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Scientific Visualization (SV) is the transformation of abstract data, derived from observation
or simulation, into readily comprehensible images, and has proven to play an indispensable
part of the scientific discovery process in many fields of contemporary science. This seminar
focused on the general field where applications influence basic research questions on one
hand while basic research drives applications on the other. Reflecting the heterogeneous
structure of Scientific Visualization and the currently unsolved problems in the field, this
seminar dealt with key research problems and their solutions in the following subfields of
scientific visualization:

Biomedical Visualization: Biomedical visualization and imaging refers to the mechan-
isms and techniques utilized to create and display images of the human body, organs or their
components for clinical or research purposes. Computational and algorithmic biomedical
imaging is a wide area of research and solution development.The participants presented open
problems and some solutions in this research area.

Integrated Multifield Visualization: The output of the majority of computational
science and engineering simulations typically consists of a combination of variables, so called
multifield data, involving a number of scalar fields, vector fields, or tensor fields. The state
of the art in multifield visualization considerably lags behind that of multifield simulation.
Novel solutions to multiscale and multifield visualization problems have the potential for a
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2 11231 – Scientific Visualization

large impact on scientific endeavours and defining open problems and ideas in this subtopic
was of keen interest to the seminar.

Uncertainty Visualization: Decision making, especially rapid decision making, typic-
ally happens under uncertain conditions. Challenges include the inherent difficulty in defining,
characterizing, and controlling comparisons between different data sets and in part to the
corresponding error and uncertainty in the experimental, simulation, and/or visualization
processes. Refining and defining these challenges and presenting solutions was the focus for
participants.

Scalable Visualization: The development of terascale, petascale, and soon to be
exascale computing systems and of powerful new scientific instruments collecting vast amounts
of data has created an unprecedented rate of growth of scientific data. Many solutions are
possible such as trade-offs in speed vs quality, abstractions which provide scalability, novel
parallel techniques, and the development of techniques for multivariate visual display and
exploration.

However, scaling to the next generation (exascale) platforms may require completely
rethinking the visualization workflow and methods. Defining how such architectures influence
scientific visualization methods was addressed in this seminar.
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3 Overview of Talks

3.1 Visualization of uncertain scalar data fields using color scales and
perceptually adapted noise

Georges-Pierre Bonneau (INRIA Rhône-Alpes, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Georges-Pierre Bonneau

We present a new method to visualize uncertain scalar data fields by combining color scale
visualization techniques with animated, perceptually adapted Perlin noise. The parameters of
the Perlin noise are controlled by the uncertainty information to produce animated patterns
showing local data value and quality. In order to precisely control the perception of the
noise patterns, we perform a psychophysical evaluation of contrast sensitivity thresholds
for a set of Perlin noise stimuli. We validate and extend this evaluation using an existing
computational model. This allows us to predict the perception of the uncertainty noise
patterns for arbitrary choices of parameters. We demonstrate and discuss the efficiency and
the benefits of our method with various settings, color maps and data sets.

3.2 Visualisation for Computer Assisted Surgery: Open Questions and
Challenges

Charl P. Botha (TU Delft, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Charl P. Botha

Joint work of Botha, Charl P.; Kroes, Thomas; Valstar, Edward R.; Preim, Bernhard; Post, Frits

Computer Assisted Surgery, or CAS, refers to the integration of computers in the surgical
planning and guidance pipeline. Visualisation plays an important role in presenting patient-
specific data, enabling virtual surgery during planning and providing guidance in surgery. In
order to study the role of visualisation, we are working on a survey of all research papers,
more than 500 at the moment, dealing with examples of visualisation-oriented CAS. In this
talk, I give a brief overview of the application areas and classes of techniques that we have
identified and discuss five of the more interesting open questions that have come up during
the research.

The great majority of all application papers can be classified into one of the following
four types: Orthopaedic, neuro, maxillofacial and hepatic. The rest of the work consist of
technique papers that we have classified according to the CAS pipeline: Visual representation,
interaction, and process and outcome simulation. Furthermore, there are four "transfer mod-
alities" by which planning can be applied during surgery: Image-based guidance, mechanical
guidance devices, documentation and mental models.

Five of the more interesting open questions are:
1. What is the role of realism in visualisation for computer assisted surgery? Do the used

visualisations need to be as realistic as possible, or is a caricaturistic solution more
effective?

2. Related to the previous question, what is the value of simplified visual representations
such as reformations (e.g. CPR) and maps (e.g. tumor maps) in surgical planning? How
do these influence the spatial recognition of the surgeon?

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
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3. How effective are the various different transfer modalities, especially documentation and
mental model? How valuable is planning without any form of explicit guidance?

4. Who or what should be responsible for the segmentation and other processing that is so
crucial for performing surgical planning?

5. Is surgical planning and guidance based on population stratification viable? Is it desirable?

3.3 Visual Knowledge Discovery in Neurobiology
Stefan Bruckner (TU Wien, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stefan Bruckner

The rapid evolution of computer technology has stimulated domain researchers from many
areas to adopt and develop new techniques for data analysis. Spatial distributions represented
by large collections of volumetric data are being generated in fields as diverse as biology,
medicine, chemistry, physics, and astronomy. This development, however, means that it is no
longer sufficient to provide tools for analyzing a single data set. Instead, many thousands of
data points, each consisting of a volumetric representation, need to be investigated. Mapping
neural structures in biology, in particular, requires efficient tools to visually query and retrieve
data items as well as methods to explore, categorize, and abstract the space. This talk
discusses current challenges in visualization systems that can help scientists to uncover how
information processing in neural circuits gives rise to complex behavior.

3.4 Hammerspace & Nailspace: Two approaches to multivariate
topology

Hamish Carr (University of Leeds, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Hamish Carr

Joint work of Carr, Hamish; Duke, David

Topological analysis has proven to be a useful set of techniques for both scalar and vector
fields. However, much of the development of these techniques has been based on a familiar
paradigm in Computer Science: inventing a hammer, then looking for nails. To extend
topological analysis to multivariate fields, we therefore start by asking what characteristics
of the underlying phenomenon should be used for analysis - i.e. what the characteristics of
the nail are. At the same time, however, the hammer paradigm continues to be productive,
and we introduce early steps in extending level set (contour) snslysis to multivariate data.
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3.5 Simplex, diamond and hypercube hierarchies in arbitrary
dimensions

Leila De Floriani (University of Genova, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Leila De Floriani

Joint work of Kenneth Weiss (University of Maryland)

Hierarchical spatial decompositions play a fundamental role in many disparate areas of
scientific computing since they enable adaptive sampling of large problem domains. Many
approaches in this area deal with hierarchical simplicial decompositions generated through
regular simplex bisection. Such decompositions, originally developed for finite elements, are
extensively used as the basis for multiresolution models of scalar fields, such as terrains, and
static or time-varying volume data. Moreover, the use of quadtrees, octrees, and their higher
dimensional analogues as spatial decompositions is ubiquitous, but these structures usually
generate meshes with cracks, which can lead to discontinuities in functions defined on their
domain.

In this talk, we focus on hierarchical models based on regular simplicial bisection and
on regular hypercube refinement and we treat them in a dimension-independent way. We
highlight the properties of such hierarchies and discuss a dimension-independent triangulation
algorithm based on regular simplex bisection to locally decompose adaptive hypercubic meshes
into high quality simplicial complexes with guaranteed geometric and adaptivity constraints.

3.6 Visual Analytics at Scale: Challenges and Directions
David S. Ebert (Purdue University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© David S. Ebert

Enabling discovery and decision making at real-world scale is an interesting and challenging
problem. The main focus should be on understanding the science, the user, their questions,
tasks, and the context. Given this frame of reference, four challenges to be addressed are the
following:

Creating Computer-human visual cognition environments
Enabling coupled interactive simulation and analytical environments
Addressing specific scale (natural scale, physical scale, cross-scale) issues
Effectively integrating certainty/uncertainty and temporal analysis and visualization

3.7 Displaying Many Pixels and How to Compute Them
Thomas Ertl (Universität Stuttgart, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Thomas Ertl

This talk addresses aspects of output scalability of large-scale visualization environments
by reporting on the progress of an infrastructure project at the Visualization Research
Center of the University of Stuttgart. When moving into a remodeled and extended building
in 2010, the institute had the space and the funding available to build a high-resolution
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back-projection system. The demand for a wall-size, seamless, bevel-free display allowing
for binocular 3D stereo and almost monitor resolution (50 dpi) lead to a design with five
stereo pairs of 4K projectors arranged horizontally in portrait mode. This results in an
immersive display with only four blending zones with a total of almost 100 megapixels (45
megapixels per eye) of 0.5 mm pixel size. In order to drive such a wall display requiring
40 video-in lines and an aggregate bandwidth of more than 20 gigabyte/s, we propose a
two-tier GPU cluster architecture with 20 display nodes attached to the projectors and 64
node rendering nodes all connected by a high-throughput low latency InfiniBand network.
The second part of the talk addresses various approaches to generate visualizations for such
an architecture. While low-level output driver models are difficult to implement and tend to
be as performance-limited as transparent library overloading, applications exploiting the full
potential of the system still need to be manually tuned eventually easing implementation
efforts by building on a middleware abstracting from the various layers of parallelism.

3.8 Scalable Visualization: Motivation, Issues and Impediments
Kelly Gaither (University of Texas at Austin, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Kelly Gaither

As visualization scientists and practitioners, we are faced with increasingly larger datasets
generated by increasingly more complex models. To properly handle these resulting massive
datasets, we must analyze and understand opportunities to scale our visualization tools,
methods, and resources. The computational science and high performance computing
communities have addressed many issues with respect to scaling for a number of years. Much
can be learned by reviewing what these communities have done to address scaling of resources,
algorithms, and accessibility mechanisms. By understanding the mission and the enablers
for scaling each of these, we can compare current successes in high performance computing
and visualization, and better understand the issues and impediments that must be addressed
to respond to the data deluge we are currently facing. Doing so will allow us to formulate
strategies going forward to analyze massive datasets.

3.9 Integral Curves on Large Data
Christoph Garth (University of California – Davis, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christoph Garth

The talk gives an overview of recent effort towards enabling integration-based visualization
on large data sets by taking advantage of modern supercomputing architectures. Integration-
based visualization has garnered renewed traction in the visualization community and
is a feature often needed by domain scientists to facilitate vector field visualization and
analysis. Over the past two years, we have investigated parallelization schemes that make
use of distributed computation and data to achieve good performance for integral curve
computation. Furthermore, by leveraging architectural features of modern supercomputing
architectures, such as multi-core CPUs, we achieve further performance improvements. The
talk concludes with an overview of open problems and future directions.
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3.10 Computational Steering and Interactive Visualization for
Large-Scale Simulations

Andreas Gerndt (German Aerospace Center – Braunschweig, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andreas Gerndt

Joint work of Gerndt, Andreas; Wagner, Christian

After submitting a batch job to a supercomputer to simulate large multi-disciplinary flow
fields, the user has to wait hours, days or more until it is finished or crashed. With
computational steering, it is possible to modify numerical parameters in order to adjust
an ongoing simulation. But to identify failures in 3D flow simulations, we propose 3D
post-processing in virtual environments. Here, interactivity is a crucial point while the
extraction data is computed in parallel on the simulation back end. We can show, that
classical extraction approaches can not guarantee interactive response times. However,
multi-resolution sampling schemes are very promising. By adding variance information to
the cell tree stored at each compute node, the information density for the interactive data
exploration can be improved even more.

3.11 The Haunted Swamps of Uniformity
Eduard Groeller (TU Wien, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Eduard Groeller

Dissemination of scientific results in visualization (like in many other disciplines) through
papers and talks follow rather standardized styles and procedures. Given that publishing
strategies were very different not so much time ago in the past, and given new technological
developments like electronic publishing, ideas of possible future developments are discussed.
Topics treated include: increased repeatability through augmenting papers with executables,
providing more extensive sensitivity and robustness analyses, paper presentation as drama,
poem, comics strip.

3.12 Interactive Visual Analysis of Multi-Dimensional Scientific Data
Helwig Hauser (University of Bergen, NO)

License Creative Commons BY-NC-ND 3.0 Unported license
© Helwig Hauser

One common notion of scientific data is to consider it as a mapping of independent variables
– usually space and/or time in scientific visualization – to a set of dependent values, very
often resembling some measurements or computational simulation results.

Traditionally, neither the spatiotemporal domain nor the dependent variables were of
higher dimensionality. A larger number of dependent values, leading to multi-variate data,
however, has lead to interesting visualization research more recently. Very interesting and
quite challenging, also, the emergence of higher-dimensional scientific data (higher-dimensional
domain) leads to new visualization questions.
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Multi-run / ensemble simulation data, for example, includes also parameters as additional
independent variables.

The integration of descriptive statistics, both for the representation of trends and outliers,
allows to perform a linked interactive visual analysis both on aggregation level as well as on
the original multi-run data.

Challenges arise from the larger number of available statistics as well as from the necessary
mental reconstruction of phenomena from aggregates.

3.13 Uncertainty Visualization & Display of Probabilistic Isocontours
Hans-Christian Hege (ZIB – Berlin, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Hans-Christian Hege

Main reference Kai Pöthkow, Britta Weber, Hans-Christian Hege, “Probabilistic marching cubes,” Comput. Graph
Forum 30:3, pp. 931–940, 2011 (EuroVis 2011)

URL http://dx.doi.org/10.1111/j.1467-8659.2011.01942.x

In the first part of the talk I shortly sketch what we
1) need to learn from other fields like probability theory, statistics, statistical graphics,
softcomputing and artificial intelligence
2) should explore and develop in our research.

Regarding 1): This includes the various types of uncertainty, causes of uncertainty, math-
ematical representations of uncertainty, uncertainty quantification, uncertainty propagation,
data processing and analysis techniques like ensemble analysis, aggregation, reasoning under
uncertainty, as well as defuzzification for decision support.

Regarding 2): This includes practical representations of uncertainty, uncertainty propaga-
tion in the visualization pipeline, uncertainty of extracted features, fuzzy analogs of crisp
features, visual mapping of uncertain data and of fuzzy features, perception of visual un-
certainty representations, visual reasoning under uncertainty, visual support of statistical
processing and analysis techniques as well as decision making under uncertainty, methodology
for development of visualization and visual analytics applications; furthermore evaluation of
particular visualization and visual analytics techniques as well as whole software systems.

Additionally, I discuss the tight relation between visualization of uncertain fields and
function field visualization as well as multi-field and multi-variate visualization – due to the
mathematical structure that is identical, up to sampling, normalization and grouping of data
dimensions.

In the second part of the talk I discuss ideas how the display of probabilistic iso-contours
of uncertain scalar fields – modeled as discrete Gaussian random fields with arbitrary spatial
correlations [1] – can be significantly speeded up.
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3.14 3D tensor field exploration in shape space
Ingrid Hotz (ZIB – Berlin, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ingrid Hotz

Joint work of Hotz, Ingrid; Andrea Kratz
URL http://www.zib.de/hotz/publications/paper/kratz_techReport1026.pdf

We present a visual approach for the exploration of stress tensor fields. Therefore, we
introduce the idea of multiple linked views to tensor visualization. In contrast to common
tensor visualization methods that only provide a single view to the tensor field, we pursue the
idea of providing various perspectives onto the data in attribute and object space. Especially
in the context of stress tensors, advanced tensor visualization methods have a young tradition.
Thus, we propose a combination of visualization techniques domain experts are used to with
statistical views of tensor attributes. The application of this concept to tensor fields was
achieved by extending the notion of shape space. It provides an intuitive way of finding
tensor invariants that represent relevant physical properties. Using brushing techniques, the
user can select features in attribute space, which are mapped to displayable entities in a
three-dimensional hybrid visualization in object space.

Volume rendering serves as context, while glyphs encode the whole tensor information in
focus regions. Tensorlines can be included to emphasize directionally coherent features in
the tensor field. We show that the benefit of such a multi-perspective approach is manifold.

Foremost, it provides easy access to the complexity of tensor data. Moreover, including
well- known analysis tools, such as Mohr diagrams, users can familiarize themselves gradually
with novel visualization methods. Finally, by employing a focus-driven hybrid rendering, we
significantly reduce clutter, which was a major problem of other three-dimensional tensor
visualization methods.

3.15 Visualization in Developmental Biology
Heike Jaenicke (Universität Heidelberg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Heike Jaenicke

Modern microscopy techniques allow for fascinating new insights into the development of
life. They produce digital threedimensional records of living embryos and reveal how a single
cell develops into a complex organism. Though all relevant information is contained in such
data, the records confront scientists with large challenges when it comes to data analysis.
Digital embryo data is very difficult to segment and cell tracking is just as challenging. This
information, however, is the key to further analysis and insights into these complex processes.

In this talk, I will present a set of algorithms that enable biologists to track the segmented
cell data and assess the quality of the segmentation and tracking. We provide visualization
techniques and quality measures for multiple levels of detail, which provide means to
interactively dig into the data and find artefacts in the data and shortcoming of the algorithms.

Our methods enable the users to validate terabytes of data and turn them into reliable
data sources that can be used for further investigation.
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3.16 Image space occlusion model
Yun Jang (ETH Zürich, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
© Yun Jang

Understanding and perception of three-dimensional scientific visualizations benefit from
visual cues which are available from shading. The prevalent approaches are local shading
models since they are computationally cheap and simple to implement. However, local
shading models do not always provide proper visual cues, since non-local information is not
sufficiently taken into account for shading. Better visual cues can be obtained from global
illumination models but the computational cost can be often prohibitive. It has been shown
that alternative illumination models, such as ambient occlusion, multidirectional shading,
and shadows, can provide proper perceptual cues as well. Although these models improve
upon local shading models, they still need expensive preprocessing, extra GPU memory,
incur high computational cost, or cause a lack of interactivity during transfer function and
light position changes. In this paper, we propose an image space multidirectional occlusion
shading model which requires no preprocessing and stores all required information in the
output image on the GPU. Changes to the transfer function or the light position can be
performed interactively. The approach is based on the insight that image space shading
methods can be improved if we store relevant information during the preceding rendering
step. Our simple model is capable of simulating a wide range of shading behaviors, such as
ambient occlusion, soft and hard shadows, and can be applied to any rendering system such
as geometry rendering or volume rendering. We evaluate our approach and show that the
suggested model enhances the perceptual cues even though it can be computed efficiently.

3.17 Overview of Uncertainty Visualization
Christopher R. Johnson (University of Utah – Salt Lake City, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christopher R. Johnson

As former English Statesmen and Nobel Laureate (Literature), Winston Churchill said,
“True genius resides in the capacity for evaluation of uncertain, hazardous, and conflicting
information.” Churchill is echoed by Nobel Prize winning Physicist Richard Feynman, “What
is not surrounded by uncertainty cannot be the truth.” Yet, with few exceptions, visualization
research has ignored the visual representation of errors and uncertainty for three-dimensional
(and higher) visualizations. In this presentation, I will give an overview of what has been
done thus far in uncertainty visualization and discuss future challenges.
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3.18 Bayesian evidence for visualizing model selection uncertainty
Gordon Kindlmann (University of Chicago, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gordon Kindlmann

Bayesian inference provides a well-known mathematical framework for fitting given models
to data, and quantifying the variance of the model parameters.

The variance of the underlying data, and of the model parameters, are two kinds of
uncertainty that have been previously studied in visualization.

Bayesian inference also provides a quantity known as "evidence", or the marginal likelihood
of the model, which quantifies the quality of a model given the data. Bayesian evidence
naturally implements Occam’s Razor. We propose that uncertainty in model selection can be
parameterized by evidence, and that visualization of evidence can create an effective way of
"seeing" where current hypotheses do and do not explain the data. This kind of visualization
method may prove especially useful in the context of modern biomedical imaging (such as
fMRI and diffusion MRI), which can generate 30-120 values per-voxel, which benefit from
some form of model fitting as part of evaluating hypotheses.

3.19 Downscaleable Visualization
Jens Krueger (DFKI Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jens Krueger

In recent years there has been significant growth in the use of patient-specific models to
predict the effects of neuromodulation therapies such as deep brain stimulation (DBS).
However, translating these models from a research environment to the everyday clinical
workflow has been a challenge, primarily due to the complexity of the models and specialized
software required to provide the visualization. In this talk I will motivate that an interactive
visualization system, which has been designed for mobile computing devices such as the
iPhone or iPad, used to visualize models of four Parkinson’s patients who received DBS
therapy can significantly improve the state of the art and I will make the claim that this is
just one of many possible scenarios for successful application of mobile visualization.

3.20 Multifield Data Visualization: Automatic vs. Interactive Feature
Extraction

Lars Linsen (Jacobs University – Bremen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Lars Linsen

Extracting features from volume data has been one of the main driving goals in scientific
visualization.

Many approaches exist that do this automatically or interactively.
For multifield data visualization, interaction in attribute space is less intuitive and the

outcome of automatic approaches is harder to interpret.
This talk focuses on discussing advantages and disadvantages of automatic and interactive

feature extraction and combined approaches.
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3.21 Visualization of Temporal Trends for Time-Varying Data
Aidong Lu (University of North Carolina at Charlotte, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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The visualization challenges of time-varying datasets with long time durations are different
from 2D or 3D large-scale scientific visualization, as temporal features are often abstract and
can be easily transformed at different time scales. This talk provides examples of designing
new visualization tools to study temporal features with the technique of storytelling. First, a
digital storytelling - animation is chosen as it is a natural representation of a time-varying
dataset. It describes detailed events computed through features-of-interest. Second, an
interactive storyboard is chosen to overview temporal relationships, as it is flexible to describe
various trends in an extremely succinct style. Last, temporal histogram is shown to be
useful to identify interesting temporal patterns as well. We plan to continue to explore new
visualization designs to study large-scale datasets.

3.22 Problem-drive Visualization Research
Miriah Meyer (Harvard University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Miriah Meyer

Problem-driven research in visualization focuses on applying visualization techniques, meth-
ods, and algorithms to specific domains and target users. On the micro scale, this approach
results in tools and designs that are truly effective for answering scientific questions. On the
macro scale, this approach results in new visualization algorithms, methods, and techniques,
as well as insight for formulating new methodologies. We are working towards articulating
one such methodology, design studies, for conducting problem-driven research.

A design study results in a user-validated design for an existing and reoccurring problem
with reflection. This methodology pushes the expectation of visualization beyond just pretty
pictures, and towards a deep investigation into task-oriented data analysis.

3.23 The Case for Multi-Dimensional Visual Data Analysis
Torsten Moeller (Simon Fraser University – Burnaby, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Torsten Moeller

In this talk I am trying to summarize my experiences with working with several different
input-output systems of which simulations are the majority. I characterize these systems on
an abstract level and list and explain the major tasks scientists are trying to accomplish as -
a) Optimization, b) Segmentation, c) Fitting, d) Steering, and e) Sensitivity Analysis.
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3.24 Can Computers Master the Art of Communication?
Klaus Mueller (Stony Brook University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Visual analytics seeks to conduct a discourse with the user through images. The computer
supports the user in this interactive analytical reasoning, constructing a formal model of
the given data, with the end product being formatted knowledge constituting insight. Yet,
validation and refinement of this computational model of insight can occur only in the
human domain expert’s mind, bringing to bear possibly unformatted knowledge as well as
intuition and creative thought. So, it’s left to this human user to guide the computer in
the formalization (learning) of more sophisticated models that capture what the human
desires and what the computer currently believes about the data domain. Obviously, the
better a communicator the computer is, the more assistance it will elicit from the user
to help it refine the model. We propose visualization and visual interaction as the prime
communication channels between analyst and computer. We look at effective strategies
that exist in human-human communication and then identify their corresponding visual
counterparts for use in human-computer communication.

3.25 Derived Scalar Fields for Visual Analysis of Multifield Data
Vijay Natarajan (Indian Inst. of Science – Bangalore, IN)

License Creative Commons BY-NC-ND 3.0 Unported license
© Vijay Natarajan

Multifield data is ubiquitous to all scientific studies. In this talk, I will argue that the
design of analysis and visualization techniques for multifield data will benefit by studying
the relationship between fields as compared to a focused study of inherent properties of
individual fields. We have followed this principle to develop a relation-aware method for
exploring isosurfaces of scalar fields and a gradient-based derived scalar field that captures
the alignment between gradient vectors at a given point. I will briefly describe these methods
for visualizing multifield data and outline some interesting and challenging problems that
remain open.

3.26 On Visualization of Dense Line Data
Harald Obermaier (University of California – Davis, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Harald Obermaier

Joint work of Schroeder, Simon; Obermaier, Harald; Garth, Christoph; Hagen, Hans; Joy, Ken

Dense line data is generated by various scientific simulation and post-processing methods.
For visualization purposes, flow fields, for example, are often densely sampled by integral
lines. We present novel methods to perform multi-field feature extraction on this dense set of
lines to highlight features in the flow field and solve problems of dense line data visualization.
Together with a novel ambient occlusion approach, these multi-field properties provide the
means for feature-based and interactive visualization of dense line data. We demonstrate,
how this implicit flow feature extraction can help provide a fast, feature oriented display of
characteristic flow structures such as vortex cores.
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3.27 Uncertainty Visualization: Routine for Color Vision Deficient
Individuals

Manuel Oliveira (UFRGS – Porto Alegre, BR)

License Creative Commons BY-NC-ND 3.0 Unported license
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Color vision deficiency (CVD) is a relevant subject in visualization, but one that has not
yet received the attention it deserves. Current estimates indicate that approximately 200
million individuals worldwide suffer from some kind of CVD. Due to loss of color contrast,
these individuals will not perceive visualizations the way they were intended to be. This
leads to uncertainties when interpreting images and videos, forcing them to make important
decisions based on ambiguous information, which may have catastrophic implications. This
talk explains the causes of the difficulties faced by color-vision-deficient individuals, and
describes the main tools available for helping them to recover, as much as possible, the
experienced loss of color contrast. Such tools consist primarily of recoloring techniques.

It also discusses the inherent limitations of these techniques, and presents some open
questions in this area. It then describes one approach that tries to address these questions,
and presents the results of a user study designed to evaluate it. The study was performed
with sixteen color vision deficient volunteers and twenty two individuals with normal color
vision. Its results show that one can, in certain visualization tasks, improve the performance
of individuals with CVD to the levels of a normal color vision person by augmenting the
visualizations using relatively simple patterns.

These results show that this technique also improves the performance of normal trichro-
mats on the same tasks, and suggest a fruitful direction for future exploration.

3.28 Uncertainty in Analysis and Visualization: Topology and Statistics
Valerio Pascucci (University of Utah – Salt Lake City, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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One of the greatest challenges for today’s visualization and analysis communities is the
massive amounts of data generated from state of the art simulations. Traditionally, the
increase in spatial resolution has driven most of the data explosion, but more recently
ensembles of simulations with multiple results per data point and stochastic simulations
storing individual probability distributions are increasingly common. This paper introduces
a new data representation for scalar data called hixels that store a histogram of values for
each sample point of a domain. The histograms may be created by spatial down-sampling,
binning ensemble values, or polling values from a given distribution. In this manner, hixels
form a compact yet information rich approximation of large scale data. In essence, hixels
trade off data size and complexity for scalar-value "uncertainty".

Based on this new representation we propose new feature detection algorithms using a
combination of topological and statistical methods. In particular, we show how to approximate
topological structures from hixel data, extract structures from multi-modal distributions, and
render uncertain isosurfaces. In all three cases we demonstrate how using hixels compares to
traditional techniques and provide new capabilities to recover prominent features that would
otherwise be either infeasible to compute or ambiguous to infer.

We use a collection of computer tomography data and large scale combustion simulations
to illustrate our techniques.
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3.29 Interacting with our related fields – some observations
Ronald Peikert (ETH Zürich, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
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The field of scientific visualization is seen differently by communities in some of the more
closely related fields, such as applied math, fluid mechanics, or computer vision. After
decades of various kinds of exchanges with people from industry partners, met at conferences
or even within our institution, some observations could be made repeatedly. Sources of
frequent misunderstandings include different notions of scientific exactness, different work
flows, different conventions for structuring publications, different terminology, and different
understandings on the border between disciplines. In this talk this is illustrated with a
number of anecdotic examples.

3.30 The Connectome - Discovering the Wiring Diagram of the Brain
Hanspeter Pfister (Harvard University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Hanspeter Pfister

Discovering and analyzing the neural network of the brain is one of the great scientific
challenges of our times. The Harvard Center for Brain Science and the School of Engineering
and Applied Sciences have been working together since 2007 on the Connectome Project.
This ambitious effort aims to apply biology and computer science to the grand challenge of
determining the detailed neural circuitry of the brain. In this talk I will give an overview of
the computational challenges and some interactive visualization approaches that we developed
to discover and analyze the brain’s neural network. The key to our methods is to keep the
user in the loop, either for providing input to our downstream segmentation methods, or for
validation and corrections of the segmented processes. The main challenges we face are how
to deal with terabytes of image data in an efficient and scalable way, and how to analyze the
brain’s neural network once we have discovered it.

3.31 Visualization for Urban Environments
Huamin Qu (The Hong Kong University of Science & Technology, HK)

License Creative Commons BY-NC-ND 3.0 Unported license
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With the advance of technologies, we are now able to collect many different kinds of data
related to human behaviors such as mobile phone data and vehicle trajectory data. With
these data, we can gain insight into human behaviors and reveal some hidden knowledge
in the data. However, real data often contain many errors. In this talk, I will present how
visualization techniques can help users detect errors in mobile phone data and fix the errors
in the GPS data.
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3.32 Ways of Not Knowing
Penny Rheingans (University of Maryland Baltimore County, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Visualization draws a picture from data, with the implication that the image shows THE
truth. Reality is more complicated, with uncertainty clouding the picture. Visualization
researchers have begun to acknowledge the importance of showing uncertainty, but what
does that mean?

Uncertainty can mean very different things in different situations. Each type of uncertainty
might best be displayed in a different way, depending on the key characteristics and goals.
Estimated error from simulations or predictions might be considered to be just another scalar
variable, to be displayed alone or in concert with the expected value. Complex models may
involve multiple distinct components of uncertainty, with sources in model inputs, parameter
selections, and the nature of the mechanisms modeled. Missing data can give rise to measures
for confidence that supplements display of expected value. Uncertainty in location, boundary,
or shape is most naturally displayed through spatial elements.

With heterogeneous predictions or classifications it may be desirable to show the numerous
possibilities and their likelihoods.Other types of potential uncertainty offer new visual
representation challenges. These include data that may be out of date or of dubious
provenance, residuals of abstraction, distributions of value and uncertainty, variability of
relationships, and uncertainty of causation.

Finally, we should understand how the visualization process impacts the propagation,
magnification, perception, and impact of uncertainty.

In order to do this, we must understand computational sources and magnifiers of error
and uncertainty in input values, perceptual and cognitive influences on the understanding
of uncertainty visualization, effects of differences in audience abilities and culture, and
competing positive and negative consequences of showing uncertainty.

3.33 Comparing brain networks
Jos B.T.M. Roerdink (University of Groningen, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jos B.T.M. Roerdink

Nowadays, many neuroimaging methods are available to assess the functioning brain. Of
particular interest is the comparison of functional brain networks under different experimental
conditions, or comparison of such networks between groups of people. Recent studies on
brain network architecture have shown a clear need for methods that allow local differences
to be visualized in the original network representation. We discuss some recent methods for
comparative visualization of brain connectivity networks obtained from EEG and fMRI data.
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3.34 Illustrative Visualization of Probabilistic Tractogramms
Gerik Scheuermann (Universität Leipzig, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Scheuermann, Gerik; Goldau, Matthias; Hlawitschka, M.; Tittgemeyer, M.
Main reference Unpublished work under review

Neuroscience uses diffusion weighted imaging for quite some time to get an idea on the large
scale connectivity inside the brain. The imaging data is processed to produce connectivity
data by tractography algorithms. One class of these algorithms produces probability values
for connections between different brain areas. In the talk, an illustrative visualization method
is presented showing the connections between different cortex areas. As the technique is
motivated by a celebrated book with hand-made illustrations of brain connectivity in the
neuroscience community, the technique has found its way into publications of our partners
directly.

3.35 Fuzzy Fibers: What Uncertainty Visualization Can and Cannot
Achieve

Thomas Schultz (University of Chicago, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Thomas Schultz

Despite their immense popularity in visualizing data from diffusion MRI, the interpretability
of streamline visualizations in terms of white matter architecture is limited by partial
voluming effects. Streamline lengths and trajectories depend on modeling choices, parameter
settings, noise and artifacts in the data, as well as preprocessing strategies to address these
problems. In this talk, I survey the existing approaches that have aimed at visually conveying
the uncertainty that these factors introduce in the visualization, and I will identify open
problems in this field. This will lead to some more fundamental reflections on what we
can and cannot hope to achieve with uncertainty visualization, and on some more general
challenges in uncertainty visualization.

3.36 Augmenting 3D perceptibility of in Data Visualization
Shigeo Takahashi (University of Tokyo, JP)

License Creative Commons BY-NC-ND 3.0 Unported license
© Shigeo Takahashi

The Super Real Vision (SRV) is a system for plotting a series of illuminants freely in 3D space,
which allows us to observe the target data as real 3D objects from any viewing positions. This
new display technology will motivate us to reformulate the conventional data visualization
techniques.

The talk presents how we can explore such possibilities to enhance the 3D perceptibility
in data visualization, including possible applications to medical visualization as a means of
achieving informed consent between medical doctors and patients.
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3.37 Exploration of 4D MRI blood flow
Anna Vilanova Bartroli (TU Eindhoven, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Anna Vilanova Bartroli

Better understanding of hemodynamics conceivably leads to improved diagnosis and prognosis
of cardiovascular diseases.

Therefore, elaborate analysis of the blood-flow in heart and thoracic arteries is essen-
tial. Contemporary MRI techniques enable acquisition of quantitative time-resolved flow
information, resulting in 4D velocity fields that capture the blood-flow behavior.

Visual exploration of these fields provides comprehensive insight into the unsteady blood-
flow behavior, and precedes a quantitative analysis of additional blood-flow parameters. The
complete inspection requires accurate segmentation of anatomical structures, encompassing
a time-consuming and hard-to-automate process, especially for malformed morphologies. We
present a way to avoid the laborious segmentation process in case of qualitative inspection,
by introducing an interactive virtual probe. This probe is positioned semi-automatically
within the blood-flow field, and serves as a navigational object for visual exploration. The
difficult task of determining position and orientation along the view-direction is automated
by a fitting approach, aligning the probe with the orientations of the velocity field. The
aligned probe provides an interactive seeding basis for various flow visualization approaches.
We demonstrate illustration-inspired particles, integral lines and integral surfaces, conveying
distinct characteristics of the unsteady blood-flow.

3.38 Parallel Extraction of Crack-free Isosurfaces from Adaptive Mesh
Refinement Data

Gunther H. Weber (Lawrence Berkeley National Laboratory, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Weber, Gunther H.; Childs, Hank; Meredith, J.

Adaptive mesh refinement (AMR) is a simulation technique that is used increasingly for
phenomena that cover large spatiotemporal scales. Block structured AMR represents the
domain as a hierarchy of nested, axis-aligned grids arranged in levels of increasing resolution.
Handling this type of data during visualization is a challenge since information in finer
resolution levels supersedes that in coarser resolution levels, and it is difficult to handle
resolution changes at level boundaries. Isosurfaces, an important building block for many
visualization and analysis techniques, pose particular problems since the linear approximation
of the surface as triangulation leads to discontinuities (or cracks) between AMR hierarchy
levels. Here, we propose an efficient, parallel scheme to extract crack-free isosurfaces from
AMR data. Our approach is based on previous work that uses dual grids and stitch cells
to define a C0 continuous interpolation scheme. We extend this approach by simplifying
and unifying stitch cell generation in a case-table-based approach and utilize ghost cells to
support effective parallelization as well as avoid conversion of dual meshes into unstructured
grids.
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3.39 On the (Un)Suitability of Strict Feature Definitions for Uncertain
Data

Tino Weinkauf (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Tino Weinkauf

We discuss strategies to successfully work with strict feature definitions such as topology in
the presence of noisy data. To that end, some previous work from the literature is reviewed.
Also, the concept of Separatrix Persistence is presented, which allows to quantify features -
and thereby remove small-scale features induced by noise.

3.40 Multi-field Visualization for Biomedical Data Sets
Thomas Wischgoll (Wright State University – Dayton, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Thomas Wischgoll

There is a multitude of data sets that include additional information other than velocity
data. This presentation will discuss two examples of such data sets: medical and insect flight.
Based on a CT angiogram data set, the geometry of the vessel boundary can be extracted
and then used in order to compute the blood flow inside that geometry assuming an inflow
velocity and pressure based on a typical heart rate. The visualization can then be extended
by introducing wall-shear stresses mapped onto the geometry using color coding. Similarly,
FTLE-based color coding is capable of highlighting similar areas compared to wall-shear
stress. The other example included deals with a dragon fly. Using high-speed cameras, a
dragonfly can be observed and its geometry reconstructed based on different views generated
by a set of three cameras. Using this geometry, a CFD simulation then generates the flow
around the dragonfly. Since additional data is computed alongside the flow, the flow can be
studied and correlated to the lift generated by the individual wings of the dragonfly, allowing
for more insight of the flight characteristics of the dragonfly.

3.41 Asymmetric Tensor Field Visualization from a Multi-Field
Viewpoint

Eugene Zhang (Oregon State University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Asymmetric tensor fields often arise as the gradient of a vector field, such as the velocity
gradient tensor in fluid dynamics and the deformation gradient tensor in solid mechanics.
Visualization of the vector field of interest and its gradient tensor field can provide greater
insight than the visualization of the vector field only. This leads to a multi-field framework
in vector field visualization. In addition, tensor decomposition implies that the behaviors of
a tensor field is a direct result of the interaction of the components in the decomposition.
This is another aspect of multi-field in tensor field visualization.

We also discuss future challenges and opportunities in tensor field visualization based on
a multi-field framework.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


Min Chen, Hans Hagen, Charles D. Hansen, and Arie Kaufman 23

Participants
Georges-Pierre Bonneau

INRIA Rhône-Alpes, FR
Charl P. Botha

TU Delft, NL
Peer-Timo Bremer

LLNL – Livermore, US
Stefan Bruckner

TU Wien, AT
Hamish Carr

University of Leeds, GB
Min Chen

University of Oxford, GB
Leila De Floriani

University of Genova, IT
David S. Ebert

Purdue University, US
Alireza Entezari

University of Florida –
Gainesville, US

Thomas Ertl
Universität Stuttgart, DE

Kelly Gaither
University of Texas at Austin, US

Christoph Garth
Univ. of California – Davis, US

Andreas Gerndt
German Aerospace Center –
Braunschweig, DE

Eduard Gröller
TU Wien, AT

Markus Hadwiger
KAUST – Thuwal, SA

Hans Hagen
TU Kaiserslautern, DE

Charles D. Hansen
University of Utah – Salt Lake
City, US

Helwig Hauser
University of Bergen, NO

Hans-Christian Hege
ZIB – Berlin, DE

Ingrid Hotz
ZIB – Berlin, DE

Heike Jänicke
Universität Heidelberg, DE

Yun Jang
ETH Zürich, CH

Christopher R. Johnson
University of Utah – Salt Lake
City, US

Ken Joy
Univ. of California - Davis, US

Arie Kaufman
SUNY – Stony Brook, US

Gordon Kindlmann
University of Chicago, US

Jens Krüger
DFKI Saarbrücken, DE

Robert S. Laramee
Univ. of Wales – Swansea, GB

Lars Linsen
Jacobs University - Bremen, DE

Aidong Lu
University of North Carolina at
Charlotte, US

Miriah Meyer
Harvard University, US

Torsten Möller
Simon Fraser University –
Burnaby, CA

Klaus Müller
Stony Brook University, US

Vijay Natarajan
Indian Inst. of Science –
Bangalore, IN

Harald Obermaier
Univ. of California - Davis, US

Manuel Oliveira
UFRGS - Porto Alegre, BR

Valerio Pascucci
University of Utah – Salt Lake
City, US

Ronald Peikert
ETH Zürich, CH

Hanspeter Pfister
Harvard University, US

Bernhard Preim
Universität Magdeburg, DE

Huamin Qu
The Hong Kong University of
Science & Technology, HK

Penny Rheingans
University of Maryland
Baltimore County, US

Jos B.T.M. Roerdink
University of Groningen, NL

Gerik Scheuermann
Universität Leipzig, DE

Thomas Schultz
University of Chicago, US

Shigeo Takahashi
University of Tokyo, JP

Anna Vilanova Bartroli
TU Eindhoven, NL

Ivan Viola
University of Bergen, NO

Gunther H. Weber
Lawrence Berkeley National
Laboratory, US

Tino Weinkauf
MPI für Informatik –
Saarbrücken, DE

Thomas Wischgoll
Wright State University –
Dayton, US

Anders Ynnerman
Linköping University, SE

Dirk Zeckzer
TU Kaiserslautern, DE

Eugene Zhang
Oregon State University, US

11231


	Executive Summary Min Chen, Hans Hagen, Charles D. Hansen, and Arie Kaufman
	Table of Contents
	Overview of Talks
	Visualization of uncertain scalar data fields using color scales and perceptually adapted noise Georges-Pierre Bonneau
	Visualisation for Computer Assisted Surgery: Open Questions and Challenges Charl P. Botha
	Visual Knowledge Discovery in Neurobiology Stefan Bruckner
	Hammerspace & Nailspace: Two approaches to multivariate topology Hamish Carr
	Simplex, diamond and hypercube hierarchies in arbitrary dimensions Leila De Floriani
	Visual Analytics at Scale: Challenges and Directions David S. Ebert
	Displaying Many Pixels and How to Compute Them Thomas Ertl
	Scalable Visualization: Motivation, Issues and Impediments Kelly Gaither
	Integral Curves on Large Data Christoph Garth
	Computational Steering and Interactive Visualization for Large-Scale Simulations Andreas Gerndt
	The Haunted Swamps of Uniformity Eduard Groeller
	Interactive Visual Analysis of Multi-Dimensional Scientific Data Helwig Hauser
	Uncertainty Visualization & Display of Probabilistic Isocontours Hans-Christian Hege
	3D tensor field exploration in shape space Ingrid Hotz
	Visualization in Developmental Biology Heike Jaenicke
	Image space occlusion model Yun Jang
	Overview of Uncertainty Visualization Christopher R. Johnson
	Bayesian evidence for visualizing model selection uncertainty Gordon Kindlmann
	Downscaleable Visualization Jens Krueger
	Multifield Data Visualization: Automatic vs. Interactive Feature Extraction  Lars Linsen
	Visualization of Temporal Trends for Time-Varying Data Aidong Lu
	Problem-drive Visualization Research Miriah Meyer
	The Case for Multi-Dimensional Visual Data Analysis Torsten Moeller
	Can Computers Master the Art of Communication? Klaus Mueller
	Derived Scalar Fields for Visual Analysis of Multifield Data Vijay Natarajan
	On Visualization of Dense Line Data Harald Obermaier
	Uncertainty Visualization: Routine for Color Vision Deficient Individuals Manuel Oliveira
	Uncertainty in Analysis and Visualization: Topology and Statistics Valerio Pascucci
	Interacting with our related fields – some observations Ronald Peikert
	The Connectome - Discovering the Wiring Diagram of the Brain Hanspeter Pfister
	Visualization for Urban Environments Huamin Qu
	Ways of Not Knowing Penny Rheingans
	Comparing brain networks Jos B.T.M. Roerdink
	Illustrative Visualization of Probabilistic Tractogramms Gerik Scheuermann
	Fuzzy Fibers: What Uncertainty Visualization Can and Cannot Achieve Thomas Schultz
	Augmenting 3D perceptibility of in Data Visualization Shigeo Takahashi
	Exploration of 4D MRI blood flow Anna Vilanova Bartroli
	Parallel Extraction of Crack-free Isosurfaces from Adaptive Mesh Refinement Data Gunther H. Weber
	On the (Un)Suitability of Strict Feature Definitions for Uncertain Data Tino Weinkauf
	Multi-field Visualization for Biomedical Data Sets Thomas Wischgoll
	Asymmetric Tensor Field Visualization from a Multi-Field Viewpoint Eugene Zhang

	Participants

