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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 11261 “Outdoor
and Large-Scale Real-World Scene Analysis, 15th Workshop Theoretic Foundations of Computer
Vision”. During the seminar, several participants presented their current research, and ongoing
work and open problems were discussed. Abstracts of the presentations given during the seminar
as well as abstracts of seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general, followed by the scheduled programme.

Overall, the seminar was a great success, which is also reflected in the very positive feedback
we received from the evaluation.
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The topic of the meeting was Large-Scale Outdoor Scene Analysis, which covers all aspects,
applications and open problems regarding the performance or design of computer vision
algorithms capable of working in outdoor setups and/or large-scale environments. Developing
these methods is important for driver assistance, city modeling and reconstruction, virtual
tourism, telepresence, and outdoor motion capture. With this meeting we aimed to attain
several objectives, outlined below.

A first objective was to take stock of the performance of existing state-of-the-art computer
vision algorithms and define metrics and benchmark data-sets on which to evaluate them.
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It is imperative that we push existing algorithms, which are currently benchmarked or
tested with artificial or indoor set-ups, towards real applications. Methods of interest are
3D reconstruction, optic flow computation, motion capture, surveillance, object recognition,
and tracking. These need to be dragged out of the lab and into the real world. Over the
last years the computer vision community has recognized this problem and several groups
are increasingly concentrating on the analysis of uncontrolled scenes. Examples include
reconstructing large city models from online image collections such as Flickr, or human
tracking and behavior recognition in TV footage or video from arbitrary outdoor scenes.
An outcome we envision is the definition of appropriate metrics, benchmark sequences, and
the definition of a grand-challenge problem that exposes algorithms to all the difficulties
associated with large-scale outdoor scenes while simultaneously mobilizing the research
community.

A second objective, then, was to define what the open problems are and which aspects of
outdoor and large-scale scene analysis make the problem currently intractable. In uncontrolled,
outdoor settings many problems start to arise, among them harsh viewing conditions, changing
lighting conditions, artifacts from wind, rain, clouds or temperature etc. In addition, large-
scale modeling, i.e. spanning city-scale areas, contains difficult challenges of data association
and self-consistency that simply do not appear in smaller data-sets. Failure of basic building-
block algorithms seems likely or even inevitable, requiring system-level approaches in order
to be robust to failure. One of difficulties lies in the fact that the observer looses complete
control over the scene, which can become arbitrary complex. This also brings with it the
challenge to describe the scene in other than purely geometric terms, i.e., perform true scene
understanding at multiple spatial and temporal scales. Finally, outdoor scenes are dynamic
and changing over time, requiring event learning and understanding as well as integrating
behavior recognition. In this, we brought in participants from industry in order to ground
the challenges discussed in real-world, useful applications.

The third and final objective was to discuss strategies that address these challenges, by
bringing together a diverse set of international researchers with people interested in the
applications, e.g. arising from photogrammetry, geoinformatics, driver assistance systems
or human motion analysis. Though these people work in different fields and communities,
they are unified by their goal of dealing with images and/or video from outdoor scenes and
uncontrolled settings. In the workshop we allowed for an exchange of different modeling
techniques and experiences researchers have collected. We allowed time for working groups
during the workshop that connect people and whose goals are to develop ideas/roadmaps,
additionally we allowed young researchers to connect with senior researchers, and in general
allow for an exchange between researchers who would usually not meet otherwise.

The seminar schedule was characterised by flexibility, working groups and sufficient time
for focused discussions. The participants of this seminar enjoyed the atmosphere and the
services at Dagstuhl very much. The quality of this center is unique.

There will be an edited book (within Springer’s series on LNCS) following the seminar,
and all seminar participants have been invited to contribute with chapters. The deadline for
those submissions is in November 2011 (allowing to incorporate results or ideas stimulated
by the seminar), and submissions will be reviewed (as normal). Expected publication date is
the end of 2012.
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3 Overview of Talks

3.1 Bundle Adjustment in the Large
Sameer Agarwal (Google – Seattle, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sameer Agarwal

Main reference C. Wu, S. Agarwal, B. Curless, S. Seitz, “Multicore Bundle Adjustment,” CVPR 2011.

I will describe the design and implementation of a new Inexact Newton type bundle adjustment
algorithm, which uses substantially less time and memory than standard Schur complement
based methods, without compromising on the quality of the solution.

Along the way we will revisit the Schur complement trick and see that its use is not limited
to factorization-based methods. How it can be used as part of the Conjugate Gradients
(CG) method without incurring the computational cost of actually calculating and storing
it in memory, and how this is equivalent to the choice of a particular preconditioner. The
resulting algorithm is highly parallelizable, and I will describe our multicore CPU and GPU
implementations of it.

3.2 Achievements and Challenges in Recognizing and Reconstructing
Civil Infrastructure

Ioannis Brilakis (Georgia Institute of Technology, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ioannis Brilakis

The US National Academy of Engineering has identified restoring and improving urban
infrastructure as one of the grand challenges of engineering for the 21st century. Part of
this challenge stems from the lack of viable methods to map/label existing infrastructure.
For the computer vision community, this challenge becomes “How can we automate the
process of extracting geometric, object oriented models of infrastructure from visual data?"
Existing methods for object recognition and reconstruction have been successfully adapted
to answer this question for small or linear objects (columns, pipes, etc.). However, many
civil infrastructure objects are large and/or planar objects without significant and distinctive
texture or spatial features, such as walls, doors, windows, floor slabs, and bridge decks. How
can we recognize and reconstruct them in a 3D model? In this talk, the speaker will present
strategies for infrastructure objects recognition and reconstruction, to set the stage for posing
the question above to the audience and initiating the discussion for featureless, large/planar
object recognition and modeling.

3.3 I see bad pixels, and they don’t even know they’re bad!
Gabriel Brostow (University College London, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gabriel Brostow

The limitations of pixel-samples can be viewed from an application-specific perspective.
Should this pixel be trusted in the hands of algorithm X? This talk explores how simple
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supervised learning and computation of everything-we-can-think-of features enables bespoke
assessment, measuring the confidence we should have about a pixel’s suitability.

Suitability only makes sense when a specific application is defined. To encourage further
research into this family of “smart pixels" algorithms, I’ll illustrate how we do confidence-
assessment for evaluation of i) interest point descriptors, ii) optical flow, iii) Time of Flight ,
and iv) occlusion regions, as example applications.

3.4 Modeling Temporal Coherence for Optical Flow
Andres Bruhn (Universität des Saarlandes, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andres Bruhn

Joint work of Volz, Sebastian; Bruhn, Andres; Valgaerts, Levi; Zimmer, Henning
Main reference S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer, “Modeling Temporal Coherence for Optical Flow,”

Proc. International Conference on Computer Vision (ICCV), 201, accepted for publication

Despite the fact that temporal coherence is undeniably one of the key aspects when processing
video data, this concept has hardly been exploited in recent optical flow methods.In this
paper, we will present a novel parametrization for multi-frame optical flow computation that
naturally enables us to embed the assumption of a temporally coherent spatial flow structure,
as well as the assumption that the optical flow is smooth along motion trajectories. While
the first assumption is realized by expanding spatial regularization over multiple frames, the
second assumption is imposed by two novel first and second order trajectorial smoothness
terms. With respect to the latter, we investigate an adaptive decision scheme that makes a
local (per pixel) or global (per sequence) selection of the most appropriate model possible.
Experiments show the clear superiority of our approach when compared to existing strategies
for imposing temporal coherence. Moreover, we demonstrate the state-of-the-art performance
of our method by achieving Top 3 results at the widely used Middlebury benchmark.

3.5 Convex Relaxation Techniques for Geometric Optimization
Daniel Cremers (TU München, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Daniel Cremers

I will present recent advances in convex optimization methods for estimating geometry from
images. In particular, I will discuss convex formulations of multi-view reconstruction, convex
constraints for silhouette consistency and convex formulations for stereo reconstruction.
Furthermore I will discuss recent extensions of these optimization techniques to minimal
partition problems and to piecewise smooth signal approximation.
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3.6 Subgraph Preconditioning: The revolutionary new way of using
direct graph-based solvers to speed up conjugate gradient

Frank Dellaert (Georgia Institute of Technology, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Frank Dellaert

Direct methods have been very successful in solving large scale, sparse SFM problems.
However, when scaling up to graphs with densely connected cliques, the classical “Eiffel-
tower" problem, no ordering heuristics can make variable elimination (the basis of all direct
methods) fast enough. Based on very recent developments in the theory community, as well
as seeing preconditioning as re- parameterization, we now use direct methods to pre-condition
the method conjugate gradients. We see this as the way of the future for large-scale, urban
structure from motion problems.

3.7 Towards Feature-Based Situation Assessment for Airport Apron
Video Surveillance

Ralf Dragon (Leibniz Universität Hannover, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ralf Dragon

Joint work of Dragon, Ralf;Fenzi, Michele; Shoaib, Muhammad; Rosenhahn, Bodo; Ostermann, Joern
Main reference R. Dragon, M. Shoaib, B. Rosenhahn, and J. Ostermann, “NF-features – no-feature-features for

representing non-textured regions,” Proc. ECCV 2010
URL http://www.tnt.uni-hannover.de/papers/view_paper.php?id=842

In this talk, I will give an overview on a project in which we work on a pure feature-based
reasoning in an airport apron scenario. Such a medium traffic scenario is hard to assess
as background knowledge is crucial (e.g., a car may only pass the runway if no airplane is
scheduled). I will explain how a feature-based approach, which is used to extract the current
state, is easy to combine with an inference system for large-scale analysis.

I will show, that in feature-based surveillance, the ideas from image-based approaches
can be re-used. For example: Foreground or object detection is performed using motion
instead of pixel-wise foreground segmentation [1, 2]. Further, methods for feature-based
pixel-wise segmentation have been developed [3, 4]. Feature-based object classification can
be performed with state-of-the-art object detectors which have high performance for airport
apron objects like airplanes, cars or persons [5].

Last but not least, I will discuss the problem of not detecting enough features in a pure
feature-based approach. I give an overview on no-feature (NF) features –a feature-based
approach to describe non-textured objects– and demonstrate how they improve feature-based
background modeling.

References
1 Lauer, Schnörr: Spectral clustering of linear subspaces for motion segmentation, ICCV

2009
2 Toldo, Fusiello: Real-time Incremental J-linkage for Robust Multiple Structures Estimation,

ECCV 2010
3 Guillot et al.: Background Subtraction by Keypoint Density Estimation, BMVC 2010
4 Sheikh, Javed, T. Kanade: Background Subtraction for Freely Moving Cameras, ICCV

2009
5 Felzenszwalb, Girshick, McAllester: Object Detection with Discriminatively Trained Part

Based Models, TPAMI 32(9), 2010-10
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3.8 Homogeneity and inhomogeneity of geometric quality in large scale
bundle adjustments

Wolfgang Foerstner (Universität Bonn, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Wolfgang Foerstner

Main reference Richard Steffen, Jan-Michael Frahm and Wolfgang Förstner, “Relative Bundle Adjustment based
on Trifocal Constraints,” ECCV 2010.

URL http://www.ipb.uni-
bonn.de/uploads/tx_ikgpublication/steffen10_RelativeBundle_RMLE_ECCV2010.pdf

Large scale data acquisition for 3D outdoor scenes requires a homogeneous geometric quality
of large areas. This is a severe problem as terrestrial mapping systems need to follow roads,
which induce inhomogeneity of the geometric reconstruction as a function of the distance to
the acquisition path, a situation known from loop-closing and when including points very far
from the sensor path. We discuss means to handle inhomogeneous geometric situations within
bundle adjustment (BA), how to specify homogeneity of large BA results using Gaussian
processes and to evaluate the geometric quality of BA results.

http://www.ipb.uni-bonn.de/uploads/tx_ikgpublication/dickscheid08.benchmarking.pdf
http://www.ipb.uni-bonn.de/uploads/tx_ikgpublication/laebe08.quality.pdf
http://www.ipb.uni-bonn.de/uploads/tx_ikgpublication/foerstner10_
Minimal_Representation_for_Uncertainty-ACCV2010.pdf

3.9 Egomotion estimation and mapping for autonomous systems
Friedrich Fraundorfer (ETH Zürich, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
© Friedrich Fraundorfer

Egomotion estimation and mapping are key tasks for autonomous systems. In this talk I
will discuss egomotion estimation and mapping for two examples of autonomous systems,
an autonomous car and an autonomous micro aerial vehicle (MAV). In the car example I
will discuss egomotion estimation using a monocular camera. I will show how assuming
the Ackerman steering model can be used for extremely efficient and robust egomotion
estimation and how even absolute scale can be recovered for this monocular case. In the
MAV example I will discuss how tight coupling of IMU measurements and visual features
lead to extremely efficient and robust egomotion estimation and how the MAV maps its
environment for autonomous navigation and obstacle avoidance.

3.10 Objects are More Than Bounding Boxes
Juergen Gall (ETH Zürich, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
© Juergen Gall

The goal of object detection is to locate and identify instances of an object category within
visual data like images, videos, or 3d data. The location is commonly described by a bounding
box and the object categories are based on the human categorization system, e.g., car, bus,

http://creativecommons.org/licenses/by-nc-nd/3.0/
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pedestrian, etc. For some applications, however, reducing objects to a bounding box and
instances of these human categories does not seem to be optimal. In some cases, the task to
be solved is more complex. For instance, questions like “Are all cars in this image parking
in the right direction?" or “Where can I sit?" cannot be easily answered by classical object
detection methods. In this talk, I want to discuss the relevance of object properties for object
detection.

3.11 Challenges for Camera-Based Driver Assistance
Stefan Gehrig (Daimler Research – Stuttgart, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stefan Gehrig

One of the many applications of Computer Vision is Camera-Based Driver Assistance. While
(almost) every human that owns a driver license is able to perform this task with fault rates of
less than 1 accident in 10 years, this simple task becomes extremely challenging for Computer
Vision Algorithms. Lanes and objects must be detected and measured at all times, even
under adverse weather conditions (rain, snow, backlight, ....). This imposes a high robustness
on the algorithms and hence many algorithms developed for controllable environments are
deemed inappropriate for such environments. This talk gives an overview of the challenges
at hand and shows some directions of how to tackle and solve these challenges. In addition,
different ways on how to evaluate the algorithms against‘ ‘weak" ground truth are presented.

3.12 Working with Real-World Data
Michael Goesele (TU Darmstadt, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Michael Goesele

Joint work of Ackermann, Jens; Curless, Brian; Fuhrmann, Simon; Goesele, Michael; Haubold, Carsten; Hoppe,
Hugues; Klowsky, Ronny; Ritz, Martin; Seitz, Steven M., Steedly, Drew; Stork, Andre; Szeliski,
Richard

As computer vision researchers, we now enjoy (or fear?) an abundance of real- world data.
Well known examples are the billions of images and millions of videos available online. In this
talk, I will first present our multi-view stereo and photometric stereo systems able to operate
on such real-world data. I will then introduce ambient point clouds as a way to provide a
3D visualization even based on incomplete and uncertain image-based reconstructions of
real-world scenes. Finally, I will discuss some challenges, thoughts, and consequences for
future work.
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3.13 Cross-modal Motion Analysis and Reconstruction
Thomas Helten (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Tautges, Jochen; Zinke, Arno; Krüger, Björn; Baumann, Jan; Weber, Andreas; Helten, Thomas;
Müller, Meinard; Seidel, Hans-Peter; Eberhardt, Bernd

Main reference J. Tautges, A. Zinke, B. Krüger, J. Baumann, A. Weber, T. Helten, M. Müller, H.-P. Seidel, B.
Eberhardt, “Motion Reconstruction Using Sparse Accelerometer Data,” ACM Transactions on
Graphics (May 2011), 30:3, pp.18:1–18:12.

URL http://doi.acm.org/10.1145//1966394.1966397

There are many ways for recording human motion sequences, including optical, inertial
and mechanical motion capture (mocap) systems. In particular, optical mocap systems,
which provide very rich and easy to interpret data, have been widely used in movie and
game productions. However, such systems impose strong restrictions concerning the size
of the capture volume and lighting conditions making them difficult to use in outdoor and
large-scale real-world scene analysis. Avoiding such restrictions, inertial-based sensors, which
have been increasingly used in entertainment and monitoring applications, have become a
low-cost alternative for capturing motion characteristics. As a drawback, inertial systems
typically deliver rather abstract data such as accelerations and angular velocities, which
are prone to noise and difficult to handle. In this contribution, we compare various sensor
modalities discussing their strengths and weaknesses. In particular, we address the issue on
designing suitable feature representations that allow for cross-modal comparison of motion
data. Exemplarily, we illustrate these aspects by means of two application scenarios. Firstly,
we describe a method for automatically classifying large-scale trampoline motions on the
basis of inertial sensor input. Secondly, we sketch a data-driven approach for reconstructing
3D motions from sparse acceleration data.

3.14 Structure in computer vision and pattern recognition: Why
doesn’t it really fly high?

Vaclav Hlavac (Czech Technical University, CZ)

License Creative Commons BY-NC-ND 3.0 Unported license
© Vaclav Hlavac

Structural pattern recognition has been highly popular in 1960-1970s with seminal contribu-
tions from Kung Su Fu. The later interest in it faded with the rise of statistical approaches
which penetrated even mathematical linguistics where structural analysis was originally star-
ted by Noam Chomsky in 1950s. With images, the failure of structural method was glaring.
Recently the structural methods have been mostly understood as the graph embedding (H.
Bunke’s K.S. Fu Award lecture at ICPR 2010).

In the talk, I will talk about my view of the subject originating from methods from
our book Schlesinger M.I., Hlavac V.: “Ten lectures on structural and structural pattern
recognition", Kluwer 2002. The structure is also needed for a large scale outdoor scene analysis.
I will explain the topic and relate it to my own work and the work of my collaborators: (1)
Repetitive structures in house facades, (2) in using structure (pose primitives) in analysis of
human activity from video; (3) in using 2D context-free grammars for analysis of mathematical
formulae, etc.
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3.15 Pyramid Transform Revised: Pyramid Transform on the Manifold
Atsushi Imiya (Chiba University, JP)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Imiya, Atsushi; Michizuki, Yoshihiko;Fan, Ming-Ying
Main reference Yoshihiko Mochizuki, Yusuke Kameda, Atsushi Imiya, Tomoya Sakai, Takashi Imaizumi,

“Variational method for super-resolution optical flow,” Signal Processing, Vol. 91, Issue 7, July
2011, pp. 1535–1567.

The pyramid transform was first proposed in image processing to compress of images
preserving global features such as edges and segments.

The transform reduces the size of image data preserving the global features of images by
combining shift invariant smoothing and downsampling. Then, the transform provides an
efficient strategy for multiresolution image analysis in computer vision.

Multiresolution analysis using pyramid transform allows to unify local and global features
on images, which are extracted from low- and high- resolution images, respectively. The
pyramid-transform-based method is efficiently used in optical flow computation from planar
images captured by pinhole camera systems, since the propagation of features from coarse
sampling to fine sampling allows to compute both large-displacement in low-resolution images
sampled by a coarse grid and small-displacement in high resolution images sampled by a
fine grid. Resizing of an image by downsampling after smoothing by convolution with the
Gaussian kernel achieves the image pyramid transform. Since convolution with the Gaussian
kernel for smoothing is derived as the solution of diffusion equation, the pyramid transform
is achieved by downsampling to the solution of diffusion equation. This separation property
of the pyramid transform derives the general pyramid transform on Riemannian manifolds
by using downsampling on the manifolds and diffusion equation on manifolds.

As an application, we introduce the Gaussian pyramid transform on the sphere using
spherical scale-space analysis and derive a numerically stable optical flow computation
algorithm for images on the spherical retina.

There are two typical methods for optical flow estimation for pinhole images; the Lucas-
Kanade (LK) method and the Horn-Schunck (HS) method which are based on template
matching and the variational minimisation, respectively.Image pyramid technique is commonly
used to improve the accuracy of stability of optical flow.For instance, the LK method with
pyramid-based multiresolution optical flow computation (LKP) method is derived to guarantee
the accuracy and stability of the solution for image sequence using the pyramid transform
which detects large-displacement and small-displacement motions. The Gaussian kernel for
the pyramid transform is numerically expressed as a discretised small kernel for an planar
image, for example, the five times five window is typically selected as the kernel size. For
images on the unit sphere, since the grid points of the spherical coordinate are uniformly
located,the LKP method is not suitable for optical flow computation on the sphere. However,
since variational method such as the HS method only depends on the differentials of a
function, the method does not require a uniform grid. Therefore, variational method is
suitable for the optical flow computation on the spherical coordinates.

We develop a spherical version of the pyramid-based optical flowcomputation for omni-
directional images, since the images captured by any omni-directional imaging system can
be transformed to images on the unit sphere.
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3.16 Stereo and motion analysis for vision-augmented vehicles
Reinhard Klette (University of Auckland, NZ)

License Creative Commons BY-NC-ND 3.0 Unported license
© Reinhard Klette

URL http://www.mi.auckland.ac.nz/EISATS

The talk starts with showing current results of stereo and motion analysis for video sequences
recorded within a driver assistance project at Auckland university. It points out that data
used for performance evaluation do have different properties (e.g. quantified by a SIFT-based
measure, see [Haeusler&Klette, Benchmarking Stereo Data – not the Matching Algorithms,
DAGM 2010]). Traffic video sequences may be classified into a space of ‘situations’, defined
by combinations of ‘events’, see[Klette et al, IEEE Trans.

Vehicular Technology 2011]. Trinocular recording [Morales&Klette, Ground truth evalu-
ation of stereo algorithms for real world applications, ACCV workshop, 2010] or approximate
modeling of road geometries are options to obtain ‘ground truth’ for real-world video data.

See www.mi.auckland.ac.nz/EISATS for video test data with various kinds of supporting
data towards ground truth.

3.17 Outdoor Ground Truth for Optical Flow?
Daniel Kondermann (Universität Heidelberg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Daniel Kondermann

Creating ground truth for optical flow in natural outdoor environments seems almost im-
possible. In this talk, I will propose two approaches we are currently investigating.

The first approach is to use semi-automatic vision algorithms as is done for example in
movie postproduction to create "pseudo" ground truth. The second approach is to evaluate
the properties of today’s computer graphic rendering systems with respect to their ability to
generate images close to the real world.

Finally I will discuss the problem of defining performance measures and benchmarking
with respect to correspondence estimation and related algorithms.

References
1 S. Meister and D. Kondermann. Real versus realistically rendered scenes for optical flow

evaluation. In Electronic Media Technology (CEMT), 2011 14th ITG Conference on, 2011.

3.18 Two disturbing Remarks on Visual Representations: Hierarchies
and Semantics

Norbert Krueger (University of Southern Denmark – Odense, DK)

License Creative Commons BY-NC-ND 3.0 Unported license
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URL http://covil.sdu.dk/

The advantages of hierarchies with explicit semantics in human and computer vision are
discussed. The usage of such hierarchies in today’s computer vision is reflected about and a
concrete hierarchical system is briefly presented.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.mi.auckland.ac.nz/EISATS
http://www.mi.auckland.ac.nz/EISATS
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://covil.sdu.dk/


Frank Dellaert, Jan-Michael Frahm, Marc Pollefeys, and Bodo Rosenhahn 67

3.19 Microscopic vs. Macroscopic crowd analysis
Laura Leal-Taixé (Leibniz Universität Hannover, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Methods for the analysis of crowd videos are usually divided into microscopic and macroscopic.
Microscopic methods deal with semi-crowded videos, and the goal is mainly to track each
individual over time. Most of these methods are divided into object detection and track
linking and occlusions and false alarms are usually the main concerns. On the other hand,
what happens when the crowd grows bigger and individuals can no longer be detected?
Heavily crowded scenes are handled by macroscopic methods, which have a different goal:
finding the general flow of the crowd, preferred paths in a scene, entrances and exits and
even panic analysis.

The question that arises is: Can we mix both methods in order to obtain more robust
trackers?

3.20 From Image Orientation to Buildings and Trees
Helmut Mayer (Universität der Bundeswehr – München, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Helmut Mayer

The basis of our work is the orientation of images taken from the ground or from small
(around 1 kg) unmanned aerial systems (UAS). We employ SIFT points (Lowe 2004), but
find correspondences via cross-correlation and least squares matching to obtain highly precise
points also for wide baselines and different scales.

Corresponding points are input to Nister’s (2004) five point algorithm embedded into a
expectation maximization (EM) based robust highly accurate orientation procedure (Bartelsen
and Mayer 2010). The procedure can also integrate GPS information for absolute orientation.

Orientation is the basis for object extraction. Our approach for 3D facade interpretation
(Reznik and Mayer 2008) based on implicit shape models (Leibe et al. 2004) finds rows or
columns of 3D windows. Generative stochastic modeling is at the core of our approach to
extract unfoliaged trees from terrestrial images (Huang and Mayer 2009).

3.21 Biologically Inspired Spatiotemporal Saliency Processing for a
Computational Model of Visual Attention

Baerbel Mertsching (Universität Paderborn, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Baerbel Mertsching

In studies of attention, the bottom-up conspicuity of a visual feature is known as saliency,
describing the level of difference of a feature compared to its spatial neighbors regarding
a certain dimension. Common dimensions are color, orientation or size. Traditional, com-
putational models generate saliency maps for these dimensions and combine them into one
master map of saliency from which spatial positions with high bottom-up conspicuity can
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be extracted. Watanabe and Shimojo have shown that in auditory attention saliency exists
with temporal aspects: In their setup a single sound can help solve a visual ambiguity while
it loses this ability when embedded in an temporal sequence of similar sounds, losing its
saliency. In modeling attention, temporal dynamics appear in mechanisms like inhibition of
return, which keeps the system from analyzing the same part of the scene again. Mechanisms
like that can bee seen as top-down interaction within the model. This work proposes that
temporal aspects could already start at the bottom of the system, at the point of saliency
processing.

Temporal saliency in vision could work similar than the previously described temporal
auditory saliency. It is observable in biological vision, that temporal events like the onset of
a stimulus attract attention. Also, it is plausible, that the same onset loses this ability when
embedded in a temporal sequence of similar onsets.

3.22 Towards an integrated approach to motion analysis and
segmentation

Rudolf Mester (Universität Frankfurt, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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What is needed today for advancing further towards practically useful systems for dynamic
scene analysis is essentially twofold:

On one hand, the rich repertoire of available techniques for tasks such as optical flow
estimation, stereo, segmentation etc., has to be reviewed from the point of view of theoretical
sustainability: are all the criteria used in current algorithms solidly based on physical reality,
and do they consider ’quality’ and ’reliability’ as a statistical concept? This necessarily leads
to a statistical and signal-theoretic derivation of the optimization target functions (’energy
functions’) which characterize contemporary algorithms.

It implies also that we need to model images and sequences as the result of a compound
process of objects (or regions) where the processes of object (or region) generation, their
motion, and the mapping from scene to image are described in a physically realistic way.

The result is a rich, generative ’forward model’ which is conceptually built on likelihoods
and model parameters learnt from reality, and less on ad hoc energies.

Secondly, the inverse process of inferring from observed images onto the real composition
and evolution of the scene, should be addressed in a recursive, Bayesian-filter-like manner,
where at each time instant the complete state of information obtained in the past is fused
with current observations.

3.23 Realtime 3D Motion Reconstruction from Depth Camera Input
Meinard Mueller (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Baak, Andreas; Müller, Meinard; Theobalt, Christian; Seidel, Hans-Peter

The reconstruction of human motions from sensor input constitutes a challenging problem in
computer vision with numerous applications in biomechanics, medicine, and computer anim-
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ation. While marker-based approaches constitute a reliable and well understood technique
to obtain high-quality motions, they require a significant amount of expensive hardware and
intrusive equipment to be attached to the actor’s body. On the other side, markerless human
pose estimation from multiple video streams becomes extremely difficult when using only few
cameras or when tracking outdoor scenes. Recently, depth cameras such as the Microsoft
Kinect have shown great potential for obtaining reasonable 3D pose estimates even from
a single depth image stream. In this contribution, we describe a method that allows for
tracking full-body human motions from a single depth image stream captured in natural,
non-intrusive settings. We present a hybrid strategy where the tracking is driven by local
optimization component and stabilized by a global data-driven retrieval component. Our
experiments show that one obtains stable pose estimation results even for fast and complex
motions at real-time frame rates.

3.24 Outdoor Human Motion Capture with Data-Driven Manifold
Sampling

Gerard Pons-Moll (Leibniz Universität Hannover, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Pons-Moll, Gerard; Baak, Andreas; Gall, Juergen; Mueller, Meinard; Seidel, Hans-Peter;
Rosenhahn, Bodo

Main reference Pons-Moll G., Baak A., Gall J., Leal-Taixé L., Mueller M., Seidel H.P, Rosenhahn B, “Outdoor
Human Motion Capture with Data-Driven Manifold Sampling,” International Conference on
Computer Vision, 2011

Human motion capturing (HMC) from multiview image sequences constitutes an extremely
difficult problem due to depth and orientation ambiguities and the high dimensionality of
the state space. In this paper, we introduce a novel hybrid HMC system that combines video
input with sparse inertial sensor input.

Employing an annealing particle-based optimization scheme, our idea is to use orientation
cues derived from the inertial input to sample particles from the manifold of valid poses.
Then, visual cues derived from the video input are used to weight these particles and to
iteratively derive the final pose. As our main contribution, we propose an efficient sampling
procedure where hypothesis are derived analytically using state decomposition and inverse
kinematics on the orientation cues. Additionally, we introduce a novel sensor noise model to
account for uncertainties based on the von Mises-Fisher distribution. Doing so, orientation
constraints are naturally fulfilled and the number of needed particles can be kept very small.
More generally, our method can be used to sample poses that fulfill arbitrary orientation or
positional kinematic constraints. In the experiments, we show that our system can track
even highly dynamic motions in an outdoor setting with changing illumination, background
clutter, and shadows.
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3.25 Affine-invariant diffusion geometry for the analysis of deformable
3D shapes

Dan Raviv (Technion – Haifa, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
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Main reference IEEE Computer Vision and Pattern Recognition (CVPR) 2011

We introduce an (equi-)affine invariant diffusion geometry by which surfaces that go through
squeeze and shear transformations can still be properly analyzed.

The definition of an affine invariant metric enables us to construct an invariant Laplacian
from which local and global geometric structures are extracted.

Applications of the proposed framework demonstrate its power in generalizing and
enriching the existing set of tools for shape analysis.

3.26 Large Scale Traffic Scene Analysis with Multiple Camera Systems
Ralf Reulke (HU Berlin, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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The use of camera systems for traffic monitoring is obvious and already in use for about 20
years. However, most of the cameras are operated locally (similar to an induction loop). It
has been shown that the two-dimensional areal data analysis offers new possibilities for the
determination of traffic parameters.

These presentations discuss a trajectory based recognition algorithm for atypical event
detection in multi object traffic scenes and to obtain area based types of information (e.g.
maps of speed patterns, trajectory curvatures or erratic movements). Different views of the
same area by more than one camera are necessary, because of the typical limitations of single
camera systems, resulting from occlusions by other cars, trees and traffic signs. Furthermore,
distributed cooperative multi-camera system (MCS) enables a significant enlargement of the
observation area. The fusion of object data from different cameras is done by a multi-target
tracking approach. This approach opens up opportunities to identify and specify traffic
objects, their location, speed and other characteristic object information. The use of wide
baseline stereo methods can improve object detection and the tracking accuracy. An approach,
which describes the interaction of traffic objects, will also be presented.

3.27 Towards Fast Image-Based Localization on a City-Scale
Torsten Sattler (RWTH Aachen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Sattler, Torsten; Leibe, Bastian; Kobbelt, Leif
Main reference T. Sattler and B. Leibe and L. Kobbelt, “Fast Image-Based Localization using Direct 2D-to-3D

Matching,” ICCV 2011 (to appear).

Image-based localization via pose estimation constitutes an important step in many in-
teresting Computer Vision applications such as tourist navigation, augmented reality and
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incremental Structure-from-Motion. With the advent of large scale reconstructions, comput-
ing correspondences between 2D features and 3D points in the model quickly becomes the
main bottleneck in the pose estimation pipeline. Current state-of-the-art localization methods
thus try to leverage the structure of the models in order to limit the search space. In this
talk we present a simple method that directly established 2D-to-3D correspondences without
needing to exploit those structures. Using a prioritization scheme based on visual words
allows our method to efficiently handle large, (nearly) city-scale models while outperforming
the more complex current state-of-the-art methods both in terms of speed and accuracy.

3.28 Semantic Structure from Motion
Silvio Savarese (University of Michigan, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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We propose a new framework called Semantic Structure from Motion (SSFM) for jointly
recognizing objects as well as reconstructing the underlying 3D geometry of the scene (cameras,
points and objects). In our SSFM framework we leverage the intuition that measurements of
keypoints and objects must be semantically and geometrically consistent across view points.
Our framework has the ability to: i) estimate camera poses from object detections only;
ii) enhance camera pose estimation, compared to feature-point-based SFM algorithms; iii)
improve object detections given multiple uncalibrated images, compared to independently
detecting objects in single images. Extensive quantitative results on three datasets ‘LiDAR
cars, street-view pedestrians, and Kinect office desktop" verify our theoretical claims.

3.29 Measuring and Modeling the World – Bayes and Analysis by
Synthesis

Andreas Schilling (Universität Tübingen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Computer Vision deals with modeling from images. This goal can be defined as finding the
most probable of all models that could have produced the measured data, i.e. the taken
images. A generative approach to reaching this goal consists in minimizing the distance
between the input images and images rendered from the model. This is the classical analysis-
by-synthesis approach which can be considered optimal in the sense that this image distance
is inversely related to the likelihood of the data.

Bayesian reconstruction tries to maximize the posterior probability of the model which is
the product of the likelihood and a prior probability of the model. An impressive example for
the power of the analysis-by-synthesis approach is the reconstruction of textures from several
obliquely taken images. Important open questions concerning analysis-by-synthesis methods
include: 1.) finding good models and representations, that allow for good regularization
techniques in the case of ill posed vision problems (bringing in prior information about the
model probability), 2.) efficient optimization techniques and initializations, as well as 3.)
finding filters or transformations, that remove information from the images to be compared
that is a consequence of effects not modeled by the class of models under consideration.
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3.30 Segmentation, Classification and Reconstruction of Surfaces from
Point Clouds of Man-made Objects

Falko Schindler (Universität Bonn, DE)
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Main reference Falko Schindler and Wolfgang Förrstner, “Fast Marching for Robust Surface Segmentation,” to

appear in: Lecture Notes in Computer Science, 2011.

We present a surface model and reconstruction method for man-made environments taking
into account prior knowledge about topology and geometry. The model favors but is not
limited to pairwise orthogonal vertical and horizontal planes. We do not require one particular
class of sensors, as long as a triangulated point cloud is available. The reconstruction method
delivers a complete 3D segmentation, parametrization and classification for surface regions
and their inter-plane relations. Starting with a curvature adaptive pre- segmentation we
reduce the computational cost and are more robust to noise and outliers. All reasoning
is statistically motivated, based on only a few decision variables. We demonstrate our
reconstruction method for multi-view stereo and structured light reconstructions as well as
for laser range data.

3.31 Non-Perspective Camera Models in Underwater Imaging –
Overview and Error Analysis

Anne Sedlazeck (Christian-Albrechts-Universität, Kiel, DE)
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Joint work of Sedlazeck, Anne; Koch, Reinhard

When capturing images underwater, image formation is affected in two major ways. First, the
light rays traveling underwater are absorbed and scattered depending on their wavelength,
creating effects on the image colors. Secondly, the glass interface between air and water
refracts the ray entering the camera housing because of a different index of refraction of water,
hence the ray is also affected in a geometrical way. This paper examines different camera
models and their capabilities to deal with geometrical effects caused by refraction. Using
imprecise camera models leads to systematic errors when computing 3D reconstructions or
otherwise exploiting geometrical properties of images. In the literature, many authors have
published work on underwater imaging by using the perspective pinhole camera model (single
viewpoint model – SVP) with a different effective focal length and distortion to compensate
for the error induced by refraction at the camera housing. On the other hand, methods
were proposed, where refraction is modeled explicitly or where generic, non-single-view-point
camera models are used. In addition to discussing all three model categories, an accuracy
analysis of using the perspective model on underwater images is given and shows that the
perspective model leads to systematic errors that compromise measurement accuracy.
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3.32 Outdoor Image-based Motion Capture and Reshaping of Humans
Thorsten Thormaehlen (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Thormaehlen, Thorsten;Rosenhahn Bodo; Halser Nils; Wand Michael; Gall Juergen; Jain, Arjun,
Kurz, Christian; Theobalt, Christian; Seidel, Hans-Peter

Main reference N. Hasler, B. Rosenhahn, T. Thormaehlen, M. Wand, J. Gall, H.-P. Seidel, “Markerless Motion
Capture with Unsynchronized Moving Cameras,” IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2009), Miami Beach, Florida, June 2009.

URL http://www.mpi-inf.mpg.de/resources/MovieReshape/

In this talk I will present techniques to capture the motion of human subjects, which are
recorded with multiple unsynchronized moving cameras in an outdoor environment. If
multiple moving cameras record the same scene, a camera is often visible in another camera’s
field of view. This poses a constraint on the position of the observed camera, which can be
included into the camera motion optimization process. In cluttered outdoor scenes, silhouettes
for human motion estimation are difficult to obtain. We show that reliable estimates are
nevertheless possible, if the parameters of the background segmentation are simultaneously
updated. Once the camera motion and motion of a human subject has been established,
semantically meaningful attributes of body shape, such as height, weight, or waist girth,
can be interactively modified. This enables spatio-temporal reshaping of human subjects in
outdoor video.

3.33 Inverse Procedural Modeling
Michael Wand (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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In this talk, I will discuss how to automatically infer rules to build shapes from examples.
Given some exemplar geometry, we want to construct a shape grammar that describes a class
of objects that are all similar to the input. As a model of similarity, we use local similarity,
i.e., local pieces of the output must match the input (as in texture synthesis). The key idea
is to examine the symmetry structure of the data in order to find an explicit set of rules that
provably constructs only geometry that is similar to the input exemplar.

I will show some result on synthetic 3D meshes as well as scanner data, and conclude the
talk with some ideas potential generalizations of the presented framework.

3.34 Implicit scene context for object segmentation and classification
Jan Dirk Wegner (Leibniz Universität Hannover, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jan Dirk Wegner

Joint work of Wegner, Jan Dirk; Rosenhahn, Bodo; Soergel, Uwe
Main reference Wegner, J.D.; Rosenhahn, B.; Soergel, U., “Implicit scene context for object segmentation and

classification,” 33rd Annual Symposium of the German Association for Pattern Recognition
(DAGM), 2011, accepted for publication.

Our aim is to segment and classify objects in remote sensing images for automatic mapping.
A class label is assigned to each pixel. In complex scenes with lots of different object
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categories like urban areas contextual knowledge may add valuable information if local object
descriptors deliver ambiguous results. We learn object-context from the background class of
partially labeled images and introduce it as a prior. Local object descriptors and contextual
knowledge are combined in a Conditional Random Field framework to label each pixel with
the most likely object class. Experiments with simulated data and images of computer vision
benchmark data sets, representing context of low and medium complexity, lead to promising
results. Context learned from patterns in unlabeled subcategories significantly improves
results. Tests with remote sensing data of urban scenes, including context of very high
complexity, indicate need for further refinements. More sophisticated contextual learning is
necessary to capture complex patterns.

3.35 Inference methods for structure and motion computation:
avoiding mistakes before it is too late

Christopher M. Zach (ETH Zürich, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christopher M. Zach

Repetitive and ambiguous visual structures pose a severe problem in many computer vision
applications. For instance, erroneously estimated poses between unrelated images with
visually similar content can lead to severely distorted 3D models. Our goal is to identify
incorrect geometric relations from a set of hypothesized ones, which are typically given
as fundamental matrices, homographies, or absolute orientations. Identification of such
erroneous relations solely based on low level and local information, e.g. by robust matching
techniques and bundle adjustment, is not always possible. The following two cues are helpful
to detect incorrect visual relations: (i) determining undetected but predicted visual structures
given hypothesized relations, and (ii) verifying the internal consistency of estimated visual
relations on a non-local scale. We propose to incorporate these cues particularly into a
structure-from-motion framework in order to detect incorrect visual relations, and state this
task as Bayesian inference problem. Unlike traditional SfM approaches, where only evidence
for the validity of an estimated visual relation is collected, our framework additionally uses
indicators explicitly assessing the incorrectness of putative relations. The ultimate goal of
this work is obtain a truly incremental, efficient, and fault-tolerant SfM approach.

3.36 Freehand HDR Imaging of Moving Scenes with Simultaneous
Resolution Enhancement

Henning Zimmer (Universität des Saarlandes, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Zimmer, Henning; Bruhn, Andres; Luxenburger, Andreas; Weickert, Joachim
Main reference H. Zimmer, A. Bruhn, and J. Weickert, “Freehand HDR Imaging of Moving Scenes with

Simultaneous Resolution Enhancement. Computer Graphics Forum,” Proc. of Eurographics, vol.
30 (2), pp. 405–414, 2011.

URL http://dx.doi.org/10.1111/j.1467-8659.2011.01870.x

We show how a modern energy-based optic flow method can be used for aligning exposure
series used in high dynamic range (HDR) imaging. The main advantage of our approach are
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the resulting dense displacement fields that can describe arbitrary complex motion patterns,
caused by severe camera shake and moving objects.

Additionally, it benefits from several advantages over existing strategies:
(i) It is robust under outliers (noise, occlusions, saturation problems) and allows for sharp

discontinuities in the displacement field.
(ii) The alignment step neither requires camera calibration nor knowledge of the exposure

times.
(iii) It can be efficiently implemented on CPU and GPU architectures as well as on

modern smartphones, e.g. Android phones.
After the alignment is performed, we can additionally use the obtained subpixel accurate

displacement fields as input for an energy-based, joint super-resolution and HDR (SR-HDR)
approach. It introduces robust data terms and anisotropic smoothness terms in the SR-HDR
literature.

4 Working Groups

4.1 Workgroup Summary on Performance Analysis in Dense
Correspondence Problems

Daniel Kondermann

License Creative Commons BY-NC-ND 3.0 Unported license
© Daniel Kondermann

The aim of the working group was to discuss how meaningful, objective and accurate
information about the performance of dense correspondence methods (DCM) such as optical
flow and stereo estimation can be obtained. The group met two times and consisted in total
of fourteen members.

Staring out with a brainstorming about applications for DCM, the group quickly found
three problem domains.

In the first domain algorithm characteristics are of interest. They describe general prop-
erties of algorithms such as accuracy, number of parameters, time- and space complexity,
graceful degradation, parallelization possibilities, engineerability (ease of full system imple-
mentation), confidence estimation and information about alternative solutions in the case of
multiple local extrema.

The second problem domain is about input characteristics. Any DCM can be applied
to any kind of image data. It seems unlikely that an algorithm tuned for particle image
velocimetry is capable of dealing with traffic scenes or cinematic movies. On the other hand
it is problematic to describe each possible image sequence based on the application it was
intended for. Therefore, it would help to find more general descriptors for input data. Two
approaches could be of interest: first, global approaches could be used to characterize the
similarity of a given scene compared to scenes with known ground truth. This would facilitate
the choice of benchmark data to predict the accuracy of a DCM given new data. The second
approach could be local: for each finite spatio-temporal neighborhood in a scene, a small
dataset such as a structure tensor or any feature descriptor (HoG, FFT-coefficients, SIFT,
...) could be used to characterize the quality of each pixel individually to characterize the
scene and possibly predict the quality of the outcome.

The third problem domain being discussed was about publications. Many members of
the group agreed that the community currently mainly focuses on accuracy and innovation
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of DCM. Most other algorithm characteristics and the study of input characteristics are
mostly treated with low priority. Based on this "research bias", it seems difficult to advance
this field of research. The working group agreed that it would be helpful if the awareness
about this bias were increased within the community. This could for example be achieved by
conference workshops focusing performance analysis in image processing.

The working group showed great interest in addressing these three problem domains in
the future. We hope to establish improved performance analysis methods including more
detailed algorithm specifications and new benchmark datasets.

4.2 Workgroup Summary on Challenges in Structure From Motion
Marc Pollefeys

License Creative Commons BY-NC-ND 3.0 Unported license
© Marc Pollefeys

The aim of this working group was to explore open challenges in structure from motion.
Structure from motion is the problem of recovering the relative motion/position of the
camera(s) as well as the (sparse) 3D structure of the observed scene. While our understanding
of this problem has tremendously progressed in the last two decades there are still significant
challenges to achieve reliable results on many real world data sets.

First, some argued that the main challenge was to reliably find corresponding points
between images. It can indeed often be very difficult to match feature points between images
that differ in viewpoint, lighting and camera parameters. This also often depends on the
scene which can have limited texture or repeating elements which can lead to a large number
of incorrect matches or outliers. The argument was that once potential correspondences had
successfully been filtered using multiple view relations, the structure from motion problem
itself could be solved.

However, several argued that this was not the case and that state of the art algorithms
were often still struggling to achieve good results. Three different types of approach have
been proposed. First, sequential structure from motion starts building up the reconstruction
by sequentially extending the reconstruction starting from a pair of images and adding images
in some order. This approach is often dependent on a good choice for the initial pair of views.
To avoid errors accumulating too much, the solution is often globally refined after each new
view is added which is very inefficient (and essentially turns the problem from being O(n3)
to O(n4) with n being the number of images. The second type of approach is hierarchical
structure from motion where pairs and triplets of views are first assembled and then further
grouped and merged in larger and larger reconstructions. These type of approaches can be
more efficient, but also can face challenges when inconsistencies appear between sub-models.
The third type of approaches aims to perform batch processing of all the images at once.
Factorization approaches are a good example of this. In this case a globally optimal solution
can be achieved, but the camera model is strongly simplified and outliers can not be handled.
More recent approaches are more general and enforce more robust costfunctions (e.g. L1), but
often face significant computational challenges to scale to large-scale data sets. People also
mentioned the recent discrete-continuous approach proposed by Snavely et al. which seemed
very promising, but also faced problems of scale and efficiency. This approach alternated
between solving a coarse structure from motion problem globally using discrete optimization
and refining this solution using non-linear continuous optimization. This was seen as a very
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promising route, although the current formulation still suffered several important limitations.
All in all, the conclusion of this working group was that although great progress had been

made in the last decade or two, no reliable general purpose structure from motion solver
that could handle any image collection, even if given potential correspondences containing a
reasonable number of correct matches, was yet available.

5 Schedule

Monday, June 25th, 2011

09:15–10:00 Bodo Rosenhahn: Opening
2-Minute Self-Presentations

Chair: Felix Klose

10:15–10:40 Henning Zimmer: Freehand HDR Imaging of Moving Scenes with
Simultaneous Resolution Enhancement

10:40–11:05 Andres Bruhn: Structural Prediction for Optical Flow
11:05–11:30 Daniel Kondermann: Outdoor Ground Truth for Optical Flow?
11:30–11:55 Jan Dirk Wegner: Implicit scene context for object segmentation and

classification

Chair: Henning Zimmer

14:00–14:25 Stefan Gehrig: Challenges for Camera-Based Driver Assistance
14:25–14:50 Friedrich Fraundorfer: Egomotion estimation and mapping for autonomous systems
14:50–15:15 Reinhard Klette: Stereo and motion analysis for vision-augmented vehicles

Chair: Falko Schindler

16:05–16:30 Radek Grzeszcuk: City-Scale Landmark Identification and Text Detection
16:30–16:55 Torsten Sattler: Towards Fast Image-Based Localization on a City-Scale
16:55–17:20 Meinard Mueller: Realtime 3D Motion Reconstruction from Depth Camera Input
17:20–17:45 Thomas Helten: Cross-modal Motion Analysis and Reconstruction

Tuesday, June 26th, 2011

Chair: Gerard Pons-Moll

09:15–09:40 Laura Leal-Taixé: Macro vs micro
09:40–10:05 Juergen Gall: Objects are more than bounding boxes

Chair: Jan Wegner

10:40–11:05 Ioannis Brilakis: Achievements and Challenges in Recognizing and
Reconstructing Civil Infrastructure

11:05–11:30 Ralf Dragon: Towards Feature-Based Situation Assessment for Airport Apron
Video Surveillance

11:30–11:55 Ralf Reulke:Large Scale Traffic Scene Analysis with Multiple Camera Systems
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Wednesday, June 27th, 2011

Chair: Jan-Michael Frahm

09:15–09:40 Jan-Michael Frahm: Efficient Robust Large-scale Reconstruction
09:40–10:05 Tinne Tuytelaars: From the lab to the real world: two tales from the road

Chair: Ralf Dragon

10:40–11:05 Sameer Agarwal: Bundle Adjustment in the Large
11:05–11:30 Frank Dellaert: Subgraph Preconditioning: The revolutionary new way of using

direct graph-based solvers to speed up conjugate gradients
11:30–11:55 Wolfgang Förstner: Homogeneity and inhomogeneity of geometric quality in

large scale bundle adjustments
14:00–15:15 Frank & Jan: Working Group Definition

Working Group Meetings

Chair: Torsten Sattler

15:40–16:05 Silvio Savarese:Semantic Structure from Motion
16:05–16:30 Vaclav Hlavac: Structure in images: Why doesn’t it really fly high?
16:30–16:55 Andreas Schilling: Measuring and Modeling the World – Bayes and

Analysis by Synthesis
16:55–17:20 Helmut Mayer: From Image Orientation to Buildings and Trees

Thursday, June 28th, 2011

Chair: Thomas Helten

09:15–09:40 Rudolf Mester: Towards an integrated approach to motion analysis and
segmentation

09:40–10:05 Bärbel Mertsching: Biologically Inspired Spatiotemporal Saliency Processing
for a Computational Model of Visual Attention

Chair: Laura Leal-Taixé

10:40–11:05 Michael Goesele: Workin with Real-World Data
11:05–11:30 Jean-Sebastian Franco: Probabilistic methods for shape and motion
11:30–11:55 Falko Schindler: Segmentation, Classification and Reconstruction of Surfaces

from Point Clouds of Man-made Objects

Chair: Dan Raviv

14:00–14:25 Daniel Cremers: Convex Relaxation Techniques for Geometric Optimization
14:25–14:50 Christopher M. Zach: Inference methods for structure and motion computation:

avoiding mistakes before it is too late
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Chair: Christopher Zach

14:50–15:15 Gabriel Brostow: I see bad pixels, and they don’t even know they’re bad!
15:15–15:40 Johan Hedborg: Rolling shutter video
16:05–16:30 Dan Raviv: Affine-invariant diffusion geometry for the analysis of deformable

3D shapes
16:30–16:55 Michael Wand: Inverse Procedural Modeling
16:55–17:20 Gerard Pons-Moll: Outdoor Human Motion Capture using Data-Driven

Manifold Sampling
17:20–17:45 Thorsten Thormaehlen: Outdoor Image-based Motion Capture and

Reshaping of Humans

Friday, June 29th, 2011

Chair: Michael Wand

09:15–09:40 Atsushi Imiya: Pyramid Transform Revised for Large Sparse and Fast Images
and Image Sequences in Real World

09:40–10:05 Tomas Pajdla: Robust and Scalable Multi-View Reconstruction
10:05–10:40 Norbert Krüger: Two disturbing Remarks on Visual Representations:

Hierarchies and Semantics
10:40–11:05 Working Group Meeting
11:05–11:30 Working Group Meeting
11:30–11:55 Marc Pollefeys: Working Group Get Together and Summary of each Group
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