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Abstract
Research on the notions of information and randomness has drawn on methods and ideas from
computability theory and cumputational complexity, as well as core mathematical subjects like
measure theory and information theory. The Dagstuhl seminar 12021 “Computability, Complex-
ity and Randomness” was aimed to meet people and ideas in these areas to share new results
and discuss open problems. This report collects the material presented during the course of the
seminar.
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Randomness and information quantity are central notions in computer science that are still
undeveloped. Although classical information theory and probability provide formalizations of
these notions they do not allow us to measure the information of a specific string or say that
a particular real number is random. The definition of the property of randomness and its
connection with a measure of information content was obtained in the 1960s and combines
different complexity measures.

As witnessed by the three seminars previously organized in Dagstuhl on complexity and
randomness (Seminar 9318, Descriptional complexity: a multidisciplinary perspective in 1993;
Seminar 03181, Centennial Seminar on Kolmogorov Complexity and Applications in 2003;
and Seminar 06051 Kolmogorov Complexity and Applications in 2006) in recent years there
has been an upsurge produced by the people in computability theory that resulted in rapid
progress in our understanding of even the most basic notions in randomness, and the solution
of old open questions. This has changed and is still changing the landscape and opened up
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new avenues of research. An evidence of this activity has been the publication of two new
books in the area and the new edition of an already classical one: Algorithmic Randomness
and Complexity, R. Downey and D. Hirschfeldt, Foundations on Computing, Springer, 2010;
Computability and Randomness, A. Nies, Oxford University Press, 2009; and An Introduction
to Kolmogorov Complexity and Its Applications, M. Li and P. Vitanyi, third Edition, Springer
Verlag, 2008.

Seminar 12021 has celebrated significant recent research progress. New results connect
the theory of algorithmic randomness with computable analysis. We consider them important
because they lead to the naturalness of the notions of algorithmic randomness. For instance,
Brattka, Miller, and Nies translated the theorem “every non-decreasing function is almost
everywhere differentiable” to the computable world, by showing that a real x is computably
random if and only if every computable non-decreasing function is differentiable at x (this
work is has not yet appeared as a publication). Similar investigations identified the notions of
randomness that correspond to the Lebesgue density and differentiation theorems. J.Franklin
and the work of Gács, Hoyrup, and Rojas related Birkhoff’s pointwise ergodic theorem in
connection with Schnorr randomness.

Considerable results have been obtained for problems on Kolmogorov complexity and
computable enumerable sets, in particular, in the degree structure that arises from comparing
the complexity of the initial segments of two reals. Barmaplias announced the solution of the
already long standing open problem posed by Downey and Hirschfeldt Is there a minimal
pair of c.e. reals in the K-degrees? The answer is no.

Since the start of the discipline, the notion of randomness was defined for infinite sequences,
or real numbers. The problem posed by Kolmogorov on a notion of randomness of finite
objects remains unsolved. This is also the case for arbitrary countable objects. C.Freer made
significant progress on the questions When is a graph random? and What is the connection
between quasi-random graphs and pseudorandom bit strings? He pointed to an emerging
theory of continuous limits of finite combinatorial structures that connects graph limits,
property testing, and exchangeable relations.

There was a general consensus on the fact that there is yet no adequate solution to the
fundamental problem that high-quality independent random bits are in very short supply.
And there are many practical applications rely on randomness (for instance, assigning keys
to users of a public-key crypto-system). Randomness extractors are algorithms developed
“extract” high-quality random bits from low-entropy sources. Construction of such algorithms
is foreseen to be an active research area.

The aim of Seminar 12021 was to bring together researchers covering this spectrum of
relevant areas, to report their advances and to discuss the relevant research open questions.
The seminar had 50 participants, including the most recognized senior specialists as well as
young researchers. The atmosphere was very stimulating and led to new research contacts
and collaborations.

Concluding remarks and future plans. The seminar was well received, as witnessed
by the high rate of accepted invitations, and the exemplary degree of involvement by the
participants. Due to the broad scope and depth of the problems on algorithmic randomness
and information quantity that have been discussed in the presentations and informal discus-
sions, the organizers regard the seminar as a great success. The organizers wish to express
their gratitude towards the Scientific Directors of the Dagstuhl Center for their support of
this seminar. We foresee the proposal of a new seminar focusing in the interplay between
algorithmic randomness and computable analysis.
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Description of the seminar topics
Anti-randomness

The class of sequences with minimal prefix-free Kolmogorov complexity, dubbed K-trivial
sequences, were understudied until five years ago. In the seventies, Solovay proved that
there is a non computable K-trivial. They are now very well understood, with a number of
surprising characterizations and applications. For instance, the “cost function" construction
of a K-trivial gives simplest known example of a non computable incomplete computably
enumerable set, they also appear in the Kucera-Slaman solution to a well-known question
about Turing degrees in Scott sets, also K-triviality has led to a better understanding of
the reverse mathematics of the regularity of Lebesgue measure. K-triviality one of the most
technically deep subjects in algorithmic randomness, significant questions remain open.

Resource bounded versions

Classical computational complexity theory comes into play defining resource-bounded versions
of Kolmogorov complexity, measure, and dimension. This has led to new characterizations of
complexity classes involving efficient reducibility to the set of Kolmogorov random strings.
Resource-bounded measure and dimension have been used to gain understanding of properties
of complexity classes and their complete sets. For instance, they can be used as a probabilistic
methods to prove lower bounds on nonuniform complexity.

Derandomization and complexity hierarchies

Derandomization is the study of how to replace probabilistic algorithms with deterministic
algorithms. Earlier work by Allender et al. showed that the techniques of derandomization
could be viewed through the lens of resource-bounded Kolmogorov complexity theory, and
gave significant applications. More recently, they proved that every sufficiently dense set
in NP ∩ coNP contains strings of low resource-bounded Kolmogorov complexity at every
length. In still unpublished work, Allender and his co-authors show that if deterministic and
nondeterministic exponential time coincide, this implies a partial collapse of the exponential-
time hierarchy, shedding light on a question that has been open for two decades.

Randomness extractors

Randomness extractors have been used and to derive zero-one laws for the packing dimensions
of complexity classes and Turing degrees. Recently it has been shown that the converse
direction also holds and Kolmogorov extraction is in fact equivalent to randomness extraction.

Computational depth

The computational depth of a string is roughly the difference between its time-bounded
Kolmogorov complexity, and its (plain) Kolmogorov complexity. Quite recently, Antunes
and Fortnow showed that, under a plausible complexity assumption, computational depth is
the right notion to present a “universal” poly-time samplable distribution, in the same way
that Kolmogorov complexity allows one to define universal computable semi-measures. They
derive a new characterization of algorithms that run in polynomial time on average, and give
a relation with their worst-case running time.

12021
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Algorithmic randomness and computable analysis

The most accepted definition of randomness for infinite sequences, or real numbers, is based
on constructive measure theory and was given by Martin Löf, 1965. It coincides with the
maximal initial segment complexity. Other notions have been proposed since then, by
Schnorr, Demuth, Kurtz and others, either via measure theory, or via martingale theory.
Most of these definitions have been very well studied in the space of infinite binary sequences,
but less in known for other spaces (although there has been some deep founding work by
Levin and Gács). Some natural questions are: for a given randomness notion, to what kind
of probability space can this notion be extended? To what extent does the chosen space
affect the properties of random objects? Then, for every probability space to which we can
extend randomness notions, it is interesting to look at classical theorems from a randomness
perspective, and try to convert classical theorems of the form “property P holds for µ-almost
every sequence" into “property P holds for every µ-random sequence”. This line of study has
recently been investigated in a number of different settings: random closed sets, effective
ergodic theory, effective brownian motion, etc.

Organization of the seminar and activities
The seminar consisted in nineteen talks, sessions on open questions, and informal discussions
among the participants. The organizers selected the talks in order to have comprehensive
lectures giving overview of main topics and communications of new research results. Each
day consisted of talks and free time for informal gatherings among participants. There were
two main sessions on open questions.
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3 Overview of Talks

3.1 The Strange Link between Kolmogorov complexity and
computational complexity classes

Eric Allender (Rutgers University – Piscataway, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Eric Allender

This talk will survey a body of work that has developed over the last decade, that had led
some researchers to suspect that certain important computational complexity classes can be
better understood, by studying the computational power of the set of Kolmogorov-random
strings.

More specifically, let R denote the set of Kolmogorov-random strings. Let BPP denote
the class of problems that can be solved with negligible error by probabilistic polynomial-time
computations, and let NEXP denote the class of problems solvable in nondeterministic
exponential time.

Conjecture 1: NEXP = NPR.

Conjecture 2: BPP is the class of problems non-adaptively polynomial-time reducible to R.

These are not only bold conjectures; they are obviously false! R is not a decidable set, and
thus it is absurd to suggest that the class of problems reducible to it constitutes a complexity
class. The absurdity fades if, for example, we interpret “NPR” to be “the class of problems
that are NP-Turing reducible to R, no matter which universal machine we use in defining
Kolmogorov complexity”. We are not yet able to prove that either conjecture (suitably
interpreted) is true, but some recent theorems approach this goal. The lecture will highlight
several problems that seem ripe for a fruitful blending of techniques from computability
theory and complexity theory.

3.2 Kolmogorov complexity and computably enumerable sets
George Barmpalias (Chinese Academy of Sciences, CN)

License Creative Commons BY-NC-ND 3.0 Unported license
© George Barmpalias

I will start with reporting a solution to a problem of Downey and Hirschfeldt from 2006 as
well as further progress that I made on problems on the topic of Kolmogorov complexity of
c.e. sets (in particular the structure of the c.e. K-degrees).

After this I will motivate this topic with several open questions which I find natural, yet
I haven’t been able to solve.
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3.3 Simple proofs for known inequalities on Kolmogorov complexity
using games and symmetry of information

Bruno Bauwens (Universidade do Porto, PT)

License Creative Commons BY-NC-ND 3.0 Unported license
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First we provide a remarkably simple game-proof that for every n, there is an x of length
n such that C(C(x)|x) ≥ logn−O(1) and C(x) ≥ n/2, slightly improving a result of Gacs
and solving a conjecture of Chaitin and Solovay.

As an intermezzo we state symmetry of information for plain complexity as:

C(a, b) = K(a|C(a, b)) + C(b|a,C(a, b)) ,

which has two interesting known corollaries: Levin’s formula C(a) = K(a|C(a)) (taking
b = C(a)), and every infinitely often C-random real is 2-random.

Finally, we provide a short proof for Solovay’s result (a bit improved) stating that for
some strings plain complexity can be maximal but prefix-free complexity not. More precise:
infinitely many strings x have C(x) = |x| −O(1) and K(x) = |x|+K(|x|)− log log |x| ±O(1).
The proof only uses symmetry of information of prefix-free complexity, and Levin’s and Gács’
results (see above).

3.4 Connections between ergodic theory and randomness
Johanna Franklin (Univ. Of Connecticut, US)
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Since randomness can be defined in terms of measure theory as well as Kolmogorov complexity,
it is not surprising that it is related to other areas of mathematics where this concept is
fundamental. In this talk, I will introduce the basic principles of ergodic theory, which is the
study of the behavior of certain measure-preserving transformations over time, and explain
the relationship between ergodic theory and randomness.

3.5 When is a graph random?
Cameron Freer (MIT – Cambridge, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Ackerman, Nate; Freer, Cameron; Patel, Rehana; Roy, Daniel

What is the connection between quasi-random graphs and pseudorandom bit strings? Can
this be used to develop a useful theory of resource-bounded complexity for discrete structures?
In the first half of the talk, we will describe the translation by Trevisan between notions
in additive combinatorics and computational indistinguishability, and also highlight the
emerging theory of continuous limits of finite combinatorial structures that connects graph
limits, property testing, and exchangeable relations.
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When is a countably infinite graph algorithmically random? In some cases, there is a
natural probabilistic construction of the graph that gives rise to an obvious candidate for
randomness, but in other cases this is not so clear. In the second half of the talk, we will
discuss invariant measures concentrated on a given countable structure, which induces a
notion of an algorithmically random copy of that structure.

3.6 Lowness in algorithmic randomness
Noam Greenberg (Victoria University of Wellington, NZ)

License Creative Commons BY-NC-ND 3.0 Unported license
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I will give a survey of the project of understanding lowness for notions of effective randomness,
and pass through some related topics. Characterising a notion of lowness usually involves
traceability, and is obtained by forcing with an adequate class of closed sets. This, however,
fails for the most familiar notion of randomness, namely Martin-Löf’s. In this case lowness is
inherently enumerable – the opposite of being obtained by forcing. Instead, weakness as an
oracle can be measured by interaction with the Turing degrees of random sets (a la Day and
Miller, for example).

3.7 Normality is equivalent to incompressibility by finite-state
automata

Pablo A. Heiber (University of Buenos Aires, AR)

License Creative Commons BY-NC-ND 3.0 Unported license
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Recall that an infinite sequence over a finite alphabet Σ is normal if for any given n, all
possible patterns of length n appear in the sequence with equal frequency. We will present a
direct and elementary proof of the following fact: an infinite sequence is normal if and only
if it cannot be compressed by a finite-state compressor (injective finite state transducer).

3.8 Communication complexity through the lense of Kolmogorov
complexity

Michal Koucký (Academy of Sciences – Prague, CZ)

License Creative Commons BY-NC-ND 3.0 Unported license
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In this talk I will survey recent developments in communication complexity related to the
notion of information cost and privacy. This development raises interesting questions in the
context of Kolmogorov complexity.
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3.9 Constant compression and random weights
Wolfgang Merkle (Universität Heidelberg, DE)
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We introduce a new characterization of left recursively enumerable (left-r.e.) Martin-Löf
random reals: a real is Martin-Löf random and recursively approximable from below if and
only if it equals the weight of the compressible strings for some universal prefix-free machine.
For sufficiently large intervals [a; b), the weight of strings which are a-compressible strings
but not b-compressible is a left-r.e. Martin-Löf random real, and in fact we can use finite
intervals of compressibility to characterize the left-r.e. Martin-Löf randoms as well.

3.10 Randomness and Lebesgue density theorem
Joseph S. Miller (University of Wisconsin – Madison, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Bienvenu, Laurent; Day, Adam; Hölzl, Rupert; Miller, Joseph S.; Nies, André

In this talk we will present several recent results on the interactions between effective
randomness a Lebesgue differentiability theorem. In joint work with Bienvenu, Hölzl and
Nies, we show that a real x is a point of positive density in every Π0

1 class it belongs to if
and only it is Martin-Löf random and Turing incomplete (also known as difference random).
In subsequent joint work with Day, this lead to a solution of a longstanding open question,
namely, we prove that a real x is K-trivial if and only if for every incomplete random z,
x⊕ z is incomplete.

3.11 Randomness extraction: a computability perspective
Benoit Monin (University Paris Diderot, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
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Suppose you want to generate a random sequence of zeros and ones and all you have at
your disposal is a coin which you suspect to be biased (but do not know the bias). Can
“perfect” randomness be produced with this coin? The answer is positive, thanks to a little
trick discovered by von Neumann. We will present a generalization of this question: if
we have access to a source of bits produced according to some probability measure in a
given class of measures, and suppose we know the class but not the measure, can perfect
randomness be produced? We will give a positive answer for a large class of probability
measures. (as Bernoulli measures or Markov measures). Furthermore, this work naturally
has some interesting connections with the Kjos-Hanssen’s concept of Hippocratic randomness.
We will actually provide another interesting characterisation of (some) classes of measures
for which Hippocratic randomness and Martin-Löf randomness are equivalent.
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3.12 Randomness interacts with effective analysis
Andre Nies (University of Auckland, NZ)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Bienvenu, Laurent; Brattka, Vasco; Freer, Cameron; Hoelzl, Rupert; Kjos-Hanssen, Bjørn; Kucera,
Antonin; Miller, Joseph S.; Nies, André

We seek connections between algorithmic randomness and computable analysis. Tests
correspond to computable functions on the unit interval. A real passes a test if and only if the
corresponding function is differentiable at the real. In this way, for instance we characterize
computable randomness and Schnorr randomness via differentiability of effective Lipschitz
functions ([1, 2]; also work of Pathak-Rojas-Simpson, and Rute). We include a historical
perspective [3]. The constructivist Osvald Demuth, working on differentiability of effective
functions, anticipated major algorithmic randomness notions in the 1970s and 1980. He
introduced Demuth randomness which is in the focus of present-day research on lowness
properties of oracles. However, in [4] we show that the weaker notion of difference randomness,
due to Franklin and Ng already suffices for the application to constructive analysis Demuth
had in mind.

We also discuss algorithmic versions of the ergodic theorem. Finally we mention the
interaction of higher randomness and differentiability of hyperarithmetical functions.

References
1 Brattka, Miller, and Nies. Randomness and differentiability. Submitted.
2 Freer, Kjos-Hanssen and Nies. Effective aspects of Lipschitz functions. In preparation.
3 Kucera and Nies. Demuth’s path to randomness. To appear.
4 Bienvenu, Hoelzl, Miller and Nies. The Denjoy alternative for computable functions. Sub-

mitted.

3.13 Exponential time vs probabilistic polynomial time
Sylvain Perifel (University Paris-Diderot, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
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People usually believe that probabilistic algorithms can be derandomized, meaning that
randomness would not give additional power to polynomial-time algorithms. However our
current knowledge is despairingly limited, not even ruling out the possibility that incredibly
big complexity classes have polynomial probabilistic algorithms. More precisely, we don’t
know how to separate nondeterministic exponential time NEXP from probabilistic polynomial
time BPP, even if we believe that BPP=P (!). After presenting the state of the art, we shall
discuss some attempts and strategies to resolve these questions and related circuit lower
bounds. The tools will range from resource-bounded Kolmogorov complexity to interactive
protocols.
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3.14 Semi-explicit expanders and extractors and their applications
Andrej E. Romashchenko (CNRS, Université Montpellier II, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
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Explicit constructions of graphs with some “random” properties (e.g., expanders and extract-
ors) are known to be a mighty tool in computer science. Despite an impressive progress
in this area, the known effective constructions of such graphs still do not always match
the parameters achievable by truly random graphs. We are going to discuss constructions
of extractors and expanders where the combinatorial parameters are made better while
the conventional requirement of “explicitness” is somehow relaxed, e.g., a graph should
be constructed in polynomial space but not in polynomial time, or the property of ex-
pansion/randomness extraction should hold only for a tiny family of sets of vertices, or a
construction may involve some reduced (but not negligible) random seed. We illustrate these
method with several applications: a version of Muchnik’s conditional complexity theorem
(for space bounded Kolmogorov complexity), the optimal compression of sets in PSPACE,
nearly optimal bit-probe schemes for membership problem (by recent papers of D.Musatov,
A.Shen, M.Zimand and A.R.).

3.15 Tutorial on randomness extractors
Ronen Shaltiel (University of Haifa, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
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We give an introduction to the area of “randomness extraction” and survey the main concepts
of this area: deterministic extractors, seeded extractors and multiple sources extractors. For
each one we briefly discuss background, definitions, explicit constructions and applications.

3.16 Are random axioms useful?
Alexander Shen (Université de Provence, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
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The famous Gödel incompleteness theorem says that for every sufficiently rich formal theory
there exist true unprovable statements. Such statements would be natural candidates for
being added as axioms, but how can we obtain them? One classical (and well studied)
approach is to add (to some theory T) an axiom that claims the consistency of T .

Here we discuss another approach (motivated by Chaitin’s version of the Gödel theorem)
where axioms claiming randomness (incompressibility) of some strings are added, and show
that it is not really useful (in the sense that it does not help us to prove new interesting
theorems). This result answers a question recently asked by Lipton. However, the situation
changes if we take into account the size of the proofs: randomly chosen axioms may help to
make proofs much shorter (unless NP=PSPACE). This result (partially) answers the question
asked a while ago by Shen. We also study what can be achieved by adding axioms of type
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“complexity of x exceeds n” for some strings x and numbers n. We show that by adding all
true statements of this type, we obtain a theory that proves all true universal statements.
Moreover, it is enough to add one statement of this type for each n (or even for infinitely
many n) if strings are chosen in a special way. On the other hand, one may add statements
of this type for most x of length n (for every n) still having a weaker theory. Finally, we
consider a theory that claims Martin-Löf randomness of a given infinite binary sequence.
This claim can be formalized in different ways. We show that different formalizations are
closely related but not equivalent, and study their properties.

3.17 The graph reachability problem
Vinodchandran Variyam (University of Nebraska – Lincoln, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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The graph reachability problem, the computational problem of deciding whether there is a
path between two given vertices in a graph, is the canonical problem while studying space
bounded computations.

Different variations of this problem characterize various important space bounded com-
plexity classes. Understanding the complexity of the reachability problem is a central concern
of computational complexity theory. In this talk I will revisit some well known open problems
regarding the space complexity of the reachability problem and discuss certain approaches
toward them.

3.18 Rate-distortion and denoising, of individual sequences by
Kolmogorov complexity

Paul Vitanyi (CWI – Amsterdam, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of de Rooij, Steven; Vereshchagin, Nikolay K.; Vitanyi, Paul

The canonical rate-distortion function of a single string is related to the more standard
rate-distortion function of Shannon for the given distortion measure. Examples are Ham-
ming distortion, List distortion, and Euclidean distortion. The rate-distortion function for
individual sequences can and does assume a wide class of shapes (unlike Shannon’s). Low
algorithmic mutual information is related to low Kolmogorov complexity. Destination words
having lower distortion to the source word have more properties in common with the source
word (hard or impossible to formalize in Shannon’s theory) and this suggests an approach to
denoising.
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4 Open Problems

4.1 Questions on the link between Kolmogorov complexity and
computational complexity classes

Eric Allender (Rutgers University – Piscataway, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Recall ∆0
1∩

⋂
U P

RCU

dtt = P , where RCU
is the set of random strings using universal machine U :

RCU
= {x : CU (x) ≥ |x|}. We know that it is necessary to take the intersection over all

universal machines U ; however, it is not obvious that the other intersection is necessary.
This motivates the first two questions below:

Question 1: Does it hold that
⋂

U P
RCU

dtt ⊆ ∆0
1 ?

Question 2: Do there exist machines U1, U2 such that the two sets RKU1
, RKU2

are minimal
pairs with respect to ≤tt or ≤wtt?

Question 3: Recall that there exists U such that the Halting problem H is not in NPRKU .
(This is not true if we consider plain Kolmogorov complexity C instead of prefix-free com-
plexity K.) Show that this holds for every U .

Question 4: We know that, for all U and for all t� 2n , H 6≤Dtime(t)
dtt RCU

. We also know
that, for some U , H is dtt-reducible to RCU

in doubly-exponential time. Close this gap
between exponential and doubly-exponential time.

Question 5: Hitchcock has shown that the exponential time class E contains sets that are
not poly-time dtt-reducible to R (no matter which universal machine one uses). Does this
hold for small time bounds as well? That is, is it true for every superpolynomial t(n), that
Dtime(t(n))− PR

dtt 6= ∅ ?

Question 6: We know that, for every decidable set A outside PSPACE, there is some U
such that A 6∈ PRKU

tt ; thus in particular H 6∈ PRKU
tt . Show that this holds for C-complexity

as well. That is, show there is a U such that H 6∈ PRCU
tt . [Then try to show that this is true

for every U .]

4.2 Kolmogorov complexity and computably enumerable sets
George Barmpalias (Chinese Academy of Sciences, CN)

License Creative Commons BY-NC-ND 3.0 Unported license
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Question: Is there a pair of sequences x, y which are not K-trivial and

min(K(x � n),K(y � n)) ≤ K(n) + c ?

Question: Is there a c.e. set where the initial segment complexity is maximal amongst the
c.e. sets? The same question holds for the global structure of ≤K (Miller and Yu).
Also the same question holds for the set of non random strings.

Question: What is the algorithmic independence of c.e. sets? Compare with the work of
Levin, Calude and Zimmand on algorithmic independence.
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Question: Recall that an order is a strictly increasing computable function f : N→ N. Let
Xf = {f(n) | n ∈ X}. X is K-invariant under f if X ≡K Xf . Characterize their degrees
(called K-resolute sequences).

4.3 Normal numbers computable in simple exponential time
Verónica Becher (Universidad de Buenos Aires, AR)

License Creative Commons BY-NC-ND 3.0 Unported license
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It is fair to say that Borel’s question on providing an example of an absolutely normal number
(normal to every integer base) is still unresolved because the few known instances are not
completely satisfactory: it is desirable that the number be easily computable, we would like
to exhibit the number explicitly.

Turing’s algorithm and the computable reformulation of Sierpiński’s work are the only
known constructions of computable normal numbers. Unfortunately, they both require double
exponentially many steps to produce a next digit of the expansion of a constructed number.
The existence of normal numbers computable in simple exponential time is ensured by a
theorem of Strauss in [1]; however, no specific instances have yet been identified.

References
1 Strauss, Martin, 1997. Normal numbers and sources for BPP. Theoretical Computer Science

178, 155-169.

4.4 Relating computability and logical theories
Laurent Bienvenu (Université Paris-Diderot, FR)
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Following A. Shen’s talk, here are some interesting open questions about the axiomatic power
of Kolmogorov complexity:

Question: Is it possible to find an example when some information about Kolmogorov
complexity gives us the power to compute ∅′, yet not allowing us, on a proof-theoretic level,
to prove all true Π0

1-statements ?

Question: We know from Chaitin’s theorem that one can only prove finitely many statements
of type “C(x) > n”. How about statements of type “C(x) 6∈ [n1, n2]” ?

Question: Can one give a characterization of the sequences (xn) of strings such that xn ∈ 2n

and C(xn) ≥ n such that, adding for each n the axiom “C(xn) ≥ n” for each n, we can prove
all true Π0

1-statements?

Question: Is there a sequence (xn) of strings such that xn ∈ 2n and C(xn) ≥ n such that,
adding for each n the axiom “C(xn) ≥ n/2” for each n, we can prove all true Π0

1-statements?
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4.5 Order functions and K-triviality
Noam Greenberg (Victoria University of Wellington, NZ)
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The goal is to find a combinatorial (or discrete) characterisation of K-triviality. That is,
one that does not mention measure, Kolmogorov complexity, or randomness. Such dual
characterisations are available for example for lowness for Schnorr randomness and for strong
jump-traceability.

One possible approach is via traceability. Let h be an order function (a computable,
non-decreasing, and unbounded function from ω to ω − {0}). Recall that a Turing degree
a is h-jump-traceable if every a-partial computable function has a c.e. trace bounded by h.
The aim is to identify a collection H of order functions such that a degree is K-trivial if
and only if it is h-jump-traceable for all h ∈ H. We have some approximations of such a
result. For example, it is known that if a is

√
logn/9-jump-traceable then it is K-trivial;

and that every K-trivial degree is O(h)-jump-traceable for any summable order function h
(
∑

2−h(n) <∞). The latter result comes from a characterisation of K-triviality (by Hölzl,
Kräling and Merkle) using jump-traceability with respect to a collection of bounds which is
defined using Solovay functions and Kolmogorov complexity K.

The dividing line may be some constant multiple of the logarithm function. Here we
have a related result: if every K-trivial degree is (logn)/10-jump-traceable, then there is no
minimal pair of LR-hard c.e. degrees.

4.6 Questions on K-trivials
André Nies (University of Auckland, NZ)

License Creative Commons BY-NC-ND 3.0 Unported license
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Question (open since 2005): Let A be K-trivial. Is there a T -incomplete Martin Löf random
Z such that Z ≥T A?

Question (open since 2006): Let K be the ideal of K-trivial degrees. Are there c.e. a,b
such that K = [0,a] ∩ [0,b] ?

Question (open since 2011): A function f : ω → ω is K-trivial if there is c such that
∀n [K(f � n) ≤ K(0n) + c. Can we compute, from a K-trivial constant from the graph of f
(as a set) a K-trivial constant for f?

4.7 Questions on higher randomness
André Nies (University of Auckland, NZ)

License Creative Commons BY-NC-ND 3.0 Unported license
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Recall the definitions:
Z is Π1

1-random if Z is in no null Π1
1 set.
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Z is higher weakly 2-random if Z passes all Π1
1 weak 2-tests (i.e., Z 6∈

⋂
m Gm, where

“[σ] ⊆ Gm” is Π1
1, and limm→∞ λGm = 0).

Question (open since 2005): Is there a non hyperimmune set that is low for Π1
1-random?

Question (posed in Chapter 9, Computability and Randomness, A. Nies, Oxford University
Press, 2009): Show the properness of these implications.
Π1

1-random ⇒ higher weakly 2-random ⇒ Π1
1-Martin Löf random.

The last implication was recently announced by Yu Liang.

4.8 Extraction of mutual information about two strings
Alexander Shen (Université de Provence, FR)
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Let A1, . . . , An be a tuple of strings. If X is a random oracle, with high probability it does
not change significantly the complexities of Ai, of pairs (Ai, Aj), etc. The question is whether
the same is true for other properties expressed in terms of complexity.

A specific question: assume that for a random X the strings A1, A2 have common
information (extractable mutual information): there exists a string B such that C(B|A1, X) ≈
0, C(B|A2, X) ≈ 0, and C(B|X) ≈ I(A1 : A2|X). Is the same true without an oracle?

Another question about oracles and tuples of strings: is it always possible for given
A1, . . . , An to find some oracle X such that C(Ai|X) ≈ 0.5 C(Ai)?

4.9 Randomness with respect to a semimeasure
Alexander Shen (Université de Provence, FR)
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Let L be some probabilistic machine that uses the internal random bits generator to produce
a sequence of output bits. Such a machine L has an output distribution which corresponds
to a semimeasure: l(x) equals the probability that the output of L has x as a prefix. In this
way we can obtain all semimeasures on the binary tree (lower semicomputable functions
on finite strings with nonnegative values such that l(Λ) = 1 for the empty string Λ and
l(x) ≥ l(x0) + l(x1) for every string x). Now consider the infinite outputs of L for all
Martin-Löf random sequences used as random bits.

Question: is this set of sequences determined by l or different machines with the same
output distributions can lead to different sets? (If determined by l, this set can be considered
as the set of random sequences with respect to a semimeasure l. This would extend the
Martin-Löf definition of randomness to semimeasures.)
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4.10 What do probabilistic methods tell us about the finite sets?
Theodore Slaman (University of California – Berkeley, US)
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I would like to propose an investigation of the heuristic question,“What do probabilistic
methods tell us about the finite sets?” For this, we would like both lower bounds, saying
that certain properties P of the finite sets can be established by probabilistic methods, and
upper bounds, saying that any theorem about the finite sets established probabilistically
has an alternate proof from purely number-theoretic properties Q. Still speaking informally,
we would like to know the power of and limitations on probabilistic methods as applied to
number-theoretic questions.

For example, we might express a version of this question using the formalism of second-
order arithmetic, in which one has the language appropriate to express properties of the
natural numbers n with addition, multiplication, and order, and also to refer to subsets X
of the natural numbers with the relation “element of” allowing formulas of the form “n is
and element of X.” It is standard to use the theory RCA0 to formalize computable methods,
where RCA0 includes the basic properties of + and ×(P−), the principle of induction for
Σ0

1 sets of numbers (to allow for the definition of total computable functions by recursion),
and the property that the sets of numbers are closed under relative computation.

Now consider augmenting RCA0 by postulating the existence of relative random reals.
Let 1−RAN be the formal statement that for every set X there is a set R which is Martin-Löf
relative to X. Let 2−RAN be the analogous statement for 2-randoms. Applying a theorem
of Harrington, if ϕ is an arithmetic sentence which is provable from “RCA0 + 1− RAN ,”
then ϕ is provable from RCA0. In other words, the use of randomness can be eliminated.

Recent results with Conidis, show that there is an arithmetic sentence which is provable
from “RCA0 +2−RAN” and not provable from RCA0. So, this use of randomness cannot be
eliminated. However, if ϕ is an arithmetic sentence which is provable from “RCA0+2−RAN ,”
then ϕ is provable from “RCA0 +B −Σ0

2.” Here, B −Σ2 is the assertion that if F is a finite
set and ψ is a Σ0

2 formula relative to the set X such that ψ holds for every number in F ,
then there is a bound on the existential witnesses needed to verify ψ on F .

Specific question: It is also known that B−Σ2 is not provable from “RCA0+2−RAN”, and
it would be very interesting to obtain a natural number-theoretic axiomatization of the number-
theoretic consequences of “RCA0 + 2−RAN .” The same is true for “RCA0 + k −RAN”,
for larger values of k.

Heuristic question. Identify the natural contexts, beyond purely computable, in which
randomness is used to shed light on the finite and determine in which cases the arguments
based on concepts of measure and randomness cannot be removed.

4.11 On gales combined with computable exponential order functions
Ludwig Staiger (Martin-Luther-Universität Halle-Wittenberg, DE))

License Creative Commons BY-NC-ND 3.0 Unported license
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Lutz’s s-(super-)gales are (super-)martingales combined with exponential order functions.
They are mainly considered as computable or left-computable functions having a (weakly) com-
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putable value of s. This corresponds to computable or left-computable (super-)martingales
combined with (weakly) computable exponential order functions.

Question: Are there computable or left-computable s-(super-)gales for non-(weakly) com-
putable values of s which are not s′-(super-)gales for a value s′ < s?

4.12 van Lambalgen-type theorem for time-bounded Kolmogorov
complexity

Marius Zimand (Towson University, US)
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For unrestricted Kolmogorov complexity, it holds that if we put together two sequences (or
strings) such that each one of them is random given the other one the result is random. More
precisely if x ∈ {0, 1}ω is (Martin-Löf, Schnorr, computable) random conditioned by y, and
y ∈ {0, 1}ω is random conditioned by x, then x⊕y is random (van Lambalgen Theorem). The
same holds for finite strings x and y that are c-random conditioned by each other (meaning
C(x | y) ≥ |x| − c, C(y | x) ≥ |y| − c, and also if we replace C by K). For time-bounded
Kolmogorov complexity this question is open. More precisely, the question is:

Question: Let x, y be n-bit strings such that for some constant c and some polynomial-time
bound p(n), Cp(n)(x | y) ≥ n − c and Cp(n)(y | x) ≥ n − c. What can we say about the
Cpoly(n)(xy) ? (Perhaps, under some computational complexity assumption, one can show
that it is � 2n.)

4.13 Strong extractors for infinite sequences
Marius Zimand (Towson University, US)
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It is known that Kolmogorov extractors for two independent sequences exist. For example
there exists a Turing reduction (even truth-table reduction) such that for each sequences x
and y that have each effective dimension, say 1/2, and are independent, it holds that that
fx⊕y has effective dimension 1.

Question: Is it possible to have a Turing-reduction f such that for all x and y as above,
computes a sequence that has effective dimension 1 even conditioned by x, and also conditioned
by y?

For x and y finite strings (or finite distributions) the corresponding f exists and is called
strong Kolmogorov extractor (and respectively strong extractor).
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