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Organic Computing (OC) has become a challenging vision for the design of future information
processing systems: As the systems become increasingly more complex, powerful, cheaper and
smaller, our environment will be filled with collections of autonomous systems. Autonomous
systems are equipped with intelligent sensors and actuators to be aware of their environment,
to communicate, and to organize themselves in order to perform the required actions and
services. However, these abilities result in even greater system complexity, which we will not
be able to explicitly design and manage in every detail, nor are we able to anticipate every
possible configuration. Nevertheless, these services have to be as robust, safe, flexible, and
trustworthy as possible. In particular, a strong orientation of these systems towards human
needs – as opposed to a pure implementation of the technologically possible – is absolutely
central.

So far, the OC community, mainly driven by the priority research program of the German
Research Foundation (DFG), successfully proposed and – at least partially – established a
common nomenclature and terminology for terms like emergence, self-organization, selfad-
aptation, robustness and flexibility within an interdisciplinary research community.
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Quantitative metrics for emergence and self-organization were introduced and applied.
Observer controller structures have been established as a common architectural pattern for
OC systems within a wide spectrum of applications ranging from traffic control, to Systems
on Chip, to collaborative robot systems, to wireless sensor networks. Roles and applicability
of different types of supervised and reinforcement-based technical learning techniques were
investigated and adapted to OC needs.

Despite the progress in understanding the implications and exploiting the potentials of the
OC paradigm, a number of key challenges and research questions still remain. In particular,
the planned 2011 OC seminar shall shed light on the various notions of design within the OC
context. Design in the classical sense follows a hierarchical top-down constraint propagation
starting from a purely functional specification. All eventual environmental influences and
disturbances have to be anticipated by the designer at “design time”. Due to this anticipatory
nature the resulting system is rigid and not able to sufficiently react to run time events.

Complex systems in nature often develop bottom-up due to the self-organizing capabilities
of their components. Each component and the system as a whole react to the demands of
the environment. In doing so, they are guided by the principles to survive as an individual
(selfishness) and the necessity to co-operate (altruism). In technical life-like OC systems we
must provide some control by a higher-level entity (finally the user) guiding the bottom-up
decisions of the components into a globally desirable direction.

In this way, the former top-down design process dissolves into a balanced run-time
negotiation between top-down constraints and bottom-up opportunities. The ultimate
consequence of this would mean a total replacement of the design process (at design-time) to
controlled self-organization (at runtime).

The 2011 OC seminar was held to answer questions resulting from this shift from design-
time to run-time. Is OC a realistic or even desirable vision? How can we replace rigid
human designtime control by self-adaptive run-time control without stifling the creativity of
the emergent bottom up processes? How can we balance top-down control and bottom-up
emergence? Beyond these theoretical questions it is a goal of the seminar to define a number
of concrete OC demonstrators – or even a common demonstrator – to be pursued in the
sequel.
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3 Overview of Talks

3.1 Points of Entry between OC design and traditional and advanced
design methodologies

Kirstie Bellman (Aerospace Corp. – Los Angeles, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Kirstie Bellman

OC has always been aware of the creative tension between the role and capabilities of the
human developer and the role and capabilities of the OC processes. We have done an excellent
job of building initial OC processes that allow us to research how to substitute for human
design, especially, capabilities for a system to respond and self-adapt to an environment at
run time. Now is a good time to reconsider broad new roles for OC within the development
of complex systems from design through manufacturing.

This talk presents possible new “points of entry” between OC/self- organizational pro-
cesses and advanced design methodologies. New model- based design-to-manufacturing
processes include advancements in design generation, verification, complexity metrics, math-
ematically formal semantics and other good things. How could OC change/alter the design
to manufacturing processes and yet coexist with or even leverage them? How could OC
potentially improve the way a human being can interact with/manage a complex system
(which includes the use of reflection, language, and collaboration?) The last part of the talk
discusses the many challenges for both MBD and OC and suggests that they should be faced
with complementary efforts.

3.2 Evolutionary Algorithms to support the design of self-organising
manufacturing systems

Jürgen Branke (University of Warwick, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jürgen Branke

Joint work of Branke, Jürgen; Pickardt Christoph
Main reference Branke, J. and Pickardt, C. Analysing job shop dispatching rules by automatically constructing

difficult problem instances. European Journal Of Operational Research (2011)
URL http://www.informs-sim.org/wsc10papers/230.pdf

Abstract: Designing complex, self-organising systems is challenging. It requires to design
local, decentralised rules for the agents which result in a good global performance of the
overall system. In this talk, two approaches are presented at the example of a self-organising
manufacturing system where local dispatching rules are used for decentralised scheduling.

The first approach supports a human designer by revealing the weaknesses of an examined
manufacturing system. This is achieved by automatically searching for easy-to-analyse
problem instances where the applied dispatching rule performs poorly.

The other approach is to generate the dispatching rules fully automatically by simulation-
based Genetic Programming.
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3.3 Researching the Artificial Hormone System – Lessons Learned
Uwe Brinkschulte (Universität Frankfurt am Main, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Uwe Brinkschulte

The biological hormone system is a flexible and completely decentralized control mechanism.
Therefore it is an excellent blueprint for technical self-organizing systems. We have imple-
mented an artificial hormone system to control task assignment in distributed embedded
systems. Hormones are emulated by short messages multicasted and broadcasted in the
system. Three types of artificial hormones, eagervalues, suppressors and accelerators are
used here. To prove the concept, a hormone simulator has been developed. Furthermore, a
hormone based middleware has been implemented. Using self-synchronization mechanisms,
the implementation and memory needs of hormone processing could be simplified significantly.
Timing guarantees for task allocation could be improved from 2m to m cycles to allocate
m tasks. It could be as well shown that the quality of task assignment by the artificial
hormone system is better than pure load balancing. Furthermore, tight upper bounds for
the communication load and stability conditions to avoid unbound task allocation could be
derived. Open research questions are how to find good initial hormone levels in an automated
way, how to protect the artificial hormone system against malicious attacks and how to apply
the system to other fields of application.

3.4 Designing Open Swarming Systems for Dynamic Runtime
Adaptation

Sven A. Brueckner (Jacobs Technology Inc. – Ann Arbor, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sven A. Brueckner

Traditional software methodologies place the burden of achieving an optimal system response
onto the designer, hoping that any scenarios presented at runtime have been accounted for in
the chosen optimization solution. In a world where systems are embedded in a dynamically
changing environment and where system components have to act autonomously and without
complete (or even correct) knowledge of the problem state, complete design-time optimization
is no longer feasible. Instead, the role of the designer shifts from developing an optimal
solution to developing a self-adaptive system that is capable of dynamically finding the
appropriate solution at runtime.

At the seminar, we offer our experience in designing, implementing, and evaluating open
self-organizing systems for real-world domains where the required capabilities (including self-
adaptation for optimization) emerges from local interactions of many simple agents inspired
by the architecture and processes of natural systems. In such open swarming systems, the
agents are equipped to respond to changes in their environment to collectively reconfigure
their activities for the emergence of optimal system-level patterns and functions. We present
example designs from three application domains: dynamic prediction (the swarm induces
optimal models of recently observed behavior to extrapolate them into the future), information
management (the swarm rearranges models of document content and analyst interest to
respond to new information or queries), and IED risk forecasting (the swarm dynamically
accounts for new event patterns that may indicate shifts in insurgent operations). In each
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example, we discuss the critical design decisions that support dynamic self-organization for
optimal operation at runtime.

3.5 Automating Decision Making
Yuriy Brun (University of Washington – Seattle, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Yuriy Brun

Self-adaptive systems often evaluate potential adaptations via static model analysis or
simulation. I propose an alternative evaluation scheme: trying the adaptation out either on
the live, running system or in parallel to the un- adapted system, and observing the effects.
This approach likely improves precision of adaptation evaluation, allows for quick adaptation
implementation, and reduces costly adaptation undos, albeit, significant technical challenges
remain.

3.6 Self-configuration from a Machine-Learning Perspective
Wolfgang Konen (FH Köln, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Wolfgang Konen

Main reference W. Konen, “Self-configuration from a Machine-Learning Perspective,” Dagstuhl Preprint Archive,
arXiv:1105.1951v2

URL http://arxiv.org/abs/1105.1951v2

The goal of machine learning is to provide solutions which are trained by data or by experience
coming from the environment. Many training algorithms exist and some brilliant successes
were achieved. But even in structured environments for machine learning (e.g. data mining or
board games), most applications beyond the level of toy problems need careful hand-tuning
or human ingenuity (i.e. detection of interesting patterns) or both. We discuss several aspects
how self-configuration can help to alleviate these problems.

One aspect is the self-configuration by tuning of algorithms, where recent advances have
been made in the area of SPO (Sequential Parameter Optimization).

Another aspect is the self-configuration by pattern detection or feature construction.
Forming multiple features (e.g. random boolean functions) and using algorithms (e.g. random
forests) which easily digest many features can largely increase learning speed. However, a
full-fledged theory of feature construction is not yet available and forms a current barrier in
machine learning.

We discuss several ideas for systematic inclusion of feature construction. This may lead
to partly self-configuring machine learning solutions which show robustness, flexibility and
fast learning in potentially changing environments.
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3.7 Adding Mission Aware Resilience to the Enterprise
Robert Laddaga (Doll Inc. – MA, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Robert Laddaga

We envision technology to allow mission requirements to be expressed such that hosts, routers
and media configuration can be tailored to those mission requirements in a semi-automated
fashion. The mission requirements would accompany the configured system, and later be
referred to as monitoring or human intervention indicated a change in requirements, or
physical or cyber damage sustained by the system.

Regeneration or reconfiguration of components would then be enabled using the original
or modified mission requirements, and the current monitored state of the system. We call
the system “a mission-aware adaptive response system” (MARS). A MARS system would
significantly improve mission effectiveness and cost, and potentially save lives.

Configuring to mission requirements plus whatever additional capabilities are mandated
by policy will ensure that mission needs can be met, without expensive and unnecessary
oversupply. More important is the effect of adaptation to mission changes or physical and
cyber damage. Repair and reconfiguration could mean the difference between mission failure
and success.

3.8 Run-Time System Design
Chris Landauer (Aerospace Corp. – Los Angeles, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Chris Landauer

In this paper, we describe an approach to building autonomous systems for hazardous
environments that may be more flexible than the methods currently in use. The system gains
this flexibility by doing some of its own system design in response to either environmental
activity or internal failures or enhancements, at run-time. The basic idea is that it contains
generic models of its own behavioral requirements, which are expected to interact with
certain kinds of environmental behavior, and depend on certain capabilities of the hardware
behavior. As the hardware degrades, or new software capabilities are provided, or the
environmental behavior changes, the specializations used at the beginning of deployment are
re- examined, and the decisions revisited. The approach depends on the Wrapping integration
infrastructure for software-intensive systems, and on the expectation models for the evolution
of the environment. All of the models can be changed remotely (as long as the necessary
hardware is available), and the models define the behavior of the system.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


Kirstie Bellman, Andreas Herkersdorf, and Michael G. Hinchey 9

3.9 The Art of Organic Programming and Ercatons
Falk Langhammer (Living Pages Research GmbH – München, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Falk Langhammer

Joint work of Langhammer, Falk; Imbusch, Oliver
Main reference Oliver Imbusch and Falk Langhammer and Guido von Walter, Ercatons and organic programming:

say good-bye to planned economy, OOPSLA, p.41-52, 2005, Companion to the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems Languages and Applications
OOPSLA

URL http://portal.acm.org/citation.cfm?doid=1094855.1094868

Ercatons are the basic elements for a novel approach to (business) programming. They are
simple, document-like building blocks with little a-priori constraints; but with all traditional
object-oriented features except algorithmic code, added. Systems grow organically by adding
and altering existing ercatons which may be done by other ercatons or humans and which
happens at run-time. There is no formal design time. Complexity emerges from an increasing
amount of interaction rather than code complication.

The above approach is in industrial production at a few corporations and was invented
by us. It is a substitute for conventional and expensive enterprise programming.

The talk highlights the relationship with organic computing and lessons learned. A system
grown by organic programming is an organic computing system if programmers and users
are considered to be part of the system. Ercatons then enable the emergence of unforeseen
features in such systems.

3.10 The Six-Legged Walking Robot OSCAR as a Demonstrator for
the Organic Robot Control Architecture ORCA

Erik Maehle (Universität Lübeck, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Erik Maehle

Joint work of Maehle, Erik; Brockmann, Werner; Grosspietsch, Karl-Erwin; Al-Homsy, Ahmad; El-Sayed-Auf,
Adam; Jakimovski, Bojan; Krannich, Stephan; Litza, Marek; Maas, Raphael

Autonomous mobile robots are complex machines being challenging to engineer and to
program. In order to master this complexity, the Organic Robot Control Architecture ORCA
has been developed making use of organic principles like self-organization, self-reconfiguration
and self-healing. The six-legged walking robot OSCAR is introduced as a demonstrator
for ORCA. Organic principles are employed on all layers of its hierarchical control system
starting at the reflexive layer with gait generation and reflexes over the reactive behavioural
layer up to the deliberative planning layer. Experimental evaluations demonstrate that
OSCAR thus attempts to continue its mission in the best still possible way by adapting to
internal faults as well as to unforeseen environmental situations.
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3.11 Organic Computing: From Design-time to Run-time
Christian Mueller-Schloer (Leibniz Universität Hannover, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christian Mueller-Schloer

In 2003, when we discussed OC for the first time, we defined it as a technology, which brings
life-like properties into complex technical systems to make them more robust and flexible.
OC systems are designed to be self- organized, self-configuring, self-protecting, self-explaining
etc.

Now, 8 years down the road, I want to suggest a new definition of OC: OC means to
move design-time decisions to run-time. This definition has the advantage that it can be
operationalized: We can derive the future OC research program if we follow the steps of
classical design processes and ask for each of them what it would mean to move it into
run-time.

This talk will sketch out this idea in more detail. First we will briefly review design
processes and ex-tract a simplified version of a standard design process.

Next we will transfer this process to run-time arriving at a so-called “seamless redesign
process”. Now we can identify the main challenges that have to be met.

1. Shift from design-space to configuration space: It is the task of the designer to explore
the possibilities of the design space. This is an activity, which requires experience as well
as creativity. In an OC system the agent itself has to explore the configuration space.
Hence it must be endowed with creativity and experience as well. The configuration
space will have to be smaller than the design space in order to bound search-time. Also
it should exclude illegal configurations in order to keep the creative agent from proposing
configurations, which cannot be realized.

2. Run-time optimization: The OC system can be modeled as a cognitive agent moving
through the configuration space in search of the highest fitness.
This fitness landscape is not only unknown to the agent but also time- dependent and
self-referential. i.e. it changes depending on the actions of the agents.

3. Run-time validation: An agent who searches the configuration space has to validate
possible solutions in order to sort out detrimental ones and to find the best possible one.
Validation could be done by trial-and-error but this means that bad (or illegal) solutions
are tried out in reality. This is clearly not acceptable in technical systems. Therefore
we have to introduce a sandbox approach where solutions are validated in a simulated
environment. Simulation (and verification) is usually time consuming, and it requires an
accurate description of the system. Moreover it re-quires stimuli reflecting the future real
situation as closely as possible. Finally, we should consider the option of on-line testing.

4. Production vs. run-time reconfiguration: While in the classical design process, at a certain
point in time the design is frozen and goes into production, the run-time reconfiguration
process is seamless: This means in principle that all, even the higher-level, design decision
can be revised. But it also means that only those changes can be actuated, which can be
realized in terms of software or hardware reconfigurations.

5. Run-time modeling: All design steps, be it in the classical design process or in the
run-time re-configuration process, are model-based. But now we have to consider two
different flavors of the-se models: Prescriptive models reflect the classical top-down
enforcement. Descriptive models reflect the actual system state. They are not necessarily
consistent. We have to find mechanisms, which can minimize the possible contradictions.
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This corresponds to a run-time version of what in the classical design process is called
Yoyo design.

The talk closes with some remarks on more OC challenges, which have not been sufficiently
ad-dressed so far: (1) The relationship between the user and the adaptive system, and (2)
the broader view of regarding OC as a part of “Organizational Sciences”.

3.12 Self-Organized Self-Improvement: Using Self-Directed
Experimentation to Improve Models and Methods

Phyllis R. Nelson (Cal Poly – Pomona, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Phyllis R. Nelson

The models and methods that a system uses to choose its behaviors are an important link
between the system’s current situation and its top-level purposes and goals. If the system
lacks models and methods that match its current condition and context, it may no longer be
able to appropriately link its resources to its purposes and goals. Biological systems use some
of their spare time and energy to explore both their own capabilities and their environment.

We discuss our version of this biological style for self-organizing behaviors that enable a
system to improve its models of both its own current capabilities and its environment. We
also consider how the system can determine if such self improvement is useful. Finally, we
present a problem for this concept (the existence of a hidden variable), and examine the
consequences for self organization.

3.13 A proposal how to combine bottom-up emergence and top-down
control during runtime

Gabriele Peters (FernUniversität in Hagen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gabriele Peters

Joint work of Leopold, Thomas; Kern-Isberner, Gabriele; Peters, Gabriele
Main reference T. Leopold, G. Kern-Isberner, G. Peters, “Belief Revision with Reinforcement Learning for

Interactive Object Recognition,” Proc. 18th European Conf. on Artificial Intelligence (ECAI 2008),
Vol. 178, pp. 65–69, Patras, Greece, July 21-25, 2008.

URL http://dx.doi.org/10.3233/978-1-58603-891-5-65

A system is proposed which combines two levels of learning. Both levels negotiate during
runtime and establish a balance between bottom-up emergence and top-down control. They
are realized by techniques of reinforcement learning (RL) and belief revision (BR). The RL
component is able to react to runtime events and learns behavioral strategies in a flexible
way. What is learned by RL is available in a numerical form only. Especially, it is not
intuitively understandable by humans. In contrast, the BR component acquires knowledge
in the form of rules. These rules control the bottom-up RL process from top-down. They are
comprehensible by humans. Thus, the BR component can act as an interface for intervention
from outside the system by a system designer or a user in case the system displays undesired
behavior. Work in progress is presented where this system design is applied to a computer
vision task.

References
1 Thomas Leopold, Gabriele Kern-Isberner, and Gabriele Peters. Combining Reinforcement

Learning and Belief Revision – A Learning System for Active Vision. Proc. 19th British
Machine Vision Conf. (BMVC 2008), Vol. 1, pp. 473–482, Leeds, UK, 2008
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3.14 Engineering Proprioception in Computing Systems
Marco Platzner (Universität Paderborn, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Marco Platzner

In this presentation I will give an introduction to the objectives and working areas of
the recently started project “Engineering Proprioception in Computing Systems” (EPiCS).
EPiCS is part of the EU FET objective Self-awareness in Autonomic Systems and relies on
self-awareness and self-expression as key concepts for enabling complex future computing
and communication systems.

Key words: Self-awareness, self-expression, autonomic systems

3.15 Cyber Physical Sytems (CPS) or better Cyber Biosphere(CBS)?
Franz J. Rammig (C-LAB – Paderborn, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Franz J. Rammig

As most technical artifacts will be interconnected in some sense (“Internet of Things, Cyber
Physical Systems”), IT systems of the future cannot be treated as isolated entities any longer.
More or less every technical artifact will be linked to the Internet. Two major tendencies can
be observed. The first one takes its inspiration from the technical roots of Embedded Systems.
This approach became well known under the name “Cyber Physical Systems (CPS)”. The
main challenge of this approach is the necessity to bridge two incompatible worlds: this one
of highly predictable embedded real-time systems and this one of the stochastically operated
Internet. The second approach takes inspirations from the achievements of nature. This
approach is being discussed using terms like “Biologically Inspired Systems” or “Organic
Computing”. We discuss these alternatives building the highly sophisticated Embedded
Systems of the future.

The basic challenges to be solved when designing CPS as well as CBS are characterized.
Some comparisons of CPS and CBS will be made as well.

3.16 A Decade of experience building adaptive systems (Things that
change in the night)

Paul Robertson (Doll Inc. – MA, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Paul Robertson

In today’s world computers are constantly connected and participating in the full breadth of
human existence. Our world is changing at record breaking speed and yet our software is still
largely designed and implemented as it was when programs were static, disconnected, and
run on demand by people. My colleagues and I have now been building self-adaptive systems
for over a decade and have applied them to some of the most challenging environments
including real-time vision, robotics, and more recently to cyber security – where the world
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can change in real-time and the need to adapt is most crucial. A lot has been learned over
that period about successful approaches, technologies, and research challenges.

3.17 Overview of the DFG priority program Organic Computing
Hartmut Schmeck (KIT – Karlsruhe Institute of Technology, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Hartmut Schmeck

Joint work of Christian Müller-Schloer; Schmeck, Hartmut; Ungerer, Theo

Originating from a series of workshops on future research topics for Computer Engineering
back in 2002, a joint position paper of the Gesellschaft für Informatik and the Information-
stechnische Gesellschaft outlined the vision of Organic Computing Systems to cope with
the increasing presence of intelligent, interacting devices in various application scenarios by
controlled self-organization and an emphasis on realizing robust, adaptive and trustworthy
systems showing an “organic” behavior even in unanticipated situations. The talk provides
a brief survey of the priority program on Organic Computing which has been funded by
the German Research Foundation (DFG) from 2005 to 2011. The results of the program
have been compiled into a comprehensive compendium on Organic Computing (see [MSU11])
with chapters on Theoretical Foundations, Methods and Tools, Learning, Architectures,
Applications, and an Outlook on recently added projects and potential future directions of
research.

References
1 Christian Müller-Schloer, Hartmut Schmeck, Theo Ungerer (eds.) Organic Computing – A

Paradigm Shift for Complex Systems. Birkhäuser Verlag, Basel, Schweiz, 2011

3.18 Smart Grid, Renewables, Electric Mobility: Opportunities and
Challenges for Organic ComputingC

Hartmut Schmeck (KIT – Karlsruhe Institute of Technology, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Hartmut Schmeck

The strong shift in energy policy towards power generation from renewable sources leads to
a number of challenges for an adequate management of the future power grid. In particular,
the uncontrollable and only partially predictable fluctuations in energy supply ask for a
replacement of the traditional paradigm “supply follows demand” with the new principle
“demand follows supply” in addition to a shift from centralized power generation to large scale
decentralized supply of power at the low voltage segments of the distribution grid. This relies
on detailed information on the current status of the relevant components of the distribution
grid and on sufficient knowledge about the available degrees of freedom for demand shifting.
Organic Computing has the potential to provide adequate concepts for shaping these new
approaches to energy management which should combine electrical and thermal energy. The
talk outlines the various individual challenges and describes some experiences in the projects
MeRegio and MeRegioMobile, where a smart home has been designed for investigating the
intelligent integration of the charging needs of electric vehicles into an environment containing
a range of different consumers and suppliers of energy.
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3.19 Physics-inspired Self-Organization and Adaptation in Large
Dynamic Overlay Networks

Ingo Scholtes (Universität Trier, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ingo Scholtes

Overlay networks are becoming an increasingly important abstraction that facilitates the
cost-efficient and scalable provision of novel services in the Internet. However, efficiently
constructing, maintaining and managing robust and adaptive overlay topologies in the face
of highly dynamic participants is a challenging task.

In this talk, a physics-inspired approach towards the management of self- organizing and
self-adaptive overlays will be discussed. It is based on the idea that global-scale network
infrastructures like the Internet or our biggest Peer-to-Peer systems are becoming so large
that it appears justified to design them along models and abstractions originally developed for
the study of many-particle systems in statistical physics. The management schemes that will
be presented take advantage of recently uncovered analogies between random graph theory
and statistical mechanics. They constitute the basis for what may be called a thermodynamic
management of large dynamic overlay networks.

3.20 Quantitative Emergence – An Overview of Recent Measurement
Techniques

Bernhard Sick (Universität Kassel, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Bernhard Sick

Joint work of Fisch, Dominik; Jänicke, Martin; Kalkowski, Edgar; Sick, Bernhard

A technical system exhibits emergence when it has certain properties or qualities that can be
termed to be irreducible in the sense that they are not traceable down to the constituent parts
of the system. The presentation summarizes three techniques for emergence detection and
emergence measurement that were proposed by members of the organic computing community.
These techniques are based on information- theoretic and probabilistic viewpoints: the discrete
entropy difference, the Hellinger distance which is a divergence measure for probability
densities, and an iterative approach motivated by divergence measures. Advantages and
drawbacks of these measures are demonstrated by means of some simulation experiments
using artificial data sets. It is shown that these techniques are able to deal with different kinds
of emergent phenomena such as transitions from chaos to order, concept drift, or novelty.
That is, with these techniques it is possible to cover a wide range of possible applications.
Moreover, it will be possible to build systems that are self- aware, environment-aware,
self-reflecting, ...
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3.21 Organic Self-organizing Bus-based Communication Systems
(OrganicBus)

Jürgen Teich (Universität Erlangen-Nürnberg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jürgen Teich

Joint work of Teich, Jürgen; Ziermann, Tobias; Wildermann, Stefan
URL http://www12.informatik.uni-erlangen.de/research/organicbus/

We present an organic computing approach for the analysis, design and optimization of
run-time message scheduling for priority-based bus systems such as the industrial CAN
(Controller Area Network) standard.

The goal of this new approach is to overcome the major drawbacks of today’s pure offline
scheduling decisions that are based on worst-case assumptions, are not flexible or overly
pessimistic with respect to unknown, uncertain or dynamically changing message request
scenarios.

In contrast, our decentralized approach using online self-organization is able to monitor
the actual traffic of the shared bus medium and adapt either sending rates, probabilities or
offsets to establish fair bandwidth sharing and/or reduced response times.

For messages with high bandwidth demands such as streams, we present a decentral
adaptation algorithm called penalty learning algorithm (PLA) [1] that is able to achieve a fair
bandwidth assignment of a set of sending nodes and reaching this equal utilization provably
no matter of the initial priority assignment by applying a game-theoretic analysis.

For periodic messages with (soft) real-time constraints as given by deadlines, we introduce
a simple decentralized algorithm for adapting the offsets of message in a bursty time interval
such that the average observervable worst case response time is reduced.

As a side effect of observing and manipulating this traffic for a monitor interval in the size
of the hyperperiod for soft-real time periodic messages, a bus might be driven with higher
utilization rates while still satisfying acceptable response times.

This algorithm called Dynamic Offset Adaption Algorithm (DynOAA) [2] for soft real-time
tasks may be jointly run with the algorithm PLA for bandwidth type of messages.

In the near future, an implementation an FPGA-based platform coupled to a real CAN-
bus shall give experimental evidence of the superiority of these techniques with respect to
static scheduling.

References
1 Wildermann, Stefan and Ziermann, Tobias and Teich, Jürgen. Self-organizing Bandwidth

Sharing in Priority-based Medium Access.
Proceedings of the Third IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (SASO 09), San Franzisco, USA, 2009

2 Ziermann, Tobias and Salcic, Zoran and Teich, Jürgen. DynOAA – Dynamic Offset Adapt-
ation Algorithm for Improving Response Times of CAN Systems.
Proceedings of Design, Automation and Test in Europe (DATE), IEEE Computer Society,
Grenoble, France, 2011
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3.22 Knowledge Representation for Autonomous Systems – The
ASCENS Case Study

Emil Vassev (University of Limerick, IE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Vassev, Emil; Mike Hinchey
Main reference E. Vassev, M. Hinchey, “Knowledge Representation and Awareness in Autonomic

Service-Component Ensembles – State of the Art,” Proc. 14th IEEE Int’l Symp. on
Object/Component/Service-oriented Real-time Distributed Computing Workshops (ISCORCW’11),
IEEE, 2011, pp.110–119.

Introduction

Ideally, autonomous systems are intelligent systems employing knowledge to become aware
of situations, recognize changes and eventually respond to changing conditions. Knowledge
is the key to such autonomous behavior. The fundamental questions are how to represent
knowledge in such systems and how to make them use and manage that knowledge.

Current and ongoing research at Lero – the Irish Software Engineering Research Centre,
is focused on the problem of knowledge representation for autonomous systems formed as
ensembles of special autonomous service components. Such components encapsulate rules,
constraints and mechanisms for self-adaptation and acquire and process knowledge about
themselves, other service components and their environment. One of the expected major
scientific contributions of this research is a formal approach to knowledge representation and
reasoning mechanisms that help autonomous components acquire and structure comprehensive
knowledge in such a way that it can be effectively and efficiently processed, so the system
becomes aware of itself and its environment.

Autonomic Service-Component Ensembles (ASCENS) (see http://www.ascens-ist.eu/) is
a class of multi-agent systems formed as mobile, intelligent and open-ended swarms of special
autonomic service components capable of local and distributed reasoning. Such service
components encapsulate rules, constraints and mechanisms for self- adaptation and acquire
and process knowledge about themselves, other service components and their environment.
ASCENS systems pose distinct challenges for knowledge representation languages.

Kinds of Knowledge for ASCENS

There have been determined four basic knowledge domains (kinds of knowledge) for ASCENS
systems:

the individual component structure and behavior;
the system structure and behavior;
the environment structure and behavior;
situations where the system might end up in.

These knowledge domains have been used to derive distinct knowledge models (each repres-
enting a distinct knowledge domain) for ASCENS forming a high-level knowledge structure
that is to be maintained by any service component (SC) member of a service-component
ensemble (SCE):

SC knowledge model – knowledge about internal configuration, resource usage, content,
behavior, services, goals, communication ports, actions, events, metrics, etc.;
SCE knowledge model – knowledge about the whole system, e.g., architecture topology,
structure, system-level goals and services, behavior, communication links, public interfaces,
etc.;
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environment knowledge model – parameters and properties of the operational environment,
e.g., external systems, external communication interfaces, integration with other systems,
etc.;
situational knowledge patterns – specific situations, involving one or more SCs and
eventually the environment.

By representing the knowledge in such models, an individual SC shall be able to query
information about both the SC itself and the SCE, by considering the environment’s para-
meters and properties. Moreover, this helps SCs understand and reason about themselves
and discover situations through the use of probabilistic methods working over the knowledge
modeled as situational knowledge patterns.

3. Structure of the Knowledge Representation The four knowledge domains for AS-
CENS are represented by four distinct knowledge corpuses – SC Knowledge Corpus, SCE
Knowledge Corpus, Environment Knowledge Corpus and Situational Knowledge Corpus.
Each knowledge corpus is structured into a special domain-specific ontology and a logical
framework. The domain-specific ontology gives a formal and declarative representation of the
knowledge domain in terms of explicitly described domain concepts, individuals (or objects)
and the relationships between those concepts/individuals. The logical framework helps to
realize the explicit representation of particular and general factual knowledge, in terms
of predicates, names, connectives, quantifiers, and identity. Thus, the logical framework
provides additional to the domain ontology computational structures that basically determine
the logical foundations helping a SC reason and infer knowledge.

All the four ASCENS knowledge corpuses form together the ASCENS Knowledge Base
(AKB). The AKB is a sort of knowledge database where knowledge is stored, retrieved and
updated. Therefore, in addition to the knowledge corpuses, the AKB implies a knowledge-
operating mechanism providing for knowledge storing, updating and retrieval/querying.
Ideally, we can think of an AKB as a black box whose interface consists of two methods called
TELL and ASK. TELL is used to add new sentences to the knowledge base and ASK can be
used to query information. Both methods may involve knowledge inference and therefore, an
AKB should be equipped with a special Inference Engine that reasons about the information
in the knowledge base for the ultimate purpose of formulating new conclusions, i.e., inferring
new knowledge.

3.23 Slow Feature Analysis: Learning with the Slowness Principle
Laurenz Wiskott (Ruhr-Universität Bochum, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Wiskott, Laurenz; Berkes, Pietro; Franzius, Mathias; Sprekeler, Henning; Wilbert, Niko; Zito,
Tiziano

Main reference Wiskott, L.; Berkes, P.; Franzius, M.; Sprekeler, H.; Wilbert, N. (2011) Slow feature analysis.
Scholarpedia, 6, 5282

URL http://www.scholarpedia.org/article/Slow_feature_analysis/

Slow feature analysis (SFA) is a biologically motivated algorithm for extracting slowly varying
features from a quickly varying signal and has proven to be a powerfull general-purpose
prepocessing method for spatio-temporal data. We have applied SFA to the learning of
complex cell receptive fields, visual invariances for whole objects, and place cells in the
hippocampus. On the technical side SFA can be used to extract slowly varying driving forces
of dynamical systems and to perform nonlinear blind source separation. Here I will introduce
the SFA algorithm and give an overview over these different applications.
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3.24 Learning to see and understand
Rolf P. Wuertz (Ruhr-Universität Bochum, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Wuertz, Rolf P.; Müller, Marco K.; Walther, T.

Sensor interpretation is one of the central requirements for computing systems to interact
sensibly with their environment. Moreover, the transformation of sensor data into semantically
meaningful representations is necessary to exploit the types of computation in which machines
are much better than humans.

The most important among the sensory modalities is visual processing. In this talk I
reviewed self-organizing methods we have developed for the recognition of human faces and
human bodies.

The first system [1] is based on similarity rank lists and can learn the transformation from
a frontal face to a different pose strictly on the basis of examples. This can be carried out by
a neural network in a natural way. It also presents a way of controlling the generalization of
the recognitition system.

The second system [2] uses several state-of-the-art methods from computer vision to learn
a model of the appearance and possible kinematics of the upper body of humans from videos
in an unsuupervised way.

The resulting model is able to generalize over individuals, clothing, and a wide range of
backgrounds, and is robust enough for still image interpretation.

References
1 Marco K. Müller and Rolf P. Würtz. Learning from examples to recognize faces in different

situations. Neural Networks. Submitted.
2 Thomas Walther and Rolf P. Würtz. Autonomous learning of a human body model. In
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3.25 Self-adaptive workload management on MPSoC
Johannes Zeppenfeld (TU München, DE)
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Main reference J. Zeppenfeld, A. Herkersdorf, “Applying Autonomic Principles for Workload Management in

Multi-Core Systems on Chip,” Int’l Conf. Autonomic Computing (ICAC’11), Karlsruhe, Germany,
June 14–18, 2011

Due to the difficulty involved in designing ever more complex systems, a trend is developing
to simply replicate existing hardware components, rather than extending the functional
capabilities of existing components. While this simplifies the work of the hardware designers,
it simply offloads the difficulty of designing complex systems to the software developers, who
must somehow make use of all the resulting parallel processing units.

The Autonomic System on Chip paradigm suggests an alternative approach, namely by
utilizing a portion of the gained resources for the addition of bio- inspired enhancements,
which can autonomously accomplish at run time many of the tasks previously performed by
the designer at design time. Not only does this reduce the burden on the designer, it also
allows the system to adapt to unforseeable environment- or system-states. The presented
work shows how such autonomic principles, applied to a general purpose multi-core system
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on chip, can autonomically adjust the frequencies and distribute tasks across the available
processing cores.

3.26 A glimpse of signaling pathways in the synapse
Junmei Zhu (EBI – Cambridge, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Junmei Zhu

Learning is a key to run-time design. One of the most studied learning elements is the
synapse. Computationally, Hebbian plasticity can be conveniently described by one equation.
In biology, however, thousands of genes have been identified in a typical synapse. The
underlying molecular mechanism for plasticity seems to be escaping our grasp, with an
ever-expanding list of involved molecules. I will introduce this picture and our effort to
construct the complete signalling pathways. The complexity could be what is needed for the
robustness and flexibility of organic systems, and thus OC design is not to be intimidated by
large systems.

4 Working Groups

4.1 Group I Report – Model-based Self-Adaptation
4.1.1 Challenges

We identified five challenges related to model-based self-adaptation:
1. Defining what a model is and establishing a consistent, clear terminology. Models can be

of the system itself and of the environment.
2. Selecting the right model: abstraction level, objective function, time scales.
3. Understanding control-loop design and making control-loop development explicit during

the design process.
4. Identifying those environments that can benefit most from self-adaptation (as well as

those that cannot benefit or will present significant challenges). One aspect of these
environments is exploration vs. exploitation and competition for resources.

5. Reducing the need for the design-time. This challenge aims to develop some framework
that will let the developer specify a high-level system goal and then have the system
design itself (perhaps evolve) into one that satisfies that goal. We believe that breaking
up the target system into a set of tiers may be a fruitful approach. Tiers are made up of
building blocks. Each tier can “rearrange” its building blocks in order to achieve it’s goal.
Each tier also sets the goals for its building blocks, which are themselves the next tier.
For example, a 3-tier traffic light system may consist of:

Neighborhood (top tier): many adjacent intersections
Single intersection (middle tier): four traffic lights at one intersection
Single traffic light (bottom tier).

The developer would specify the high-level goal to the top tier. For example, “minimize
the average travel time through the neighborhood while avoiding accidents.” That tier would
then attempt to set a goal for the middle tier. e.g., “minimize the maximum waiting time
for a car at the intersection while ensuring no intersecting car paths have the green light at
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the same time.” The top tier can (1) manipulate the intersections and (2) set the goals for
the intersections. The intersections then do the same for the bottom tier: the traffic lights.
The goals for the bottom tier may be “only one light on at a time, green → yellow → red →
yellow → green . . . ”.

We believe that each tier must operate at a slower time scale than the tier below it.
Possible techniques for manipulating the lower tier to accomplish a goal include: simulated
annealing, artificial evolution, genetic algorithms. One concern is whether such exploration is
likely to get stuck in local minima. Background exploration with one of the above techniques
can help get out of such situations, but it is unlikely to consistently find the optimum solution.
The design of the tiers constrains the search space. This is one way to constrain that search
space, and we are not sure that better ways do not exist. We hope there can be tools made
to automate, semi-automate, or otherwise help developers design these tiers.

4.2 Group II Report – Learning and Context-dependent Dynamic
Knowledge Representation

4.2.1 Challenges

4.2.1.1 How can we LEARN emergent features on several layers / hierarchies?

(Gabriele Peters, Laurenz Wiskott) As one open question we identified the problem of
getting knowledge into a system. If learning takes place in a hierarchical manner, then
probably different methods for knowledge acquisition are needed for different levels of learning.
Whereas on a lower level a statistical approach for learning features may be sufficient, this
probably does not hold true for higher levels. On a low level features are relatively simple and
low-dimensional and plenty of samples are available for training. Examples are small image
patches or sound snippets. This makes purely statistical methods feasible. On a high level,
features become more complex and high dimensional. Examples are whole visual objects or
scenes. It is therefore not possible anymore to learn them by brute force statistical methods.
Another reason why it might be good to have different mechanisms on a high level is that the
system needs to do reasoning about things, which requires a more symbolic representation,
at least in addition to a feature based representation (where a feature is understood here as
something that has a graded value, while a symbol is binary in nature).

From, e.g., feature learning on the one end until scene understanding / interpretation
on the other end there has to be one point in the hierarchy where the acquired knowledge
has to be transferred from an implicit / numerical form to a more explicit / symbolic
representation that allows for interpretation and reasoning. One possibility would be a
symbolic representation in the form of rules. Gabriele Peters has shown in her talk that it is
possible that such rules can be learned “organically” during runtime [1]. On a lower level an
implicit representation of appropriate behavior is learned by reinforcement learning; on a
higher level rules are generated and checked against the reinforcement model to formalize
and make explicit what has been learned implicitly on the lower level. The symbolic and
rule based representation on the higher levels permits reasoning, planing, and anticipation as
needed for the WHAT IF strategy, see below.

We also discussed the question whether one could replace the structured learning on
the higher levels by pure memory. Besides the fact that any system has a limited memory
capacity that would quickly be filled with sensory data, are there any other advantages
for not storing everything and then working on the memories. It seems clear that working
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on the collection of all memories not only raises the problem of limited memory capacity
but also poses a problem for other resources, e.g. computational resources. For instance, a
nearest neighbor classifier becomes quite inefficient, if too many samples are stored. Thus, it
is also computational limitations that prevent a system from working on complete memory
collections. Another problem is the lack of interpolation and regularization. If data is noisy
and/or sparse the system needs to perform some regularization in order to learn appropriate
functionality that generalizes well. This could, of course be done on the fly each time the
functionality is needed, but this would be computationally even more expensive.

Thus, the need for a condensed and explicit/symbolic representation of the world on
higher layers, i.e. the need for an efficient model of the world, results from memory
limitation, computational limitations and the need for planing and reasoning. Quasi symbolic
representations can also be derived from single exemplars given the right representation, see
Section “How can we learn from few examples”.

(Phyllis R. Nelson) There is also the question of how to start the system. What knowledge,
models, methods and procedures should the designers put in? Should this set of initial
resources be privileged in some way to ensure that the system can always be restarted? For
any complex system, the designers don’t know enough about some aspects of the system
(otherwise we wouldn’t need OC), and may also know so much from their own experience
that the initial knowledge must be restructured by the system.

References
1 Thomas Leopold, Gabriele Kern-Isberner, and Gabriele Peters, Combining Reinforcement

Learning and Belief Revision – A Learning System for Active Vision. 19th British Machine
Vision Conference (BMVC 2008), Vol. 1, pp. 473–482, 2008

4.2.1.2 Knowlege organization: How to not get stuck in too many interconnections
between elements?

(Christoph Landauer) We have proved [LB98] that any system of knowledge with any
construction mechanism will “get stuck”; eventually, each new item needs to be connected
with so many other items that it cannot be effectively entered, even by humans. Circumventing
this problem is an important issue in knowledge representation, and we think that it will
require a very different approach to representation of knowledge.

[LB98] Christopher Landauer, Kirstie L. Bellman, “Situation Assessment via Computational
Semiotics,” pp. 712-717 in Proceedings of ISAS’98: The 1998 International MultiDiscip-
linary Conference on Intelligent Systems and Semiotics, 14–17 September 1998, NIST,
Gaithersburg, Maryland (1998)

(Emil Vassev) Knowledge should be presented at different levels of abstraction and conceptu-
ally organized. Different abstract levels shall form levels of generality (introducing certain
degree of uncertainty though) that can be applied to reasoning algorithms to release heavy
computations by moving from a low-level knowledge to a more generic one.

The concept-based representation is necessary, because this is probably one of the
most efficient ways to give both meaning and semantics to the raw data. Ontologies and
description logics (as one of the most prominent ways to write ontologies) may help not
to have unnecessary interconnections between the knowledge elements. An ontology is
open-ended and should not include all the possible conceptual descriptions of the context,
but only the relevant ones, i.e., giving sufficient level of description taking into consideration
the operational domain of the system in question. Moreover, techniques like subsumtion shall
help to make new generalizations over the concepts, thus reducing the amount of concepts
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that must be processes when the system reasons. For example, subsumtion may help to
exploit the taxonomy structure of concepts that are defined in the ontology and compute a
new taxonomy for a set of concepts.

4.2.1.3 Finding the relevant knowledge in a given context (contect might change
on-line)

(Christoph Landauer) This issue is about how a system uses knowledge that it has. Whatever
knowledge scheme is used, only a tiny fraction of that knowledge is appropriate for any given
situation, and we need to have systems that can separate and isolate that relevant knowledge
in real time.

(Wolfgang Konen) Another way to phrase it is that in a future OC system there might
be a large feature base where certain sets of features are activated / deactivated with a
mechanism yet-to-be-found depending on the context / the environment situation. The
challenge is here to find mechanisms which are able to work in many relevant situations.

(Phyllis R. Nelson) The WIM and play (exploration) are a tool for finding out about
those special contexts that are at the boundaries of the capabilities of the system. For a
system with physical parts, playing games provides a structure for examining potentially
"dangerous" behaviors and learning better models of those actions before they are invoked in
"real" responses. In a game, the system can start and and then back away from these regions
of operation since they are not directly part of accomplishing its main goals and purposes.
This type of exploration is particularly important because the limits of physical subsystems
are often nonlinear and depend on the history of the components (wear, old batteries, etc.).

4.2.1.4 Parallel knowledge representations (playing piano): how to merge / how to
make that they support each other

(Christoph Landauer) The question here is how to merge suggestions from different kinds of
knowledge in a seamless way. For the piano example, it is a combination of knowledge of
the way the music looks on the score, knowledge of the way the music should sound, muscle
knowledge of the way to move to make the sounds (this is why you practice), and knowledge
of the way the music sounds just now. These different sources of very different kinds of
knowledge are combined to make a sequence of actions that play the piece. In the piano
example the different representations may support each other to perform the complex motor
actions and memory retrievals. The hard part in general is blending the different knowledge
sources, deciding if there is a conflict among the sources, resolving that conflict in real time,
using whatever source is available to determine the next actions, and making all the relevant
decisions very quickly.

(Phyllis R. Nelson) There is also the question of selecting the variables or features that
will be measured in order to "close the loop" when the system acts. Producing the desired
behaviors requires knowledge and models of the available sensing and actuation and how
those variables that can be measured relate to the desired behavior. Play (exploration) is a
way to build these connections.

4.2.2 Other points

4.2.2.1 How to learn from few examples?

(Rolf P. Würtz, Gabriele Peters, Laurenz Wiskott) Gradient-based learning methods usually
require the iterated presentation of a large number of training examples, which makes it
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comparably slow. Given an appropriate format, however, a single example may be sufficient to
“know” the visual example. This works perfectly in human vision and nicely in face recognition
systems. On a symbolic level, single examples can easily prove (exist) or disprove (forall) rules.
If rules have a measure of evidence, this can be updated by every example. In G. Peter’s
system, each new example is able to qualitatively modify the behavior. The hierarchical
SFA system by Laurenz Wiskott learns invariant representations from the presentation of
few examples. Thus, learning from few examples is both feasible and desirable, especially
for online real-time learning. Christopher Landauer) agree, when we decide that parallel
performance improvement methods must be used, we can take into account the local structure
of problems. An early example of learning symmetries from only one example was given by
Konen and von der Malsburg in Konen, W., von der Malsburg, C., “Learning to generalize
from single examples in the dynamic link architecture,” Neural Computation, 5, 1993, p.
719-735.

4.2.2.2 Humans have a very elaborate What-If-mechanism (WIM)

(Wolfgang Konen, Laurenz Wiskott) Humans are good at combining prior experience and
facts from new a environment in “What-If-simulations”. The mechanism on how we can set up
and utilize this very flexible mechanism is not yet fully understood and poses a challenge to
be captured by future OC systems. But it is clear that "What-If-simulations" are a powerful
tool to extend and recombine existing knowledge on the one hand and to save resources and
avoid risks on the other hand.

(Laurenz Wiskott) However, What-If simulations have at least two types of limitations.
If the world model is inaccurate, What-If simulations are bound to become unrealistic and
therefore useless with increasing depth. This makes What-If simulations useful only up to a
certain point in the future and then one has to take the real action in order to verify the
predictions of the model. If the world model is perfect, What-If simulations can in principle
substitute completely for the real exploration. Learning how to play a game by simulated
self-play is a good example of WIM, but also of exploration. Perhaps this approach is useful
in order to help limit the choices enough so that useful and relevant hypotheses can be
inferred. However, in many cases this might be limited by memory capacity. For a human,
for instance, it would be impossible (with a few exceptions, maybe) to learn to play chess by
just imagining games against oneself, simply because it is so hard to keep the positions in
mind accurately during an imagined game.

(Laurenz Wiskott) Thus, real exploration is needed if the model is inaccurate or if memory
limitations prevent the system from What-If simulations of sufficient depth. A third reason
for real exploration is, of course, if there is no adequate model for that particular domain,
which however could be considered an extreme case of model inaccuracy. In [1] for instance a
system is proposed where a model is learned from scratch by exploration. It is clear that the
What-If simulations give strong hints as to where real exploration might pay off most. For
instance, a good model should also maintain an estimate for the accuracy of its predictions.
If predictions become uncertain, then exploring this part to improve the model is probably
particularly advantageous.
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4.2.2.3 How to cope with the combinatorial complexity of world in our brain model

(Laurenz Wiskott) The world is tremendously complex overall, but it is not possible to
integrate all that in a model to begin with. Thus, one has to employ different mechanisms
to start simple and grow complex gradually. During this process the degrees of freedom
of a model should always be smaller than the available data that constrain it, in order to
avoid overfitting and guarantee good generalization. To do so, it is good the start with a
simple model, to which more complexity can be added as more data becomes available and
more complexity is needed to explain it. When starting with such a simple model, it might
be advantageous to first confront it only with part of the data, which allows for simplified
modeling. When learning a language, for instance, start first with short sentences. Once
theses are mastered by the model proceed to longer and more complex sentences, see [1].
This can be done because the world is highly structured and not just complex. There are
simple parts that can be modeled largely independently of the rest and still one can use it to
generalize to more complex domains. Or one can approximate complex domains by simple
models and still get useful predictions out of it.

(Wolfgang Konen) An open issue is how to cope with the combinatorial complexity of
the environment and it might call for knowledge representation models which incorporate
also a similar way of combinatorial complexity.

References
1 Jeffery L. Elman. Learning and development in neural networks: the importance of starting

small. Cognition, Vol. 48, pp. 71–99, 1993.

4.3 Group III Report – Dealing with Uncertainty in Organic
Computing Systems

Being able to deal with uncertainty is a central concept that permeates many – if not
most – aspects of Organic Computing systems, including run-time adaptation, knowledge
representation, modeling, learning or feature extraction. In fact, one of the major promises of
Organic Computing Systems – and one that potentially distinguishes them from traditionally
engineered systems – is that they shall be able to deal with unanticipated situations, surprises
and rare events. Furthermore, Organic Computing systems need to adapt and evolve at
run-time, thus potentially introducing additional uncertainty with respect to their run-time
behavior. In our group discussion we first tried to characterize different sources of uncertainty
in Organic Computing Systems.

4.3.1 Environmental Uncertainty

One of the primary sources of uncertainty is the environment into which our computing
systems are embedded. Here, uncertainty may result for example from technical failures,
attacks, changing environmental conditions or human behavior. In most cases, one cannot
actively control these environmental conditions, one can merely try to characterize the
resulting uncertainties and reason about them either in a qualitative or in a quantitative
fashion. And even this constitutes a considerable challenge. When trying to reason for
example about the probabilities of certain events, one must deal with the fact that we typically
don’t even know the probability space to begin with, that is we don’t know in advance which
events may possibly occur, let alone their probabilities. In traditionally engineered systems,
we are frequently reminded of this fact by the occurrence of unanticipated events. When

http://dx.doi.org/10.1016/0010-0277(93)90058-4
http://dx.doi.org/10.1016/0010-0277(93)90058-4
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dealing with rare events – like for instance catastrophic earthquakes – we also need to face the
challenge that there are – if any – only few prior instances from which we could learn about
the probability of these events. Here, a modeling in terms of extreme value theory seems
to be crucial. Also, second order probability techniques can often be reasonably applied to
characterize and measure a system’s uncertainty about its environment.

In the discussion above, we inherently assumed that environmental uncertainty results from
a lack of knowledge which can be reduced by observation, experimentation and probabilistic
reasoning. Whether the fundamental reason for uncertainty is a mere lack of knowledge
about the system’s details or whether there are processes that are inherently random is
a question that is still being discussed in fundamental physics and philosophy. In fact,
we can even find different interpretations of uncertainty when considering frequentistic or
Bayesian notions of probability in mathematics. Independent of this philosophical question,
in practice there clearly is a limit to how much we can reduce environmental uncertainty
by means of experimentation and probabilistic reasoning. An important limiting factor is
that in distributed systems our knowledge about the current state of a system is necessarily
imperfect and incomplete and that many systems exhibit a sensitivity to initial conditions
that tightly limits their predictability.

While we typically embrace self-organization as a crucial concept in the design of Organic
Computing systems, self-organization processes taking place in the environment are a frequent
source of uncertainty and surprising effects. In fact, simple probabilistic models about the
behavior of human, social and technical systems often do not account for complex collective
behavior and correlations that result from the complex and often very subtle interactions
between individual elements. This often spontaneously occurs at certain critical points in a
system’s parameter space, thus considerably hindering a sound reasoning about a system’s
behavior.

4.3.2 Operational Uncertainty

A different kind of uncertainty in Organic Computing systems may be called operational
uncertainty. In contrast to environmental uncertainty, here we refer to the use of probabilistic
approaches that deliberately introduce an uncertainty about the system’s exact behavior that
can nevertheless be controlled, adapted and reasoned about. In particular, the active and
controlled use of probabilistic schemes is an important approach in the design of systems that
incorporate a degree of variation and permissiveness, thus introducing a range of variability
that is the source of self-adaptation and self-optimization in Organic Computing Systems.
The importance of randomness and variability for is particularly visible in evolutionary
algorithms, particle swarm optimization and simulated annealing techniques that are being
regularly applied in the design of self-adaptive systems.

Two further aspects of a deliberate and meaningful introduction of randomness into a
system can be related to the order-from-noise principle that has been proposed by Heinz
von Foerster. First of all, the sensible introduction of randomness or noise into a system can
paradoxically result in self-organization processes producing patterns and structures that are
more stable and predictable. However, for the degree of noise there typically is a critical
point above which noise hinders the self-organization of structures and patterns. As such,
the deliberate and meaningful introduction of randomness into a system can be a powerful
tool both to foster beneficial self-organization as well as fight the self-organized formation
of unwanted patterns and correlations. So one might actually be tempted to say that it is
often reasonable to fight uncontrolled uncertainty by deliberately introducing uncertainty
in a controlled fashion, thus facilitating a sound stochastic reasoning about systems. A
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particularly simple illustrating example for this kind of approach in traditional algorithm
engineering is the randomization of input sequences in order to facilitate a sound reasoning
about the performance of sort algorithms like QuickSort (for instance in order to get rid of
correlations in the input that might result in worst-case performance). Similarly, in Organic
Computing systems randomization can be a very useful technique to get rid of unwanted
correlations that potentially threaten the system’s functioning and performance.

As suggested by the idea of fighting uncontrolled uncertainty by introducing controlled
uncertainty, there is an intimate relationship between environmental and operational uncer-
tainty. In fact, we may view the run-time adaptation of systems as as process that matches
these two.

4.3.3 Designing Systems for Uncertainty

Having characterized different kinds of uncertainty as well as their importance for Organic
Computing systems, we discussed different approaches that promise to improve the handling
of unforeseen and rare events in practical systems.

4.3.3.1 Coping with everyday operations

First of all, simply due to the rarity and magnitude of extremal events, it often seems
to be a best-practice approach to explicitly distinguish between everyday operations and
rare, critical situations. One important reason for this distinction are for instance the often
different requirements we may have. In everyday operations we are interested in the system’s
performance, cost-effectiveness and – at least to a certain degree – its optimality. In critical
situations however, we are rather interested in the fact that the system maintains certain basic
characteristics that are usually much more modest and relaxed. Under many circumstances
it seems reasonable for systems to actively switch between two modes of operation.

4.3.3.2 Building fail-safe systems

In order to build fail-safe systems that are able to survive critical situations, we discussed
the approach of goal-shedding. This is intimately related to the switch in the operational
mode discussed above. The idea is to formulate a set of prioritized goals which the systems
tried to achieve depending on the situation. In critical situations the system should be
allowed to throw certain of these goals overboard in order to be enabled to meet at least
the more important ones. Here, we discussed a practical example of a robotic submarine
which is allowed to sacrifice crucial mission goals in order to at least safely return home
based on the remaining power supply. Sometimes pursuing such goal-shedding strategies
can require seemingly unintuitive behavior. Here we discussed the example of controlling
cascading failures in complex networked systems. In certain classes of network topologies,
it can actually be shown that intentionally killing almost all nodes in the system at the
first indication of cascading faults is a good strategy to fight critical systemic faults. This
admittedly drastic approach sacrifices most of the system’s functionality but at the same
time guarantees that the system can at least maintain a very basic service, while it would
fail completely if no measures were taken. Preventing such errors can also facilitate the
system to restart gracefully from a controlled state rather than being brought to a situation
where nothing can be done anymore without outer intervention. Such approaches resemble
passivity-based control strategies.
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4.3.3.3 Reasoning about Organic Computing Systems

The existence of both environmental and operational uncertainty poses severe challenges
when it comes to reasoning about the behavior of Organic Computing systems. In classically
designed systems, testing is the main method being used to reach a certain level of confidence.
In order to successfully deploy Organic Computing systems, we need to be able to derive at
least an equal level of confidence about the performance of the system. As these systems are
typically reconfigurable at run-time and often deliberate involve operational uncertainty, this
necessarily involves stochastic reasoning. Such a stochastic reasoning can provide a number
of benefits and can deliver strong guarantees. In traditionally designed systems, guarantees
about a system’s behavior often tend to become weaker as the system grows in size and
complexity. In contrast, in systems consisting of probabilistically behaving and interacting
elements, we are often able to extract stochastic guarantees about the system’s aggregate
behavior that tend to become stronger as the size of the systems grows. This closely resembles
guarantees on bulk material properties we are quite used to in thermodynamics and material
science. In this particular case, the decrease of uncertainty at the aggregate level is due
to scaling effects and based on certain mathematical prerequisites like the enforcement of
truly random and uncorrelated individual behavior. However, in many other cases it is less
clear how the many small uncertainties related to a system’s individual components can be
composed to an aggregate picture.

In our discussion we also briefly highlighted potentially interesting further approaches
that might be useful to make sound statements about Organic Computing systems, including
reachability set analysis, stability notions in dynamical systems and control theory as well
as verifiable probabilistic assumption guarantees (like e.g. the probabilistic model checker
PRISM from the University of Oxford).

4.3.3.4 Conclusion and Challenges

Uncertainty is a concept of primary importance in the design of Organic Computing (OC)
Systems. OC systems should be able to discover and modify models for environmental
uncertainty and adapt and manipulate their own probabilistic behavior in accordance. For
environmental uncertainty that is due to a lack of knowledge about the environmental
conditions, it seems reasonable to employ approaches like e.g. self experimentation, learning
and second-order probability techniques in order to proactively reduce uncertainty at least
up to a reasonable level. In a sense, acknowledging the importance of uncertainty and
probabilistic techniques in Organic Computing Systems retraces the findings of quantum
mechanics which embraces probability theory and randomness as fundamental concepts that
are necessary to adequately model our reality. Similarly, we now begin to understand the
importance of uncertainty for the design and operation of complex technical systems. As
Organic Computing community, we need to investigate what techniques from other disciplines
can be used to handle the different kinds of uncertainty that are present in our technical
systems. Furthermore, the Organic Computing perspective on complex engineered systems
might be able to contribute new ideas and abstractions that can be used in other contexts.
As a conclusion, it is justified to say that uncertainty is, at the same time, an important
motivation, a tough challenge as well as a valuable tool in Organic Computing related
research.
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