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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 11481
“Models@run.time”. Research on models@run.time seeks to extend the applicability of mod-
els and abstractions to the runtime environment, with the goal of providing effective technologies
for managing the complexity of evolving software behaviour while it is executing. The Dagstuhl
Seminar “Models@run.time” brought together a diverse set of researchers and practitioners with a
broad range of expertise, including MDE, software architectures, reflection, self-adaptive systems,
validation and verification, middleware, robotics and requirements engineering.
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To date, research on model-driven engineering (MDE) has mainly focused on the use of models
during software development. This work has produced relatively mature techniques and tools
that are currently being used in industry and academia to manage software complexity during
development. Research on models@run.time seeks to extend the applicability of models and
abstractions to the runtime environment, with the goal of providing effective technologies for
managing the complexity of evolving software behaviour while it is executing.

As is the case for many software development models, a runtime model is often created
to support reasoning. However, in contrast to development models, runtime models are used
to reason about the operating environment and runtime behaviour for some purpose, for
example, to determine an appropriate form of adaptation, and thus these models must capture
abstractions of runtime phenomena. Different runtime dimensions need to be balanced when
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adapting software at runtime, including efficient use of resources (time, memory, energy),
context-dependencies (time, location, platform), and personalization concerns (quality-of-
service specifications, profiles). The hypothesis can be stated as follows: Models@run.time
that provide meta-information on these dimensions during execution enables the development
of technologies that automate (1) runtime decision-making and (2) safe adaptation of
runtime behaviour. Thus, we anticipate that this technology will play an integral role in the
management of autonomic systems and self-adaptive systems.

The problems targeted by the models@run.time community are multi-faceted and thus
tackling them requires expertise from a variety of research areas. The Dagstuhl Seminar
models@run.time brought together a diverse set of researchers and practitioners with a broad
range of expertise, including MDE, software architectures, reflection, self-adaptive systems,
validation and verification, middleware, robotics and requirements engineering.

The following gives the objectives of the seminar and describes the extent to which they
were met :

1. Objective: To identify and document the potential benefits of Models@run.time including
benefits associated with their use in adaptive and autonomic systems. Extent Met: One of
the working groups (Group 3: Uses and Purposes of M@RT) was charged with coming up
with use cases that demonstrate the benefits associated with the use of models@run.time.
The report produced by this group discusses the types of significant software systems
that can benefit from use of models@run.time.

2. Objective: To reach a common understanding of the terminology and associated concepts
that underpin the use of different models once a system is deployed. Extent Met: Each
working group defined the terminology and the concepts used in the descriptions of their
primary outcomes.

3. Objective: To identify a set of key research challenges that must be tackled to address
the real-world problems posed by self-adaptive systems within the next five (5) years (the
research roadmap). Extent Met: Each working group identified, discussed, and described
the key challenges in its focus area. The identified challenges will be included in the
roadmap we plan to publish.

4. Objective: To also identify associated technology transfer strategies to ensure that the
research in this area has impact on industrial practice and associated methodologies and
tool-sets. Extent Met: Group 2 (Runtime updating/adaptation mechanisms) focused on
discussing and analysing the effectiveness of technologies that have been developed to
support models@run.time.

5. Objective: To publish a collection of articles containing the roadmap, as well as papers
from the participants. Extent Met: Plans have been put in motion for publishing
peer-reviewed papers from participants in a LNCS State-of-the-Art Survey Volume on
Models@run.time.

The seminar consisted of participant presentation and working group sessions. Monday
and Tuesday morning were "speed dating" days, in which everyone (with the exception of
some of the organizers, to better manage time) presented a 10-min introductory talk. The
presenters covered a wide range of topics including adaptive cyber-physical systems, self-
evolution, requirements-driven runtime adaptation, safe and trustworthy autonomous robots,
adaptive and self-managing software, runtime variability and architectural reconfiguration
at runtime. We also had two longer presentations by persons from industry (ERICSSON).
The presenters were Joe Armstrong and Paer Emanuelsson. From Tuesday to Thursday
participants worked in working groups that focused on particular aspects of models@run.time
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research. At the start of each day the organizers summarized the activities that were to take
place and the deliverables that were to be produced at the end of the day. At the end of
each day, each group presented their deliverables.

On Wednesday evening we had a productive panel where the following questions were
discussed: What are the compelling business models for models@run.time?, What are the
killer applications? What are the obstacles to deployment of models@run.time systems?,
What are key enabling technologies for models@run.time (e.g., standards or component
models).

11481
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3 Overview of Talks

3.1 Challenges in Designing models@runtime Systems and Our Related
Research Activities

Mehmet Aksit (University of Twente, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
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Runtime adaptable systems have become increasingly popular during the last decade, and
there is a clear evidence that this trend will continue also in the future [1]. Designing
effective and efficient models@runtime systems is far from trivial, since solutions to the design
challenges demand combination of various techniques:

(i) there is a need for new languages and computational models that help in expressing
such systems effectively. It has been shown that current object- oriented and aspect-oriented
languages fall in short in this matter. Event- based languages offer considerable advantages
[2,3]. Most runtime enforcement approaches (their objectives are similar to the ones of
models@runtime) based on aspect-oriented languages support single base language (such
as Java) and uni-process implementations and their expressive power is limited. We have
developed various aspect-oriented (event-based) languages and systems (for example, Event-
Composition Model and the EventReactor language) to overcome these limitations [4,5,6].

(ii) It is important to enforce the invariants of the models and the running systems and
the conformance between the models and the systems. In [7], we show model checking of
UML based models and conformance checking between the models and the running systems.

(iii) The control system(s) need to evaluate the running system from the perspective of
various qualities (correctness, availability, memory usage, energy usage, performance etc.)
and enforce optimal adaptation and control strategies. We have developed an architectural
style and various techniques (for example based on multi-objective optimization) for this
purpose [8,9,10].

(iv) We also believe that fuzzy-probabilistic techniques can be effective in dealing with
uncertainty in such systems [11].

References
1 Aksit, M. and Choukair, Z. (2003) Dynamic Adaptive and Reconfigurable Systems Over-

view and Prospective Vision. In: Workshop on Distributed Auto-adaptive Reconfigurable
Systems (DARES) – International Conference on Distributed Computing Systems (ICDCS),
23rd International Conference on Distributed Computing Systems Workshops (ICDCS’03
Workshops), 19-22 May 2003, Rhode Island, Providence, USA. pp. 84-89. IEEE Computer
Society. ISBN 0-7695-1921-0

2 Malakuti Khah Olun Abadi, S. (2011) Event Composition Model: Achieving Naturalness
in Runtime Enforcement. PhD thesis, University of Twente. CTIT Ph.D. thesis series no.
11-205 ISBN 978-90-365-3246-4

3 Bockisch, C.M. and Malakuti Khah Olun Abadi, S. and Aksit, M. and Katz, S. (2011)
Making aspects natural: events and composition. In: Tenth International Conference on
Aspect-Oriented Software Development, AOSD 2011, 21-25 Mar 2011, Porto de Galinhas,
Brazil. pp. 285-299. ACM. ISBN 978- 1-4503-0605-8

4 Malakuti Khah Olun Abadi, S. and Aksit, M. and Bockisch, C.M. (2011) Runtime Verific-
ation in Distributed Computing. Journal of Convergence, 2 (1). pp. 1-10. ISSN 2093-7741
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Transparency in Runtime Verification. In: Ninth IEEE International Symposium on Parallel
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and Distributed Processing with Applications Workshops, ISPAW 2011, 26-28 May 2011,
Busan, Korea. pp. 328-335. IEEE Communications Society. ISBN 978-1-4577-0524-3

6 Malakuti Khah Olun Abadi, S. and Bockisch, C.M. and Aksit, M. (2009) Applying the
Composition Filter Model for Runtime Verification of Multiple- Language Software. In:
The 20th annual International Symposium on Software Reliability Engineering,ISSRE 2009,
16-19 Nov 2009, Mysore, India. pp. 31-40. IEEE Computer Society. ISBN 978-0-7695-3878-5
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ing the Correspondence Between UML models and Implementation. In: 1st International
Conference on Runtime Verification, 1-4 Nov 2010, Malta. pp. 198-213. Lecture Notes in
Computer Science 6418. Springer Verlag. ISSN 0302-9743 ISBN 978-3-642-16611-2
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Proceedings of the 8th Working IEEE/IFIP Conference on Software Architecture, 14-17
Sep 2009, Cambridge, UK. pp. 349-352. IEEE Computer Society. ISBN 978-1-4244-4985-9

11 Noppen, J.A.R. and van den Broek, P.M. and Aksit, M. (2008) Software development with
imperfect information. Soft Computing – A Fusion of Foundations, Methodologies and
Applications, 12 (1). pp. 3-28. ISSN 1432-7643

3.2 Programming systems that never stop
Joe Armstrong (ERICSSON – Stockholm, SE)
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How can we program systems that never stop? Erlang (a programming language) and
more specifically OTP (a set of libraries) was designed specifically for building fault-tolerant
systems. The systems we have built in Erlang have been running for many years and during
this time have been upgraded many times without significant loss of service. In this context
"many years" means of the order of ten years and "many times" means hundreds to thousands
of times. These are large systems servicing hundred to millions of simultaneous sessions. I’ll
talk about the architectures of such systems and how they are designed for dynamic code
and service upgrade and how this works in practice.

3.3 Multi-quality Dynamic Auto-Tuning for Cyber-Physical Systems
Uwe Aßmann (TU Dresden, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Cyber-physical systems of the future are safety-critical. They need verification of qualities
but also need to be highly adaptive.
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This requires completely new software architectures, based on dynamic multi-quality
auto-tuning. Auto-tuning is an optimization method from high-performance computing
which adapts an algorithm towards system and context parameters.

For cyber-physical systems, we suggest to extend auto-tuning to multiple qualities, based
on quality contracts [1].

References
1 S. Götz, C. Wilke, M. Schmidt, S. Cech, and U. Aßmann. Towards Energy Auto-Tuning.

In Proceedings of First Annual International Conference on Green Information Technology
(GREEN IT), 2010.

3.4 Claim Monitoring for Tackling Uncertainty in Adaptive Systems
Nelly Bencomo (INRIA, FR)
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There is an increasing need for software systems that are able to adapt dynamically to
changes in their environment.

However, a challenging characteristic of self-adaptive systems is that of uncertainty; a
full understanding of all the environmental contexts they will encounter at runtime may
be unobtainable at design time. Thus assumptions may have to be taken that risk being
wrong, and this may lead to problems at runtime. We have developed REAssuRE, which
uses the concept of claims to explicitly represent such assumptions in goal models of the
system. We define a semantics for claims in terms of their impact on how alternative goal
operationalisation strategies satisfy the system’s non-functional requirements or soft goals.
The implementation of REAssuRE includes automatic claim value propagation and goal
model evaluation, using in-memory representations of the goal models and associated claims.
We have demonstrated how claims can be monitored to verify claims at run time, and how
falsified claims can trigger principled adaptation. We have evaluated REAssuRE using an
adaptive flood warning system.

References
1 Kristopher Welsh, Pete Sawyer, Nelly Bencomo. Towards Requirements Aware Systems:

Run-time Resolution of Design- time Assumptions. E26th IEEE/ACM International Con-
ference On Automated Software Engineering, ASE 2011, Kansas, USA, 2011

3.5 Models@RT to support Interoperability
Amel Bennaceur (INRIA, FR)
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Interoperability is a fundamental challenge for today’s extreme distributed systems.Indeed,
the high-level of heterogeneity in both the application layer and the underlying middleware
and the conflicting assumptions that each system makes about its running environment
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hinder the successful interoperation of independently-developed systems. Many solutions
that aggregate the disparate systems in a non-intrusive way have been proposed.

These solutions use intermediary software entities, called mediators, to interconnect
systems despite disparities in their data and/or interaction models by performing the necessary
coordination and translations while keeping them loosely-coupled. Creating mediators
requires a substantial development effort and a thorough knowledge of the application-
domain, which is best understood by domain experts. Moreover, the increasing complexity
of today’s distributed systems, sometimes referred to as Systems of Systems, makes it almost
impossible to develop ‘correct’ mediators manually. Therefore, formal approaches are used
to automatically synthesize mediators. The notion of mediator is further realized using
emergent middleware.

In this context, run-time models are used to capture meta-information about the hetero-
geneous systems including their interfaces and associated behaviour.

This is supplemented by ontological information to enable semantic interoperability in
given application domains. We examine the nature of such run-time models coupled with
consideration of the supportive synthesis algorithms that use these models to generate the
appropriate mediators in order ensure interoperability in highly-heterogeneous environments.

This work takes place in the CONNECT project, which also examines how the models
are derived, and how the system can adapt to underlying changes in context or issues related
to the performance or behaviour of the system.

3.6 Self-Evolution under the Hood
Walter Cazzola (Università di Milano, IT)
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No system escapes from the need of evolving either to fix bugs or to add new features.
System evolution becomes particularly a problem in case the system cannot be stopped. The
approach to solve this problem that is steadily gaining ground in the last few years is to
grant reflective capability to the system that will introspect on its own model to plan its
evolution when an update is necessary and drive the changes accordingly on its model and
code.

Such an approach requires to fill the existing gap between the code and the model (often
outdated and too loose) and to have an adequate support by the underlying framework
(either the operating system or the virtual machine) [1]. The former is typically addressed by
model driven engineering or reverse engineering techniques; the solution to the latter instead
relies always on ad hoc solutions since the support to dynamic adaptation is quite limited.

To this respect, we developed JavAdaptor [3], a DSU approach which allows us to flexibly
update running systems in an unanticipated manner.

JavAdaptor is a framework built on Java to deeply support dynamic evolution of Java
applications; it permits to add/remove fields/methods (schema changes) and code adaptation
with only a minimal lose of performance and without stopping a running application and above
all the running application does not need to be pre-prepared to be updated by JavAdaptor
(no special hooks are necessary in the code).

JavAdaptor, as it is, represents the perfect back-end for self-evolution when cooperates
with an evolutionary planner that feeds it with the changes to apply to the running system.
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Apart from presenting JavAdaptor and its characteristics, in this contribution, we are going
to discuss its integration into a reflective architecture (a previous work from us named
RAMSES [2]) to enable self-evolution driven by changes on the application model.

References
1 Walter Cazzola. Cogito, Ergo Muto! In Proceedings of the Workshop on Self-Organizing

Architecture (SOAR’09), pages 1–7, Cambridge, United Kingdom, September 2009.
2 Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Software Evolution through Dynamic

Adaptation of Its OO Design. In Objects, Agents and Features: Structuring Mechanisms for
Contemporary Software, Lecture Notes in Computer Science 2975, pages 69–84. Springer,
July 2004.

3 Mario Pukall, Christian Kästner, Walter Cazzola, Sebastian Götz, Alexander Grebhahn,
Reimar Schöter, and Gunter Saake. JavAdaptor — Flexible Runtime Updates of Java
Applications. Software—Practice and Experience, 2012.

3.7 Challenges for Models@Runtime
Amit K. Chopra (University of Trento – Povo, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
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My interest in models@runtime stems from my work with Tropos-like requirements models.
These principal abstractions of these models are actors and their goals and commitments. I
imagine them all to be runtime artefacts: actors would act toward satisfying their goals for
which they would have to potentially enter into commitments with other actors. In this sense,
I see an actor’s goal model as serving essentially as the program for the actor. Although
many challenges need to be addressed for this vision to become reality, it illustrates my
take on models@runtime: introduce a new layer of abstraction (the model) with its own
interpreter. The function of the interpreter is to translate model-level concepts into the
appropriate operational ones. For example, goals may be operationalised into procedures,
constraints, and so on. The technical challenges relate to understanding the concerns to be
addressed in high-level models; judiciously selecting and formalizing the concepts required so
as to not end up with a concept soup; and understanding the assumptions that can be made
of the operational layer and the nature of the API with which its services may be invoked.
The biggest challenge though remains in making sure that we are engineering systems to
user requirements, no matter how high-level the abstractions we employ.

3.8 Urban-Scale, Dynamically Adaptable Systems
Siobhan Clarke (Trinity College – Dublin, IE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Siobhan Clarke

Joint work of Clarke, Siobhan; Popescu, Razvan; Staikopoulos, Athanasios; Brennan, Shane; Fritsch, Serena;
Groba, Christin; O’Toole, Eamonn; Hannon, Paula;

URL http://www.dsg.scss.tcd.ie/

My research interests are in design and programming models for dynamically adaptable sys-
tems. Systems of interest include large-scale, multi-layer systems, and distributed embedded
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systems, including wireless sensor networks. In particular, I am investigating systems to
support smart and sustainable cities, where resources, such as energy, transport and water,
need to be optimised, and knowledge available from sensors and devices in the environment
can be harnessed to support citizens’ daily lives. Models at runtime will provide the view
of the system and its environment that will enable analysis and triggering of appropri-
ate adaptations to ensure the required optimisations occur in a timely manner. Research
challenges include how to extract and filter the appropriate runtime data from the large
scope of information available, and reason over that data in manner timely enough to effect
appropriate adaptations.

3.9 A (Personal) Historical Perspective on Models@Run.time
Fabio M. Costa (Universidade Federal de Goiás, BR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Fabio M. Costa

Joint work of Costa, Fabio M.; Blair, Gordon S.; Clarke, Peter J.

I started looking into the use of models at runtime when I was doing research on adaptive
middleware for my PhD thesis at Lancaster University back in the year 2000. Reflection was
a nice way to do adaptive middleware, but despite the use of meta-object protocols, it lacked
a good approach to structure the self-representation of the base-level system. Then we came
across with work from Kerry Raymond’s group at DSTC, Australia, which proposed the
concept of meta-information management, basically an approach for maintaining MOF-like
repositories of meta-data (actually structured in the form of models) that could be accessed
at runtime in a distributed environment [1]. To me, that was the seed to start thinking about
ways to effectively use middleware models at runtime, and in the year 2000 we published
a paper on the combination of reflection and meta-information management for adaptive
middleware [2]. In that paper we proposed the design time use of models to generate
middleware configurations, and, at runtime, the use of these same models as the causally
connected self-representation of the middleware components that was maintained by the
reflective meta-objects for the purposes of dynamic adaptation. This approach was realized
as part of a middleware architecture (and a series of prototypes) called Meta-ORB, which also
allowed the update of the runtime model and the creation of new model elements as a result
of reflection. Now, after six successful editions of the Models@Run.time workshop, which
built a very active community around the theme, and after this very interesting Dagstuhl
seminar, it is good to see how the work of this great community has contributed to the
development of the field to a point where it is gaining momentum and is starting to have
an impact on the practice of building, maintaining and evolving software in many different
application domains.

From the perspective of our research, some challenges that lie ahead include finding ways
to deal with the complexity of models and developing efficient and safe (i.e., consistency-
preserving) techniques to manipulate the models while the system is running, as well as to
maintain the causal connection link without interfering with the performance of the system.
The need to support user-centric models (models developed by non-technical users) and the
requirement to manage distributed models are important additional challenges.

Our current research is looking into new approaches to use models at the core of ad-
aptive/reflective and autonomic middleware technologies. We are particularly interested
in the use of models to simulate and verify dynamic adaptations before they are actually
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applied to the system. We are also looking into the development of a generic framework
for model-driven middleware, using concepts such as layered architectures with models at
different levels of abstraction, separation of behavioural and structural models (i.e., the
model of the middleware system vs. the model run by the system), direct execution of
(structural) models via interpretation, and the realization of functionality specified in user
models via the dynamic selection and combination of existing underlying service providers.
This generic framework is defined at the meta-model level and can be instantiated to realize
the approach in different application domains. The approach originated from existing work
on the Communication Virtual Machine middleware [3], and we are now working towards
applying it to the domains of smart micro-grids and ubiquitous computing environments.

References
1 S. Crawley, S. Davis, J. Indulska, S. McBride, K. Raymond. 1997. Meta Information Man-

agement. In Proceedings 2 nd IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS’97).

2 Fabio M. Costa and Gordon S. Blair. 2000. Integrating Meta-Information Management and
Reflection in Middleware. In Proceedings of the International Symposium on Distributed
Objects and Applications (DOA ’00). IEEE Computer Society, Washington, DC, USA,
133-.

3 Yali Wu, Andrew A. Allen, Frank Hernandez, Robert B. France, and Peter J. Clarke. A
Domain-Specific Modeling Approach to Realizing User-Centric Communication. Journal of
Software Practice and Experience (SP&E). Accepted February 2011.

3.10 Models at RunTime for the Certification of Autonomous
Assistive Robots

Kerstin I. Eder (University of Bristol, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
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Human-assistive robots are machines designed to improve the quality of our lives by helping
us to achieve tasks, e.g. a personal care robot helps a patient in a hospital during recovery.
Such robots perform physical tasks within the personal space of a human, including shared
manipulation of objects and even direct contact. While the actions a robot performs are
largely the same, every single execution will be slightly different in detail from the last, e.g.
a nursing assistant serving lunch provides differing degrees of support during a patient’s
recovery. This requires robots to adapt their behaviour to different situations. To be genuinely
useful, some robots may need to be powerful and therefore are potentially dangerous.

The development of human-assistive robots introduces new ethical, legal and societal
issues. One fundamental concern is whether human-assistive robots can be trusted by
humans. Essential components of trustworthiness are usefulness and safety; both have to
be demonstrated for humans to gain confidence in the trustworthiness of such robots and
certainly before such robots pass product certification. How this can be done is currently an
open research question.

At the Bristol Robotics Lab I am conducting research to understand the verification and
certification needs arising out of the latest developments in Autonomous Assistive Robots.
My aim is to develop design and verification techniques as well as overall methodologies
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leading to certification to push the state of the art in this area. My first projects address
this issue in the context of Human-Robot Interaction.

Design Verification is a process used to demonstrate the correctness of a design w.r.t.
the requirements and specification. Techniques used for design verification rely upon the
requirements, specification and design to fully define the functional behaviour of the system
at the time of verification. Human-assistive robots, however, are designed to adapt their be-
haviour. There is typically no complete description of the entire range of possible behavioural
adaptations, which renders traditional verification techniques useless in this context. Even if
the full set of behavioural descriptions was available, it would be so large that traditional
design-time verification techniques would quickly reach their limits. Fig. 1 shows Adaptability
vs. Verifiability ranging from a system that is fully adaptive but has too many behaviours
making verification no longer tractable (on the left) to a system that is easily verifiable but
not adaptive.

not tractable
wrt verification

fully adaptive not adaptive

verifiable

Adaptability
Verifiability

Design for Verification

Robotic Safety &
Usefulness Reflexes

Figure 1 Adaptability vs. Verifiability

My research involves new techniques based on models at runtime to enable the verification
of behavioural adaptations of human-assistive robots at runtime.

These models capture a consistent state of the agent initially (pre-verified warm start).
Consistency is maintained at runtime. Based on the model the robot autonomously makes
decisions. This enables the robot to dynamically adapt its behaviour to the situation such
that it fulfils its requirements at all times.

The model contains a high-level description of the requirements and constraints that
govern the functional (and non-functional) behaviour of the robot. It may be layered to
reflect the robot’s state, the state of the environment of the robot including the state of the
humans/agents interacting with the robot, etc.

The key challenges for my research are currently:
Establishing a set of high-level requirements that serve as invariant properties to be
preserved during online behavioural adaptations, i.e. a set of invariant properties that
form a “virtual cage”
Online verification and validation (V&V) need to be tackled before certification: Can we
design for online V&V? Can we build/adapt "correct-by-construction"?
Finding a good compromise between the accuracy of the model to be a useful base for
decision making and behavioural adaptation and computational complexity in terms of
reasoning/processing based on the model.
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3.11 Flexible Telecom systems that never stop
Paer Emanuelsson (Ericsson AB – Linköping, SE)
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Telecom systems are large distributed systems with complex functionality that handle millions
of users with real time performance. These systems evolve a lot during decades of years in
operation. A system may only be unavailable for some minutes per year which makes the
usual update procedures that stop the system impossible to use. Updates have to be made
while the system is running.

We will briefly describe some different techniques used for achieving flexibility.
1. Parameters
2. Software update during runtime

a. patches, data cannot be updated
b. updates including data changes

1. Parameters
When it is known that there is need for variability a parameter is introduced.
By using parameters we avoid having lots of versions optimized for different markets

and operators, which could lead to a maintenance nightmare. The biggest drawback with
parameters is that changes have to be foreseen.

2a. Patches
Every software unit has a patch area, into which the patch can be loaded. The new

software is activated by placing a jump to the new code.
2b. Updates including data changes
Software is run on two processors, and the second is a hot standby. While the first

processor handles current traffic the new software is loaded onto the second processor.
Runtime data is then transferred from the first processor to the second, which is specified
in a data transformation language. This allows for arbitrary software changes. The data
transformations necessary when data structures are changed can however be quite complex.
The software doing the change from old to new version has to be designed for each change
and the effort for specifying and performing the change can be larger than the development
itself. It is also possible to have the new and old versions running simultaneously and transfer
traffic only when needed – that is when old traffic does not end by itself after a period
of waiting. Another way of handling data, which would allow for complex dependencies
between different parts is to use a distributed real time database. Then transaction protected
transformations can be performed.

3.12 Models@RT to support Interoperability
Nikolaos Georgantas (INRIA Le Chesnay, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
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Interoperability is a fundamental challenge for today’s extreme distributed systems. Indeed,
the high-level of heterogeneity in both the application layer and the underlying middleware
and the conflicting assumptions that each system makes about its running environment

11481

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


106 11481 – Models@run.time

hinder the successful interoperation of independently-developed systems. Many solutions
that aggregate the disparate systems in a non-intrusive way have been proposed.

These solutions use intermediary software entities, called mediators, to interconnect
systems despite disparities in their data and/or interaction models by performing the necessary
coordination and translations while keeping them loosely-coupled. Creating mediators
requires a substantial development effort and a thorough knowledge of the application-
domain, which is best understood by domain experts. Moreover, the increasing complexity
of today’s distributed systems, sometimes referred to as Systems of Systems, makes it almost
impossible to develop ‘correct’ mediators manually. Therefore, formal approaches are used
to automatically synthesize mediators. The notion of mediator is further realized using
emergent middleware.

In this context, run-time models are used to capture meta-information about the hetero-
geneous systems including their interfaces and associated behaviour. This is supplemented
by ontological information to enable semantic interoperability in given application domains.
We examine the nature of such run-time models coupled with consideration of the supportive
synthesis algorithms that use these models to generate the appropriate mediators in order to
ensure interoperability in highly-heterogeneous environments.

This work takes place in the CONNECT project, which also examines how the models
are derived, and how the system can adapt to underlying changes in context or issues related
to the performance or behaviour of the system.

3.13 Models at Runtime for Adaptive and Self-managing Software
Holger Giese (Hasso-Plattner-Institut – Potsdam, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Software systems have to be continuously adapted to their changing requirements or en-
vironments. This is typically done by maintenance, while self-aware, context-aware, ultra-
large-scale, or mission-critical software systems often have to be adapted during operation
(self-adaptive software). Model-driven engineering and models at runtime play crucial roles
in supporting maintenance, enabling self-adaptation, and integrating both, maintenance and
self-adaptation.

In our talk, we outline our perspective on "models at runtime" as any models used on-line,
i.e., internal to the running system, to represent running software, to represent the software’s
environment, or to manipulate or analyse any of the former two. Moreover, we sketch the
benefits of models at runtime for maintenance, self-adaptation, and for an integrated setting
of maintenance and self-adaptation. Considering different kinds of runtime models required
for self-adaptation and self-adaptation activities as model operations, we discuss the role of
a megamodel for specifying adaptation loops for self-adaptive software and operationalising
the treatment of runtime models as means for monitoring, analysis, planning, and executing
planned changes.
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3.14 Multi-Quality Auto-Tuning with Contract Negotiation
Sebastian Götz (TU Dresden, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Main reference Sebastian Götz, Claas Wilke, Sebastian Cech and Uwe Aßmann. Architecture and Mechanism for
Energy Auto-Tuning. To appear in: Sustainable Green Computing. Practices, Methodologies and
Technologies. IGI Global. 2012

Building Software Architectures for self-optimizing, quality-aware systems, requires to ex-
plicitly express the non-functional concerns and how in particular they interleave using the
notion of models at runtime. In our Multi-Quality Auto-Tuning approach we distinguish
structure and variant models. The first are used to describe the types of software, hardware
and users that constitute the system. The second are used to describe the actual state of the
system and to prescribe target states of the system. To make non-functional concerns explicit
we use contracts, which describe the relation between different elements of the system in
terms of their non-functional requirements as well as provisions. All these models are and
have to be used at runtime to reason about the system and thereby to identify the most
efficient configuration.

The process of reasoning faces a trade-off between response time and intelligence.
The major challenge from my point of view is finding the right abstraction-level for the

models and fast, intelligent reasoning/optimization techniques.

3.15 Runtime Monitoring of Java Bytecode with UML and OCL
Models

Martin Gogolla (Universität Bremen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Hamann, Lars; Gogolla, Martin; Kuhlmann, Mirco
Main reference L. Hamann, M. Gogolla, M. Kuhlmann, “OCL-based Runtime Monitoring of JVM hosted

Applications,” in Proc. 11th OCL Workshop (2011), ECEASST Vol. 44, 20 pages.
URL http://journal.ub.tu-berlin.de/eceasst/article/view/623/677

Implementations of object-oriented software usually contain a lot of technical classes. Thus,
the central parts of an application, e.g., the business rules, may be hidden among peripheral
functionality like user-interface classes or classes managing persistence. Our approach makes
use of modern virtual machines and allows the developer to profile an application in order
to achieve an abstract monitoring and quality assurance of central application components
during runtime. We represent virtual machine bytecode in form of a so-called platform-aligned
model (PAM) comprising OCL invariants and pre- and postconditions. We show a prototype
implementation as an extension of the UML and OCL tool USE.
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3.16 Models@run.time for the proactive detection of QoS Problems
Lars Grunske (TU Kaiserslautern, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Models@run.time are currently being used to evaluate quality demands and are especially
suitable for performance, reliability, safety, and availability properties [2]. Our research is
concerned with providing dedicated monitoring approaches to align the models with the
running system [1,3]. Complemented with time-series analysis and change point detection
techniques, these monitoring approaches allow for dynamic detection and proactive resolution
of quality problems in modern software systems.

References
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Evaluation of QoS Attributes. In Proceedings of the 13ht IEEE International High Assur-
ance Systems Engineering Symposium. IEEE Computer Society, 2011.

2 R. Calinescu, L. Grunske, M. Z. Kwiatkowska, R. Mirandola, and G. Tamburrelli. Dynamic
QoS management and optimization in service-based systems. IEEE Trans. Software Eng.,
37(3):387–409, 2011.

3 L. Grunske. An effective sequential statistical test for probabilistic monitoring. Information
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3.17 SM@RT: A Model Diven Framework for Runtime Software
Architecture

Gang Huang (Peking University, CN)

License Creative Commons BY-NC-ND 3.0 Unported license
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Runtime software architectures (RSA) are architecture-level, dynamic representations of run-
ning software systems, which help monitor and adapt the systems at a high abstraction level.
The key issue to support RSA is to maintain the causal connection between architecture and
system, ensuring that the architecture represents the current system, and the modifications
on architecture cause proper system changes.

We developed a model-driven framework, called SM@RT (supporting models at runtime),
to construct and maintain RSA in an automated way. SM@RT does four contributions to
RSA: First, SM@RT gives a formal definition of RSA with a set of meta models and their
relationships; Second, SM@RT automatically generates all codes implementing the causal
connection between the system and RSA after developers define the software architecture
model they preferred, the management model of the target runtime system, and the causal
connection between them using the above meta models; Thirdly, SM@RT provides an
incremental bidirectional transformation- based engine for synchronizing multiple RSA
models; Fourth, SM@RT provides QVT as a default architecture manipulation language for
reading, writing and analysing the RSA in a programmatic way.

SM@RT is compliant with MOF and QVT, the dominant standards of modelling tech-
nology, and then almost all artefacts produced with SM@RT are reusable and integrable,
which reduce much engineering work in practice.
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SM@RT has been experimented on diverse systems, from JEE enterprise systems (ECPerf,
JPS and Rubis on JOnAS, JBoss and PKUAS), Java desktop systems (Eclipse GUI and
XML Parser), to mobile systems (Android and PLASTIC/Window Mobile).

The future work of SM@RT will focus on seeking killer applications of models at runtime,
in which the management is the core challenge (e.g. cloud) or the online construction and
evolution are key enablement for business (e.g. internet of things or cyber-physical-systems).

3.18 EAGLE: Engineering softwAre in the ubiquitous Globe by
Leveraging uncErtainty

Paola Inverardi (Universitá di L‘Aquila, IT)
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In the next future we will be surrounded by a virtually infinite number of software applications
that provide computational software resources in the open Globe. Users will be keen on
producing their own piece of software, by also reusing existing software, to better satisfy their
needs, therefore with a goal oriented, opportunistic use in mind. The produced software will
need to be able to evolve, react and adapt to a continuously changing environment, while
guaranteeing dependability. The strongest adversary to this view is the lack of knowledge on
the software’s structure, behaviour, and execution context. Despite the possibility to extract
observational models from existing software, a producer will always operate with software
artefacts that exhibit a degree of uncertainty in terms of their functional and non functional
characteristics. We believe that uncertainty can only be controlled by making it explicit
and by using it to drive the production process itself. In this paper, we introduce a novel
paradigm of software production process that explores available software and assesses its
degree of uncertainty in relation to the opportunistic goal G, assists the producer in creating
the appropriate integration means towards G, and validates the quality of the integrated
system with respect to G and the current context.

3.19 Models@RT to support Interoperability
Valerie Issarny (INRIA Le Chesnay, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
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Interoperability is a fundamental challenge for today’s extreme distributed systems.Indeed,
the high-level of heterogeneity in both the application layer and the underlying middleware
and the conflicting assumptions that each system makes about its running environment
hinder the successful interoperation of independently-developed systems. Many solutions
that aggregate the disparate systems in a non-intrusive way have been proposed.
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These solutions use intermediary software entities, called mediators, to interconnect
systems despite disparities in their data and/or interaction models by performing the necessary
coordination and translations while keeping them loosely-coupled. Creating mediators
requires a substantial development effort and a thorough knowledge of the application-
domain, which is best understood by domain experts. Moreover, the increasing complexity
of today’s distributed systems, sometimes referred to as Systems of Systems, makes it almost
impossible to develop ‘correct’ mediators manually. Therefore, formal approaches are used
to automatically synthesize mediators. The notion of mediator is further realized using
emergent middleware.

In this context, run-time models are used to capture meta-information about the hetero-
geneous systems including their interfaces and associated behaviour.

This is supplemented by ontological information to enable semantic interoperability in
given application domains. We examine the nature of such run-time models coupled with
consideration of the supportive synthesis algorithms that use these models to generate the
appropriate mediators in order ensure interoperability in highly-heterogeneous environments.

This work takes place in the CONNECT project, which also examines how the models
are derived, and how the system can adapt to underlying changes in context or issues related
to the performance or behaviour of the system.

3.20 Hyper-Agility: Handling Variability from Design-Time to Runtime
Jean-Marc Jezequel (IRISA – Rennes, FR)
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Hyper-agility can be defined as the transposition of the Agile Manifesto at runtime to
obtain systems able to adapt automatically to changes in their environment or their user
requirements. We present an operational approach based on the use of models to separate
concerns by abstracting specific aspects of reality. This approach has become quite popular
in recent years for software analysis and design, relying on modelling languages of the UML
family. Of course, the separation of concerns is of limited value if we cannot automatically
reconstruct these concerns. The automatic composition of models makes it possible to
effectively manage changes in the design or maintenance of software, especially in the context
of product lines engineering. Beyond the resolution of this issue in the design phase, we
show how the composition of models can also be used during the execution of a system to
specify and manage dynamically adaptive software systems, here conceptualized as dynamic
software product lines.

3.21 Multi-model adaptive control
Marin Litoiu (York University – Toronto, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
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An adaptive feedback loop in the cloud governs how and when resources (e.g., application
server instances) are added to and/or removed from a cloud environment. The adaptive
feedback loop can be implemented as a conventional control loop or as a set of heuristic rules.
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In the control-theoretic approach, complex constructs such as tracking filters, estimators,
regulators, and controllers are utilized. In the heuristic, rule-based approach, various alerts
(e.g., events) are defined on instance metrics (e.g., CPU utilization), which are then aggregated
at a global scale in order to make provisioning decisions for a given application tier.

This work provides an overview of our experiences designing and working with both
approaches to construct an auto-scaler for simple applications. We enumerate different
criteria such as design complexity, ease of comprehension, and maintenance upon which
we form an informal comparison between the different methods. We conclude with a brief
discussion of how these approaches can be used in the governance of resources to better meet
a high-level goal over time.

3.22 Including humans in the Models@Run.Time loop
Brice Morin (SINTEF – Oslo, NO)

License Creative Commons BY-NC-ND 3.0 Unported license
© Brice Morin

Software systems are becoming more and more adaptive. While some software systems
operate in a fully autonomic mode (typically, embedded systems), we foresee that the
end-users have an important role to play in the new emerging adaptive systems such as
Cyber-physical systems or Ambient Assisted Living systems. Such systems will still keep an
certain part of autonomy, but their behaviour (core logic and adaptation logic) should be
open, to some extent, to customization and personalization so that they can more easily be
accepted by end-users. At design-time, designers only have a rough idea on how the system
should behave and adapt, however the real requirements and needs will only be discovered at
runtime, when actual end-users come into play. We believe that models@runtime could offer
i) the right abstractions to end users to customize adaptive systems to their actual needs,
and ii) assurance that their decisions will only be enacted if they do not jeopardize their (or
the system’s) safety.

3.23 Requirements for Models at Runtime
Pieter J. Mosterman (The MathWorks Inc. – Natick, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Pieter J. Mosterman

Model-Based Design has become critical to success in industry where embedded systems play
an important role in the final products. For example, in automotive industry, the Chevy
Volt includes over a million lines of code, which to a large extent have been automatically
generated from models. While in a tightly controlled process of system design, models have
proven themselves of unrivalled value, the requirements for the use of models at runtime
are distinctly different. For example, models to be used for runtime adaptation must be
defined for a much broader set of assumptions and these assumptions must be captured
explicitly and precisely. Another example is the necessity to have models of potential system
adaptations after deployment. The study of the idiosyncrasies that runtime use of models
impose are the main objective of this work.
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3.24 Models@Runtime for Self-Adaptation an Self-Protection
Liliana Pasquale (University of Limerick, IE)

License Creative Commons BY-NC-ND 3.0 Unported license
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M@RT make possible to engineer systems that may adapt their behaviour in response
to changes in the environment or in the requirements they are supposed to meet. As a
matter of facts despite adaptation capabilities could be modelled with great detail at design
time, anticipating all possible adaptations is not always feasible. To address this problem
the requirements model of the system, which also includes the adaptation capabilities, is
conceived as a run- time entity. My research applies requirements@runtime in two different
application domains: adaptive service compositions and adaptive security.

For the first application domain, we use a live goal model to represent requirements
(including adaptation capabilities) and track their changes. Note that changes in the
requirements model cannot be learnt automatically, but must be always planned by the
designer. These changes are propagated onto the running service instances (e.g., BPEL
processes) through a suitable infrastructure, which is composed of a BPEL engine (to
execute application instances), a set of data collectors (to monitor the environment and the
applications execution state), monitors (to assess requirements) and adaptors (to modify
the running application instances, for example, by changing their service components or by
deploying new versions of the process).

On the other end, adaptive security is concerned on dynamically enabling a different
set of security countermeasures when assets (to be protected) change unexpectedly, new
threats arise, or undiscovered vulnerabilities are revealed. In our approach we relate the asset
model to the requirements of the system, which are expressed through a goal model, and
the objectives of an attacker, which are expressed through an anti-model. The asset, goals
and threat models are conceived as a runtime entity and are used as input to build a causal
network to analyse system security in different situations, and enable, when necessary, a set
of countermeasures to mitigate the security threat. The relevant modifications that may arise
at runtime (e.g., new or changing assets/threats/vulnerabilities) are dynamically discovered
and tracked in the three models and consequently change the actual set of countermeasures
that are enabled at runtime.

3.25 Automatic Synthesis of Behaviour Protocols for Composable
Web-Services

Patrizio Pelliccione (Univ. degli Studi di L’Aquila, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Patrizio Pelliccione

Main reference A. Bertolino, P. Inverardi, P. Pelliccione, M. Tivoli, “Automatic synthesis of behavior protocols for
composable web-services,” in Proc. of 7th Joint Meeting of the Europ. Software Engineering
Conference and the ACM SIGSOFT Symp. on The Foundations of Software Engineering
(ESEC/FSE ’09), pp. 141–150, 2009.

URL http://dx.doi.org/10.1145/1595696.1595719

Web-services are broadly considered as an effective means to achieve interoperability between
heterogeneous parties of a business process and offer an open platform for developing new
composite web-services out of existing ones. In the literature many approaches have been
proposed with the aim to automatically compose web-services. All of them assume that, along
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with the web-service signature, some information is provided about how clients interacting
with the web-service should behave when invoking it. We call this piece of information the
web-service behaviour protocol.

Unfortunately, in the practice this assumption turns out to be unfounded.
To address this need, in this paper we propose a method to automatically derive from

the web-service signature an automaton modelling its behaviour protocol. The method,
called StrawBerry, combines synthesis and testing techniques. In particular, synthesis is
based on data type analysis. The conformance between the synthesized automaton and
the implementation of the corresponding web-service is checked by means of testing. The
application of StrawBerry to the Amazon E-Commerce Service shows that it is practical and
realistic.

3.26 Continuous Requirements Engineering for Self-Adaptive Software
Systems

Anna Perini (CIT- FBK – Povo, IT) and Nauman Ahmed Qureshi (Fondazione Bruno
Kessler – Trento, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Perini, Anna; Qureshi A. Nauman
Main reference N.A. Qureshi, I. Jureta, A. Perini, “Requirements engineering for self-adaptive systems: Core

ontology and problem statement,” in 23rd Int’l. Conf. on Advanced Information Systems
Engineering (CAiSE’11), Vol. 6741 of LNCS, pp. 33–47, Springer, 2011.

URL http://dx.doi.org/10.1007/978-3-642-21640-4_5

We recently proposed a formulation for the Requirements Problem of SAS (revisiting founda-
tional work by Zave et. al., TOSEM’97, and a more recent one by Jureta et al., RE’08), as a
dynamic problem (Qureshi at al., CAISE’11).

According to our formulation elements that contribute to the problem definition can
change at run-time, for example, domain assumptions, context, resources, user’s preferences.

In our approach the requirements problem is represented through a goal- oriented model,
which needs to be dynamically updated in order to reflect run- time changes in the require-
ments problem.

This motivates our interest in M@RT, and especially in continuous re-appraisal of require-
ments at run-time, which calls for effective and light-way methods for model representation
and reasoning at run-time.

3.27 A Model-based Framework for Dynamic Adaptive Systems
Andres J. Ramirez (Michigan State University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andres J. Ramirez

Joint work of Ramirez, Andres J.; Cheng, Betty H.C.

A dynamically adaptive system (DAS) observes itself and its execution environment at run
time to detect conditions that warrant adaptation. If an adaptation is necessary, then a DAS
changes its structure and behaviour in order to continuously satisfy its requirements, even as
its environment changes.
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However, it is a challenging task to systematically and rigorously develop a DAS due to
environmental uncertainty. In particular, it is often infeasible for a human to identify or
enumerate all possible combinations of environmental conditions that a DAS might encounter
throughout its lifetime. Nevertheless, a DAS must continuously satisfy its requirements
despite the threat that this environmental uncertainty poses to its adaptation capabilities.
For my dissertation research I have proposed a model-based framework that supports
the specification, monitoring, and dynamic reconfiguration of a DAS to explicitly address
uncertainty. Specifically, the proposed framework uses a goal-oriented requirements model
to derive utility functions for requirements monitoring in a DAS. Using these functions,
our framework then harnesses evolutionary computation techniques to identify interesting
combinations of environmental conditions that may adversely affect the behaviour of a DAS
and generates adaptations on-demand that not only transition the DAS to a target system
configuration, but also preserve system consistency. We have demonstrated the capabilities
of our model-based framework by applying it to two different case studies, one that involves
an intelligent vehicle system that performs adaptive cruise control, lane keeping, and collision
avoidance features, and another that involves the reconfiguration of a network of remote
data mirrors.

3.28 The need of M@RT in Event-driven Process-centric Decision
Support

David Redlich (Lancaster University, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Redlich, David; Wasif Gilani
Main reference D. Redlich, W. Gilani, “Event-driven Process-centric Performance Prediction via Simulation,” in

Business Process Management Workshops (BPM’11) Part I, vol. 99 of LNBIP, pp. 473–478,
Springer, 2011.

URL http://dx.doi.org/10.1007/978-3-642-28108-2_46

Today’s fast, competitive and extremely volatile markets exert a great deal of pressure on
businesses to react quicker against the changes, and sometimes even before the changes
actually happen. A late action can potentially result in a legal compliance failure or violation
of service level agreements (SLA’s). A business analyst needs to be notified before these
failures and violations occur. We propose a simple approach that enables real-time and
process-centric decision support in the form of performance prediction with the help of
performance models at run time. To achieve this the ability of simulations to produce
future-events, which are of the same type like the live-events generated by the really executed
business process, is utilised. Live-events and simulated future-events can therefore be treated
by a Complex-Event Processing (CEP) engine in the same way and parameter models
representing the historic, current, and future performance of the business process can be
easily computed or adapted.

Furthermore, we discussed further functional enhancements of the proposed architecture
to support, for instance, automated business process management through self-adaptation.
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3.29 Delta Modelling for Architectural Reconfiguration at Runtime
Bernhard Rumpe (RWTH Aachen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Haber, Arne; Rumpe, Bernhard; Schäfer, Ina

Given that logically or physically distributed systems such as cars, internet, clouds with
attached mobiles etc. need to be designed, modelling languages for distributed architectures
are inevitable. One such language, called MontiArc, resembles distributed communica-
tion of hierarchically decomposed components over explicit synchronous or asynchronous
communication lines in the spirit of Automotive’s function nets or UML’s communication
diagrams.

To describe variability of product lines in architectures, we extended this language for
explicit modelling of deltas: structural changes of the architecture that extend functionality,
signature, etc. but also allows to restructure communication lines.

So far, deltas have mainly been applied at design time to cut a concrete product from
the possible configurations.

In this talk, we discuss how the Delta Modelling approach can be adapted to describe
runtime re-configuration of software architectures.

While the modelling language basically remains the same, the underlying technical
infrastructure, the way how to configure the architecture and in particular the dynamic
re-configuration of the system during runtime significantly change.

3.30 Run-time Model Projections for Software Failure Prediction
Giordano Tamburrelli (Politecnico di Milano, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
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Software is the driving engine of modern society. Most human activities—including crit-
ical ones—are either software enabled or entirely managed by software. As software is
becoming ubiquitous and society increasingly relies on it, the adverse impact of unreliable
or unpredictable software cannot be tolerated. Indeed, software systems must be able to
evolve accordingly to their deployment environment to guarantee a seamless fulfilment of
desired requirements and obtain a minimum downtime. In response to this challenge, current
Software Engineering aims at designing self-adaptive systems able to react and reconfigure
themselves minimizing human intervention and ideally guaranteeing a lifelong requirement
fulfilment. To date, Software Engineering research in self-adaptive systems has produced
promising initial results.

However, even if these findings provide an essential step towards a set of effective and
efficient solutions for self-adaptation building these dependable systems is still unclear and
requires further investigation. The most promising approaches to software self-adaptation
rely on the introduction at run-time of software models (e.g., Markov models, automata,
queuing networks, etc.), which represent the behaviour of the system under scrutiny. Such
models are used to analyse and control the running implementation of the system with
respect to desired requirements.

However, most current research efforts focus on enabling self-adaptation once the root
event which triggered the adaptation already occurred. As a consequence, the system may
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have been already compromised with a requirement violation. Designers must ensure that any
critical requirement of the system continue to be satisfied before, during and after unforeseen
changes. In current software engineering paradigms, systems do not anticipate events which
may lead to failures, but only react accordingly to them. Let us consider for example the
case in which a change itself is directly connected to a system requirement. In such scenarios
the system requirement has been already violated because the occurred change or deviation
implies a violation of the requirement. In this case self-adaptation boils down to a self-healing
countermeasure to the occurred failure (i.e., reactive adaptation). Current approaches focus
on this kind of adaptation and thus may occur into failures even if they adopt the proper
countermeasures. They do not anticipate potentially dangerous changes. Run-time failure
prediction, in our vision, is the enabling factor to tackle this problem.

Our current research challenge relies on the introduction of the novel concept of Run-
Time Model Projection for Failure Prediction. By this we mean the ability of a software
system at run-time to automatically forecast potentially dangerous events by reasoning on
models which represent the expected future behaviour of the system (i.e., models projections)
and thus work around predicted failures before their occurrence. This approach empowers
self-adaptation capabilities of software systems obtaining an increased degree of dependability
and availability.

Run-Time Model Projection for Failure Prediction is the ability of a system to anticipate
failures by: (1) collecting at run-time relevant events occurred in the system internals as well
as in its deployment environment, (2) performing quantitative and qualitative analyses of
such events with their associated trends, and (3) building models representing a projection of
the system behaviour in its near future. Indeed, by collecting these pieces of information and
by building model projections it is possible to reason about the future compliance among the
system and its requirement exploiting model-checking at run-time.

By analysing this compliance it is possible to predict future failures and put in action
adaptation strategies that anticipate the incoming failure and work around it. The long-term
vision of this approach is systems that are able to: (1) reason about potential changes, (2)
anticipate them, and (2) reason on potential adaptations they might make. This process is
driven by the events recorded in the internals of the system plus its environment and the
account is given in terms of system requirements through model-checking.

We aim at contributing to the research on models at runtime for self-adaptive systems
by building software models at run-time which do not represent the current behaviour of
the system but its projection in the immediate future. Given these models, it is possible
to automatically reason about the future fulfilment of desired requirements and potentially
trigger proper adaptation strategies on time to steer the system and avoid a predicted failure.
We investigate quantitative and qualitative algorithms which detect, record, correlate and
analyse events occurred in the system and its environment. By reasoning on such events we
estimate the future value of specific properties of the system (e.g., response time, incoming
requests per unit of time, etc.) and synthesizes such estimates as updates for a software model
of the system (initially produced at design-time). Indeed, we update the models at run-time
coherently with these estimates obtaining model projections. By this we mean software
models that aim at representing a prediction of the system in its near future. By reasoning
on model projections it is possible to detect incoming failures before their occurrence. The
research challenge tackled in this step relies on the accuracy and reliability of the model
projections that is obtained with ad hoc techniques mainly based on statistical algorithms.

Furthermore, it is crucial in run-time model based approaches to have an effective
and efficient reasoning engine. We plan to adopt as reasoning engines model-checking
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tools, such as PRISM, which will bi able to automatically prove the compliance of model
projections against requirements. The introduction at run-time of model-checking is a
promising approach for self-adaptive systems and offers several advantages. First of all, it
allows a direct mapping of desired requirements against the model of the system. By this
we mean that model checking allow not only to detect a requirement violation but also
produce insights concerning the originating cause and about possible reconfigurations of the
system which may solve the violation through what-if analyses. Secondly, model checking
techniques rely on well-known and effective algorithms that are available off-shelf as powerful
and open-source tools. Moreover, the recent research efforts on optimizing their performance
in terms of execution time and space allow an efficient adoption at run-time, even if there is
room for improvement.

3.31 Models@run.time in self-* systems
Matthias Tichy (Universität Paderborn, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Matthias Tichy

Using models@run.time is a key element to develop self-* applications. They can be used
to assess the state of the system, to forecast system behaviour at runtime and to adapt
system accordingly. We present applications of models@run.time in the area of self-healing
distributed systems using graphs and graph transformations, self-adaptation of performance
critical business information systems using performance annotated component models, self-
adaptation in safety-critical embedded systems using failure propagation models and graph
transformations and control engineering using models of the physics at run-time. Finally,
we discuss the problem of ensuring the consistency of multiple models and dealing with
uncertainty as key challenges in developing systems with models@run.time.

3.32 Safety Models@Run-Time in Open Adaptive Systems
Mario Trapp and Daniel Schneider (Fraunhofer IESE – Kaiserslautern, DE)
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the 5th IEEE Int’l Conf. on Self-Adaptive and Self-Organizing Systems, pp. 89–98, IEEE CS, 2011.
URL http://dx.doi.org/10.1109/SASO.2011.20

In embedded systems there is a clear trend towards open, context adaptive systems like
cyber physical systems, ubiquitous computing, or ambient intelligence. All of these types of
systems share the characteristic that neither their structure/behaviour nor the environment
they run in are completely predictable at design time. On the one hand, this means that the
systems must be able to adapt to these changing contexts at run time. On the other hand,
this means that it is hardly possible to perform a complete quality assurance at design time.
Particularly in the context of safety-critical systems this leads to new challenges. Models
at run time provide a means to overcome this challenge. They enable the system to reason
about its quality at run time and to adapt accordingly to assure the safety of the system in
any given context situation. Regarding traditional safety engineering, there is a clear trend
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to model-driven safety engineering and to modular certification based on models at design
time. Combining these approaches with models at runtime to "safety models at runtime
(SM@RT)" it is possible to shift certain safety engineering tasks to run time without losing
the control over the systems’ quality. Particularly, contracts based on safety certification
models at run time seem to provide a very efficient means to ensure safety in open adaptive
systems. In general, ensuring quality in adaptive systems poses several research challenges,
M@RT build a sound basis to overcome these challenges.

3.33 A generalized view on models@run.time
Frank Trollmann (TU Berlin, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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The use of models@run.time is a suitable technique for the implementation of complex
self-adaptive systems. The causal connection between the model and its system under study
plays an important role in this approach. Although models@run.time are defined in to the
scope of software engineering there are other systems which also utilize the causal connection.
A comparison of models@run.time and such other approaches could lead to interesting new
insights. For this purpose we introduce an abstracted understanding of models@run.time that
can also be applied outside the scope of software engineering and makes these approaches
comparable in the form of a mega model.

3.34 SmarterContext: Realizing Dynamic Context Management by
Exploiting Context Models@Runtime

Norha Milena Villegas and Hausi Müller (University of Victoria, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
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Self-adaptive software systems adapt their behaviour to address changes in functional and
non-functional requirements according to environmental conditions. Over the past decade the
dynamic capabilities of these systems have proliferated and improved significantly. However,
their real application is still limited due to a lack of mechanisms to address the uncertainty
of the execution environment. The execution environment of an adaptive system is composed
of external and internal context entities that can affect the desired system’s behaviour. Thus,
these entities and the interactions among them must be monitored to support decision
making in the adaptation process. Nevertheless, as context information evolves over time,
relevant entities and the corresponding monitoring requirements cannot be fully specified at
design-time. Moreover, as the system is also evolving, monitoring requirements continuously
change accordingly. Therefore, the effectiveness of self-adaptation is completely dependent on
the adaptive capability of monitoring mechanisms to preserve context-awareness throughout
the adaptation process. SmarterContext—our innovative approach to dynamic context
management—exploits adaptive software techniques and RDF-based context models at
runtime to optimize context- awareness and self-adaptation in service-oriented software
systems.
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SmarterContext is equipped with a self-adaptive context management infrastructure and
an extensible context taxonomy based on the resource description framework (RDF) in order
to support dynamic changes in context management strategies, through the deployment
of new context management components to keep track of changes in relevant context at
run-time. Our SmarterContext taxonomy includes a set of inference rules for supporting
dynamic context representation and reasoning.

3.35 Models at Runtime for Adaptive and Self-managing Software
Thomas Vogel (Hasso-Plattner-Institut – Potsdam, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Software systems have to be continuously adapted to their changing requirements or en-
vironments. This is typically done by maintenance, while self-aware, context-aware, ultra-
large-scale, or mission-critical software systems often have to be adapted during operation
(self-adaptive software). Model-driven engineering and models at runtime play crucial roles
in supporting maintenance, enabling self-adaptation, and integrating both, maintenance and
self-adaptation.

In our talk, we outline our perspective on "models at runtime" as any models used on-line,
i.e., internal to the running system, to represent running software, to represent the software’s
environment, or to manipulate or analyse any of the former two. Moreover, we sketch the
benefits of models at runtime for maintenance, self-adaptation, and for an integrated setting
of maintenance and self-adaptation. Considering different kinds of runtime models required
for self-adaptation and self-adaptation activities as model operations, we discuss the role of
a megamodel for specifying adaptation loops for self-adaptive software and operationalising
the treatment of runtime models as means for monitoring, analysis, planning, and executing
planned changes.

4 Working Groups

This section lists the abstracts of the break-out sessions. Each break-out group is in charge
of a main section of the roadmap that is under preparation.

4.1 Group 1: Assurance Using Models@Run.Time for Self-Adaptive
Systems

Betty H. C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Marin Litoiu,
Hausi A. Müller, Patrizio Pellicione, Anna Perini, Nauman A. Qureshi, Bernhard Rumpe,
Daniel Schneider, Frank Trollmann, Norha M. Villegas

License Creative Commons BY-NC-ND 3.0 Unported license
© B.H.C. Cheng, K.I. Eder, M. Gogolla, L. Grunske, M. Litoiu, H.A. Müller, P. Pellicione,
A. Perini, N.A. Qureshi, B. Rumpe, D. Schneider, F. Trollmann, N.M. Villegas

Traditionally, software assurance is part of the software development process; i.e. assurance
is a development-time concern. For software systems that change or evolve at runtime, as
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in self-adaptive and self-managing systems, however, software assurance becomes a critical
runtime concern. Continuous assurance throughout the entire software life-cycle provides
unprecedented opportunities for monitoring, analyzing, guaranteeing, and predicting system
properties and qualities throughout the operation of a software system. The fact that many
variables that are free at design-time are bound at runtime provides new opportunities for
verification and validation at runtime leading to assurance of critical system properties.

The goal of the assurance breakout group of Dagstuhl Seminar 11481 on Models@runtime
was to identify research questions for software assurance using models at runtime to advance
the state of the art in runtime assurance. Initially a set of valuable background starting
points was established. The following is a summary of the most important research questions
from the assurance breakout group:

What development-time assurance methods and techniques (i.e., the entire spectrum
from light-weight to heavy-weight approaches) and models (i.e., descriptive, prescriptive,
constructive and predictive) readily extend to runtime?
How do traditional assurance models and methods from domains such as performance,
safety, and reliability extend to runtime?
How can we extend reference models for self-adaptive and self-managing systems to
include models and assurance at runtime (e.g., MAPE-K loop)?
Can we leverage runtime assurance techniques from other disciplines (e.g., control theory)?
Assuming models at runtime what reference architectures are appropriate for assurance
at runtime?
What are appropriate assurance reasoning techniques for different phases of the software
life cycle (i.e., development, installation, load, and runtime) and how can assurance
results from different life-cycle phases be combined to assure systems at runtime (e.g.,
incremental and compositional assurance)?
How can we partition runtime assurance according the different types of runtime changes
(e.g., dynamic context, changing requirements, or evolving models)?
What are ideal applications to demonstrate the challenges and opportunities for assurance
using models at runtime?

The research questions on runtime assurance will become part of a wider research roadmap
dedicated to the development of models at runtime. One key challenge for this entire field
is to develop effective training methods that equip traditional software engineers with the
knowledge and skills to design and build software systems that change or evolve at runtime.

4.2 Group 2: Runtime Updating/Adaptation Mechanisms
Amel Bennaceur, Mehmet Aksit, Robert France, Walter Cazzola, Fabio M. Costa,
Pär Emmanuelson, Nikolaos Georgantas, Huang Gang, Pieter J. Mosterman, David Redlich,
Alfonso Pierantonio, Giordano Tamburrelli, Thomas Vogel and Matthias Tichy
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Runtime adaptation is becoming a fundamental property of today’s complex open systems.
Models at runtime (M@RT) systems offer promising abstractions, techniques and tools to
manage the increasing complexity of adaptation and to handle the high dynamism of these
systems. In this group, we discussed the issues and the solutions for runtime adaptation
across different domains (e.g., fault-tolerance systems, dynamic tuning, energy optimization).
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Despite the recent efforts from the software engineering community on M@RT, there is a
lack of techniques and methods for the proper integration across domains, across layers (e.g.,
architectural, middleware, code), and across concerns (e.g., performance, security, reliability).
We agreed on a conceptual architecture for adapting systems using M@RT and identified
the different mechanisms used to: (1) create or update the system model according to the
evolution of the system or to changes in its environment, (2) automatically reason on M@RT
to produce appropriate adaptation strategies, (3) analyse and maintain different M@RT,
each representing a specific view and/or abstraction, and (4) propagate changes from the
model back to the system. Finally, we considered each mechanism, reviewed related work,
and identified the open challenges in the form of short-term and long-term research goals.
The output of this work leads to a fascinating set of research challenges both in terms of
understanding the characteristics of M@RT and using them to create appropriate adaptation
mechanisms in open settings, especially for the Internet of Things and Cyber-Physical systems.
This is a vast and largely unchartered territory and we invite other researchers to join in the
quest for suitable solutions for models at runtime.

4.3 Group 3: Uses and Purposes of M@RT Systems
Uwe Aßmann, Sebastian Götz, Jean-Marc Jezequel, Brice Morin and Mario Trapp
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The goal of this section is to understand how models@runtime are key enablers for modern
software systems, to clarify their typical use cases and fundamental interests. Traditionally
the development of software systems used to be split in distinct steps with a clear distinction
between design activities and runtime execution. Safety critical embedded systems are
for example designed and intensively validated at design time (e.g., using model checking)
before they are actually deployed. At runtime, they have a predictable behaviour, time
and resource consumption, which make it possible for certification bodies to approve these
systems. The development of adaptive systems requires negotiating a trade off between
adaptiveness and predictability. In many cases, system adaptation is restricted to a set of
well-defined modes and reconfigurations defined at design-time. However, emerging types of
systems—for example, cyber-physical systems—may need to adapt in ways that cannot be
foreseen at design time and therefore require a higher degree of runtime adaptability, which
hinders predictability. Hence, new approaches are needed to enable unanticipated adaptations
while ensuring guarantees: This is, in our opinion, the ultimate purpose of models@runtime.
The key characteristic of a M@RT system is its ability to project some aspects of the reality
(e.g., its context, its behaviour, its goals) to the modelling space in order to enable tractable
decision-making that produces decidable plans. This is basically separation of concerns
applied in a disciplined way at runtime, and to some extent, is analogous to how human
thinking works. This enables systems to reason about alternatives to reach their goals and to
determine consequences of particular actions, rather than just learn and react (i.e., display
animal-like behaviour) as is done in classical systems. This requires that the system be able
to justify why a certain decision was made or not. The key advantage of M@RT systems over
reflective software systems is decidability and tractability, which can reconcile users, domain
experts, engineers (aware of the obvious need for runtime adaptivity), with certification
bodies (which need stringent guarantees). Based on our recent experiences, we propose a
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generic Reference Architecture (RA), which can be instantiated to cope with the specificities
of different domains.

4.4 Group 4: Living With Uncertainty In the Age of Runtime Models
Nelly Bencomo, Amit K. Chopra, Siobhan Clarke, Holger Giese, Paolo Inverardi,
Valerie Issarny, Liliana Pasquale, and Andres J. Ramirez

License Creative Commons BY-NC-ND 3.0 Unported license
© N. Bencomo, A.K. Chopra, S. Clarke, H. Giese, P. Inverardi, V. Issarny, L. Pasquale, and
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Systems that operate in dynamic environments are inherently executing in situations of
uncertainty. Uncertainty arises from multiple sources, such as the environment, the system
itself, and different stakeholders, for example, end users, society including regulatory bodies,
and others. Uncertainty emerges when there is a difference between useful information that
exists in, for example, the original system and information available in the runtime model at
a certain point in time. A runtime model provides an abstraction of information of interest
to and in the executing system. It provides a knowledge base for decision-making related to
behaviour optimized as far as possible within the bounds of some uncertainty. A runtime
model to represent the uncertainty of interest can be specified at design time according to the
possible goals of the system. At runtime, a monitor and analyser will instrument and refine
information in the runtime model, which may reduce the level of uncertainty. A planner
and executor must be able to deal with remaining uncertainty in a robust manner. In this
group, we discussed research questions relating to the treatment of uncertainty with models
at runtime.
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