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Abstract
The Dagstuhl Seminar on “Design and Analysis of Randomized and Approximation Algorithms”
(Seminar 11241) was held at Schloss Dagstuhl between June 13–17, 2011. There were 26 regular
talks and several informal and open problem session contributions presented during this seminar.
Abstracts of the presentations have been put together in this seminar proceedings document
together with some links to extended abstracts and full papers.
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1 Executive Summary
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Many, if not most computational tasks that arise in realistic scenarios are computationally
difficult, and no efficient algorithms are known that guarantee an exact (or optimal) solution
on every input instance. Nevertheless, practical necessity dictates that acceptable solutions
be found in a reasonable time. Two basic means for surmounting the intractability barrier
are randomized computation, where the answer is optimal with high probability but not
with certainty, and approximate computation, where the answer is guaranteed to be within,
say, small percentage of optimality. Often, these two notions go hand-in-hand.
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The seminar was concerned with the newest developments in the design and analysis
of randomized and approximation algorithms. The main focus of the workshop was on
the following specific topics: randomized approximation algorithms for optimization prob-
lems, approximation algorithms for counting problems, methods for proving approximation
hardness, as well as various interactions between them. Here, some new broadly applicable
techniques have emerged recently for designing efficient approximation algorithms for various
optimization and counting problems as well as for proving approximation hardness bounds.
This workshop has addressed the above topics and some new fundamental insights and
paradigms in this area.

The 26 regular talks and other presentations delivered at this workshop covered a wide
body of research in the above areas. The Program of the meeting and Abstracts of all talks
are listed in the subsequent sections of this report.

The meeting was hold in a very informal and stimulating atmosphere. Thanks to everyone
who made it such an interesting and enjoyable event.

Martin Dyer
Uriel Feige

Alan M. Frieze
Marek Karpinski
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3 Overview of Talks

3.1 On the usefulness of predicates
Johan Håstad (KTH – Stockholm, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Johan Håstad

Joint work of J. Håstad and A. Per

We introduce a notion of usefulness for constraint satisfaction problems. A k-ary predicate P
is useful for a k-ary function Q if the following holds. Given a list of k-tuples of literals and
a promise that there is an assignment such that P is true on (almost) all of the resulting
strings, we can efficiently find an assignment such that when Q is applied to the resulting
strings the average is more than the expectation of Q when applied to a random string.

This is an extension of the concept of approximation resistance of standard Max-CSPs in
that P is useful for P iff it is not approximation resistant.

A predicate P is useless if it is not useful for any real-valued Q. Among other results we
give a simple characterization of uselessness assuming the unique games conjecture: P is
useless iff there is a pairwise independent measure supported on the strings accepted by P .

3.2 Counting contingency tables
Alexander Barvinok (University of Michigan – Ann Arbor, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alexander Barvinok

Joint work of A. Barvinok and J.A. Hartigan

Let R = (r1, . . . , rm) be a positive integer m-vector and let C = (c1, . . . , cn) be a positive
integer n-vector such that

r1 + . . .+ rm = c1 + . . .+ cn = N.

We are interested in the number #(R,C) of m×n non-negative integer matrices (contingency
tables with margins R and C) with row sums r1, . . . , rm and column sums c1, . . . , cn. Namely,
we present an efficiently computable asymptotic formula for #(R,C).

Let us consider the function

g(x) = (x+ 1) ln(x+ 1)− x ln x for x ≥ 0.

It is easy to see that g(x) is increasing and concave. We extend g to non-negative m × n
matrices X by

g(X) =
∑
i,j

g (xij) for X = (xij) .

Since g is strictly concave, it attains its maximum on the transportation polytope of all
m × n non-negative matrices X with row sums R and column sums C at a unique point
Z = (zij), which we call the typical matrix. As is shown in [1], a random non-negative integer
matrix with row sums R and column sums C looks more or less like the random matrix of
independent geometric random variables with expectation Z. Matrix Z can be efficiently
computed by interior point methods.
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Let us define a quadratic form q : Rm+n −→ R by

q (s1, . . . , sm; t1, . . . , tn) = 1
2
∑
i,j

zij (zij + 1) (si + tj)2
.

Let u ∈ Rm+n, u = (1, . . . , 1;−1, . . . ,−1), be vector and let H = u⊥, H ⊂ Rm+n, be the
hyperplane that is the orthogonal complement to u. Then the restriction q|H of q onto H is a
positive definite quadratic form. We define det q|H as the determinant of q|H. Equivalently,
det q|H is the product of the non-zero eigenvalues of q.

We define the Gaussian probability measure in H with the density proportional to e−q.
We consider two random variables f, h : H −→ R defined by

f (s1, . . . , sm; t1, . . . , tn) = 1
6
∑
i,j

zij (zij + 1) (2zij + 1) (si + tj)3

and
h (s1, . . . , sm; t1, . . . , tn) = 1

24
∑
i,j

zij (zij + 1)
(
6z2
ij + 6zij + 1

)
(si + tj)4

.

We compute
µ = E f2 and ν = Eh.

We note that computing the expectation of a polynomial with respect to the Gaussian
probability measure is a linear algebra problem. In particular, given Z, one can compute
µ and ν in O

(
(m+ n)4) time. To describe the range for which our asymptotic formula is

applicable, we need one more definition. Given 0 < δ < 1, we say that the margins (R,C)
are δ-smooth if

m ≥ δn, n ≥ δm and δτ ≤ zij ≤ τ for all i, j

and some
τ ≥ δ,

where Z = (zij) is the typical matrix. The following result is proved in [1].
Theorem. Let us fix 0 < δ < 1. Let (R,C) be δ-smooth margins. Then, for any 0 < ε ≤ 1/2
the value of

eg(Z)√m+ n

(4π)(m+n−1)/2
√

det q|H
exp

{
−µ2 + ν

}
approximates the number #(R,C) within relative error ε, provided

m+ n ≥
(

1
ε

)γ(δ)

for some γ(δ) > 0.

If
r1 = . . . = rm = r and c1 = . . . = cn = c

then by symmetry we have

zij = rc

N
= r

n
= c

m
for all i, j

and the formula of the above theorem transforms into the asymptotic formula of [3], obtained
earlier by Canfield and McKay in the particular case when all the row sums are equal and
all the column sums are equal.
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3.3 Estimating the partition function of the ferromagnetic Ising model
on a regular matroid

Leslie Ann Goldberg (University of Liverpool, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
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We investigate the computational difficulty of approximating the partition function of the
ferromagnetic Ising model on a regular matroid. Jerrum and Sinclair have shown that
there is a fully polynomial randomised approximation scheme (FPRAS) for the class of
graphic matroids. On the other hand, the authors have previously shown, subject to a
complexity-theoretic assumption, that there is no FPRAS for the class of binary matroids,
which is a proper superset of the class of graphic matroids. In order to map out the region
where approximation is feasible, we focus on the class of regular matroids, an important class
of matroids which properly includes the class of graphic matroids, and is properly included
in the class of binary matroids. Using Seymour’s decomposition theorem, we give an FPRAS
for the class of regular matroids.

References
1 Leslie Ann Goldberg, Mark Jerrum, A polynomial-time algorithm for estimat-

ing the partition function of the ferromagnetic Ising model on a regular matroid,
http://arxiv.org/abs/1010.6231)

3.4 TSP on cubic and subcubic graphs
Leen Stougie (CWI – Amsterdam, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
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We study the Travelling Salesman Problem (TSP) on the metric completion of cubic and
subcubic graphs, which is known to be NP-hard. The problem is of interest because of its
relation to the famous 4/3 conjecture for metric TSP, which says that the integrality gap, i.e.,
the worst case ratio between the optimal values of the TSP and its linear programming relax-
ation, is 4/3. Using polyhedral techniques in an interesting way, we obtain a polynomial-time
4/3-approximation algorithm for this problem on cubic graphs, improving upon Christofides’
3/2-approximation, and upon the 3/2− 5/389 ≈ 1.487-approximation ratio by Gamarnik,
Lewenstein and Svirdenko for the case the graphs are also 3-edge connected. We also prove
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that, as an upper bound, the 4/3 conjecture is true for this problem on cubic graphs. For
subcubic graphs we obtain a polynomial-time 7/5-approximation algorithm and a 7/5 bound
on the integrality gap. Just very recently Mömke and Svensson superseded this result by
announcing 4/3 bounds for subcubic graphs. However, the techniques we propose here remain
interesting and probably more widely applicable.

References
1 Sylvia Boyd, Rene Sitters, Suzanne van der Ster and Leen Stougie, TSP on Cubic and

Subcubic Graphs, accepted for IPCO 2011

3.5 Approximating Graphic TSP by Matchings
Ola Svensson (KTH – Stockholm, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of T. Mömke and O. Svensson

We present a framework for approximating the metric TSP based on a novel use of matchings.
Traditionally, matchings have been used to add edges in order to make a given graph Eulerian,
whereas our approach also allows for the removal of certain edges leading to a decreased cost.

For the TSP on graphic metrics (graph-TSP), the approach yields a 1.461-approximation
algorithm with respect to the Held-Karp lower bound. For graph-TSP restricted to a class of
graphs that contains degree three bounded and claw-free graphs, we show that the integrality
gap of the Held-Karp relaxation matches the conjectured ratio 4/3. The framework allows
for generalizations in a natural way and also leads to a 1.586-approximation algorithm for
the traveling salesman path problem on graphic metrics where the start and end vertices are
prespecified.

3.6 Connectivity in Discrete Random Processes
Po-Shen Loh (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of E. Lubetzky and Po-Shen Loh

Half a century ago, a seminal paper of Erdos and Renyi launched the systematic study of
random graphs. Since then, this direction of investigation has blossomed into a broad field,
and the original model has given rise to many useful variants. Of the properties which have
received attention, one of the most fundamental has been that of global connectivity.

Recently, motivated by the practical problem of establishing connectivity in peer- to-peer
networks, a natural question of similar flavor arose in the analysis of a natural randomized
clustering algorithm. Using methods which originated from physics, but now known to be
remarkably useful in the study of random graphs, we establish the asymptotic optimality
of this algorithm. We also prove the first rigorous lower bounds on the performance of a
closely-related algorithm, extending an approach of Oded Schramm.
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3.7 A (5/3 + ε)-Approximation for Strip Packing
Lars Prädel (University of Kiel, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Lars Prädel

We study strip packing, which is one of the most classical two-dimensional packing problems:
Given a collection of rectangles, the problem is to find a feasible orthogonal packing without
rotations into a strip of width 1 and minimum height. In this paper we present an approxim-
ation algorithm for the strip packing problem with approximation ratio of 5/3 + ε for any
ε > 0. This result significantly narrows the gap between the best known upper bounds of 2
by Schiermeyer and Steinberg and 1.9396 by Harren and van Stee and the lower bound of
3/2.

3.8 Every Hyperfinite Property is Testable
Christian Sohler (TU Dortmund, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christian Sohler

Joint work of I. Newman and Ch. Sohler

A property testing algorithm for a property Π in the bounded degree graph model is an
algorithm that, given access to the adjacency list representation of a graph G = (V,E) with
maximum degree at most d, accepts G with probability at least 2/3 if G has property Π,
and rejects G with probability at least 2/3, if it differs on more than εdn edges from every
d-degree bounded graph with property Π. A property is testable, if for every ε, d and n,
there is a property testing algorithm Aε,n,d that makes at most q(ε, d) queries to an input
graph of n vertices, that is, a non-uniform algorithm that makes a number of queries that
is independent of the graph size. A k-disc around a vertex v of a graph G = (V,E) is the
subgraph induced by all vertices of distance at most k from v. We show that the structure
of a planar graph on large enough number of vertices, n, and with constant maximum degree
d, is determined, up to the modification (insertion or deletion) of at most εdn edges, by the
frequency of k-discs for certain k = k(ε, d) that is independent of the size of the graph. We
can replace planar graphs by any hyperfinite class of graphs, which includes, for example,
every graph class that does not contain a set of forbidden minors.

We use this result to obtain new results and improve upon existing results in the area of
property testing. In particular, we prove that

graph isomorphism is testable for every class of hyperfinite graphs,
every graph property is testable for every class of hyperfinite graphs,
every hyperfinite graph property is testable in the bounded degree graph model,
A large class of graph parameters is approximable for hyperfinite graphs

Our results also give a partial explanation of the success of motifs in the analysis of
complex networks.

References
1 Ilan Newman and Christian Sohler, Every property of hyperfinite graphs is testable, STOC

2011, pp. 675–684
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3.9 Sublinear Algorithms via Precision Sampling
Alexandr Andoni (Microsoft Research – Mountain View, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of R. Krauthgamer, A. Andoni, K. Onak

Suppose we want to estimate a sum of bounded reals a1 + a2 + . . .+ an with access to only
some ”limited information” about the ai’s. A classical setting is where we estimate the entire
sum by knowing only a random subset of ai’s. Naturally, there is a trade-off between the
size of the subset and the resulting approximation.

Motivated by applications where this tradeoff is not good enough, we introduce Precision
Sampling, which is an estimation technique that uses more general kind of ”limited informa-
tion” about the ai’s: Instead of obtaining a subset as above, here we obtain a rough estimate
for each ai, up to various ”precision” (approximation). The trade-off is then between the
precision of the estimates and the resulting approximation to the total sum. We show that
one can obtain a trade-off that is qualitatively better in the precision sampling setting than
in the aforementioned (vanilla) sampling setting.

Our resulting tool leads to new sublinear algorithms, including a simplified algorithm
for a class of streaming problems, as well as an efficient algorithm for estimating the edit
distance.

3.10 Lifting Markov Chains for Faster Mixing
Thomas Hayes (University of New Mexico – Albuquerque, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Thomas Hayes

Joint work of Th. Hayes and A. Sinclair

Markov Chain Monte Carlo is a powerful tool for sampling from distributions over large sets
with combinatorial structure. Generally, the goal is to obtain samples fast, as a function of
some parameter that is, say, logarithmic in the space being sampled. In some cases, we know
how to sample in say, polynomial time, but really want performance that is a little faster,
say O(n log(n)) time or O(n2). Are there any tools for systematically enhancing the speed
of MCMC algorithms?

”Lifting” a given Markov chain produces a new chain, whose ergodic flow projects
homomorphically back down to that of the original chain, and hence can be used for sampling
the original distribution. We discuss some examples fo which a directed lifting of an undirected
original chain gives as much as a quadratic speedup. The main example is a lifting of a
tree-structured Markov chain introduced by Jerrum and Sinclair.
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3.11 Average-Case Performance of Heuristics for Multi-Dimensional
Assignment

Gregory Sorkin (London School of Economics, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gregory Sorkin

Joint work of A. Frieze and G. Sorkin

Beautiful formulas are known for the expected cost of random two-dimensional assignment
problems, but in higher dimensions, even the scaling is not known. In 3 dimensions and
above, the problem has natural “planar” and “axial” versions, both of which are NP-hard.
For 3-dimensional Planar random assignment instances of size n, the cost scales as Ω(2/n),
and a main result of the present paper is the first polynomial-time algorithm that, with
high probability, finds a solution of cost O(n−1+ε), for arbitrary positive ε (or indeed ε

going slowly to 0). For 3-dimensional Axial assignment, the lower bound is Ω(n), and we
give a new efficient matching-based algorithm that returns a solution with expected cost
O(n logn). Neither algorithm extends to 4 or more dimensions, and finding algorithms with
the conjectured scaling for d-dimensional Planar and Axial assignment are open problems.
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3.12 Embedding Spanning Trees in Random Graphs near the
Connectivity Threshold

Michael Krivelevich (Tel Aviv University, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of D. Hefetz, M. Krivelevich, T. Szabo

A disconnected graph G does not contain any spanning trees. Thus, a tree T on n vertices
typically does not appear in the binomial random graph G(n, p) before the threshold for
connectivity, which is well known to be at p(n) = log(n)

n . We prove that a given tree T
on n vertices with bounded maximum degree is contained almost surely in G(n, p) with
p(n) = (1 + ε) log(n)

n , provided T belongs to one of the following classes:
(1) T has linearly many leaves
(2) T has a path of linear length all of whose vertices have degree two in T .

3.13 Stochastic Knapsack with Correlations and Cancellation and
Application to Non-Martingale Bandit Problems

R. Ravi (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© R. Ravi

Joint work of A. Gupta, R. Krishnaswamy, M. Molinaro, R. Ravi

In the stochastic knapsack problem, we are given a knapsack with size B, and a set of jobs
whose sizes and rewards are drawn from a known probability distribution. However, the only
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way to know the actual size and reward is to schedule the job—when it completes, we get to
know these values. How should we schedule jobs to maximize the expected total reward? We
know constant-factor approximations for this problem when we assume that rewards and
sizes are independent random variables, and that we cannot prematurely cancel jobs after
we schedule them. What can we say when either or both of these assumptions are dropped?

Not only is the stochastic knapsack problem of interest in its own right, but techniques
developed for it are applicable to other stochastic packing problems. Indeed, ideas for this
problem have been useful for budgeted learning problems, where one is given several arms
which evolve in a specified stochastic fashion with each pull, and the goal is to pull the arms
a total of B times to maximize the reward obtained. Much recent work on this problem focus
on the case when the evolution of the arms follows a martingale, i.e., when the expected
reward from the future is the same as the reward at the current state. However, what can
we say when the rewards do not form a martingale?

We give constant-factor approximation algorithms for the stochastic knapsack problem
with correlations and cancelations, and also for some budgeted learning problems where the
martingale condition is not satisfied, using similar ideas. Indeed, we can show that previously
proposed linear programming relaxations for these problems have large integrality gaps. We
propose new time-indexed LP relaxations; using a decomposition and “shifting” approach, we
convert these fractional solutions to distributions over strategies, and then use the LP values
and the time ordering information from these strategies to devise a randomized scheduling
algorithm. We hope our LP formulation and decomposition methods may provide a new way
to address other correlated bandit problems with more general contexts.
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3.14 Smoothed Analysis of Multiobject Optimization
Heiko Röglin (University of Bonn, DE)
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Joint work of R. Beier, T. Brunsch, H. Röglin, S.-H. Teng, B. Vöcking

A well established heuristic approach for solving various multicriteria optimization problems
is to enumerate the set of Pareto-optimal solutions. The heuristics following this principle
are often successful in practice, even though the number of Pareto-optimal solutions can be
exponential in the worst case.

We analyze multiobjective optimization problems in the framework of smoothed analysis,
and we prove that the smoothed number of Pareto-optimal solutions in any multiobjective
binary optimization problem with a finite number of linear objective functions is polynomial.
Moreover, we give polynomial bounds on all finite moments of the number of Pareto-optimal
solutions, which yields the first non-trivial concentration bound for this quantity.
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3 Tobias Brunsch and Heiko Röglin, Lower Bounds for the Smoothed Number of Pareto Op-
timal Solutions, TAMC 2011, pp. 416–427

3.15 k-Means Algorithm Converges
Ravi Kannan (Microsoft Research, IN)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of R. Kannan and A. Kumar

The k-means algorithm is widely used. It is well-recognized that it does not converge to
the desirable answer if we start with a bad set of centers. We formalize a simple geometric
condition called proximity under which we show it does converge to the desired result.
Many known results which assume a stochastic model of input are subsumed by our purely
deterministic result.

3.16 Random Geometric Graphs
Tobias Müller (CWI – Amsterdam, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Tobias Müller

If we pick points X1, ..., Xn at random from d-dimensional space (i.i.d. according to some
probability measure) and fix a r > 0, then we obtain a random geometric graph by joining
points by an edge whenever their distance is < r.

We give a brief overview of some of the most important results on random geometric
graphs and then describe some of my own work on Hamilton cycles, the chromatic number,
and the power of two choices in random geometric graphs.

3.17 Hardness of Approximating the Tutte Polynomial of a Binary
Matroid

Mark Jerrum (Queen Mary University of London, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Mark Jerrum

Joint work of L.A. Goldberg and M. Jerrum

We consider the problem of approximating certain combinatorial polynomials. First, we
consider the problem of approximating the Tutte polynomial of a binary matroid with
parameters q ≥ 2 and γ. (Relative to the classical (x, y) parameterisation, q = (x− 1)(y − 1)
and γ = y − 1.) A graph is a special case of a binary matroid, so earlier work by the
authors shows that for q > 2 and γ < 0 there is no FPRAS unless NP = RP, and for
q > 2 and γ > 0, the approximation problem is hard for the complexity class #RHΠ1
under approximation-preserving (AP) reducibility. The case γ = 0 corresponds to the
infinite-temperature limit of the Potts model, and is computationally trivial. The situation
for q = 2 is different. For graphic matroids, the region γ < −2 is only known to be as hard as
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approximating perfect matchings in a graph (a problem whose complexity is open), whereas
Jerrum and Sinclair have provided an FPRAS for the region γ > 0. It is known that there
is no FPRAS unless NP = RP in the in-between region −2 ≤ γ < 0, apart from at two
“special points” where the polynomial can be computed exactly in polynomial time. We show
that for binary matroids there is no FPRAS in the region γ < −2 unless NP = RP. Also,
in the region γ > 0 the approximation problem is hard for the complexity class #RHΠ1
under approximation-preserving (AP) reducibility. Thus, unless there is an FPRAS for all of
#RHΠ1, the graphic case differs in approximation complexity from the binary matroid case
at q = 2. Our result implies that it is computationally difficult to approximate the weight
enumerator of a binary linear code, apart from at the special weights for which the problem
is exactly solvable in polynomial time. As a consequence, we show that approximating the
cycle index polynomial of a permutation group is hard for #RHΠ1 under AP-reducibility,
partially resolving a question first posed in 1992.
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3.18 Computational Complexity of the Hamiltonian Cycle Problem in
Dense Hypergraphs

Edyta Szymanska (Adam Mickiewicz University – Poznan, PL)
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Joint work of M. Karpinski, A. Rucinski, E. Szymanska

We study the computational complexity of deciding the existence of a Hamiltonian Cycle
in some dense classes of k-uniform hypergraphs. Those problems turned out to be, along
with the hypergraph Perfect Matching problems, exceedingly hard, and there is a renewed
algorithmic interest in them. In this paper we design a polynomial time algorithm for the
Hamiltonian Cycle problem for k-uniform hypergraphs with density at least 1/2 + ε, ε > 0.
In doing so, we depend on a new method of constructing Hamiltonian cycles from (purely)
existential statements which could be of independent interest. On the other hand, we establish
NP-completeness of that problem for density at least 1/k − ε. Our results seem to be the
first complexity theoretic results for the Dirac-type dense hypergraph classes.
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3.19 Distributed Storage Allocation via Fractional Hypergraph
Matchings

Andrzej Rucinski (Adam Mickiewicz University – Poznan, PL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andrzej Rucinski

The following model of distributed storage has been studied in information theory [7, 8, 12].
A file is split into multiple chunks, and then it is replicated redundantly and stored in a
distributed storage system with n nodes. The amount of data to be stored in each node i is
equal to xi, where the size of the whole file is normalized to 1. We require that the total
amount of data stored does not exceed a given budget T , i.e. x1 + · · · + xn ≤ T . At the
time of retrieval, we attempt to recover the whole file by accessing only the data stored in a
randomly chosen subset R of nodes. It is known that there always exists a coding scheme
such that we can recover the file whenever the total amount of data accessed is at least
the size of this file. Our goal is to find an optimal allocation (x1, · · · , xn) to maximize the
probability of successful recovery. In [12], R is taken uniformly at random among all the
r-element subsets of {x1, · · · , xn}. Then the problem can be reformulated as follows: for a
nonnegative sequence (x1, · · · , xn), let

Φ(x1, · · · , xn) =
∣∣∣{S ⊆ [n], |S| = r such that

∑
i∈S

xi ≥ 1
}∣∣∣.

Given integers n ≥ r ≥ 1 and a real number T > 0, determine

F (r, n, T ) = max∑
xi=T, xi≥0 ∀i

Φ(x1, · · · , xn).

If the total budget T ≥ n/r, by setting all xi equal to T/n ≥ 1/r, we can recover the
original file from any subset of size r. For the case T < n/r, the problem of determining
F (n, r, T ) is equivalent to that of finding the maximum number of edges in an r-uniform
hypergraph on n vertices with fractional matching number at most T . Erdős and Gallai
[4] determined the integral version of this problem for graphs (r = 2). In 1965, Erdős
[3] conjectured for r-uniform hypergraphs that the maximum number of edges without a
matching of size s ≤ n/r is max

{(
rs−1
r

)
,
(
n
r

)
−
(
n−s+1
r

)}
.

For r = 2 and s = T + 1, where we assume that T is an integer, an easy calculation
shows that the above maximum equals the first term if 2

5n ≤ T ≤
1
2n, and the corresponding

optimal graph is a clique of size, roughly, 2T . This means that, asymptotically, an optimal
allocation is x1 = · · · = x2T = 1/2 and x2T+1 = · · · = xn = 0. On the other hand, if T < 2

5n,
an optimal allocation is x1 = · · · = xT = 1 and xT+1 = · · · = xn = 0.

We now formulate the fractional version of Erdős’ Conjecture.
0.4ex]

Conjecture 1: For all integers r ≥ 3 and a real s such that 0 ≤ s ≤ r/r, if ν∗(H) < s

then
|H| ≤ max

{(
drse − 1

r

)
,

(
n

r

)
−
(
n− dse+ 1

r

)}
.

In [2] we proved an asymptotic version of Conjecture 1 for r = 3 and r = 4, and s ≤ n
r+1 .

In the proof we used a probabilistic approach based on a special case of an old probability
conjecture of Samuels [10]. Samuels’ Conjecture says (in a special case we are interested
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in) that for all µ ≤ 1
r+1 , and all choices of r independent random variables X1, . . . , Xr with

common expectation µ,

P (X1 + . . .+Xr < 1) ≥
(

1− µ

1− µ

)r
.

Samuels proved his conjecture for r ≤ 4 in [10].
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3.20 Universally-Truthful Multi-Unit Auctions
Berthold Vöcking (RWTH Aachen, DE)
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We present a randomized, polynomial-time approximation scheme for multi-unit auctions.
Our mechanism is truthful in the universal sense, i.e., a distribution over deterministically
truthful mechanisms. Previously it was only known an approximation scheme that is truthful
in expectation which is a weaker notion of truthfulness assuming risk neutral bidders. The
existence of a universally truthful approximation scheme was questioned by previous work
showing that multi-unit auctions with certain technical restrictions on their output do not
admit a polynomial-time, universally truthful mechanism with approximation factor better
than two.
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Our new mechanism employs VCG payments in a non-standard way. In particular,
the deterministic mechanisms underlying our approximation scheme are not maximal-in-
range which, on a first view, seems to contradict previous characterizations of VCG-based
mechanisms. Although they are not affine maximizers, each of the deterministic mechanisms
is composed out of a collection of affine maximizers, one for each bidder. The composite
construction ensures that the mechanism’s output for a bidder coincides with the output
of the affine maximizer for the bidder. This yields a subjective variant of VCG in which
payments for different bidders are defined on the basis of possibly different affine maximizers.

3.21 Smoothed Analysis of Partitioning Algorithms for Euclidean
Functionals

Markus Bläser (University of Saarland, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Euclidean optimization problems such as TSP and minimum length matching admit fast
partitioning algorithms that compute optimal solutions on almost all of the input points.

We develop a general framework for the application of smoothed analysis to partitioning
algorithms for Euclidean optimization problems. Our framework can be used to analyze both
the running-time and the approximation ratio of such algorithms. We apply our framework to
obtain smoothed analyses of Dyer and Frieze’s partitioning algorithm for Euclidean matching,
Karp’s partitioning scheme for the TSP, a heuristic for Steiner trees, and a heuristic for
bounded-degree minimum-length spanning trees.

3.22 Approximating Gale-Berlekamp Games and Related Optimization
Problems

Marek Karpinski (University of Bonn, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of M. Karpinski and W. Schudy

We design a linear time approximation scheme for the Gale-Berlekamp Switching Game
and generalize it to much wider class of dense fragile minimization and ranking problems
including the Nearest Codeword Problem (NCP), Unique Games Problem, constrained form
of matrix rigidity, maximum likelihood decoding, correlation clustering with a fixed number
of clusters, and the Betweenness Problem in tournaments. As a side effect of our method
we obtain also the first optimal under the ETH (exponential time hypothesis) deterministic
subexponential algorithm for weighted FAST (feedback arc set tournament) problem with
runtime nO(1) +O∗

(
2O(
√
OPT )

)
.

Our results depend on a new technique of dealing with small objective functions values of
minimization problems and could be of independent interest.
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3.23 Vacant Set of a Random Walk on a Random Graph
Alan Frieze (Carnegie Mellon University – Pittsburgh, US)
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Joint work of C. Cooper and A. Frieze

We consider random walks on several classes of graphs and explore the likely structure of the
vacant set, i.e. the set of unvisited vertices. Let Γ(t) be the subgraph induced by the vacant
set of the walk at step t. We show that for random graphs Gn,p (above the connectivity
threshold) and for random regular graphs Gr, r ≥ 3, the graph Γ(t) undergoes a phase
transition in the sense of the well-known Erdős-Renyi phase transition. Thus for t ≤ (1− ε)t∗,
there is a unique giant component, plus components of size O(logn), and for t ≥ (1 + ε)t∗ all
components are of size O(logn). For Gn,p and Gr we give the value of t∗, and the size of
Γ(t). For Gr, we also give the degree sequence of Γ(t), the size of the giant component (if
any) of Γ(t) and the number of tree components of Γ(t) of a given size k = O(logn). We
also show that for random digraphs Dn,p above the strong connectivity threshold, there is a
similar directed phase transition. Thus for t ≤ (1− ε)t∗, there is a unique strongly connected
giant component, plus strongly connected components of size O(logn), and for t ≥ (1 + ε)t∗
all strongly connected components are of size O(logn).

3.24 On Milgram Routing
Alessandro Panconesi (University of Rome “La Sapienza”, IT)
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Joint work of S. Lattanzi, A. Panconesi, D. Sivakumar

We demonstrate how a recent model of social networks (“Affiliation Networks”, [1]) offers
powerful cues in local routing within social networks, a theme made famous by sociologist
Milgram’s “six degrees of separation” experiments. This model posits the existence of an
“interest space” that underlies a social network; we prove that in networks produced by this
model, not only do short paths exist among all pairs of nodes but natural local routing
algorithms can discover them effectively. Specifically, we show that local routing can discover
paths of length O(log2 n) to targets chosen uniformly at random, and paths of length O(1)
to targets chosen with probability proportional to their degrees. Experiments on the co-
authorship graph derived from DBLP data confirm our theoretical results, and shed light
into the power of one step of lookahead in routing algorithms for social networks.
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3.25 The Condensation Transition in Random Hypergraph 2-Coloring
Amin Coja-Oghlan (University of Warwick, GB)
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For many random constraint satisfaction problems such as random k-SAT or random graph/hy-
pergraph coloring the best current bounds on the thresholds for the existence of solutions are
derived via the first and the second moment method. However, in most cases these simple
techniques do not yield matching upper and lower bounds. In effect, for most random CSPs
the precise threshold for the existence of solutions assignments remains unknown. Examples
of this include random k-SAT, random graph k-coloring, or random k-uniform hypergraph
2-coloring (k ≥ 3). Here we discuss the example of random hypergraph 2-coloring, a case
in which the second moment analysis is technically quite simple. We present an approach
to improve slightly over the naive second moment argument. But more importantly, we
establish the existence of a phase transition below the threshold for the existence of solutions
poses a genuine obstacle to the second moment argument. The existence of this so-called
condensation transition was hypothesized on grounds of non-rigorous statistical mechanics
arguments [3].

To define the random hypergraph 2-coloring problem, let V = {1, . . . , n} be a (large)
set of vertices, and let Hk(n,m) be a random k-uniform hypergraph on V obtained by
inserting a random set of m edges (each containing k vertices). A 2-coloring of H is a map
σ : V → {0, 1} such that no hyperedge e is monochromatic. We let m = dr ·ne for some fixed
number r (independent of n). Friedgut’s sharp threshold theorem implies that there exists a
threshold rcol = rcol(n) such that for any ε > 0 the random hypergraph Hk(n,m) of density
m/n < (1− ε)rcol is 2-colorable with high probability, while in the case m/n > (1 + ε)rcol
w.h.p. no 2-coloring exists. The first and the second moment methods can be used to
estimate the threshold [1]:

rsecond = 2k−1 ln 2− (1− ln 2)/2 ≤ rcol ≤ rfirst = 2k−1 ln 2− ln 2/2. (1)

As observed in [1], for r > rsecond we have E
[
Z2] > exp(Ω(n)) · E

[
Z2], i.e., the second

moment method fails dramatically. But why? First, it could be the case that the expectation
E [Z] is driven up by a tiny fraction of hypergraphs with excessively many 2-colorings, and
thus Z � E [Z] w.h.p. Second, it could be that Z is ‘close’ to E [Z] with high probability,
but without being sufficiently concentrated for the second moment method to apply. The
following theorem, which improves the lower bound in (1) by an additive (1−ln(2))/2 ≈ 0.153,
shows that the second scenario is true.

I Theorem 1. There is a sequence εk → 0 such that for

r ≤ renhanced = 2k−1 ln 2− ln 2− εk

the random formula ~Φ is NAE-satisfiable and lnZ ∼ ln E [Z] w.h.p.
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Even the enhanced second moment argument from Theorem 1 does not give the precise
threshold for 2-colorability. The intuitive reason is that for r > renhanced, the expected
number E [Z] is indeed dominated by a tiny fraction of hypergraphs with an abundance of
2-colorings.

I Theorem 2. There exist εk → 0, δk > εk, and ζk > 0 such that the following two
statements are true.
1. The 2-colorability threshold satisfies rcol > 2k−1 ln 2− ln 2 + δk.
2. For any 2k−1 ln 2− ln 2 + εk < r < rk we have

lnZ < ln E [Z]− ζkn w.h.p. (2)

The first statement shows that indeed Hk(n,m) remains 2-colorable w.h.p. for (at least
a small range of) densities r > renhanced. Moreover, the second statement asserts that for
densities between renhanced and the true threshold rk for 2-colorability, the expected number
E [Z] of 2-colorings exceeds the acutal number Z by an exponential factor exp(ζkn) w.h.p. This
constrasts with Theorem 1, which shows that below renhanced, Z is of the same exponential
order as E [Z] w.h.p. This so-called condensation transition at density 2k−1 ln 2− ln 2 was
hypothesized on the basis of non-rigorous statistical mechanics arguments [3].

References
1 D. Achlioptas, C. Moore: Random k-SAT: two moments suffice to cross a sharp threshold.

SIAM Journal on Computing 36 (2006) 740–762.
2 E. Friedgut: Sharp thresholds of graph properties, and the k-SAT problem. Journal of the

AMS 12 (1999) 1017–1054.
3 F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, L. Zdeborova: Gibbs states

and the set of solutions of random constraint satisfaction problems. Proc. National Academy
of Sciences 104 (2007) 10318–10323.

3.26 Linear Index Coding via Semidefinite Programming
Eden Chlamtac (Tel Aviv University, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Eden Chlamtac

Joint work of E. and I. Haviv

In the index coding problem, introduced by Birk and Kol (INFOCOM, 1998), the goal is to
transmit n bits to n receivers (one bit to each), where the receivers reside at the nodes of
a graph G and have prior access to the bits corresponding to their neighbors in the graph
(side information). The objective is to find a code word of minimum length which will allow
each receiver to learn their own bit given access to the code word and their side information.
When the encoding is linear (this is known as linear index coding), the minimum possible
code word length corresponds to a graph parameter known as the minrank of G.

In this talk, we will describe an algorithm which approximates the minrank of a graph in
the following sense: when the minrank of the graph is a constant k, the algorithm finds a
linear index code of length O(nf(k)). For example, for k = 3 we have f(3) ≈ 0.2574. This
algorithm exploits a connection between minrank and a semidefinite programming (SDP)
relaxation for graph coloring introduced by Karger, Motwani and Sudan.

A result which arises from our analysis, and which may be of independent interest, gives
an exact expression for the maximum possible value of the Lovasz theta-function of a graph,

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


Martin E. Dyer, Uriel Feige, Alan M. Frieze, and Marek Karpinski 45

as a function of its minrank. This compares two classical upper bounds on the Shannon
capacity of a graph.

References
1 E. Chlamtac, I. Haviv, Linear Index Coding via Semidefinite Programming,

http://arxiv.org/abs/1107.1958

4 Informal Session

4.1 Geometric MAX-CUT Problem
Marek Karpinski (University of Bonn, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Marek Karpinski

We raise an open problem on computational status of exact geometric MAX-CUT problem
on a real line and the plane. Polynomial time approximation schemes are known for arbitrary
metric MAX-CUT problems. The status of the exact geometric MAX-CUT eludes us however
completely for both NP-hardness or existence of exact polynomial time algorithms.

4.2 Streaming algorithms for the analysis of massive data sets
Christian Sohler (TU Dortmund, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christian Sohler

Massive data sets occur in many applications of Computer Science. Examples include the
WWW, internet traffic logs, and operating system calls. Often data is read sequentially in
the form of a data stream, which is too large to be stored in main memory and sometimes
even too large to be stored at all. If we want to analyze such massive data sets to, say,
build a search engine, detect spreading viruses, or optimize a system’s performance, we
need special algorithms that use only little memory and process the input sequentially.
Such algorithms are called streaming algorithms. In this talk I will give an introduction to
streaming algorithms and explain the two major algorithmic concepts used in this area. I
will discuss their applications in the development of streaming algorithms for data analysis
and close with a discussion of future directions of research.

5 Open Problem Session

5.1 Star Cover Problems
R. Ravi (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© R. Ravi

Given a set of points S, a distance function d, an integer k and a bound B on maximum
load of any facility, the problem is to decide whether we can select k facilities in S and serve
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other points by these facilities such that the maximum load of any facility is B. The load
on a facility f is the sum of distances to the clients it serves. Alternately, since an open
facility together with the assigned clients, forms a star and its load is exactly equal to the
cost of the star, we can call this the Star Cover Decision Problem (SCDP). We consider two
optimization versions of the above stated decision problem:

Minimum Load Star Cover or MLSC : Given S, d and an integer k, minimize the maximum
load on each facility.
Minimum Cardinality Star Cover or MCSC : Given S, d and a bound B on maximum
load, minimize the number of facilities to be opened, such that the load on each facility
is at most B.

We can also consider a bicriteria approximation for the decision problem i.e. given S, d, k
and B find an (α, β)-approximation, such that at most αk facilities are opened and maximum
load on a facility is at most βB.

Known results:
Arkin, Hassin and Levin consider the Minimum Cardinality Star Cover problem, where

distance d is a metric and give a (2α + 1)-approximation for the problem, where α is the
best approximation ratio of the k-median problem.

Even, Garg, Konemann, Ravi and Sinha give a bicriteria approximation of (4, 4) for the
case when d is a metric i.e. for given k and B, their algorithm opens at most 4k facilities
and the completion time is at most 4B. This is improved to a (3 + ε, 3 + ε) approximation
by Arkin, Hassin and Levin.

The star cover decision problem (SCDP) is NP-complete, even when the distance function
d is a line metric or a star metric. Furthermore, the problem remains hard even if the facilities
to open are specified. The proofs of hardness for line and star metrics are by reductions from
3-PARTITION and MAKESPAN respectively.

The Minimum Cardinality Star Cover or MCSC problem is Ω(logn)-hard to approximate
if the distance function, d, is not a metric, by a reduction from set cover, where |S| = n. A
similar analysis as that of greedy algorithm for set cover, gives a logn-approximation for
the MCSC problem in the general case. There is a 2-approximation for the case when the
distance function is a line metric.

For the Minimum Load Star Cover or MLSC problem, the LP relaxation of a natural
IP formulation has a large integrality gap. There is a 3-approximation when the distance
function is a star metric. In the case of distance function being a line metric, it can be shown
that if every point is assigned to either the closest facility to the right or closest facility to
the left then the maximum load can be a factor k times worse than the optimum.

Open Problem: Give a nontrivial approximation for the MLSC problem or show a lower
bound for the approximation factor. Even the case when the input is a line metric is open.

References
1 E. Arkin, R. Hassin and A. Levin, Approximations for minimum and min-max vehicle

routing problems, Journal of Algorithms, 59(1), 2006.
2 G. Even, N. Garg, J. Könemann, R. Ravi, A. Sinha, Covering Graphs using Trees and Stars.

In Proc of the 6th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, 2003.
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5.2 Approximating the Euclidean TSP cost in a data stream
Christian Sohler (TU Dortmund, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christian Sohler

Assume you are given access to a stream of points from a discrete space {1, . . . ,∆}d, i.e. the
data points arrive sequentially in worst case order. A streaming algorithm is an algorithm
that processes the stream of points and uses space polylogarithmic in ∆ and the number
of points. Is it possible to approximate the cost of the minimum Euclidean TSP problem
within a constant smaller than 2 in this model (possibly even upto a factor of 1 + ε)? It is
known that one can approximate the cost of a minimum spanning tree upto a factor of 1 + ε

[1], so a (2 + ε)-approximation of the TSP cost is possible.

References
1 G. Frahling, P. Indyk and Christian Sohler, Sampling in Dynamic Data Streams and Ap-

plications, Int. J. Comput. Geometry Appl. 18, 1/2, 2008, pp. 3–28,

5.3 Probabilistic Analysis of Local Search for the Max-Cut Problem
Heiko Röglin (University of Bonn, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Heiko Röglin

In the max-cut problem we are given an undirected graph G = (V,E) with a weight function
w : E → R>0 and we want to compute a partition of the vertices into two classes such that
the total weight of the edges crossing the cut becomes maximal. We consider a simple local
search heuristic that starts with an arbitrary cut and improves this cut by moving one vertex
from one side of the cut to the other as long as such a local improvement is possible.

We are interested in the number of iterations until a local optimum is reached. In the
worst-case this number can only be bounded by Θ(

∑
e∈E w(e)). We suspect, however, that

the expected number of steps is polynomial in the size of the graph if every edge weight
is chosen uniformly at random from the interval [0, 1]. So far, we have not been able to
prove this conjecture. We even conjecture that also in the framework of smoothed analysis
the number of iterations becomes polynomial in the size of the graph and the perturbation
parameter.

5.4 Approximation Hardness of TSP
Marek Karpinski (University of Bonn, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Marek Karpinski

We discussed approximation hardness results for (metric) TSP as well as asymmetric TSP
and raised a question on an existence of direct PCP constructions for those problems for
proving stronger approximation hardness results.
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5.5 Questions about permantents of nonnegative matrices
Alex Samorodnitsky (The Hebrew University of Jerusalem, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alex Samorodnitsky

We present two conjectures, which, if true, might be useful for approximate counting of some
classes of contingency tables (following joint work with Alexander Barvinok).
Conjecture 1: Let A = (aij) be an n× n stochastic matrix, such that

∑
i,j a

2
ij ≤ K (think

about K as a constant). Then
per(A) ≤ nK

′
· e−n,

where K ′ depends only on K.�

Conjecture 2: (This was also independently conjectured by Caputo, Carlen, Lieb and
Loss.)
Let 1 ≤ p ≤ ∞. The maximum of the permanent of n × n matrices whose rows are unit
vectors in lnp attained either at the identity matrix, or at the matrix all of whose entries
equal n−1/p.

5.6 Understanding the approximability of Graph Balancing
Ola Svensson (KTH – Stockholm, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ola Svensson

One of the most prominent open problems in scheduling theory is to understand whether
Lenstra, Shmoys, & Tardos’ beautiful 2-approximation algorithm for scheduling jobs on
unrelated machines to minimize the makespan can be improved. This problem has been open
for more than two decades with little progress. Researchers have therefore started to work
on improved algorithms for special cases with the hope to shed light on the more general
problem.

It was with this motivation Ebenlendr, Krcal, and Sgall introduced a natural special
case, named Graph Balancing, defined as follows: given an undirected graph G = (V,E)
with weights w : E 7→ R+ on the edges, find an orientation of the edges so as to minimize
maxv∈V

∑
e∈δ−(v) w(e) where δ− denotes the edges directed towards v in the given orientation.

In their paper, they give an 1.75-approximation algorithm for Graph Balancing and they
show that it is NP-hard to approximate within a factor less than 1.5 (which is the same
lower bound as known for the general problem of scheduling on unrelated machines).

n order to obtain their 1.75-approximation algorithm they strengthen the linear program
used by Lenstra, Shmoys, & Tardos by adding certain linear inequalities. They then show
that the strengthened linear program has an integrality gap of at most 1.75 and they also
give instances where this gap is achieved. In order to improve the approximation guarantee
further one needs thus an even stronger lower bound. One promising strong lower bound is
given by a certain strong linear program known as configuration LP. The configuration LP is
believed to be strong but our understanding of it remains rather weak although it has been
successfully used to obtain better bounds for the more general restricted assignment problem
and for the Santa Claus problem.
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The worst case integrality gap instances known for the configuration LP for the restricted
assignment problem (and thus Graph Balancing) achieves a gap of 1.5. I strongly believe that
this is also the upper bound of the integrality gap and the first step would be to prove this
for the Graph Balancing problem. I therefore think progress on the following open problem
would be valuable for increasing our understanding of this kind of linear programs and also
for developing tools for a better understanding of assignment problems.

Open problem: Show that Graph Balancing has a 1.5-approximation algorithm. In
particular, it would be interesting to prove an upper bound of 1.5 on the integrality gap of
the configuration LP.

5.7 Random TSP
Alan Frieze (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alan Frieze

Let C[i, j] be an n× n symmetric matrix where the C[i, j], i ≤ j are independent uniform
[0, 1] random variables. Let F be the minimum weight 2-factor using C as weights. How any
cycles σ(F ) does F have w.h.p.? It is known that w.h.p. σ(F ) = O(n/ logn). Can this be
improved to o(n/ logn)? On the face of it, this should be easy. The number of cycles in a
random 2-factor on n vertices has O(logn) cycles. A positive result will simplify algorithms
for finding low cost traveling salesman problems with these weights.

References
1 Alan Frieze, On random symmetric travelling salesman problems, Mathematics of Opera-

tions Research (2004) 878-890.

5.8 Perfect Matchings in k-Uniform Hypergraphs
Andrzej Rucinski (Adam Mickiewicz University – Poznan, PL)

License Creative Commons BY-NC-ND 3.0 Unported license
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Let k ≥ 2 and n be divisible by k. We denote by m(k, n) the minimum m so that for
every n-vertex k-uniform hypergraph H, δ(H) ≥ m implies that H has a perfect matching.
It is easy to show that m(2, n) = bn/2c. It has been conjectured in [6] and again in [3]
that m(k, n) ∼

(
1−

(
k−1
k

)k−1) (n−1
k−1
)
. The conjecture has been proved for k = 3 in [3], [7],

and [4], for k = 4 in [5], [8], and [2], and for k = 5 in [1]. The proof of this last result is
based on a lemma which says that m(k, n) ∼ f(k, n), where f(k, n) as the minimum m so
that δd(H) ≥ m implies that H has a fractional perfect matching. (Observe that trivially
f(k, n) ≤ m(k, n).) That lemma reduces the task of finding (asymptotically) m(k, n) to
showing a presumambly simpler conjecture that f(k, n) ∼

(
1−

(
k−1
k

)k−1) (n−1
k−1
)
.

Problem: Determine, at least asymptotically, f(k, n) and thus m(k, n) for k ≥ 6.

References
1 N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov, Large matchings in

uniform hypergraphs, submitted. and the conjectures of Erdős and Samuels
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6 Seminar Schedule

Tuesday, June 14th, 2011

09:00–09:10 Opening

Chair: Marek Karpinski

09:10–09:40 Johan Håstad: On the Usefulness of Predicates
09:40–10:10 Alexander Barvinok: Counting Contingency Tables
10:10–10:40 Leslie Ann Goldberg: Estimating the Partition Function of the Ferromagnetic

Ising Model on a Regular Matroid

Chair: Uriel Feige

11:00–11:30 Leen Stougie: TSP on Cubic and Subcubic Graphs
11:30–12:00 Ola Svensson: Approximating Graphic TSP by Matchings

Chair: Martin Dyer

15:00–15:30 Po-Shen Loh: Connectivity in Discrete Random Processes
15:30–16:00 Lars Prädel: A (5/3 + ε)-Approximation for Strip Packing

Chair: Alan Frieze

16:30–17:00 Christian Sohler: Every Hyperfinite Property is Testable
17:00–17:30 Alexandr Andoni: Sublinear Algorithms via Precision Sampling

Wednesday, June 15th, 2011

Chair: Mark Jerrum

09:00–09:30 Thomas Hayes: Lifting Markov Chains for Faster Mixing
09:30–10:00 Gregory Sorkin: Average-Case Performance of Heuristics for Multi-Dimensional

Assignment Problems
10:00–10:30 Michael Krivelevich: Embedding Spanning Trees in Random Graphs near the

Connectivity Threshold

Chair: Michael Paterson

11:00 –11:30 R. Ravi: Stochastic Knapsack
11:30 –12:00 Heiko Röglin: Smoothed Analysis of Multiobject Optimization

13:30–17:30 Excursion

20:00 Open Problem Session
Chair: Uriel Feige

Speakers: R. Ravi, Christian Sohler, Heiko Röglin, Marek Karpinski, Alex Samorodnitsky,
Ola Svensson, Alan Frieze, Andrzej Rucinski
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Thursday, June 16th, 2011

Chair: Leslie Ann Goldberg

09:00–09:30 Ravi Kannan: k-Means Algorithm Converges
09:30–10:00 Tobias Müller: Random Geometric Graphs
10:00–10:30 Mark Jerrum: Hardness of Approximating the Tutte Polynomial of

a Binary Matroid

Chair: Alan Frieze

11:00–11:30 Edyta Szymanska: Computational Complexity of the Hamilton Cycle
Problem in Dense Hypergraphs

11:30–12:00 Andrzej Rucinski: Distributed Storage Allocation via Fractional Hypergraph
Matchings

Chair: Michael Krivelevich

15:00–15:30 Berthold Vöcking: Universally-Truthful Multi-Unit Auctions
15:30–16:00 Markus Bläser: Smoothed Analysis of Partitioning Algorithms for

Euclidean Functionals

Friday, June 17th, 2011

Chair: Johan Håstad

09:00–09:30 Marek Karpinski: Approximating Gale-Berlekamp Games and
Related Optimization Problems

09:30–10:00 Alan Frieze: Vacant Set of a Random Walk on a Random Graph
10:00–10:30 Alessandro Panconesi: Milgram Routing

Chair: Ravi Kannan

11:00–11:30 Amin Coja-Oghlan: The Condensation Transition in Random
Hypergraph 2-Coloring

11:30–12:00 Eden Chlamtac: Linear Index Coding via Semidefinite Programming
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