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Abstract
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Verification and validation (V&V) assessment of process modeling and simulation is increasing
in importance in various areas of application. They include complex mechatronic and bio-
mechanical tasks with especially strict requirements on numerical accuracy and performance.
However, engineers lack precise knowledge regarding the process and its input data. This
lack of knowledge and the inherent inexactness in measurement make such general V&V
cycle tasks as design of a formal model and definition of relevant parameters and their ranges
difficult to complete.

To assess how reliable a system is, V&V analysts have to deal with uncertainty. There
are two types of uncertainty: aleatory and epistemic.
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Aleatory uncertainty refers to variability similar to that arising in games of chance. It
cannot be reduced by further empirical study. Epistemic (reducible) uncertainty refers to the
incertitude resulting from lack of knowledge. An example is the absence of evidence about
the probability distribution of a parameter. In this situation, standard methods for modeling
measurement uncertainty by using probability distributions cannot be applied. Here, interval
methods provide a possible solution strategy.

Another option, mostly discussed in the context of risk analysis, is to use interval-valued
probabilities and imprecisely specified probability distributions. The probability of an event
can be specified as an interval; probability bounds analysis propagates constraints on a
distribution function through mathematical operations. In a more general setting, the
theory of imprecise probabilities is a powerful conceptual framework in which uncertainty is
represented by closed, convex sets of probability distributions. Bayesian sensitivity analysis
or Dempster-Shafer theory are further options.

A standard option in uncertainty management is Monte Carlo simulation. This is
a universal data-intensive method that needs random number generators, distributions,
dependencies, and a mathematical model (but not a closed analytic solution) to provide
accurate results. Compared to interval methods, it yields less conservative bounds, which,
however, might fail to contain the exact solution. As an implementation of convolution in
probability theory, Monte Carlo methods are complementary to interval approaches.

Additionally, they play an important role in probability bounds analysis, Dempster-Shafer
theory, and further approaches combining probabilistic and interval uncertainties.

The goal of this seminar is to promote and accelerate the integration of reliable numerical
algorithms and statistics of imprecise data into the standard procedures for assessing and
propagating uncertainty. The main contributions of this seminar were

Expressing, evaluating and propagating measurement uncertainties; designing efficient
algorithms to compute various parameters, such as means, median and other percent-
iles, variance, interquantile range, moments and confidence limits; summarizing the
computability of such statistics from imprecise data.
New uncertainty-supporting dependability methods for early design stages. These include
the propagation of uncertainty through dependability models, the acquisition of data
from similar components for analyses, and the integration of uncertain reliability and
safety predictions into an optimization framework.
Modeling and processing applications from the areas of robust geometrical design, financial
simulation and optimization, robotics, mechatronics, reliability and structural safety,
bioinformatics and climate science with uncertain input parameters and imprecise data.
Discussing software for probabilistic risk and safety assessments working with real numbers,
intervals, fuzzy numbers, probability distributions, and interval bounds on probability
distributions that combines probability theory and interval analysis and makes the newest
techniques such as interval Monte Carlo method, probability bounds analysis and fuzzy
arithmetic available.
Promoting a new interval standard for interval arithmetic as explained in the P1788 draft:
“This standard specifies basic interval arithmetic operations selecting and following one of
the commonly used mathematical interval models and at least one floating-point type
defined by the IEEE-754/2008 standard. Exception conditions are defined and standard
handling of these conditions are specified. Consistency with the model is tempered with
practical considerations based on input from representatives of vendors and owners of
existing systems”.
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3 Overview of Talks

The seminar was attended by 33 participants from 8 countries who gave 34 talks. To stimulate
debate and cross-fertilization of new ideas we scheduled a mixture of tutorials, contributed
talks, a meeting of the IEEE P1788 working group, and software demonstrations. The
seminar started with a series of talks aimed at providing a suitable level of introduction to
the main areas of discussion and providing a leveling ground for all participants.

The format of the seminar was then a series of contributed presentations on the variety
of the seminar topics mentioned above. A lively discussion on the current state of the
interval standardization was initiated by the talk on the hot topic of decorated intervals
on Tuesday afternoon and continued during the meeting of the IEEE P1788 working group
on Thursday afternoon. A session on software tools, held on Wednesday, was followed by
software demonstrations on Thursday evening. There was much time for extensive discussions
in between the talks, in the evenings, and during the excursion on Wednesday afternoon.
The seminar had generally a very open and constructive atmosphere. As a result of the
seminar there will be a special issue published in a leading journal that will not only publish
papers presented at the seminar, but also provide a roadmap for the future directions of the
uncertainty modeling.

3.1 Application of Verified Methods to Solving Non-smooth Initial
Value Problems in the Context of Fuel Cell Systems

Ekaterina Auer (Universität Duisburg-Essen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ekaterina Auer

Joint work of Auer, Ekaterina; Rauh, Andreas

In many engineering applications, there is a need to choose mathematical models that
depend on non-smooth functions. For example, the models for friction or, more broadly,
contact dynamics, are not even continuous in general. There are also less obvious situations
that call for non-smooth functions, for instance, when naturally arising conditions such
as non-positivity of variables have to be taken into account. The task becomes especially
difficult if such functions appear on the right side of an initial value problem (IVP). Here,
even the definition of the solution depends on the application at hand [2]. Since uncertainty
in parameters obstructs many non-smooth tasks additionally, verified methods might prove
themselves to be more useful than those from the usual numerics. Besides, they guarantee
the correctness of the result within the limitations of a particular model.

The development of verified methods for IVPs with non-smooth right sides has got
relatively few attention throughout the last three decades. To our knowledge, there exist
no modern publicly available implementation at the moment. In [6], Rihm proposes a
suitable definition and a method to enclose the solution to IVPs changing their right sides
in dependence on a certain algebraic function. In [1, 4, 5], the authors propose algorithms
for systems switching their representation according to graphs containing different ordinary
differential equations as vertices and logical conditions as edges. Additionally, a lot of research
has been done on generalizing the notion of a derivative for non-smooth functions in the area
of verified optimization [3, 7].

In this talk, we give a short overview of the already existing methods for solving IVPs
with non-smooth right sides. Next, we develop a generalized derivative definition for a

http://creativecommons.org/licenses/by-nc-nd/3.0/
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certain type of continuous functions and its possible modification for bounded non-continuous
functions of the same type. Then we use this definition inside the algorithm of the verified
solver ValEncIA-IVP. We chose this solver because it needs only first order derivatives
of the right side of an IVP. Finally, we demonstrate the applicability of our method in the
context of modeling and simulation of high temperature fuel cells.

References
1 A. Eggers, M. Fränzle, and C. Herde. Application of Constraint Solving and ODE-Enclosure

Methods to the Analysis of Hybrid Systems. In Numerical Analysis and Applied Mathem-
atics 2009, volume 1168, pages 1326–1330. American Institute of Physics, 2009.

2 A. Filippov. Differential Equations With Discontinuous Righthand Sides. Kluwer Academic
Publishers, 1988.

3 H. Munoz and R. B. Kearfott. Slope Intervals, Generalized Gradients, Semigradients, Slant
Derivatives, and Csets. Reliable Computing, 10:163–193, 2004.

4 N. Nedialkov and M. von Mohrenschildt. Rigorous Simulation of Hybrid Dynamic Systems
with Symbolic and Interval Methods. In Proceedings of the American Control Conference
Anchorage, 2002.

5 A. Rauh, C. Siebert, and H. Aschemann. Verified Simulation and Optimization of Dynamic
Systems with Friction and Hysteresis. In Proceedings of ENOC 2011, Rome, Italy, July
2011.

6 R. Rihm. Enclosing solutions with switching points in ordinary differential equations. In
Computer arithmetic and enclosure methods. Proceedings of SCAN 91, pages 419–425. Am-
sterdam: North-Holland, 1992.

7 M. Schnurr. Steigungen höherer Ordnung zur verifizierten globalen Optimierung. PhD
thesis, Universität Karlsruhe, 2007.

3.2 Fuzzy Probabilities and Applications in Engineering
Michael Beer (University of Liverpool, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
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A key issue in computational engineering disciplines is the realistic numerical modeling of
physical and mechanical phenomena and processes. This is the basis to derive predictions
regarding behavior, performance, and reliability of engineering structures and systems. In
engineering practice, however, the available information is frequently quite limited and of
poor quality. A solution to this conflict is given with imprecise probabilities, which involve
both probabilistic uncertainty and non-probabilistic imprecision. An entire set of plausible
probabilistic models is considered in one analysis. This leads to more realistic results and
helps to prevent wrong decisions. In this context fuzzy probabilities and their application in
engineering were discussed in the presentation. Usefulness and benefits were demonstrated
by means of various practical examples from different engineering fields.
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3.3 Asymptotic Stabilization of a Bioprocess Model Involving
Uncertainties

Neli Dimitrova (Bulgarian Academy of Sciences, BG)

License Creative Commons BY-NC-ND 3.0 Unported license
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The dynamic modeling of anaerobic digestion has recently become an active research area.
This is due to the fact that a mathematical model of the bioreactor can be used as a

powerful tool to simulate different operating, control and optimization strategies.
One of the main drawbacks in the modeling and control of the anaerobic digestion lies in

the difficulty to monitor on-line the key biological variables of the process and in estimating
the expressions of the bacterial growth rates.

Thus developing control systems only based on simple measurements and minimal
assumptions on the growth rates that guarantee stability of the process is of primary
importance.

We consider the following model of a biological digestion process

ds1

dt
= u(si1 − s1)− k1µ1(s1)x1

dx1

dt
= (µ1(s1)− αu)x1

ds2

dt
= u(si2 − s2) + k2µ1(s1)x1 − k3µ2(s2)x2

dx2

dt
= (µ2(s2)− αu)x2

(1)

with output
Q = k4µ2(s2)x2,

where the phase variables s1, s2 and x1, x2 represent substrate and biomass concentrations
respectively, µ1(s1) and µ2(s2) are bacterial growth rate functions, si1 and si2 are input
substrate concentrations, u is the dilution rate (control input), Q is the methane flow rate, α
is a homogeneity parameter and kj , j = 1, 2, 3, 4, are coefficients.

This model has been investigated in [1], [2], where some control strategies are proposed
and their robustness is illustrated mainly by simulation studies.

The present talk is an overview of authors’ results on global asymptotic stabilizability of
the dynamic model (1) by a feedback control law.

Practical applications impose the following requirements on the feedback law: dependance
on online measurable variables, and robustness under uncertainties in the model coefficients
and growth rate functions.

Let the growth rate functions satisfy the following general assumption: µj(sj) is defined
for sj ∈ [0,+∞), µj(0) = 0, µj(sj) > 0 for sj > 0; µj(sj) is continuously differentiable and
bounded for all sj ≥ 0, j = 1, 2.

The first result concerns the so-called adaptive asymptotic stabilization of the control
system (1).

We extend the system by the differential equation

dβ

dt
= −C(β − β−)(β+ − β)k4 µ2(s2) x2 (s− s̄), (2)

where C, β− and β+ are appropriate positive constants, and s̄ is a previously chosen operating
point, representing the biological oxygen demand (which is on-line measurable). Under some

http://creativecommons.org/licenses/by-nc-nd/3.0/
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additional (practically meaningful) conditions we have shown in [3] that the feedback control
law

u ≡ k(s1, x1, s2, x2, β) = β k4 µ2(s2) x2 = β Q

stabilizes asymptotically the extended closed-loop system (1)–(2) to an equilibrium point,
corresponding to the value s̄, for each starting point (s1(0), x1(0), s2(0), x2(0)) ≥ 0. The
proposed feedback is robust with respect to model uncertainties only in the case of uncertain
growth rates: we assume that instead of the exact functions µ1(s1) and µ2(s2) we know bounds
for them, i. e. µ1(s1) ∈ [µ1(s1)] = [µ−

1 (s1), µ+
1 (s1)], µ2(s2) ∈ [µ2(s2)] = [µ−

2 (s2), µ+
2 (s2)]. If

any µj(sj) ∈ [µj(sj)], j = 1, 2, satisfies the above general assumption, it is shown in [4] that
the global stabilizability of the closed-loop system is retained.

Uncertainties with respect to the four coefficients kj , j = 1, 2, 3, 4, are not considered.
Further recent results in [4] extend and improve the above studies. First we avoid the

auxiliary differential equation (2), since it cannot be interpreted in terms of process dynamics;
second, we assume that not only the growth rates, but also the coefficients kj are unknown
but bounded within compact intervals: kj ∈ [kj ] = [k−

j , k
+
j ], j = 1, 2, 3, 4.

Denote by si− = k−
2
k+

1
si1 + si2 a lower bound for the input biological oxygen demand. Let

be β ∈
(

k+
3

si− · k−
4
, +∞

)
. Take any value of kj ∈ [kj ], j = 1, 2, 3, 4, and define s̄β = si− k3

βk4
.

It is then proved in [4] that the feedback control law k(s1, x1, s2, x2) = β k4 µ2(s2) x2 = β Q

stabilizes asymptotically the closed-loop system to an equilibrium point, corresponding to s̄β
for each starting point (s1(0), x1(0), s2(0), x2(0)) ≥ 0.

An important practical problem is the stabilization of the model (1) to a point, where
maximum methane flow rate Q is achieved. This problem is also solved in [3] and [4] by
designing an extremum seeking model-based algorithm. Computer simulations illustrate the
theoretical studies.

References
1 L. Maillert, O. Bernard, and J.-P. Steyer. Robust regulation of anaerobic digestion processes.

Water Science and Technology, 48(6):87–94, 2003.
2 F. Grognard and O. Bernard. Stability analysis of a wastewater treatment plant with

saturated control. Water Science and Technology, 53:149–157, 2006.
3 N. Dimitrova and M. Krastanov. Modeling, Design, and Simulation of Systems with Un-

certainties, volume 3 of Mathematical Engineering, chapter Nonlinear adaptive control of
a bioprocess model with unknown kinetics, pages 275–292. Springer, 2011.

4 N. Dimitrova and M. Krastanov. On the asymptotic stabilization of an uncertain bioprocess
model. To appear in Lecture Notes in Computer Science, 2012.

3.4 Robust optimization for aerospace applications
Martin Fuchs (Cerfacs – Toulouse, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
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URL http://www.martin-fuchs.net

Many modern applications require a profound treatment of uncertainties. Two of the most
critical issues to be dealt with are lack of statistical information and the well-known curse of
dimensionality. One of the concerned fields is optimization for aerospace applications, where
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computational black box models include many uncertain parameters with little data and
little information about statistical correlations given. The major research goal is to achieve
optimal solutions that can be qualified as robust by accounting for the uncertainties in the
high dimensional parameter space.

In lower dimensions, there are several tools to handle lack of information reliably, e.g., p-
boxes, Dempster-Shafer structures, or possibility distributions. However, in higher dimensions
it may require an intrusive implementation to be efficient to propagate uncertainties through
a function. If the uncertainties are propagated through a black box function simulation
techniques are often preferred, but they may fail to be reliable in many cases, see [1].
Sensitivity analysis can help to reduce the dimensionality at additional computational cost.
The clouds formalism, see [5], combines concepts of intervals, fuzzy sets, and probability
theory, in order to deal with both incomplete and higher dimensional information in a reliable
and computationally tractable fashion.

Our approach first uses clouds to determine a polyhedral representation of the uncertainties.
In other words, we describe the set, in which we search for worst-case scenarios, as a
polyhedron. Methods to generate this polyhedron already exist, see [3]. In the second
step we solve an optimization problem subject to polyhedral constraints to actually find
the worst-case scenario. Our approach to the solution of the problem is inspired by the
simulation based Cauchy deviates method for interval uncertainty, see [4]. It turns out to be
computationally very attractive and it can be easily parallelized.

The new methods are employed in the context of robust optimization. The worst-case
analysis of the previous steps becomes a constraint of an optimization problem formulation, see
[2]. The objective is to find an optimum that is safeguarded against uncertain perturbations.
To this end we determine the worst-case objective function, i.e., we propagate the uncertainties
through the objective function. Thus the extra computational effort to account for robustness
amounts to extra objective function evaluations. Hence it is important to use only very
few evaluations as the total budget of evaluations in the optimization phase of real-life
applications is typically very limited. This gives a new point of view of the Cauchy deviates
method. Numerical tests are presented for applications from space system design and aircraft
wing shape optimization.

References
1 S. Ferson, L. Ginzburg, and R. Akcakaya. Whereof one cannot speak: When input distri-

butions are unknown. Web document, http://www.ramas.com/whereof.pdf, 1996.
2 M. Fuchs and A. Neumaier. Autonomous robust design optimization with potential clouds.

International Journal of Reliability and Safety, 3(1/2/3):23–34, 2009.
3 M. Fuchs and A. Neumaier. Potential based clouds in robust design optimization. Journal

of Statistical Theory and Practice, 3(1):225–238, 2009.
4 V. Kreinovich and R. Trejo. Handbook of Randomized Computing, chapter Error estima-

tions for indirect measurements: randomized vs. deterministic algorithms for ’black-box’
programs, pages 673–729. Kluwer, 2001.

5 A. Neumaier. Clouds, fuzzy sets and probability intervals. Reliable Computing, 10(4):249–
272, 2004.
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3.5 Verified Solution of Finite Element Models for Truss Structures
with Uncertain Node Locations

Jürgen Garloff (HTWG Konstanz, DE)
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In our talk, we consider finite element models for mechanical truss structures where all of
the physical model parameters are uncertain but bounded and are represented by intervals.
In this case the application of the finite element method results in a system of parametric
linear equations where the parameters vary within given intervals. We aim at finding tight
bounds for the solution set of such a parametric system, the so-called parametric solution
set. We first consider the case that the parameter dependency is rational and briefly report
on a combination of software for the parametric residual iteration written by E. Popova in
a Mathematica environment and our own software for the tight enclosure of the range of
multivariate polynomials over a box.

Then not just the material parameters and applied loads, but also the positions of the
nodes are assumed to be inexact and are represented by intervals, a case which does not seem
to have previously been considered in the literature. In civil engineering, these uncertainties
are often due to imperfections of the fabrication process. The application of the mentioned
software for the enclosure of the parametric solution set results in intervals which are too
wide for practical purposes. To contract the obtained intervals we employ interval pruning
techniques. In the case of a statically indeterminate truss structure, the resulting intervals
for the node displacements are still wider than we would like. Therefore, we employ a
monotonicity analysis for all the parameters to provide tight guaranteed enclosures.

3.6 Interval Linear Programming: Foundations, Tools and Challenges
Milan Hladík (Charles University – Prague, CZ)

License Creative Commons BY-NC-ND 3.0 Unported license
© Milan Hladík

Many practical problems can be formulated in terms of linear programming, and in the others
linear programming is sometimes used as a auxiliary technique. Interval liner programming
studies such problems that are subject to uncertainties and there are given lower and upper
bounds for uncertain quantities. This approach is superior the standard sensitivity analysis
since it takes into account more complex perturbations of input data. Contrary to the
stochastic programming approach one does not have to care about distributions of uncertain
parameters; lower and upper estimates are enough.

We present a survey on interval linear programming according to the very recent paper
[1]; just in press. We give a brief overview on the basic problems concerning feasibility,
unboundedness and optimality for both weak and strong case, where weak means the
property for some realization of interval data, and strong means validity for each realization.
In particular, we list the time complexities (polynomial vs. NP-hard) of these problems.
Then we turn our attention to the two fundamental problems studied. The first one is a
problem of determining the optimal value range. Depending on the form of the interval linear
program, some of the bounds can be computed by an ordinary linear program, but the others
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are NP-hard and only a formula using exponential number of ordinary linear programs is
known. The second fundamental problem, which is very difficult and still challenging, is
to find a tight enclosure of the optimal solution set. This becomes easy in the case of the
so called basis stability, i.e., there is a basis optimal for each realization of interval data.
Checking basis stability is also a computationally hard problem, but there are quite strong
sufficient conditions that may be utilized. Eventually, we state some open problems.
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3.7 Intervals, Orders, and Rank
Cliff Joslyn (Pacific Northwest National Lab. – Seattle, US)
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Joint work of Joslyn, Cliff; Hogan, Emilie

Intervals are ordered
Orders have intervals
Orders have ranks
Ranks are intervals

Intervals have order relations defined on them as an important operation. Also, partially
ordered sets (posets) and lattices have intervals within them as important sub-structures. In
traditional interval analysis, the set on which the intervals are drawn is the real numbers, a
special ordered set which is a total order; and the ordering relation used between these real
intervals is the “strong” interval order (one interval being entirely below another), in the
context of an overall Allen’s algebra.

But in our work in semantic databases and ontology management, it is the more general
cases which are demanded. Specifically: 1) the intervals in question are valued in a finite,
bounded, generally partially ordered set; and 2) when real intervals ARE used, the conjugate
endpoint product order and subset orders are far preferable to the standard strong order
(which isn’t even really an ordering relation anyway). The attendant issues have implications
for the foundations of interval analysis which we seek to explore with the group.

Depending on time, structure, and the interests of attendees, we can go into more or less
depth on the following.

We begin by describing our use of large, finite, bounded posets to represent taxonomic
semantic data structures for applications such as ontology clustering and alignment. We
then consider the challenges presented by their layout and display.

Our first challenge, the vertical layout of nodes, we have been working on for a while.
We observe that rank in posets is best considered as being valued on integer intervals. These
integer-valued rank intervals can themselves in turn be ordered (in the endpoint product
order), so that an iterative operation is available. Repeated application serves to identify
a privileged embedding of the poset to a total preorder preferred to reflect the underlying
partial order. We have results about how the height, width, and dimension of the poset
changes in repeated application, and prove that we do achieve a final embedding of the
original poset to a total preorder. In the process, results about measures of gradedness of
posets are also motivated.
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Our second challenge we are just beginning to explore, but we will present some preliminary
ideas for discussion. We seek to simplify the display of large posets (actually lattices in the
first treatment) when only a subset of nodes are specified by a user. A tremendous reduction in
complexity can be available when (poset) intervals among the target nodes are identified which
are disjoint (pairwise or moreso). The underlying mathematical representation suggested
is the graph of the intersection structure of poset intervals, that is, a generalization of an
interval graph to poset intervals. Cliques in this graph determine the number of total meets
and joins which need to be displayed in the reduced visualization, and thus the amount of
compression achievable. But, this approach requires us to have the ordering relation between
pairs of poset intervals, that is, to develop an Allen’s algebra generalized to poset intervals.

3.8 Interval Computations – Introduction and Significant Applications
Ralph Baker Kearfott (Univ. of Louisiana – Lafayette, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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In this tutorial, we first outline the historical motivations and early work in interval arithmetic,
then review basic interval arithmetic operations and their properties, including advantages
and pitfalls. We conclude with a variety of examples of successful application of interval
arithmetic.

Historical motivation and work includes
1931 — Classical analysis: Rosaline Cecily Young developed interval arithmetic to handle

analysis of one-sided limits (where lim inf f 6= lim sup f) [15].
1951 — Roundoff error analysis: Paul S. Dwyer developed interval arithmetic in the chapter

on roundoff error analysis in his numerical analysis text [3].
1956 — Calculus of Approximations: Warmus and Steinhaus developed interval arithmetic

to provide a sound theoretical backing to numerical computation [14].
1958 — Automatic error analysis: Teruro Sunaga developed interval arithmetic [11].
1959 — Automatic error analysis: Ray Moore developed interval arithmetic in a report

and dissertation to which most modern work on the subject can be traced [5].

Advantages of interval arithmetic include the ability to quickly compute mathematically
rigorous bounds on roundoff error and on ranges of functions, where computation of the
exact range is NP-hard. Disadvantages are that these bounds may be unusably pessimistic,
unless special algorithms are designed.

Current successful significant applications include the following:
A filter in branch and bound methods in leading commercial software, such as [9] (and

others).
Constraint solving and constraint propagation, as in [8, §14] and numerous other works.
Verified solution of ODEs, as in [1], [4], etc.
Computer-aided proofs, as in [13], [12].
Chemical engineering, as in [10].
PDE problems such as structural analysis with uncertainties [6], [7] or analysis of photonic

crystals [2].
Numerous others.
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3.9 Integration of Interval Contractors in Hierarchical Space
Decomposition Structures

Stefan Kiel (Universität Duisburg-Essen, DE)
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Hierarchical spatial data structures can be used for decomposing geometric objects into
simpler primitives [5]. Often used primitives are axis-aligned boxes. Intervals are a natural
choice for representing them. Furthermore, interval arithmetic (IA) [1] offers us a way to
construct a verified decomposition enclosing the object and to cope with uncertainties in the
original model.

However, classical IA often suffers from overestimation which might make object enclosures
too wide. Recently, we have presented the framework UniVerMeC (Unified Framework
for Verified Geometric Computations) [3] that allowed us to employ more sophisticated
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arithmetics like affine arithmetic or Taylor models to reduce the overestimation. Another
way to tighten enclosures is to use contractors which identify parts of the decomposition
disjoint with the object.

In this talk, we will discuss how UniVerMeC helps us to integrate arbitrary interval
contractors into the trees. This is a direct extension of our recent approach [4] which was
limited formerly to implicit linear interval estimations [2]. The direct integration into the
trees lets an algorithm take advantage of contractors’ properties without being aware of
their actual use. This decoupling allows us to add or remove different contractors easily.
In contrast to domain decompositions used, for example, in global optimization, interval
trees have to cover the whole area by nodes properly. That is, we cannot dispose parts not
containing the object but have to cover them with WHITE nodes indicating that they are
empty. This makes employing interval contractors in trees complicated. We will show how
to simplify this task by introducing special inversion nodes into the standard set. This does
not change existing tree algorithms because nodes of the new type can be converted exactly
into a set of standard nodes.
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3.10 Degree-Based (Interval and Fuzzy) Techniques in Math and
Science Education

Olga M. Kosheleva (University of Texas – El Paso, US)
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In education, evaluations of the student’s knowledge, skills, and abilities are often subjective.
Teachers and experts often make these evaluations by using words from natural language like
“good”, “excellent”. Traditionally, in order to be able to process the evaluation results, these
evaluations are first transformed into exact numbers. This transformation, however, ignores
the uncertainty of the original estimates. To get a more adequate picture of the education
process and education results, it is therefore desirable to transform these evaluations into
intervals – or, more generally, fuzzy numbers.

We show that this more adequate transformation can help on all the stages of the
education process: in planning education, in teaching itself, and in assessing the education
results.

Specifically, in planning education and in teaching itself, interval and fuzzy techniques
help us:
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better plan the order in which the material is presented and the amount of time allocated
for each topic;
interval and fuzzy techniques help us find the most efficient way of teaching inter-
disciplinary topics;
these techniques also help to stimulate students by explaining historical (usually informal)
motivations – often paradox-related motivations – behind different concepts and ideas of
mathematics and science.

In assessment, interval and fuzzy techniques help:
to design a better grading scheme for test and assignments, a scheme that stimulates
more effective learning,
to provide a more adequate individual grading of contributions to group projects –
by taking into account subjective estimates of different student distributions (and the
uncertainty of these estimates), and
to provide a more adequate description of the student knowledge and of the overall
teaching effectiveness.

The talk summarizes, combines, and expands on the ideas and results, some of which
published in journals and conference proceedings. These published papers also contain
additional technical details and practical examples of using these ideas.

3.11 A Comparison of Different Kinds of Multiple Precision and
Arbitrary Precision Interval Arithmetics

Walter Krämer (Universität Wuppertal, DE)
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Joint work of Krämer, Walter; Blomquist, Frithjof; Hofschuster, Werner
URL http://www2.math.uni-wuppertal.de/org/WRST/index_de.html

The current version of the C++ class library C-XSC for verified numerical computing
offers quite a lot of different interval data types with different properties. We compared
multiple precision data types like staggered precision data types (unevaluated sums of floating-
point numbers) as well as arbitrary precision types based on arrays of integers and integer
operations. In some respects staggered numbers and operation are restricted by properties
of the underlying basic floating-point data type (IEEE double precision) whereas arbitrary
precision numbers are only limited by the memory resources available.

We presented some preliminary execution time comparisons and gave some advice when
it is appropriate to use a specific multiple/arbitrary precision C-XSC data type. We also
discussed the availability of some underlying external packages restricting the use of C-
XSC’s arbitrary precision data types on some platforms. Several source code examples were
presented to demonstrate the ease of use of the data types (due to operator and function name
overloading) and the power of the different multiple/arbitrary precision C-XSC packages.

Further features of C-XSC have been discussed in the talk “C-XSC – Overview and new
developments” presented by Michael Zimmer during the course of this Dagstuhl seminar.
Please refer to the corresponding abstract included in this document.

Keywords: Multiple precision, arbitrary precision, staggered data types, C-XSC, MPFR,
MPFI, interval computations.
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3.12 Towards Optimal Representation and Processing of Uncertainty
for Decision Making, on the Example of Economics-Related
Heavy-Tailed Distributions

Vladik Kreinovich (University of Texas – El Paso, US)
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Uncertainty is usually gauged by using standard statistical characteristics: mean, variance,
correlation, etc. Then, we use the known values of these characteristics (or the known bounds
on these values) to select a decision. Sometimes, it becomes clear that the selected character-
istics do not always describe a situation well; then other known (or new) characteristics are
proposed. A good example is description of volatility in finance: it started with variance,
and now many descriptions are competing, all with their own advantages and limitations.
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Another good example is the case of heavy-tailed distributions frequently occurring in
economics and finance: for these distributions, variance is infinite and thus, we cannot use
variance to describe deviations from the mean.

In such situations, a natural idea is to come up with characteristics tailored to specific
application areas: e.g., select the characteristic that maximize the expected utility of the
resulting risk-informed decision making. As a case study, we found optimal characteristics
for measures of deviation and dependence in financial applications – where, for heavy-tailed
distributions, traditional variance and correlation cannot be used.

With the new characteristics, comes the need to estimate them when the sample values
are only known with interval uncertainty. Algorithms originally developed for estimating
traditional characteristics can often be modified to cover new characteristics.

3.13 From Processing Interval-Valued Data to Processing Fuzzy Data:
A Tutorial

Vladik Kreinovich (University of Texas – El Paso, US)
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Some quantities y are difficult (or impossible) to measure or estimate directly. A natural
solution is to measure them indirectly, i.e., to measure auxiliary quantities x1, . . . , xn which
are related to y by a known dependence y = f(x1, . . . , xn), and then use the results x̃i of
these measurements to compute an estimate ỹ = f(x̃1, . . . , x̃n) for y. Measurements are never
absolutely accurate; as a result, the measurement results x̃i are, in general, different from
the actual (unknown) values xi of the corresponding quantities. Hence, the estimate ỹ is, in
general, different from the desired value y. How can we estimate the difference ∆y = ỹ − y?
In some cases, we know the probabilities of different measurement errors ∆xi = x̃i − xi;
however, often, we do not know these probabilities, we only know the upper bounds ∆i on
the measurement errors – upper bounds provided by the manufacturers. In this case, after
we know the measurement result x̃i, we know that the actual value xi belongs to the interval
[x̃i−∆i, x̃i + ∆i], and we can use interval computations to find the interval of possible values
of y.

Often, in addition to the guaranteed bounds ∆i on the measurement errors, we also have
expert estimates on these bounds which hold only with some degree of certainty – and which
are described by words from natural language like “small”, “most probably”, etc,. Fuzzy
techniques were specifially designed to process such estimates. The main idea is that, for
each “fuzzy” (natural-language) property like “small”, and for each real value x, we describe
the degree d(x) to which x satisfies this property – e.g., by polling experts. Once we know
the degrees di(xi) to which each xi satisfies the corresponding expert property, we need to
combine these degrees into a degree with which all the values xi satisfy their properties. We
show how this need leads to a complex formula called Zadeh’s extension principle, and how
from the computational viewpoint, it means that for each real value α ∈ [0, 1], to find all
the values for which d(y) ≥ α (“α-cut” of y), we can apply interval computations to the
corresponding α-cuts of xi. Thus, from the computational viewpoint, processing such fuzzy
inputs can be (and usually is) reduced to interval computations.
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3.14 Generating a Minimal Interval Arithmetic Based on GNU MPFR
Vincent Lefèvre (ENS – Lyon, FR)
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Searching for the hardest-to-round cases for the correct rounding of some function f on an
interval I in a fixed precision can be done efficiently by first approximating the considered
function by a polynomial, on which specific algorithms are then applied. One also needs to
determine an enclosure of the range f(I), more precisely the exponent range.

Our implementation currently uses Maple and the intpakX interval arithmetic package
in order to compute both the exponent range and the polynomial approximation. But
Maple/intpakX has various drawbacks.

The GNU MPFR library has since been available and could be used for our computations
in arbitrary precision. But we need an interval arithmetic on top of it. As reliability matters
more than performance in this context, we seek to implement a minimal interval arithmetic
by generating code on the fly using MPFR. The implementation should be as simple as
possible so that it could easily be checked and/or proved formally.

3.15 IPPToolbox – a package for imprecise probabilities in R
Philipp Limbourg (Universität Duisburg-Essen, DE)
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A lot of researchers working on Dempster-Shafer, imprecise probabilities etc., e. g. in
systems reliability engineering, structural reliability and similar fields. While the theory
stems from the 60s & 70s, it was originally mainly used for expert systems & automatic
reasoning. Imprecise probabilities were brought into uncertainty modelling practice by Sandia
laboratories in US (2004).

However, most people use their own, proprietary codes. This talk presents an R and Matlab
package – the IPP toolbox, an open-source package for imprecise probability calculations.
The package includes R help and two examples (Fflood, Reliability). Available on CRAN
(package “ipptoolbox”), it is the predecessor of the DSI toolbox Application areas: 100+
downloads of Matlab version (R figures not known, at CRAN), applied at Electricité de
France R&D, e. g. flood modelling, event trees, design optimization.

3.16 Constrained Intervals and Interval Spaces
Weldon A. Lodwick (University of Colorado, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Constrained intervals, intervals as a mapping from [0,1] to linear functions with non-negative
slopes, and arithmetic on constrained intervals generate a space that turns out to be a
cancellative Abelian monoid albeit with a richer set of properties than standard interval
arithmetic. This means that not only do we have the classical embedding as developed by H.
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Radström and S. Markov but directly the properties of the subset of these polynomials. We
study a little of the geometry of the embedding of intervals into a quasi-vector space and some
of the properties of the mapping of constrained intervals into a space of polynomials.Thus,
there are two parts to this talk. (1) The representation of intervals as linear polynomials with
non-negative slopes. (2) The algebraic structure of this new representation. The geometry is
mentioned in passing as a way to visualized the embedded space and will not be discussed
further. The theoretical reason for considering a new representation of intervals is to have
a formalization in (a subset of) polynomial space with the view to evaluate expressions
(functions) of intervals. The theoretical reason for considering the algebraic structure of the
embedding into a space with inverses is to solve equations. We only look at additive inverses
in this presentation.

3.17 Verification and Validation Requirements in Biomechanical
Modeling and Simulation

Wolfram Luther (Universität Duisburg-Essen, DE)
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We give an overview on how accurate and verified methods can be employed for several
biomechanical processes. Our focus is on a broad field of patient specific preoperative
surgical planning based on the superquadric (SQ) geometrical modeling. We show how to use
verified tools to efficiently and reliably implement important parts of the processing pipeline.
Furthermore, we describe our current activities to verify SQ-based operations numerically
and to validate the models and their parameters by various measurement methods. For this
purpose, we replace or combine data types, algorithms and tools with their verified versions
where possible. Here, we might consider using C-XSC (Krämer) instead of plain C++,
INTLAB (Rump) in addition to Matlab, DSI (Dempster Shafer tool with intervals) instead
of IPP (the Imprecise Probabilities toolbox, Limbourg, Rebner) or employing stochastic data
types as in Cadna++ (Lamotte et al.) or the static program analyzer Fluctuat (CEA).

Recently, we introduced four classes for the use in V&V assessment, from lowest to
highest certification standard. A process implementation that relies on standard floating-
point or fixed-point arithmetic with unverified results belongs to Class 4. If the system is to
qualify for Class 3, the numerical implementation of the process needs to employ at least
standardized IEEE 754-2008 floating-point arithmetic. Furthermore, sensitivity analysis
has to be carried out for uncertain parameters and uncertainty propagated throughout the
subsystems using various methods. Additionally, a priori/posteriori error bounds should
be provided for important sub-processes, condition numbers computed, failure conditions
identified. To belong to Class 2, relevant subsystems have to be implemented using tools
with result verification or with an accompanying computation of reliable error bounds. The
tools should use language extensions, the convergence of numerical algorithms must be
proved via existence theorems, analytical solutions, computer-aided proofs or fixed-point
theorems. In Class 1, uncertainty is quantified and propagated throughout the process using
interval computing. Model parameters are optimized by calibration. The whole system is
verified using tools with result verification. Basic numeric algorithms and (special) functions
are certified. Alternatively, real number algorithms, analytical solutions or computer-aided
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existence proofs are used.
We managed to classify several biomechanical processes. Recently, a dynamical gait

simulation based on motion tracking under uncertainty in parameters was described. Processes
from a recently completed project PROREOP have been used to perform elements of V&V
assessment during the designing step.

Our analysis shows that such assessment should begin with the specification of the
process and its sub-processes, the design of the building-blocks and their software modules,
the definition of interfaces and data flows, and, finally, the selection and adaptation of
appropriate data types and algorithms. PROREOP aimed at developing and evaluating a
highly interactive prosthesis planning tool that allowed surgeons to assess 3D imaging data
and to use geometrical, mechanical, kinematical and material/surface-specific bone features
of the patient as primary sources for their decisions.

In our talk, we focus on an example addressing superquadric (SQ) bone/prosthesis
modeling, prosthesis fitting into the medullary space of the routed femoral shaft and the
total hip arthroplasty (THA), which was broadly discussed in the PhD-thesis of the fourth
author. The following hardware and software blocks are analyzed: Data acquisition by MRI
and CT imagery, bone and muscle segmentation (Class 3), SQ modeling with an in/out
decision algorithm, distance computation between convex SQs (both Class 1), compound
model optimization (Class 3), K-segments algorithms (Class 2), feature extraction with
various validation approaches, verified distance computation between compound models
(both Class 1), and pose computation (Class 3).

3.18 Enclosing solutions of initial-value problems with large uncertainty
Arnold Neumaier (Universität Wien, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Arnold Neumaier

Joint work of Neumaier, Arnold; Fazal, Qaisra

We consider the enclosure of initial-value problems for ordinary differential equations where
the initial condition has a large uncertainty. Uncertainties are described at each time by
means of enclosing ellipsoids. Our new approach combines

work by Chernousko for linear ODEs, who derived for this class differential equations for
the parameters of the enclosing ellipsoid,
work by Kühn based on defect estimates and curvature bounds,
new results on conditional differential inequalities for validating error bounds, and
global optimization techniques for verifying the assumptions needed to apply the condi-
tional differential inequalities.

The approach was implemented in Matlab, using automatically generated AMPL files as
an interface to optimization algorithms. For simple examples, the performance was essentially
the same as the state-of-the-art packages VSPODE, VNODE-LP, and VALENCIA-IVP, while
for highly nonlinear problems, it gave much superior error bounds.
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3.19 Characterizing AE Solution Sets to Parametric Linear Systems
Evgenija D. Popova (Bulgarian Academy of Sciences, BG)

License Creative Commons BY-NC-ND 3.0 Unported license
© Evgenija D. Popova

Consider linear systems whose input data are linear functions of uncertain parameters
varying within given intervals. Such systems are common in many engineering analysis or
design problems, control engineering, robust Monte Carlo simulations, etc., where there
are complicated dependencies between the model parameters which are uncertain. Various
solution sets to a parametric linear system can be defined depending on the way the parameters
are quantified by the existential and/or the universal quantifiers.

We are interested in an explicit description of the so-called AE parametric solution sets
(where all universally quantified parameters precede all existentially quantified ones) by a set
of inequalities not involving the parameters. The problem is related to quantifier elimination
where Tarski’s general theory is EXPSPACE hard and a lot of research is devoted to special
cases with polynomial-time decidability.

In this talk we present how to obtain an explicit description of AE parametric solution
sets by combining a modified Fourier-Motzkin-type elimination of existentially quantified
parameters with the elimination of the universally quantified parameters.

Some necessary (and sufficient) conditions for existence of non-empty AE parametric
solution sets are discussed, as well as some properties of the AE parametric solution sets.

Explicit description of particular classes of AE parametric solution sets (tolerable, con-
trollable, any 2D) is presented.

Numerical examples illustrate the solution sets and their properties. A comparison to
results obtained by quantifier elimination demonstrates the advantage of the presented
approach.

3.20 What you always wanted to know about decorated intervals
John D. Pryce (Cardiff University, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© John D. Pryce

Work on an Interval Arithmetic Standard has been under way since 2008, in IEEE Working
Group P1788. Early on, we chose a “silent” paradigm for function evaluation, namely interval
evaluation of a library function partly or wholly outside its domain returns an enclosure of
those values that are defined (e.g. 1/[0,1] gives [1,infinity); sqrt([-2,-1]) gives the empty set),
instead of throwing an exception as in current interval systems.

This raises the question of how to record that such an exceptional event has occurred.
This is necessary, since various important interval algorithms need to determine rigorously
whether a function, given by an expression, has properties such as being defined, or defined
and continuous, everywhere on a box. Examples are branch-and-bound search methods to
“pave” space regions defined by inequalities; or validated ODE methods that apply Brouwer’s
fixed-point theorem. In current interval systems, such information can only be determined
to a limited extent, and by clumsy ad hoc means.

Summarising discussions over the past 15 months, this talk aims to show why and how it
is feasible to record such data automatically by suitably enhancing the interval versions of
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library functions. The data might be stored in global flags similar to the IEEE floating point
flags “zerodivide”, etc.; or locally by attaching it as “decorations” to computed intervals.
It explains why we favour the latter. It presents the Neumaier-Hayes idea of arranging
decoration information in a linearly ordered sequence of values that can be considered to go
from “best” to “worst”, and compares several such schemes.

It discusses some problematic and contentious issues such as the status of intersec-
tion/union operations. It outlines the proposed Compressed Intervals, which gain speed
at the cost of limited decoration support. They use the same space (typically 16 bytes) as
undecorated intervals, and suffice for the applications mentioned above.

3.21 Verified Parameter Estimation for the Thermal Behavior of
High-Temperature Fuel Cells

Andreas Rauh (Universität Rostock, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Rauh, Andreas; Dötschel, Thomas; Auer, Ekaterina; Aschemann, Harald

The thermal behavior of high-temperature solid oxide fuel cell (SOFC) systems is characterized
by the interaction of different physical and electro-chemical processes. In particular, these
processes take place in the anode and cathode gas manifolds as well as in the interior of the
fuel cell stack module.

The chemical reactions of hydrogen at the anode and oxygen at the cathode have to be
enabled to generate electricity and process heat simultaneously. The prerequisite for these
reactions is both ion conduction through the electrolyte and electron interchange between
the electrodes [1]. The fuel cell stack module itself consists of a thermal insulation and an
assembly of anode-electrolyte-cathode elements, which are electrically connected in series.

One possible future application of fuel cells is the use in decentralized supply systems for
process heat and electricity. For this type of application, it is necessary to operate SOFCs
with a time-varying electric load. It is desired to implement operating strategies for variable
electric loads with smallest possible battery buffers acting as electric load shaping devices.
This leads to the necessity for advanced control strategies minimizing the influence of electric
load variations on the resulting changes of the cell temperature and its local distribution.

The decoupling of electric load variations from the thermal behavior of the SOFC is
crucial from an application point of view: Mechanical strain introduced by large spatial
gradients in the temperature distribution within the fuel cell stack module along with local
over-temperatures may lead to an accelerated degradation and — in the worst case — to
the destruction of the fuel cell materials. Moreover, the maximization of the efficiency of a
high-temperature SOFC is commonly linked to an increase of the overall temperature level
in the interior of the stack module [2]. This fact imposes further demands on the accuracy of
the mathematical system model used for control synthesis.

The reliable operation of SOFC systems by means of accurate control strategies requires
a sufficient knowledge of the ongoing physical processes. Therefore, these processes are
expressed in terms of a mathematical system model with explicitly given bounds for the
uncertain quantities. This system model has to be usable for the online analysis and
prediction of the influence of electric load variations and for its compensation in real time by
means of nonlinear feedback control strategies. The same holds for the online estimation
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and identification of non-measured internal process variables with the help of state and
disturbance observers.

The real-time applicability of the mathematical system models can be achieved by using
control-oriented descriptions which take into account the dominating dynamic effects and
spatial variations of process variables such as temperatures and partial pressures of the gas
fractions. These control-oriented descriptions commonly replace sets of (nonlinear) partial
differential equations by finite-dimensional sets of ordinary differential equations and algebraic
relations [4].

To parameterize these low-dimensional, control-oriented system models, identification
routines are employed. The parameter identification is based on experimental data gathered
from a test rig available at the Chair of Mechatronics at the University of Rostock. Classical
floating point approaches for parameter identification (which are based on local optimization
procedures) cannot be used to incorporate uncertainty in measured data directly in the
identification procedure.

For this reason, a first version of a verified interval-based parameter identification routine
is presented in this contribution. This routine is applied to determine those parameter ranges
which are consistent with measured data under explicit consideration of their uncertainty. The
interval-based identification routine is a generalization of a verified optimization procedure
developed by the authors for the design of reliable optimal controllers for uncertain continuous-
time and discrete-time processes [3]. Moreover, the identification results obtained by the above-
mentioned interval-based routine are compared with a classical floating point implementation
for the thermal subsystem of the SOFC currently involving a total number of 26 a-priori
unknown or uncertain parameters.

A simplified thermal system model is given by the scalar nonlinear differential equation

ϑ̇FC = 1
cFC mFC

[
1
RA

(ϑA − ϑFC)− (cN2ζN2,C + cO2ζO2) · ṁCG · (ϑFC − ϑCG,in)

− (cH2ṁH2 + cH2OṁH2O + cN2ṁN2,A) · (ϑFC − ϑAG,in) +∆Hm(ϑFC)ṁH2

MH2

]
,

which describes the temperature ϑFC in the fuel cell stack. This temperature is assumed to be
homogeneously distributed. It depends on the mass flow rate ṁCG of cathode gas (CG) as well
as the stoichiometrically balanced mass flow ṁH2 of hydrogen, ṁH2O of vaporized water, and
ṁN2,A of nitrogen at the anode. The inlet temperature of the cathode gas is given by ϑCG,in,
the corresponding anode inlet temperature is denoted by ϑAG,in. Second-order polynomial

approximations cx (ϑFC) =
2∑
i=0

αx,iϑ
i
FC are used to describe the temperature dependencies

of all heat capacities, x ∈ {N2, O2, H2, H2O}, as well as the reaction enthalpy ∆Hm(ϑFC).
According to Fig. 1, the estimation of the parameters of the thermal system model by a
verified optimization routine leads to a system parameterization that is asymptotically stable
beyond the range of the temperature values used for the parameter identification. In contrast,
the simulated system output shows an unstable time response if the parameters are identified
on the basis of a purely non-verified local optimization procedure.

Finally, an outlook has been given on how to employ the uncertain dynamic system model
in real time for robust online control. This control framework will be designed by using
interval arithmetic techniques guaranteeing both accuracy and stability in a rigorous way.
For that purpose, the control synthesis is based, for example, on sliding mode techniques to
guarantee stability of the system dynamics in spite of parameter uncertainties [5].
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Summary of Identification Results for the Thermal
Subsystem Model (4)

Consideration of parameter sensitivities leads to improved stability properties
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Figure 1 Comparison of simulated temperatures for verified and non-verified parameter identific-
ation
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3.22 Verified Add-ons for the DSI toolbox
Gabor Rebner (Universität Duisburg-Essen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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The Dempster-Shafer with Intervals (DSI) toolbox [1], which is based on the imprecise
probability toolbox (IPP) [5], is an extension for MATLAB that provides algorithms for
verified computing with basic probability assignments. Throughout this talk, we use the term
verification in its narrow sense of referring to a mathematical proof for correctness of a result
obtained by a computer calculation. One problem of computer calculations is the appearance
of rounding errors, which are unavoidable because of the finite nature of floating-point
arithmetic. Even more important is to allow for uncertainty in a simulation model. Verified
methods offer a solution in these cases, motivating us to use them in combination with
probabilistic methods. In this talk, we present a new verified implementation of Markov set
chains (MSC) [4], a C-XSC [3] interface to MATLAB and an improvement in the evaluation
of monotonic and non-monotonic system functions in DSI. Furthermore we demonstrate the
ability of DSI to handle uncertainty under Dempster-Shafer theory in a software presentation.
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This talk is structured as follows. First, we review the DSI toolbox and its ability to
handle uncertain data in a verified way. Next, we discuss our verified implementation of
MSC. MSC extend classic Markov chains by defining uncertain transition matrices and initial
vectors. For example, a nuclear power plant cannot be modeled by Markov chains because
of the deterministic behavior of the applied transition matrices. By utilizing MSC, we are
able to describe the system’s operation time and environmental influences in terms of a
nondeterministic transition matrix. Besides, the use of verified algorithms allows us to cope
with the limitations of floating point arithmetic. Such algorithms provide an enclosure which
is guaranteed to contain the exact result.

We illustrate the functionality of our new implementation using a close-to-life example.
In the next part of our contribution, we present an implementation of a C-XSC to MATLAB
interface. The goal of this add-on is to make algorithms written in C-XSC accessible in
DSI. To avoid conversion errors, we use the MATLAB build-in interface to access MATLAB
memory directly. We discuss this implementation by considering the example of the error
function. Finally, we demonstrate the ability of DSI to sample monotonic and non-monotonic
functions in a verified way. In order to minimize the overestimation and the computation time,
we implemented a monotonicity test using automatic differentiation provided by INTLAB [6].
To compute a tight enclosure of the solution space of a function which is monotonic and
contains exclusively basic arithmetic operations {+,−, ∗, /} and their compositions, we
utilize floating point arithmetic with directed rounding. Otherwise, we have to use interval
arithmetic to get a verified enclosure of the solution. We close our talk by giving illustrative
examples of sampling f(x) = x · x− x with x uniform distributed in two to three.

In the course of the software presentation, we demonstrate the ability of DSI to handle
basic probability assignments (BPA) [2] in a verified way.

This demonstration is split into two parts. First we show the option to define cumu-
lative distribution functions with uncertain bounds. As an example we use the triangle
distribution with the uncertain mean, the lower, and the upper bound. The second part of
our demonstration deals with (non-)monotonic function propagation. We take the function
f(x) = sin(x2) + x3 with x triangularly distributed and having uncertainties in the bounds
and the mean. Furthermore, we illustrate the ability of DSI to detect erroneous user inputs.
Finally, we demonstrate the C-XSC to MATLAB interface.
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3.23 Refining Abstract Interpretation-based Approximations with
Constraint Solvers

Michel Rueher (Université Nice Sophia Antipolis, FR)
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Programs with floating-point computations are tricky to develop because floating-point
arithmetic differs from real arithmetic and has many counterintuitive properties. A classical
approach to verify such programs consists in estimating the precision of floating-point
computations with respect to the same sequence of operations in an idealized semantics of
real numbers.

Tools like Fluctuat –based on abstract interpretation– have been designed to address
this problem. However, such tools compute an over-approximation of the domains of the
variables, both in the semantics of the floating-point numbers and in the semantics of the
real numbers. This over-approximation can be very coarse on some programs. We show that
constraint solvers over floating-point numbers and real numbers can significantly refine the
approximations computed by Fluctuat.

Keywords: Program verification; Floating-point computation; C programs; Abstract inter-
pretation-based approximation; Interval-based constraint solvers over real and floating-point
numbers

3.24 Constraint Programming over Continuous Domains
Michel Rueher (Université Nice Sophia Antipolis, FR)
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In this tutorial, we first recall the basics of the constraint programming framework, a branch
& prune schema which is best viewed as an iteration of two steps:

1. Pruning the search space
2. Making a choice to generate two (or more) sub-problems

The pruning step is based on partial consistencies. It reduces an interval when it can
prove that the upper bound or the lower bound does not satisfy some constraint. We outline
the intuitions behind the most common partial consistencies and we analyze the relationship
between these consistencies and interval arithmetic techniques. We detail some critical
implementation issues of Hull-consistency, Box-consistency and Quad–consistency.

The branching step splits the interval associated to some variable in two intervals (often
with the same width). We give a short overview of the most effective search heuristics used
in this process.

To conclude, we illustrate the powerful refutation capabilities of local consistencies on
two applications: boosting OBR [2] in global optimisation; refining approximations (see
http://hal.archives-ouvertes.fr/hal-00623274/fr/) in program verification.
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3.25 Managing uncertainty and discontinuous condition numbers in
finite-precision geometric computation

Peihui Shao (Université de Montréal, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Peihui Shao

Joint work of Shao, Peihui; Stewart, Neil

Roundoff and representation errors in geometric computation may be modelled as epistemic
or aleatory processes. In either case, if it is required that the computed result have correct
topological form, then problems such as computing regularized Boolean operations are
fundamentally ill-conditioned. In this paper it is shown that if we wish to drive the process
through a discontinuity in the condition number, and if we wish to prove rigorous theorems,
then use of an exception-handling mechanism analogous to those used in programming
languages cannot be avoided.

The above observations show that traditional approaches to proving robustness, when
computation is done using ordinary IEEE floating-point arithmetic, are inappropriate. We
discuss the nature, in the context described above, of the theorems that should be proved,
and we give a very simple result that illustrates our approach.

3.26 Reliable Kinetic Monte Carlo Simulation based on Random Set
Sampling

Yan Wang (Georgia Institute of Technology, US)
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The kinetic Monte Carlo (KMC) method has been widely used in simulating rare events such
as chemical reactions or phase transitions. The lack of complete knowledge of transitions and
the associated rates is one major challenge for accurate KMC predictions. In this work, a
reliable KMC (R-KMC) mechanism is developed to improve the robustness of KMC results,
where propensities are interval estimates instead of precise numbers and sampling is based
on random sets instead of random numbers. A multi-event algorithm is developed for event
selection, and the system time is advanced based on best- and worst-case scenarios. The
weak convergence of the multi-event algorithm towards traditional KMC is demonstrated
with an interval master equation.
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3.27 The General Interval Power Function
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The purpose of this article is to find a general power function for use in interval arithmetic,
particularly with regard to the upcoming interval arithmetic standard which is being developed
by the IEEE working group P1788.

Apparently, in the history of mathematics exponentiation has sometimes been used more
or less as an abbreviatory notation and several definitions from different backgrounds, i.e.,
algebra and analysis, have been combined in people’s minds.

For the set of real numbers these definitions agree on many points, but not on all. Points
at issue are treated differently depending on the context, which poses problems searching for
a common standard.

One contentious issue with the definition of general exponentiation is the assignment of
real result to powers with negative base and rational exponent. We discuss three variants
each of which has its merits and drawbacks.

The interval extensions are presented for each of the three variants, and efficient algorithms
are implemented in INTLAB.

Finally, we recommend two of the three variants for interval libraries.

3.28 C-XSC – Overview and new developments
Michael Zimmer (Universität Wuppertal, DE)
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C-XSC is a powerful C++ library for verified numerical computing. It provides many useful
data types, among them real and complex intervals, (interval) vectors and matrices and a
long accumulator for the computation of dot product expressions in high accuracy. Also
included is a toolbox with implementations of many useful verified algorithms. In the past
few years, their have been some major extensions to the C-XSC library, especially with
regard to the use of C-XSC in High Performance Computing. In our presentation, we gave a
short overview of its features and then focused especially of the new developments in recent
versions.

The first addition is the ability to compute dot products and dot product expressions in
K-fold double precision. The desired precision can be changed at runtime, so that the user
can choose between higher accuracy or higher speed for each computation. The second major
addition is the optional support of the BLAS library for all vector-vector, matrix-vector and
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matrix-matrix products in double precision. The use of these algorithms can drastically
increase the performance of such operations.

Another major addition are new data types for sparse matrices and vectors. These allow
to work with such vectors and matrices in a very efficient way, both in terms of memory
consumption and computing speeds. The new data types provide an easy to use through the
use of operator overloading. The sparse data types are based on widely used data structures
which makes it easy to write interfaces to other sparse matrix software.

Also among the new features are new data types for multiple and arbitrary precision
arithmetic, which were covered by the talk of Walter Krämer during the course of this
Dagstuhl seminar.

The last presented new feature was the drastically improved thread safety of C-XSC,
which makes it easy for the user to parallelize C-XSC programs for multicore machines, for
example by using OpenMP. Finally, the talk also give a small outline of future developments
of the C-XSC library.

During this Dagstuhl seminar, Gabor Rebner presented a talk about add-ons for the DSI
toolbox using a self build interface between Matlab/Intlab and C-XSC using Matlabs Mex
compiler to make use of the error function implemented in C-XSC. In a future work, a full
interface between Matlab/Intlab and C-XSC might be possible.

In an additional software presentation at this Dagstuhl seminar, the installation of C-XSC
on an example system (64 bit Macbook Pro running Mac OS X Lion) was demonstrated.
Many of the options for compilation and optimization for the compilation of the core library
and of C-XSC programs were covered in detail during this presentation. It should be stressed
that a default installation of C-XSC only requires to start an installation script, accept the
license by typing yes and then hitting enter 9 times to accept all the default settings.

Special thanks to Frithjof Blomquist as well as to some of our recent Master/Diploma
students (Falko Sieg, Sascha Habicht, Frank Roitzsch, Christian Doescher, Daniel Kreuer,
Michael Hirdes and Daniel Dakowski) for contributing to the development of C-XSC.
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tainty for Decision Making, on the Example of Economics-Related Heavy-Tailed Distributions
14:30–15:00: John D. Pryce, Decorations for Dummies (2)
15:00–18:00: P 1788 Interval Standard Group (N. Revol et al.)
19:30–20:30: Software Presentation

Friday, September 16, 2011

9:00–9:30: S. Rump, Error Estimation of Floating-Point Summation and Dot Product
9:30–10:00: Arnold Neumaier and Qaisra Fazal, Enclosing Dynamical Systems with Large
Initial Uncertainties
10:30–11:15: Strategy discussion
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