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Automated graph drawing deals with the layout of relational data arising from computer
science (database design, data mining, software engineering), and other sciences such as
bioinformatics and sociology (social networks). The relational data are typically modeled as
graphs, which can be visualized through diagrams drawn in the plane. The main objective is
to display the data in a meaningful fashion, (i.e., in a way that shows well the underlying
structures) and that often depends on the application domain. Although high quality
algorithms exist for many optimization problems that arise in graph drawing, they are
often complex and difficult to implement, and theoretically efficient algorithms may have
unacceptable runtime behavior even for small-to-medium sized real-world instances. Also large
graphs like, e.g., molecular interaction networks, may render exact but complex algorithms
infeasible and require approximate or heuristic solutions.

Integrating automated graph drawing techniques into real-world software systems poses
several algorithm engineering challenges. To achieve effective implementations, algorithms
and data structures designed and analyzed on abstract machine models must be carefully
tuned for performance on real hardware platforms. This task is becoming increasingly more
difficult due to the impressive growth of data to be visualized in modern applications, as
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well as their highly dynamic and data-intensive nature. Developers can no longer ignore
architectural aspects such as the presence of complex memory hierarchies and multiple cores,
which are likely to shape the design of novel algorithmic techniques and the way they will be
implemented and engineered in the future.

The aim of this seminar was to bring together researchers from the algorithm engineering
and graph drawing communities in order to strengthen and foster collaborations in this area
and to identify key research directions for the future.

The seminar was attended by 48 participants from both academia and industry. Much
was accomplished, fostered by the productive atmosphere of the Dagstuhl Center. Here we
describe some of the more important achievements.

The program consisted of a wide variety of presentations, working group sessions and
discussion sessions. The presentations included several survey lectures:

Beppe Liotta provided a survey on graph visualization paradigms, and discussed general
design principles for the realization of effective graph visualization systems.
Emden Gansner suggested rules in order to get efficient and accurate graph drawing
algorithms.
Ulrik Brandes discussed experimental algorithmics and the relationship between graph
drawing algorithms and algorithm engineering.
Rudolf Fleischer’s talk about algorithm engineering and his statement (taken from the
definition in the German priority program SPP 1307 Algorithm Engineering) that the
algorithm engineering cycle should be driven by falsifiable hypotheses, started a lively
discussion among the participants.
Rico Jakob provided a talk on engineering architecture aware algorithms and provided
some thoughts about hardware sensitive algorithms. He convinced us that the new
computer architectures will strongly influence future algorithmic research.
Kurt Mehlhorn introduced us into the new and exciting area of slime mould that solves
shortest path and network design problems. He would be interested in seeing if slime
mould could possible solve graph drawing problems.

Beyond the survey lectures, highlights of the seminar included the two introductory sessions,
the open problem sessions, and the working groups.

In two sessions, we have identified over two dozen open problems, which later crystallized
into about a dozen well-defined problems, each of which were of interest to several participants.
We had working groups on the following topics: Rotating binary trees, feedback arc set
convergence, edge bundling models, co-occurence in bipartite graphs, RAC drawings, BRAC
drawings, minimum branch spanning tree, cluster tree embedding, point set embeddings,
parallel graph drawing, and library of graphs. Participants shared ideas and material using
the online seminar Wiki.

The dissemination sessions at the end of the workshop showed that many of the working
groups have achieved initial results, which may lead to future publications.

Arguably the most-appreciated features of the Seminar were the lively open discussion
sessions, which led to several concrete proposals for the future of the field which, as a result
of the workshop, are now being actively pursued.

A big step forward has been done concerning an online library of graphs. The graph
drawing community would like to have such a library, however, there was no consensus
about the requirements on such a graph archive. The working group conducted a survey
on requirements for a graph archive during the Dagstuhl seminar. Two groups (Dortmund
and Tübingen) presented their ideas and prototypes of such an archive. In order to foster
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future work and to encourage participation and contributions, it was suggested that the GD
proceedings should offer the opportunity to publish papers concerning the library. Moreover,
the collection of many benchmark graphs has already begun.

We used the opportunity to bring together experts in algorithm engineering for multi-core
algorithms with graph drawing researchers in order to discuss how graph drawing algorithms
can be re-engineered to better take advantage of modern computer architecture into account.
This working group was inspired by the many different backgrounds of group members. They
have discussed how to improve data locality, or exploit multi-core processors, in particular
for the widely used Sugiyama drawing method.

Subjectively (from interacting with the attendees) and objectively (from the official
feedback data) we believe that the participants enjoyed the great scientific atmosphere offered
by Schloß Dagstuhl, and profited from the scientific program and the fruitful discussions. We
are grateful for having had the opportunity to organize this seminar. Special thanks are due
to Carsten Gutwenger and Karsten Klein for their invaluable assistance in the organization
and the running of the seminar.

11191
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3 Overview of Talks

In this section, we report the abstracts of five survey talks on algorithm engineering aspects
arising in graph drawing applications. The presentations provided a starting point for the
seminar and covered foundational aspects, allowing participants with different grounds of
expertise to share common methodologies and goals.

3.1 Experimental Algorithmics
Ulrik Brandes (Universität Konstanz, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ulrik Brandes

Joint work of Brandes, Ulrik; Karrenbauer, Andreas

The algorithm engineering cycle is said to be driven by falsifiable hypotheses that are validated
by experiment. There is little evidence, however, that this is indeed common practice. We
sketch the concepts of formal experimentation as established in other disciplines and propose
a mapping to experimental algorithmics. After reviewing experimental work in graph drawing,
we ask whether more formal experimentation is needed.

3.2 AE meets GD
Rudolf Fleischer (Fudan University – Shanghai, CN)

License Creative Commons BY-NC-ND 3.0 Unported license
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The scientific method postulates a certain framework for doing experiments and how to
interpret experimental results theoretically. Experimentors in computer science and graph
drawing seem sometimes to be unaware of these principles.

3.3 Notes on Practical Graph Drawing
Emden R. Gansner (AT&T Research – Florham Park, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Emden R. Gansner

To be useful, graph drawing algorithms need to be engineered to be efficient and accurate.
To be used, it helps if the graph drawing algorithms are implemented and run using some
practical rules of thumb. These include:

Follow general software engineering principles
Use optimizations where possible; use heuristics when necessary
Leverage the geometry
Provide the user with a rich set of drawing features
Construct simple, flexible, reusable interfaces
Stress robustness, especially as regards scalability

In this talk, we discuss these rules, providing motivations and examples.
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3.4 Engineering Architecture Aware Algorithms – two case studies and
some thoughts on Algorithms Engineering

Riko Jacob (TU München, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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I will present preliminary results from two ongoing projects, both regarding memory intensive
tasks in (huge) internal memory. One is asking the question if I/O-efficient (sorting based)
algorithms can outperform the direct algorithm when permuting several gigabytes of data
in internal memory. The other one reports on an efficient implementation for numerical
computations in high dimensional settings using so called sparse grids. Again, the improved
implementation is inspired by I/O-efficient algorithms. Finally, I will try to show how these
two examples fit into a more general theme of using and combining theoretical models
and experiments to find the algorithm and implementation that performs best on a given
hardware.

3.5 The Anatomy of a graph visualization system
Giuseppe Liotta (University of Perugia, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Giuseppe Liotta

Graph visualization addresses the problem of efficiently conveying the structure of relational
information, which is typically modeled by networks. Therefore, graph visualization systems
are largely used for information exploration and knowledge discovery, particularly in those
applications that need to manage, process and analyze large sets of data. The design of a
graph visualization systems typically addresses questions that belong to the intersection of
different disciplines, such as graph algorithms, data mining, software engineering, algorithm
engineering, and visual analytics. In this talk I will shortly review some common and
emerging graph visualization paradigms, discuss general design principles present application
examples, and compare different models for the realization of effective graph visualization
systems.

4 Working Groups

4.1 Graph Archive
Christian Bachmaier, Franz J. Brandenburg, Philip Effinger, Carsten Gutwenger, Jyrki
Katajainen, Karsten Klein, Miro Spönemann, and Michael Wybrow

License Creative Commons BY-NC-ND 3.0 Unported license
© Christian Bachmaier, Franz J. Brandenburg, Philip Effinger, Carsten Gutwenger, Jyrki
Katajainen, Karsten Klein, Miro Spönemann, and Michael Wybrow

In order to evaluate, compare, and tune graph (drawing) algorithms, experiments on well
designed benchmark sets have to be performed. This, together with the goal of reproducibility
of experimental results, creates a demand for an adequate archive to gather and store graph
instances. Such an archive would ideally allow annotation of instances or sets of graphs with
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additional information like graph properties and references to the respective experiments
and results. We examine the requirements and formulate the next steps needed to produce
an easily accessible library of graphs that provides the required services. Through successful
community involvement, it is expected that the archive will contain a representative selection
of both real-world and generated graph instances, covering significant application areas as
well as relevant classes of graphs.

4.2 Spanning Trees with Few Branches
Markus Chimani, Aparna Das, and Joachim Spoerhase

License Creative Commons BY-NC-ND 3.0 Unported license
© Markus Chimani, Aparna Das, and Joachim Spoerhase

Given a graph G finding the spanning tree T of G with the smallest number of branch nodes
(nodes of degree at least 3) is known as the minimum branch node spanning tree problem
(MBST). The problem is motivated by optical networks where switches of degree greater
than two are expensive as they require sophisticated hardware to split light. Unfortunately
[1] shows that the problem is not only NP-hard but also nonapproximable.

Observe that a spanning tree that minimizes the number of branchings also maximizes
the number of low-degree nodes (leaves and degree-two nodes). Although this maximization
version of MBST leads to the same set optimum solutions it has better approximability
properties. In fact any spanning tree is already a 2-approximation since at least half the
nodes have degree 1 or 2.

We investigate the following local search algorithm. A legal k-flip replaces at most k edges
of T with the same number of edges in E(G)− E(T ) such that the resulting graph T ′ is a
spanning tree of G with strictly more low-degree nodes than T . (In a more refined algorithm
a legal k-flip increases a suitably defined potential function.) Starting with an arbitrary
spanning tree we perform legal 2-flips until we obtain a spanning tree (local optimum) for
which no legal 2-flips can be performed anymore.

We conjecture that the performance guarantee of this algorithm is strictly better than 2.
Our current proof sketch suggests a factor of at most 1.8. Our analysis is based on the
observation that the performance ratio of 2 can only be achieved by spanning trees in which
(almost) all branch nodes have degree 3. Our approach consists in showing that any node
u that has degree 3 in a local optimum either has degree 3 in a global optimum, too, or is
“associated” with certain nodes of degree 6= 3 in T .

References
1 L. Gargano, P. Hell, L. Stacho and U. Vaccaro, Spanning trees with bounded number of

branch vertices, Proc. of ICALP 02, LNCS vol. 2380, Springer (2002), pp. 355–365.
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4.3 Parallel Graph Drawing
Deepak Ajwani, Camil Demetrescu, Carsten Gutwenger, Robert Krug, Henning Meyer-
henke,Petra Mutzel, Stefan Näher, Georg Sander, and Matthias Stallmann
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In recent years hardware architects have hit the power wall. Increasing the processor clock
speeds further would yield an overproportial power consumption and heat production. That is
why smaller circuit designs are exploited by adding more computing cores instead. Nowadays
commodity processors already have four or six cores, a number expected to rise significantly
in the next decade. Special processors already support hundreds of hardware threads today.
To make efficient use of the available hardware for an algorithmic problem, it is necessary
to expose the inherent parallelism in a problem at hand. Recently it became popular to
use GPUs to accelerate computations. So it seems natural to parallelize graph drawing
algorithms. Few papers consider algorithms based on force-directed methods on GPUs and
similar architectures.

One of the most popular algorithms for drawing hierarchical layouts of directed graphs is
the Sugiyama algorithm [1]. We are not aware of any parallel Sugiyama-type algorithms. The
main phases are ranking, crossing minimization and coordinate assignment. The time-critical
task is crossing minimization, whose main procedure sweeps repeatedly up and down the
hierarchy. A sweep starts at the second level and computes the barycenter or barycenter
values, respectively, for each node on that level. These values are normally based on the
position of the neighbors in the previous level. Then the vertices are sorted according to
these values and the sweep continues with the next level. The dependence on results from a
previous step limits the available parallelism. In our group we came up with new ideas for
modifying Sugiyama’s method in order to introduce a higher amount of parallelism.

Partitioning-based Approaches.

First ideas of distributing work to processors were based on partitioning. One option is to
cut the layers into horizontal slabs and assign each slab to one processing element. Here the
border layers may experience conflicted orderings.

We had several ideas to resolve these conflicts, but it remains to be investigated in
experiments which of these techniques are successful. The second possibility is the partitioning
into vertical strips. The objective is to partition such that the number of edges running
between different vertical slabs is small. Although graph partitioning is an NP-hard problem
in general, there are efficient tools that yield good solutions. After that each vertical strip
is processed by one processing element in parallel. The hope is that the number of bad
orderings close to the strip boundaries is small due to the small number of edges between
strips.

Odd-even Layer Processing.

The next idea was to reduce the sequential dependicies to exploit more parallelism. If the
tasks to be performed have no sequential dependencies, any mapping to processing elements
would allow for concurrent and conflict-free computations. In the traditional approach layers
must be treated one after each other. Therefore, we tried to decouple the dependency of
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adjacent layers. For this purpose we have developed the odd-even barycentric algorithm
(OEBA).

Instead of up- or downward sweeps, the algorithm proceeds in passes. Similar to odd-even
sort, in each pass one processes either the odd or the even layers. All odd layers are mutually
independent, likewise all even layers. Hence, in each pass the currently visited layers can be
processed independently in parallel.

Within each layer Li, for each node v ∈ Li the new position is computed as the both-sided
barycenter, i.e. taking predecessors and successors into account at the same time. Two
alternatives have been considered, either taking the average over all neighbors or by taking
the average of the barycenter of the neighbors in the layer above and of the barycenter of
the neighbors in the below.

Next, the new positions of the nodes within the layer need to be determined. This is
either done in the classical way by sorting the nodes according to their barycentric values
directly after the barycentric computations of layer Li have been finished. Alternatively,
one computes the barycentric values of all layers first and then sorts all layers at once.
These options allow for different types of parallelism and also alter the control flow and thus
the output of the algorithm. Experiments will have to show which method yields the best
performance.

The experiments we have conducted so far are not entirely conclusive yet, but certainly
promising. For dense random graphs OEBA seems to yield crossing number results similar to
the traditional barycentric method. However, for certain sparse graphs (Rome graphs) OEBA
does reduce the crossings significantly, but not quite as much as the sequential approach.

Parallel Implementation Techniques.

We aim at shared-memory parallelism for multicore processors. Therefore, we anticipate
two main parallel implementation techniques. One is OpenMP, a user-friendly standardized
runtime system offered by most current compilers. The second one is a task-parallel job queue
runtime system on top of the operating system’s native threads. While the latter requires
the implementor to break down the work into small independent pieces, it is expected to
give the programmer more opportunities for low-level optimizations.

References
1 K. Sugiyama and S. Tagawa and M. Toda, Methods for Visual Understanding of Hierarch-

ical System Structures, IEEE Transactions on Systems, Man, and Cybernetics, 11(2):109–
125, 1981.

4.4 Circular-Arc Drawings with Right-Angle Crossings
Muhammad Jawaherul Alam, Martin Nöllenburg, Sankar Veeramoni, and Kevin Verbeek
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We studied a problem arising from the combination of two recent topics in graph drawing:
circular-arc or Lombardi drawings [3] and right-angle crossing (RAC) drawings [2]. More
precisely, we looked for drawings, where each edge is drawn as a single circular arc and where
the arc tangents at each crossing of two edges form right angles. Such a drawing is called a
circular-arc RAC drawing or CRAC drawing.

11191
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During the seminar we obtained the some initial results for characterizing graphs that
have CRAC drawings. The drawing cannot have four mutually crossing arcs such that all
crossings form right angles, i.e., the crossing graph of the drawing cannot contain K4 as a
subgraph. Furthermore it seems that the upper bound of Arikushi et al. [1] that a graph
admitting a 1-bend polyline RAC drawing has at most 6.5n− 13 edges still holds for CRAC
drawings.

We also looked at some specific examples of graphs and constructed CRAC drawings
for K3,5,K6, and K4,4; however we did not yet succeed in drawing K7, which does have a
1-bend RAC drawing. We suspect that neither CRAC nor 1-bend RAC drawings are proper
subclasses of each other.

We can use the same construction showing that every graph has a 3-bend RAC drawing [2]
to show that every graph has a CRAC drawing where each edge is a differentiable poly-arc
consisting of five circular arcs. What happens, if we reduce the complexity of the poly-arcs
to three or four arcs? What is the relationship between the classes of k-bend RAC drawings
and k-bend smooth CRAC drawings?

References
1 K. Arikushi, R. Fulek, B. Keszegh, F. Moric, and C. D. Tóth. Graphs that admit right

angle crossing drawings. In D. M. Thilikos, editor, Proc. 36th International Workshop
on Graph Theoretic Concepts in Computer Science, volume 6410, pages 135–146, 2010.
http://dx.doi.org/10.1007/978-3-642-16926-7_14.

2 W. Didimo, P. Eades, and G. Liotta. Drawing graphs with right angle crossings. In
F. Dehne, M. Gavrilova, J.-R. Sack, and C. D. Tóth, editors, Proc. 11th International
Symposium on Algorithms and Data Structures (WADS’09), volume 5664, pages 206–217,
2009. http://dx.doi.org/10.1007/978-3-642-03367-4_19.

3 C. A. Duncan, D. Eppstein, M. T. Goodrich, S. G. Kobourov, and M. Nöllenburg. Lombardi
drawings of graphs. In U. Brandes and S. Cornelsen, editors, Proc. 18th International
Symposium on Graph Drawing (GD’10), volume 6502, pages 195–207, 2011. http://dx.
doi.org/10.1007/978-3-642-18469-7_18.

4.5 Edge Bundling
David Auber, Stefan Diehl, Christian Duncan, Cesim Erten, Rudolf Fleischer, Emden
Gansner, Michael Kaufmann, Lev Nachmanson, and Michael Wybrow

License Creative Commons BY-NC-ND 3.0 Unported license
© David Auber, Stefan Diehl, Christian Duncan, Cesim Erten, Rudolf Fleischer, Emden Gansner,
Michael Kaufmann, Lev Nachmanson, and Michael Wybrow

The background of the participants covered a wide range of fields information visualization,
algorithm engineering, algorithms, graph theory. After having considered the existing
practical approaches (e.g., [6, 4, 3, 1, 7, 5, 2]), the group tried to formulate a possibly
unified mathematical model for the edge bundling problem. In several iterations, this model
has been designed, checked on validity and reformulated. After that, the group including
several subgroups considered the reformulation of the most important approaches within the
proposed model. This led to interesting and stimulating insights about the differences of
those approaches, and how to measure the differences.

A possible survey paper on the topic of this working group has been prospected and
sketched.
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4.6 On the Rotation Distance of Rooted Binary Trees
Ulrik Brandes, Rudolf Fleischer, Seok-Hee Hong, Tamara Mchedlidze, Ignaz Rutter, and
Alexander Wolff
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Given a triangulation of a regular n-gon with n ≥ 4, a new triangulation can be obtained by
flipping any internal edge. The triangulation resulting from flipping an edge e is obtained by
first removing the edge e, and then inserting the diagonal of the resulting quadrilateral that
is different from e; see Fig. 1.
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Figure 1 An example of a flip in a triangulation.

For any n ≥ 4, there is a one-to-one correspondence between (n− 2)-node ordered binary
trees and triangulations of the regular (or any other convex) n-gon (with a designated “root”
edge). The correspondence is such that rotations between pairs of trees are translated into
flips between triangulations. This was observed by Sleator et al. [4]. Since flips are simpler
to visualize and understand, we will use the flip-and-triangulation language in the following.

Let Pn be the regular n-gon, with vertices labeled 1, 2, . . . , n in counterclockwise order.
The flip graph Fn is the undirected graph whose vertices correspond to the triangulations
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of Pn; the graph has an edge between two triangulations if they can be obtained from each
other by flipping a single edge.

The flip distance of two triangulations T1 and T2 of Pn is the minimum number of flips
needed to transform T1 into T2. This is the length of a shortest path from T1 to T2 in Fn.
Sleator et al. [4] showed that the diameter of Fn is bounded by 2n − 6. Using involved
arguments from hyperbolic geometry, they proved that this bound is tight for large values
of n.

The complexity of the problem of computing the flip distance between two given triangu-
lations of the same convex polygon (with a designated root edge) is unknown; there is neither
an efficient algorithm nor an NP-hardness proof. Cleary and St. John [1] showed, however,
that the problem is fixed-parameter tractable (FPT) with respect to the parameter flip
distance. Their FPT algorithm runs in O(n+ 410k) time, where k is the flip distance between
the given pair of triangulations of the regular n-gon. There are also three approximation
algorithms. The first algorithm, by Li and Zhang [3], depends on the maximum number of
diagonals, ∆, incident to a vertex in either of the given triangulations. Their algorithm has
an approximation factor of (2− 2/(4(∆− 1)(∆ + 6) + 1)) and runs in cubic time. Note that
this approximation factor is always less than 2 and tends to 2 when ∆ grows. The second, by
the same authors [3], yields a 1.97-approximation if none of the triangulations contains an
inner triangle. The third, by Cleary and St. John [2], yields a 2-approximation in linear time.

We developed a simpler and much faster FPT algorithm than that of Cleary and St. John.
Our algorithm (see below) runs in O(n+ 4k/

√
k) time.

We want to solve the following problem, which we call k-FlipDistance. Given a pair
〈T1, T2〉 of triangulations of Pn and a positive integer k, determine whether the flip distance
of T1 and T2 is at most k and, if so, compute a shortest T1–T2 path in Fn.

Sleator et al. [4] observed that, on a shortest path connecting T1 and T2 in Fn, diagonals
common to T1 and T2 are never flipped. Moreover, if T1 admits a flip that increases the
number of diagonals common to T1 and T2, then there is a shortest T1–T2 path in Fn starting
with that flip.

Let c be the number of diagonals common to T1 and T2, and let d be the number
of diagonals that are in T1 but not in T2. Clearly, c + d = n − 3. Since the problem
k-FlipDistance allows us to flip at most k diagonals, we have d ≤ k for all Yes-instances.

Our very simple algorithm is as follows. If d > k, we return “no”. Otherwise, we split the
problem into c′ ≤ c+ 1 independent subproblems of sizes d1, . . . , dc′ with

∑c′

i=1 di = d. For
subproblem i = 1, . . . , c′, we do a breadth-first search in Fdi starting with the appropriate
part of T1. We stop as soon as we have reached the corresponding part of T2. Let `i be
the length of the path between the two parts in Fdi . We return “no” if

∑c′

i=1 `i > k, “yes”
otherwise.

Obviously, the overall running time of our algorithm is bounded by the size of Fd. It is
well-known that the number of vertices of Fd equals the (d− 2)-th Catalan number Cd−2.
The number of edges of Fd is (d − 3)Cd−2/2 since Pd has d − 3 diagonals. Recall that
Cd =

(2d
d

)
/(d + 1) ≈ 4d/(d3/2√π). Hence, our algorithm runs in O(n + 4d/

√
d) time. We

summarize our result with the following theorem.

I Theorem 1. The problem k-FlipDistance can be decided in time O(n+ 4k/
√
k), where n

is the size of the polygon. For Yes-instances, a corresponding flip sequence can be computed
within the same time bound.
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