan recognition with plan repair, particularly in multi-agent domains
where complete replanning is not computationally feasible. This paper presents a method for
learning plan repair policies in real-time using Upper Confidence Bounds for Trees (UCT).
We demonstrate how these policies can be coupled with plan recognition in an American
football game (Rush 2008) to create an autonomous offensive team capable of responding
to unexpected changes in defensive strategy. Our real-time version of UCT learns play
modifications that result in a significantly higher average yardage and fewer interceptions
than either the baseline game or domain-specific heuristics.

3.28 Efficient Hybrid Algorithms for Plan Recognition and Detection
of Suspicious and Anomalous Behavior

Dorit Zilberbrand (Givat Shmuel, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Dorit Zilberbrand

Plan recognition is the process of inferring other agents’ plans and goals based on their
observable actions. Modern applications of plan recognition, in particular in surveillance
and security raise several challenges. First, a number of key capabilities are missing from
all but a handful of plan recognizers: (a) handling complex multi-featured observations; (b)
dealing with plan execution duration constraints; (c) handling lossy observations (where an
observation is intermittently lost); and (d) handling interleaved plans. Second, essentially
all previous work in plan recognition has focused on recognition accuracy itself, with no
regard to the use of the information in the recognizing agent. As a result, low-likelihood
recognition hypotheses that may imply significant meaning to the observer, are ignored in
existing work. In this work we present set of efficient plan recognition algorithms that are
capable of handling the variety of features required of realistic recognition tasks. We also
present novel efficient algorithms that allow the observer to incorporate her own biases and
preferences, in the form of a utility function, into the plan recognition process. This allows
choosing recognition hypotheses based on their expected utility to the observer. We call
this Utility-based Plan Recognition (UPR).We demonstrate the efficacy of the techniques
described above, by applying them to the problem of detecting anomalous and suspicious
behavior. The system contains the symbolic plan recognition algorithm, which detects
anomalous behavior, and the utility-based plan recognizer which reasons about the expected
cost of hypotheses. These two components form a highly efficient hybrid plan recognizer
capable of recognizing abnormal and potentially dangerous activities. We evaluate the system
with extensive experiments, using real-world and simulated activity data, from a variety of
sources.
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4 Panel Discussions

4.1 A Plan recognition competition?
Christopher W. Geib (University of Edinburgh – Edinburgh, UK)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christopher W. Geib

Little of the research published in plan recognition reports on results that can be directly
compared to previous research. The community has yet to agreed on standard data sets or
benchmark problems that all systems are expected to be evaluated against. In an effort to
address this same problem the AI planning research community established the International
Planning Competition (IPC). At Dagstuhl, we had a panel discussion to consider if a similar
competition would benefit the plan recognition community. The pannel members were
Christopher Geib, Hector Geffner, Jerry Hobbs, and Froduald Kabanza. There was lively
debate both pro and con, and while there were strong arguments in favor it was not universally
agreed that an IPC-style competition would be in the best interests of the plan recognition
community. There was significant concern that such a competition could fragment the small
and still growing plan recognition community and might unintentionally limit future research
directions. That said, it was generally agreed that more efforts should be made, especially
by leaders in the community, to share data sets and report work in a way that enabled more
directly comparable results. A number of participants in the seminar agreed to make their
data sets freely available.

4.2 Rational versus fallible agents
Matthew Stone (Rutgers University – Piscataway, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Matthew Stone

The panel on rational versus fallible agents primarily addressed the issues involved in using
automated plan recognition approaches to understand human activity. There are several
respects in which humans may not be perfect decision makers. For example, as Professor
Conati observed, student learners solving problems may apply incorrect approaches or
use erroneous facts. She found it crucial to model these mistakes in her systems for plan
recognition for intelligent tutoring. Similarly, Professor Stone pointed out that many examples
of indirection in conversation seem to rely on the heuristics and biases of human decision
making, and cited a number of likely cases from the work of Steven Pinker. His dialogue
systems increasingly assume very constrained reasoning on the part of interlocutors. At the
same time, however, Chris Baker emphasized that there are many domains where people
do exhibit expert behavior which systems need to understand. Assumptions of rationality
can be very effective in these domains in making good predictions with simple models and
minimal training. Meanwhile, Professor Kautz observed that many learning approaches
to plan recognition put the focus on finding reliable patterns of activity, and make few
assumptions one way or the other about the rationality of target agents. Looking forward,
the panel recommended that researchers aim to factor out assumptions about agents from
their algorithms wherever possible, so that the community can focus on techniques that
generalize across diverse agent populations and tasks. It is also important to evaluate
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this dimension of plan recognition systems, to understand where and when assumptions
of rationality are violated, and what effects such cases have both on the performance of
plan recognition algorithms and the contribution of plan recognition to broader measures of
system performance.

5 Invited Talks

Invited talks have their abstracts (where available) in the main body of the report.

Plan recognition and discourse, Jerry Hobbs
Plan recognition and psychology, Chris Baker
Probabilistic methods, Kathryn Blackmond Laskey
Plan recognition and learning, Tom Dietterich
Grammatical methods, Christopher W. Geib
Planning and plan recognition, Hector Geffner
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