
Report from Dagstuhl Seminar 12071

Software Clone Management Towards Industrial
Application
Edited by
Rainer Koschke1, Ira D. Baxter2, Michael Conradt3, and
James R. Cordy4

1 Universität Bremen, DE, koschke@informatik.uni-bremen.de
2 Semantic Designs – Austin, US, idbaxter@semdesigns.com
3 Google – München, DE, conradt@google.com
4 Queens University – Kingston, CA, cordy@cs.queensu.ca

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 12071 “Software Clone
Management Towards Industrial Application”. Software clones are identical or similar pieces of
code or design. A lot of research has been devoted to software clones. Unlike previous research,
this seminar put a particular emphasis on industrial application of software clone management
methods and tools and aimed at gathering concrete usage scenarios of clone management in
industry, which will help to identify new industrially relevant aspects in order to shape the
future research.

Talks were presented by industrial participants and working groups were formed to discuss
issues in clone detection, presentation, and refactoring. In addition we developed a unified
conceptual model to capture clone information required to support a common notion of clone
data and for interoperability to foster exchange of data among researchers and tools in practice.
The main focus of current research is clones in source code – therefore, we also looked into ways
of extending our research to other types of software artifacts. Last but not least, we discussed
how clone management activities may be integrated into the process of software development.

Seminar 12.–17. February, 2012 – www.dagstuhl.de/12071
1998 ACM Subject Classification D.2.7 Distribution, Maintenance, and Enhancement, D.2.13

Reusable Software, K.5.1 Hardware/Software Protection
Keywords and phrases Software clones, code redundancy, clone detection, redundancy removal,

software refactoring, software reengineering, plagiarism detection, copyright infringement,
source differencing

Digital Object Identifier 10.4230/DagRep.2.2.21

1 Executive Summary

Rainer Koschke (University of Bremen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Rainer Koschke

Software clones are identical or similar pieces of code or design. They are often a result of
copying and pasting as an act of ad-hoc reuse by programmers. Software clone research
is of high relevance for software engineering research and practice today. Several studies
have shown that there is a high degree of redundancy in software both in industrial and
open-source systems. This redundancy bears the risk of update anomalies and increased
maintenance effort.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY-NC-ND 3.0 Unported license

Software Clone Management Towards Industrial Application, Dagstuhl Reports, Vol. 2, Issue 2, pp. 21–57
Editors: Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12071
http://dx.doi.org/10.4230/DagRep.2.2.21
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

22 12071 – Software Clone Management Towards Industrial Application

Many techniques exist that try to detect clones. Some of them are already available in
open-source (e.g., PMD) as well as commercial tools (e.g., CloneDr). There are also lines
of research in clone detection that evaluate these approaches, reason about ways to remove
clones, assess the effect of clones on maintainability, track their evolution, and investigate
root causes of clones. Today, research in software clones is an established field with more
than 100 publications in various conferences and journals.

The purpose of this seminar was to solidify and give shape to this research area and
community. Unlike previous similar events, this Dagstuhl seminar put a particular emphasis
on industrial application of software clone management methods and tools and aimed at
gathering concrete usage scenarios of clone management in industry, which will help to
identify new industrially relevant aspects in order to shape the future research. Research in
software clones is very close to industrial application. Among other things, we focused on
issues of industrial adoption of our methods and tools.

To achieve our goals, we invited many participants from industry. We managed to reach
a percentage of about 30% industrial participation. Talks were given mostly by industrial
participants who shared their experiences with us and posed their problem statements.
Academic participants were allowed to give a talk if their talk had a clear focus on industrial
experiences, needs, problems, and applications of software clone management and related
research fields. The focus, however, was on interaction in form of plenary discussions and
smaller working groups. The topics for workings groups were gathered by clustering issues
the participants wanted to discuss at the seminar. The seminar wiki was used intensively to
record the results of the working groups. This agile format was very much appreciated by
the participants.

The following working groups were formed:

Detection/Use cases: This working group discussed issues in detecting clones. Because
there are already many clone detectors, the focus of this working group was to gather use
cases for these. The particularities of a use case dictates what kinds of features a suitable
clone detector should have.
The group’s result was a list of different use cases for clone detection and an enumeration
of distinct features a clone detector should have to support the respective use case.
An overview of known limitations and issues of actual clone detectors is also provided
along with some research questions oriented towards the improvement of clone detection
techniques.
Presentation: Because clone detectors typically find many clones in large systems, the
user faces a huge amount of data he or she needs to make sense of. Visualization is a
means of presenting large and complex data that takes advantage of a human’s ability
for visual pattern matching. This working group dealt with presentation issues of clone
information. Again, use cases were enumerated because suitability of visualization is task
dependent.
The group connected the identified use cases with different existing types of software
visualization suitable for these.
Interoperability: To foster collaboration among researchers it is helpful to build interop-
erable tools. Then, for instance, the result of one researcher’s clone detector could be fed
into the visualization tool of another researcher. Interoperable tools are also needed to
serve practitioners’ diverse needs.
This working group created a common model to represent clone information that addresses
the needs of a wide range of use cases in research and practice.

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 23

Refactoring: Contrary to the abundance of available clone detectors, there are relatively
few tools that help in removing clones. The purpose of this working group was to consider
the mechanics and utility of forming clone abstractions and achieving clone refactoring.
The group identified various means of eliminating clones that are either provided by the
languages the clones are written in or by abstraction outside of the language (e.g., code
generation). It also delved into managerial aspects of clone refactoring and particularities
of clones in software product lines.
Clone management (process): Clone management is the set of activities to detect, track,
assess, handle, and avoid clones. This working group went into the matter of where clone
management may play a role in the development and maintenance process.
The group discussed how clone analysis fits into the overall software development process
(requirements engineering, development, testing, after deployment). They broached the
issue of relation of code search and clone detection and how clone detection could be used
in recommender systems.
Provenance and clones in artifacts that are not source code: Most research in software
clones focuses on source code, but as it has been shown by several researchers, clones can
also be found in other software artifacts such as models and requirement specifications.
This working group investigated needs to extend our research into these fields and the
particularities of these fields with respect to clone detection. In addition to that, this
working group dealt with provenance of clones, that is, the question where the clone
comes from. Although the issues of provenance and clones in other artifacts appear to be
largely independent, this working group worked on them jointly for organizational issues.
The group elaborated how clones could be detected and handled in binaries, models, and
bug reports.

For the remainder of this report, it is important to know the following current categoriza-
tion of clones:

Type-1 clone: Identical fragments only.
Type-2 clone: Lexically identical fragments except for variations in identifiers, literals,
types, whitespace, layout, and comments
Type-3 clone: Gapped clones, that is, clones where statements have been added, removed,
or modified.
Type-4 clone: Semantic clones, that is, clones with similar semantics but different
implementations in code.

12071

24 12071 – Software Clone Management Towards Industrial Application

2 Table of Contents

Executive Summary
Rainer Koschke . 21

Overview of Talks
Reducing ROM Consumption by Unifying Clones in Safety-Critical Software Systems
Gunther Vogel . 25

Code Clone Detection Experience at Microsoft
Yingong Dang . 25

Clones @ Bosch
Jochen Quante . 25

Semantic Designs’ experience
Ira Baxter . 26

Clone Detection @Google
Michael Conradt . 27

Industrial Clone and Malware Detection
Andrew Walenstein . 27

Where is the “business” case for software clones?
Serge Demeyer . 27

A Controlled Experiment on Software Clones
Jan Harder . 28

Issues in detecting license violations
Armijn Hemel . 29

Good and Evil clones
Angela Lozano . 29

Improving Software Architecture – Role for Software Clones
Ravindra Naik . 29

Working Groups
Working group on clone detection
Thierry Lavoie . 31

Working group on clone presentation
Sandro Schulze, Niko Schwarz . 35

Working group on interoperability
Cory Kapser, Jan Harder, Ira Baxter, Douglas Martin 38

Working group on refactoring
Ira Baxter . 43

Working group on clone management (process)
Jens Krinke . 51

Working group on provenance and clones in artifacts that are not source code
Serge Demeyer . 53

Participants . 57

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 25

3 Overview of Talks

The seminar asked for lightning talk (a short and intensive talk, typically 5–15 minutes long)
on industrial experiences, needs, problems, and applications of software clone management
and related research fields. The goal of such talks was to trigger plenary discussions on open,
industrially relevant issues rather than to provide found solutions. These problem statements
were used during the seminar as work items for the working groups.

3.1 Reducing ROM Consumption by Unifying Clones in Safety-Critical
Software Systems

Gunther Vogel (Robert Bosch GmbH, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gunther Vogel

This talk summarized experiences with clone management during software development of
airbag software at Robert Bosch GmbH.

3.2 Code Clone Detection Experience at Microsoft
Yingong Dang (Microsoft Research Asia, CN)

License Creative Commons BY-NC-ND 3.0 Unported license
© Yingong Dang

This talk presented a clone detector developed at Microsoft Research Asia and some of the
experiences gathered in using it within Microsoft.

3.3 Clones @ Bosch
Jochen Quante (Corporate Research at Robert Bosch GmbH, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jochen Quante

This talk explained clone detection/management activities at Bosch Corporate Research. It
stated reasons for clones in Bosch automotive software and discussed their pros and cons.
Beyond source code, the talk delves into clones in models of model-driven development.
Finally, challenges from Bosch’s perspective were listed.

12071

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

26 12071 – Software Clone Management Towards Industrial Application

3.4 Semantic Designs’ experience
Ira Baxter (Semantic Designs, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ira Baxter

The Dagstuhl Seminar focused on industrial application of clone detection and management
methods, tools, and consequences. Ira Baxter of Semantic Designs built one of the earlier
clone detection tools, CloneDR , based on matching abstract syntax trees, and has offered
this tool as a commercial product for a decade. This talk sketched Semantic Designs’ scalable
program analysis and transformation infrastructure, DMS, and described how CloneDR
leveraged the DMS machinery to implement an industrial strength clone analysis tool. DMS’s
ability to handle many languages, and its regular architecture, enables CloneDR to be
implemented as a product line parameterized by language front ends; clone detectors for new
languages can be constructed in about 15 minutes of effort once a language front end for DMS
is completed. Notably, across many different computer languages (C, C++, COBOL, Java,
Python, PHP and a variety of others), CloneDR consistently finds 10-20% of the code is
cloned. An “impossible software growth” curve with negative growth over time was exhibited
for a customer company applying clone removal manually but regularly based on CloneDR
analyses. The talk exhibited the HTML report generated by CloneDR, including summary
pages and pages shows specific clones. It was a surprise to the author that CloneDR’s
presentation of parameterized clones and the bindings for the parameters was not standard.

Experience with clone detection has shown variety of nonstandard uses: a) cherry picking
of very large clones is easy and valuable; b) isolating a clone makes the code block easier
to understand than when it exists in its surrounding code context, c) if bindings of a clone
parameter are of inconsistent conceptual types, the clone is often buggy; d) clone abstractions
form the basis for domain concepts and realizations, e) there is considerable utility in applying
clone detection to DSLs who themselves often have weak abstraction abilities, to determine
the kinds of abstractions that might be useful for that DSL. Finally, the complement of clone
detection (“what code is the same”) leads to a focus on “what code is different”, showing
a connection between the machinery needed for clone detection and “smart differencing”
over ASTs. Semantic Designs has built a product line “Smart Differencers” following this
philosophy, and using much of the same machinery. It was suggested that CloneDR might
be useful in constructing product lines from forked code bases.

Technology application has proven difficult. The business case for clone detection and
removal is not yet clear and management will generally not commit with such business case.
Programmers also resist; a) while it is well known that code contains many clones, revealing
them shows often embarassing cloning on the part of individual programmers, b) the absence
of IDE integration in their favorite IDE is a significant stumbling block; IDE integration
must become a product-line; c) the resistance to “not a free tool” is astonishing considering
the value of programmer time. Better models of ROI need to be developed to overcome
guesswork about value.

Future developments include better clone detection but perhaps more importantly actual
clone removal. Removal requires selection of a specific abstraction method for each subset of
a clone set, chosen from both language-supported capabilities (subroutines, macros, etc.),
and extra-language capabilities such as general macro processors, configuration conditionals
and even wholesale file replacement. The variety of choices here, and the sheer volume of
clones to be potentially removed, is a barrier to application because of the level of user
effort required. Actual removal requires the ability for an engine to reliably modify the code

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 27

according to the abstraction type; as a program transformation engine, DMS is peculiarly
well placed for this task, and there are few other practical alternatives. Perhaps integration
into an IDE, with “single click to orbit” removal of clones will change to perceived and actual
value.

References
1 I.D. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program Transformation for Practical

Scalable Software Evolution. in International Conference on Software Engineering, pp.
625-634, 2004.

2 I.D. Baxter, A. Yahin, L. Moura, M. Sant‘Anna, and L. Bier. Clone Detection Using
Abstract Syntax Trees. In International Conference on Software Maintenance, IEEE Press,
1998

3 http://www.semanticdesigns.com. Semantic Designs Company Website.

3.5 Clone Detection @Google
Michael Conradt (Google, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Michael Conradt

The talk described the experience Google made with clone detection, briefly outlined a few
future ideas and what the resulting requirements for a clone detection system are.

3.6 Industrial Clone and Malware Detection
Andrew Walenstein (University of Louisiana at Lafayette, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andrew Walenstein

This presentation looked at commonalities between malware detection and clone detection.

3.7 Where is the “business” case for software clones?
Serge Demeyer (University of Antwerpen, BE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Serge Demeyer

Joint work of Van Rompaey, Bart; Du Bois, Bart; Demeyer Serge et. al.
Main reference B. Van Rompaey, B. Du Bois, S. Demeyer, J. Pleunis, R. Putman, K. Meijfroidt, J. C. Dueñas,

B. García, “SERIOUS: Software Evolution, Refactoring, Improvement of Operational and Usable
Systems,” in Proc. of 13th European Conf. on Software Maintenance and Reengineering
(CSMR’09), pp. 277–280, 2009.

URL http://dx.doi.org/10.1109/CSMR.2009.30

Between 2006 and 2008 our research group was involved in the ITEA project entitled
SERIOUS (Software Evolution, Refactoring, Improvement of Operational & Usable Systems)
[1]. Code Clones as a symptom of refactoring opportunities were of prime importance during
this project as the goal of the project was to deliver a refactoring handbook. As such
we attempted to establish a so-called “business case” for code clones; that is, we tried to
calculate a potential return on investment of refactorings that would remove clones. During

12071

http://www.semanticdesigns.com
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1109/CSMR.2009.30
http://dx.doi.org/10.1109/CSMR.2009.30
http://dx.doi.org/10.1109/CSMR.2009.30
http://dx.doi.org/10.1109/CSMR.2009.30
http://dx.doi.org/10.1109/CSMR.2009.30

28 12071 – Software Clone Management Towards Industrial Application

this lightning talk I shared a few anecdotes on this quest for a business case. SPOILER
ALERT : Unfortunately, the story ends with an anti-climax. In the end, we abandoned the
business case for code clones in favour of project-specific business cases.

References
1 Bart Van Rompaey, Bart Du Bois, Serge Demeyer, John Pleunis, Ron Putman, Karel

Meijfroidt, Juan C. Duenas, and Boni García. Serious: Software evolution, refactoring,
improvement of operational & usable systems. In 13th European Conference on Software
Maintenance and Reengineering (CSMR 2009). IEEE Press, March 2009.

3.8 A Controlled Experiment on Software Clones
Jan Harder (Universität Bremen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jan Harder

Joint work of Harder, Jan; Tiarks, Rebecca
Main reference J. Harder, R. Tiarks, “A Controlled Experiment on Software Clones,” in Proc. of the Int’l Conf. on

Program Comprehension, 2012.

Most software systems contain sections of duplicated source code—clones—that are believed
to make maintenance more difficult. Recent studies tested this assumption by retrospective
analyses of software archives. While giving important insights, the analysis of historical
data relies only on snapshots and misses the human interaction in between. We conducted
a controlled experiment to investigate how clones affect the programmer’s performance
in common bug- fixing tasks.The experiment is based on two small open-source games
FrozenBubble and Pacman. For each system, we defined one maintenance task that requires
fixing a bug. For each of these tasks, we prepared two variations that differ only in the
independent variable, which is whether the bug is cloned or not. The participants were
drawn from two different populations. In total 21 students of the University of Bremen and
12 participants of the Dagstuhl seminar 12071 participated in the experiment.The dependent
variables, we observed, were the time needed to fix the bug and the correctness of the solution.
The results do not reach statistical significance. Nevertheless, we observed many incomplete
bug-fixes—in all cases only the more apparent bug symptom was corrected. When the bug
was cloned up to 54.5% of the students failed to fix both locations. But also many of the
experts—up to 33.3%—overlooked cloned bugs even though they participated in the context
of a clone seminar and should have expected clones.We also observed some differences in
the time needed to solve the tasks. In most cases the tasks variants without a clone were
solved quicker. In one case, however, the experts were faster fixing the cloned variant. This
peculiarity could be caused by the small sample size. A full report on the experiment has
been published to ICPC.

References
1 J. Harder, R. Tiarks. A Controlled Experiment on Software Clones. Proceedings of the 20th

International Conference on Program Comprehension, 2012.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
J. Harder, R. Tiarks, ``A Controlled Experiment on Software Clones,'' in Proc. of the Int'l Conf. on Program Comprehension, 2012.
J. Harder, R. Tiarks, ``A Controlled Experiment on Software Clones,'' in Proc. of the Int'l Conf. on Program Comprehension, 2012.

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 29

3.9 Issues in detecting license violations
Armijn Hemel (GPL Violations Project, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Armijn Hemel

Joint work of Hemel, Armijn; Vermaas, Rob; Dolstra, Eelco; Kalleberg, Karl Trygve;
Main reference A. Hemel, K. T. Kalleberg, R. Vermaas, E. Dolstra, “Finding software license violations through

binary code clone detection,” in Proc. of the 8th Working Conf. on Mining Software Repositories
(MSR’11), pp. 63–72, ACM, 2011.

URL http://dx.doi.org/10.1145/1985441.1985453

Violations of Open Source licenses such as the GNU General Public License occur very
frequently. In this talk the background of violations in the consumer electronics industry was
explained, as well as what methods for detection of the presence of Open Source software in
unknown opaque binaries, like clone detection, have been successfully applied.

3.10 Good and Evil clones
Angela Lozano (UC Louvain-la-Neuve, BE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Angela Lozano

One of the difficulties when considering clone management as part of the quality assurance
process is the lack of support for informed decisions on which clones to refactor. Clones are
supposed to affect an application on three aspects: they may increase or reduce the changes
required by the application, they may help to introduce or avoid bugs, and they may facilitate
or hamper the application’s understandability. There are arguments claiming both positive
and negative effects on these aspects; but so far, the evidence gathered is not convincing
enough to reach an agreement.This presentation aims at increasing the awareness on the
importance of discriminating clones, showing some of the limitations of current research,
and stating some challenges on separating good from evil clones. Although current findings
indicate that only a minority of clones are harmful on the changes that an application requires,
they are incapable of distinguishing a-priori which clones would have negative consequences.
Ultimately, to allow practitioners to prioritize clone refactorings, clone research should focus
on their long-term consequences instead of quantifying their immediate effect.

3.11 Improving Software Architecture – Role for Software Clones
Ravindra Naik (Tata Consultancy Services – Pune, IN)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ravindra Naik

The talk presents the problems observed in existing industrial software, primarily business
applications, in the context of the role for software clones. For specific problems in migrating
towards software product lines, we describe potential solution approaches that can exploit the
software clone detection. We describe the problems that were observed with Printer Controller
software (engineering application) and Core Banking product (business application). In
general our observations are that the enterprise systems are increasingly not able to meet
future needs and keep encountering similar function applications in different silos. Some of

12071

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1145/1985441.1985453
http://dx.doi.org/10.1145/1985441.1985453
http://dx.doi.org/10.1145/1985441.1985453
http://dx.doi.org/10.1145/1985441.1985453
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

30 12071 – Software Clone Management Towards Industrial Application

the software products, on the other hand, face difficulties in providing new capabilities to
all existing customers, and usually customizations (specific to customers) take much longer
and are expensive. We note that though exorbitantly expensive, enterprise systems have
the option of redesigning and developing from scratch, but the software products do not
pragmatically have such an option, lest they are willing to support old customers with versions
of old implementation. For software products, migrating to product-line architecture is a
potential option [4]. Thus, we observe that software architecture improvement is a common
theme across variety of software systems.In the context of software products (especially
related to business), we observed that copies are made of the software sources and are
customized for every customer. This makes it very difficult for the product team to provide
new features to all existing customers, as they have to replicate the new features for every
custom implementation. Therefore, among other architecture improvements, migrating to
product-line architecture is of prime importance in such cases. Given the situation of one
version of the product for each customer and each version having its copy of the source code,
the idea is to exploit the capability of Software Clone detection to detect commonality and the
variability in the differing assets. The Software Clones in question are a potential variation
of the semantic clones or Type-4 clones [2]. Identifying the clones will enable identifying
common code, meaning the code that is identical or common in various implementations.
Among the variants (which have differing code), identifying the differences, viz. the differing
variables, fields, conditional checks, statements, and blocks of code will enable identifying
parameters for the variants. Further, the differences need to be detected in functional features
or in transactions / processes; there could be constraints under which the differences may
(or may not) hold. The critical part of detecting clones is the ability to do so in the presence
of multiple functions implemented in a single program or subroutine; also in the presence of
already existing but overloaded and inconsistently used parameters [3]. The automation of
detection and refactoring, and giving guarantees of the re-factorings are of prime importance
for the success of such an approach in the industry.
Acknowledgements
My thanks to various business groups within TCS and my lab head Mr. Arun Bahulkar for
the intense discussions and feedback on the software system’s problems.

References
1 T. Mens and T. Tourwé. 2004. A Survey of Software Refactoring. IEEE TSE 30, 2, 126-139.
2 S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. 2007. Comparison and Eval-

uation of Clone Detection Tools. IEEE TSE 33, 9, 577-591.
3 Hitesh Sajnani, Ravindra Naik, and Cristina Lopes. Application Architecture Discovery –

Towards Domain Driven Easily Extensible Code Structure, WCRE Oct. 11, 401-405.
4 Angela Lozano. An Overview of Techniques for Detecting Software Variability Concepts

in Source Code, ER2011 Workshop – Advances in Conceptual Modelling: Recent Develop-
ments and New Directions, Oct. 11, 141-150.

4 Working Groups

During a brainstorming discussion involving all participants, various issues were gathered
that should be discussed in separate and parallel smaller working groups. These issues were
grouped into cohesive clusters. A working group was formed for each cluster. The identified
clusters were as follows (see Section 1 for a short description of their goals and results):

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 31

Detection/Use cases
Presentation
Interoperability
Refactoring
Clone management (process)
Provenance and clones in artifacts that are not source code

The following sections summarize the results of these working groups. In two cases –
namely, the working groups on Clone management (process) and Provenance and clones in
artifacts that are not source code – we will just report the notes that were added to the
seminar’s wiki in the course of the seminar. All other reports are based on the wiki’s entries,
too, but were written down and further elaborated after the seminar.

4.1 Working group on clone detection
Thierry Lavoie (Ecole Polytechnique Montreal, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Thierry Lavoie

4.1.1 Abstract

Although many efficient clone detectors are readily available, it is still unclear how to use
them to solve practical industrial problems. In order to address and focus future research on
this issue, many use cases for clone detection were identified and characterised with their
defining clone detection features. An overview of known limitations and issues of actual
clone detectors is also provided along with some research questions oriented towards the
improvement of clone detection techniques.

4.1.2 Introduction

Many clone detection tools are readily available today, but few provide insights on how to
interpret and use the detected clones. Even if the state-of-the-art tools have solved the
problem of detecting Type-1 and Type-2 clones, many issues need to be addressed both
regarding higher types detection and result applicability. In order to propose new focuses for
clone detection research, the group identified known issues with current detectors as well as
many relevant research questions. As a result, the group suggests to do new clone detection
research with a focus on use-case oriented results instead of a broad-scope clone detection.

This report is divided in two sections: the first presents known issues with clone detectors
with relevant research questions, and the second presents many use cases and their cloning
related features.

4.1.3 Known issues and limitations

Many aspects of type 3 and 4 clone detection are still eluding clone researchers. Those types
are required for many use cases. Therefore, it is worth looking at some current problems.

Regarding Type-3 clones, the following questions are still open:

How can we effectively find Type-3 clones?
How can we scale Type-3 clone detection effectively?
Is grouping of Type-3 clones into disjoint sets really appropriate?

12071

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

32 12071 – Software Clone Management Towards Industrial Application

With respect to the first question, a use-case oriented approach might suggest a way to
better quantify and qualify actual Type-3 clones as it points towards a better clone definition
(one that is useful for the use case) instead of the now vaguely defined “gapped” clones.
Scalability might as well be solved on a case by case basis. Grouping of clones into disjoint
clone classes is a natural choice for type 1 and 2 clones. However, disjoint classes suggest an
equivalence relation, which may be ill-formed for Type-3 clones. Specifically, transitivity does
not seem to trivially, or at all, hold and symmetry is questionable. Therefore, clone classes
should be rethought for Type-3 clones. Regarding Type-4 clones, their current definition
as semantic clones is above all too vague. Without a clear conception of what should be
a Type-4, or semantic, clone, it is hard to state how it should be detected. Nevertheless,
there is a common agreement that only few tools can barely deal with semantic clones and
semantic clones are relevant because they do occur in practice.

4.1.4 Limitations of clone detectors

Clone detection tools accuracy still needs improvement. Since the group suggests to head
towards use-case-based clone detection, it is natural to ask how can human feedback be
used to increase the accuracy of results. Distinguishing relevant and irrelevant clones might
become an easier problem if tools are configured for one specific task and results are manually
inspected. However, it is still unclear how human feedback might be used meaningfully.

With the evolution of malware and the increase of license infringement problems, obfus-
cated code becomes an issue for which clone detection tools were not conceived to deal with.
Binary clone detection is also relevant for those specific problems and for which tools are
not well suited. Investigation of these problems might give potent solution to practical clone
detection applications.

4.1.5 Category-oriented use cases

In order to define the challenges modern clone detection tools must overcome to solve practical
problems, the group identified several clone detection use cases. For each of them, required
features of clone detection tools were identified. In Table 1, the relevant clone types for each
use cases are identified. Clone types right to other clone types subsume them. For example,
Type-3 large gap subsumes Type-3 small gap, Type-2 and Type-1 and is itself subsumed by
Type-4.

In Table 2, other relevant features are identified. A cross in a cell indicates the feature is
required. Each feature is defined as follow:

Precision: A low rate of false positives is required
Recall: A low rate of false negatives is required
Online: A fast, realtime tool is required
Granularity: The desired size of the clones. Fine means small fragments are desired
whereas coarse indicates the need to identify only large fragments. Fine&Coarse indicates
clone size is not relevant.
Incremental: The tool needs to handle multiple fragment additions and deletions
Blacklisting: The tool needs to handle a corpus of code that must not be considered clone
Binary: The tool needs to find clones in source code as well as in executable binaries
Counter-obfuscate: The tools need to deal with obfuscated sources or binaries

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 33

Table 1 Highest relevant clone types for identified use cases

Use Case Type-1 Type-2 Type-3 small gap Type-3 large gap Type-4
Abstraction identification X
Version analysis tasks X

Code reduction X
License infringement X X

Plagiarism X
Code Leakage X
Provenance X

Productivity measurement X
Quality assessment X

Regulations complianc X
Malware X

Program comprehension X
Awareness X

Table 2 Required features of clone detection tools for identified use cases

Use Case P
re
ci
si
on

R
ec
al
l

O
nl
in
e

G
ra
nu

la
rit

y

In
cr
em

en
ta
l

B
la
ck
lis
tin

g

B
in
ar
y

C
ou

nt
er
-o
bf
us
ca
te

Abstraction identification X Fine&Coarse
Version analysis tasks Coarse X

Code reduction X Fine&Coarse
License infringement X Coarse X X X

Plagiarism X Coarse X X
Code Leakage X Coarse
Provenance X Coarse X

Productivity measurement X Fine&Coarse X
Quality assessment X Coarse X X

Regulations compliance X Fine&Coarse
Malware X Coarse X X

Program comprehension X X Coarse
Awareness X X Fine

12071

34 12071 – Software Clone Management Towards Industrial Application

4.1.6 Business cases and Cost/Benefits analysis

Using the identified use cases for business purposes is not straightforward. In many cases, a
cost/benefits analysis must be first performed to decide wether or not clone analysis is worth
investigation. The followings are research questions for which an answer would provide a
better intuition on how to use clone detectors in industrial applications:

What is the business case for clone search and reduction?
How to measure whether code-clone removal takes less effort than clone management?
How much does the cost to remove a clone increase with age?
How can we measure the benefits of clone detection?
Can we empirically characterize the costs / benefits of different clone refactorings?
How to get statistics about costs / risks associated with existing clones or avoided clones?
How to determine the relative importance of clones in a project?

For some use cases, some ways of determining the industrial benefits were identified:

Abstraction identification: speed-up development by refactoring and having better know-
ledge of the system
Version analysis task: speed-up in version merging using clone detection instead of other
techniques
License infringement and provenance: avoid legal problems and reduce costs of legal
department
Productivity measurement: increase in management decision quality
Quality assessment: reduction in maintenance cost, reduction in audit cost, increased
quality of internal assessment, increase quality of third-party quality assessment of
suppliers (software escrow)
Program comprehension: decrease time in comprehension

4.1.7 Conclusion

The group identified many relevant clone-detection use cases along with their required clone-
detection features. The group also supports reorientation towards application-oriented clone
detection instead of self-purposed-oriented clone detection. In many cases, state-of-the-art
clone detection tools do not behave well for these features. These observations point to new
research opportunities to enhance clone detection technologies.

4.1.8 Participants

The following people took part in the group discussion and contributed the main ideas of
this report:

Andrew Walenstein, University of Louisiana at Lafayette
Jochen Quante, Robert Bosch GmbH
Elmar Jürgens, TU München
Serge Demeyer, University of Antwerp
Yingnong Dang, Microsoft Research Beijing
Stephan Diehl, University Trier
Jim Cordy, Queens University
Rainer Koschke, University of Bremen
Michel Chilowicz, Université Parie-Est

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 35

Thierry Lavoie, École Polytechnique de Montréal
Werner Teppe, Amadeus Germany GmbH
Martin Robillard, McGill University
Rebecca Tiarks, Bremen University
Michael Conradt, Google
Minhz Zibran, University of Saskatchewan
Jindae Kim, HK UST

4.2 Working group on clone presentation
SSandro Schulze, Niko Schwarz

License Creative Commons BY-NC-ND 3.0 Unported license
© Sandro Schulze, Niko Schwarz

Main reference S. Schulze, N. Schwarz, “How to Make the Hidden Visible – Code Clone Presentation Revisited,”
Technical Report FIN-05-2012, University of Magdeburg, Germany, 2012.

URL http://www.cs.uni-
magdeburg.de/inf_media/downloads/forschung/technical_reports_und_preprints/2012/04_2012.pdf

4.2.1 Abstract

Nowadays, a slew of clone detection approaches exists, producing a lot of clone data. These
data have to be analyzed manually or automatically. It is not trivial to derive conclusions or
even actions from the analyzed data. In particular, we argue that it is often unclear how to
present the clone information to the user. As a result, we present our idea of task-oriented
clone presentation based on use cases. Hence, we propose five use cases that have to be
addressed and suggest clone presentation techniques that we consider to be appropriate.

4.2.2 Introduction

Intensive research has been performed on clone detection and evaluation—presentation
is often left as an implementation detail to implementors. While there is a plethora of
visualizations, current visualization for code clones is limited [1, 2]; they can not serve
different issues (e.g., online clone reporting, quality assessment, refactoring). They are rather
directed to a certain task for which they are more or less appropriate.

We want to stimulate the topic by discussing what is needed to present and visualize code
clones to an end user. This inherently raises the question: What do we want to discover from
the code clones, once they have been found by a detection tool? If we can clearly answer
this question, we have the ability to find appropriate methods to present this information.

So far, different tasks, related to detected code clones, require different tools to reveal
information that is needed for a particular task. In this report, we propose a mapping that
shows which visualizations and presentation concepts can serve which purpose. While our
suggestions are far from being complete, the objective is to guide tool builders and give an
overview over what is there and how it could be exploited. Our vision is a tool or IDE that
seamlessly integrates these approaches to provide different views on clones and thus fit the
needs of different stakeholders.

4.2.3 Use Cases for Clone Presentation

Once code clones have been detected and analyzed, they must be accessible for further
treatment. This step, called clone presentation, is not an obvious task. First of all, there

12071

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.cs.uni-magdeburg.de/inf_media/downloads/forschung/technical_reports_und_preprints/2012/04_2012.pdf
http://www.cs.uni-magdeburg.de/inf_media/downloads/forschung/technical_reports_und_preprints/2012/04_2012.pdf
http://www.cs.uni-magdeburg.de/inf_media/downloads/forschung/technical_reports_und_preprints/2012/04_2012.pdf
http://www.cs.uni-magdeburg.de/inf_media/downloads/forschung/technical_reports_und_preprints/2012/04_2012.pdf

36 12071 – Software Clone Management Towards Industrial Application

might be different stakeholders such as software quality managers or software developers that
need different views (including different levels of granularity) on the clones. Second, these
stakeholders want to perform different actions. In the following, we propose five use cases
that encompass the different views and treatments of clones.

4.2.3.1 Quality assessment (QA)

This use case mainly appears on the management level. For instance, the stakeholder wants
to have an rough estimation on how the existing clones affect the overall system quality.
Furthermore, the detection of hot spots, i.e., parts of a system that contain a larger amount
of clones, to define countermeasures or just reason about the clones are part of this use case.

4.2.3.2 Awareness (AW)

This use case describes the fact that it is important for certain stakeholders, especially
developers, to be aware of existing clones and how they are related. In particular, during
implementation a developer has to know when he changes a cloned fragment. Additionally,
the information where the corresponding clones are located is useful to making consistent
changes in an efficient way.

4.2.3.3 Bug prediction (BP)

If a bug has been found in a clone of a code snippet, then all other clones might be incorrect
as well. Further, if a code snippet is copied from a source to a destination, a certain similarity
between source and destination is implied. This could be exploited to predict bug occurrences.

4.2.3.4 Quality improvement (QI)

This use case encompasses persistency and removal of clones. For the first, we envision an
enrichment of clone information by the clone producer (i.e., the developer) such as whether a
clone is harmful or should not be removed. The latter case encompasses refactoring techniques
and all information that is needed to apply them to detected clones.

4.2.3.5 Compliance (CO)

This use case encompasses two issues: First, a stakeholder may be interested in whether code
in the systems exists that has been copied from external sources (e.g., third party libraries).
Hence, he must ensure that the license is not violated. Second, there could be subsystems
that contain code, which is not allowed to be used outside this subsystem such as sensitive
code or pre-defined architectural or responsibility boundaries. As a result, it is useful to have
a presentation that indicates whether such internal compliances are violated.

4.2.4 Putting the Pieces Together

Not all visualizations lend themselves equally to all tasks. In the last section we described the
use cases we identified and that have to be addressed by an appropriate clone presentation.
However, due to the fact that different approaches are possible for clone representation and
visualization, for each use case we focus only on a subset of techniques and methods that we
commonly agreed on during intensive discussions. For a more comprehensive overview on
possible visualization techniques, we refer to existing surveys on this topic [4, 5]. In Table 3,

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 37

Figure 1 Examples for (a) a tree map, (b) a seesoft view, and (c) a compare view from the clone
detection and report part of ConQAT [3]

we show a compatibility matrix that relates the use cases to clone presentation methods we
propose to address particular use cases.

Table 3 Matrix showing which clone presentation feature can be used for which use case.

QA AW BP QI CO
SeeSoft View [6] X X ? X

TreeMap [7] X X X
Source code view X X X

Compare view X X
Links X X

Dashboard X ? X
Filtering/querying/zooming X X
User-generated meta-data X

Revision history X X

Particularly, we argue that clone visualization such as SeeSoft views or TreeMaps are
helpful to provide a big picture of the clones in the system and thus support the use cases
QA, AW, and CO. To this end, a SeeSoft view (cf. Figure 1, middle) represents each file
as rectangle and each clone as a bar within this rectangle, indicating its size and position.
Additionally, code clones that belong to the same clone set have the same color. As a result,
the stakeholder receives an overview of clones and how they are scattered throughout the
system. Similarly, a TreeMap (cf. Figure 1, left) represents each file as a rectangle with
information on size and position, relatively to the whole system. Furthermore, the color
indicates whether such a file contains many clones or not, which enables an easy detection of
so-called hot spots. However, we also propose to make such visualizations more interactive
by adding filtering, querying, and zooming capabilities. Particularly for large code bases,
this allows to focus on subsets of the overall code base, which are of interest.

In contrast to the previously mentioned visualizations, a developer requires methods for
clone presentation that are seamlessly integrated in his development process. We propose
that the source code view (as provided by common IDEs) and a compare view (cf. Figure 1,
right), providing a face-to-face comparison of two code clones, are appropriate to fulfill these
demands and thus to support the use cases BP and QI. For the source code view, we even
suggest to integrate more sophisticated approaches such as linking between corresponding
clones. As a result, the developer could receive information on corresponding clones in case
that he changes a cloned code fragment. Furthermore, he could be provided with means to
change the corresponding clones consistently. Beyond that, the compare view can provide
even more fine-grained information such as highlighting the differences of two code clones.

Finally, the aforementioned approaches can be complemented by further presentation

12071

38 12071 – Software Clone Management Towards Industrial Application

techniques. For instance, the revision history can be exploited to provide evolutionary
information about the clones while user-generated meta-data (e.g., by tagging the clones)
can provide useful insights about the developer’s view on certain clones.

4.2.5 Summary

We have summarized the most common use cases of clone detectors and mapped them to
visualizations that can display them to the user. While we do not claim completeness, we
want to stimulate discussion on our categorization of use cases and the respective clone
presentation/visualization approaches.

4.2.6 Participants

Participants of this working group were as follows:

Hamit Abdul Basit
Saman Bazrafshan
Daniel M. German
Nils Göde
Martin P. Robillard
Niko Schwarz
Sandro Schulze
Gunther Vogel

References
1 R. Tairas, J. Gray, and I. Baxter, “Visualization of Clone Detection Results,” in Eclipse

technology eXchange. ACM, 2006, pp. 50–54.
2 J. Cordy, “Exploring Large-Scale System Similarity Using Incremental Clone Detection and

Live Scatterplots,” in ICPC, 2011, pp. 151–160.
3 E. Juergens, F. Deissenboeck, and B. Hummel, “CloneDetective – A Workbench for Clone

Detection Research,” in ICSE, 2009, pp. 603–606.
4 S. Diehl, Software Visualization. Springer, 2007.
5 C. K. Roy and J. Cordy, “A Survey on Software Clone Detection Research,” Queen’s

University at Kingston, Tech. Rep. 2007-541, 2007.
6 S. Eick, J. Steffen, and J. Sumner, E.E., “Seesoft – A Tool for Visualizing Line Oriented

Software Statistics ,” IEEE TSE, vol. 18, no. 11, pp. 957–968, 1992.
7 B. Johnson, “TreeViz: Treemap Visualization of Hierarchically Structured Information,” in

CHI, 1992, pp. 369–370.

4.3 Working group on interoperability
Cory Kapser, Jan Harder, Ira Baxter, Douglas Martin

License Creative Commons BY-NC-ND 3.0 Unported license
© Cory Kapser, Jan Harder, Ira Baxter, Douglas Martin

4.3.1 Abstract

As the field of code clone research grows, the continuing problem of interoperability between
code clone detection and analysis tools grows with it. As a working group, we sought to solve
this problem by generating a comprehensive model for code clone detection results that can

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 39

be used in a wide range of use cases. As a result, we generated a conceptual model of code
clone detection results that can be used to specify exchange languages, web services, output
formats, and more. Following the workshop we created an online wiki, where we hope to
generate discussion and solidify a shared understanding of the core concepts of the problem
domain with the code clone detection and analysis community as a whole.

4.3.2 Introduction

Research on code clones in software – segments of similar code within or between software
systems – is continually growing. As the number of code clone detection and analysis tools
increases, the number of output formats and parsers for those output formats grows. Yet as a
scientific community there is an increasing need to share results, not only for the purposes of
replication of experiments, but to enable us to efficiently build on top of each others’ results.
This leads us to the issue of interoperability of our tools and results.

As a group we realized that before we can solve the problem of interoperability, there
needs to be a shared understanding of the core concepts of the problem domain. The working
group participants employed object-oriented analysis of the problem domain as a method
of identifying important domain concepts. Starting with brain storming use cases for clone
detection results, we identified a diverse set of use cases where code clone detection results
are used. These became our basis for evaluating the completeness of our concept analysis.
Using these use cases as a reference, requirements and core concepts were identified and
encoded as classes and associations. The results of this work will continue to evolve, and the
most up to date information can be found at http://www.softwareclones.org/ucm.

Generic data formats have been proposed [2] but these models may not be complete
enough for all available use cases of detection results, nor do they model the core of clone
detection results in a truly generic way. Further, these models encode details and constraints
specific to their implementations, particularly to suit the models’ purpose. For example,
RCF specifically models clone pairs and clone classes separately though it can be argued
that the latter is the more general form. Also, the concept of higher level clustering of code
clones is not explicitly modelled in RCF. As the model presented here is a description of
core concepts and their relationships to one another, potential contributions of this model
include:

a shared decomposition of the problem domain,
reduced learning overhead for new tool developers and stakeholders as most core concepts
have been identified,
a standardized language for discussing code clone detection results,
a well defined model to be used to generate a concrete exchange language, and
a central model for which existing data formats can be documented relative to.

Further, the original use cases can be mapped to the specific concepts in the model,
providing a standardized way to communicate minimum requirements for specific usage
scenarios.

4.3.3 Use Cases

Three possible domains within which code clone detection would be used can easily be
identified: clone detection for computer programming languages, clone detection for non-
formal languages (e.g., natural language documents), and clone detection for graph based
documents. Working within the first domain during the session, eleven high-level use cases

12071

http://www.softwareclones.org/ucm

40 12071 – Software Clone Management Towards Industrial Application

<<Required>>

Detection Run

Tool Info
<<Required>>

System Summary

*
*

<<Required>>

Document

*

Version Information

Metric

Language Specification

Grammar Category

*

<<Required>>

Region
Argument

<<Required>>

Sequence

*

<<Required>>

Match Set

*

Parameter

*

*

<<Required>>

DocumentPosition

 ParentVersion

*

BytePosition

CharacterPosition

LineColPosition

Match Group Rationale

2

*

Figure 2 Unified Clone Model

for clone detection results were identified. These use cases were used to stimulate directed
object-oriented analysis going forward as well as verification of the resulting conceptual model
afterward. We fully expect this list will be expanded as the larger community is engaged in
the discussion. The following use cases were identified:

1. UC 1: Detect and report. Detect similarity and simply report it to the user.
2. UC 2: Detect, report, and track evolution. Detect similarity and track the evolution

of these results across software versions.
3. UC 3: Detect, report, refactor. Detect similarity and report them for the purpose

of refactoring.
4. UC 4: Metric analysis. Generate a metric based analysis of a software system including

code clone based metrics (perhaps to study the relationship of code clones, their metrics,
and other source code and software development related metrics).

5. UC 5: Data fusion. Smarter integration/augmentation of multiple data sources to
create more value than the code clone results alone (e.g., improve ROI for code clone
analysis by identifying high value/low cost refactoring cases).

6. UC 6: Scientific replication of a study. Provide sufficient information about the
clones, the detection process, and the source code to replicate the results.

7. UC 7: Benchmarking. Benchmark/compare code clone detection tools.
8. UC 8: Hybrid approaches. Enable tools to pass data to each other in hybrid clone

detection tool chains.
9. UC 9: Reduce rework. Provide useful, extra information that could be computed

by another tool but presents a significant amount of work. Ensures the results stand
completely on their own.

10. UC 10: Detect for reporting, enable easy navigation and search. Used to move
from clone to clone, snippet to snippet, and enable search within code clones.

11. UC 11: Plagarism detection where no source code is available. May only be
able to share minimal results, need to still be able to compare them.

4.3.4 Model

The diagram shown in Figure 2 depicts a model without the concept attributes. In this
section, the important features of the model are described and the concept attributes are
listed. The conceptual model shown in Figure 2 is encoded as a UML class diagram. Each
box represents an important concept identified during the analysis. Those boxes with the
stereotype Required are deemed to be required for the most basic use case Detect and Report.
In this case, clone detection results for a single version of the software are simply reported to

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 41

the user without any interpretation. As the model reported here reflects the core concepts of
the problem domain, it should be noted that this is a model of important concepts, not a
data format or OO design.

At its core, the model describes a detection run as an instance of a clone detection
tool or tools (tool info) being run over a document corpus (system summary). A detection
run also includes a run start time. Tool info includes the attribute names, version, tool
arguments/options, tool chain description, and possibly a boolean to indicate whether or not
the code clones detected are returned as classes or pairwise.

The results of the clone detector (code clone pairs or classes1) are stored as match sets. A
match set is modelled as a set of sequences and parameters. Each sequence is an ordered list
of regions, contiguous segments within a document, that represent the matching fragments
detected by the clone detector. The parameters of the match set indicate the points of
variability in the mapping (for Type-2 and Type-3 clones this is analogous to gaps in the
clone). Each sequence maps an argument to each parameter in the match set. In the case of
a token based clone detector, a sequence is the whole code fragment that was found to be
similar. This sequence is decomposed into the identical fragments (regions) and the differing
fragments (parameters/arguments). Match sets, sequences, and regions can have metrics and
version information associated with them as well. This version information could be used to
track clones across versions of the document corpus, and versions of sequences across versions
of the document corpus. Regions include start and end Document positions, text (as found
in the system), a checksum, and grammar category (for classification of contained artifacts).
Document position representation remains a point of contention within the working group.
Three alternatives are suggested in the figure. Byte position, while possibly being the most
portable is also the least convenient as that information may be lost in the pre-processing
stages. This is similarly true for character position. Line and column position may be the
most convenient for many detection tools, but also may require a character interpretation
mapping so as to ensure unambiguous interpretation of special characters (such as line feed).

Modelling code clones in this way allows for a sequence of a code clone to span multiple
files, and for matching regions to have an arbitrary order (e.g., (1,2,3):(3,1,2)). These
scenarios can occur, for example, when clone detectors return results from pre-processed
source code where macros have been in-lined [3]. They can also occur when clone detectors
that are resistant to line reordering are used, such as PDG based clone detectors [5]. For
clone detectors that return clone pairs, a match set would consist of two sequences. For those
clone detectors that return clone classes, a match set would contain two or more sequences.

Code clone detectors may apply a clustering of code clones as part of their result set,
such as Regional Group of Clones (RGC) [4] or clone classes generated based on the clone
pair relationship. In these cases, this can be represented as a match group. For higher level
clusterings, match groups can also be be aggregates of other match groups.

The system summary represents a version of the document corpus being analyzed. It
consists of documents, metrics, and version information. Documents are the units being
analyzed for code clones. Their attributes include the URI, version information, metrics,
checksum, original text, preprocessed text, the processed model (such as a serialized AST if
one was used) and a language specification which provides enough details for the consumer
of the detection results to interpret the document position as well as understand how the
document was processed by the clone detector. A language specification includes a name

1 A clone class is a set of two or more code fragments that are considered to match. This is often
considered to be an equivalence relation.

12071

42 12071 – Software Clone Management Towards Industrial Application

(such as C, Java), dialect (such as VS 2008), reference information describing where the
language specification can be found, character interpretation to describe how characters
map from character or binary offset in the file to line and column positions, and possibly a
grammar specification.

Although not shown in the diagram, most concepts can be associated with any number
of metrics. This is used when additional information, such as similarity, line count, or
complexity, are stored. The model is highly extensible in this respect as metrics can be
arbitrarily defined using name, value, and type attributes. Also, most nodes can contain
version information, enabling the tracking of match sets, sequences, and regions independent
of versions of the corpus (system summary). This enables, for example, the modelling of
genealogies of code clones including linking the origins of specific regions of code. This
version information can contain a rationale which is used to describe how or why one entity
was traced to a prior version.

4.3.5 Conclusion and Future work

The model presented here presents only the beginning of this work. If we wish to create a
general model that can be adopted by the community, there needs to be general acceptance by
the community. Therefore, a wiki (http://www.softwareclones.org/ucm/) has been created
to discuss and share the full details of the model. There we will also share the details of
reference implementations of database schemas, exchange languages, and web services.

As part of a verification of the basic completeness of the model, a mapping to RCF
was performed. The results of this process exposed very few modifications to RCF and no
modifications to the model described in this paper. While this is encouraging, we must go
further to validate the completeness of the core concepts. In this vain we will perform this
mapping to other existing models, including the output of CloneDR [1] but also models not
developed by the authors. This will not only ensure we have captured the essence of the
problem domain, but also provide examples of how to document existing clone detection
result formats relative to this model.

References
1 I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using ab-

stract syntax trees, in Proceedings of the International Conference on Software Maintenance
(ICSM-98), pp. 368, IEEE Computer Society, 1998.

2 J. Harder and N. Göde, Efficiently handling clone data: Rcf and cyclone, in Proceedings
of the 5th International Workshop on Software Clones, pp. 81–82, ACM, 2011.

3 I. J. Davis and M. W. Godfrey, From whence it came: Detecting source code clones by
analyzing assembler, in Proceedings of the 2010 17th Working Conference on Reverse En-
gineering (WCRE ’10), pp. 242–246, IEEE Computer Society, 2010.

4 C. J. Kapser and M Godfrey. Improved Tool Support for the Investigation of Duplication
in Software, in Proceedings of the 2005 International Conference on Software Maintenance
(ICSM-05), pp. 305–314, IEEE Computer Society, 2005.

5 J. Krinke. Identifying similar code with program dependence graphs, in Proceedings of
the Eigth Working Conference on Reverse Engineering (WCRE ’01), pp. 301–309, IEEE
Computer Society, 2001.

http://www.softwareclones.org/ucm/

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 43

4.4 Working group on refactoring
Ira Baxter (Semantic Designs, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ira Baxter

4.4.1 Abstract

Much of the research on (software) clones has been focused on methods of detection, un-
derstanding, and determining evolutionary properties of clones and their actual impact on
software maintenance. However, an implicit assumption behind clone detection is that most
or at least some clones should be “refactored” out of existence, unifying the instances into
some kind of effective abstraction. Yet there are extremely few tools or methods for actually
forming clone abstractions from clones in code or other formal documents, and/or clone
refactoring2: replacing cloned artifacts with abstract invocations, and inserting the clone
abstraction at some other accessible point in the code.

The purpose of this working group was to consider the mechanics and utility of forming
clone abstractions and achieving clone refactoring.

4.4.2 Format

Like the other working groups, we started with index cards containing all-attendees brain-
stormed one-line topics, that had been filtered into the category that seemed to be “refactoring”
(thus the group title). We further classified these into finer sets and tackled each in turn to
understand where there might be a synthesis of ideas.

We grouped the topics into several major subtopics, which we discuss below:
Normal refactoring “within” the formal document
Using abstractions from outside the language system of the formal document
Managerial aspects of refactoring: cost, benefits, risks
Refactoring to product lines

There were several subtopics we did not get to explore and surely deserve the attention
of a working group at some future date:

Clone refactoring applied to non-formal texts (documentation, requirements, parallel
refactoring of multiple sets of documents)
Clone refactoring for graph-structured artifacts, including various types of models
The relationship of domain analysis/engineering, e.g., clone abstraction to mine reusable
components. The observation is that detected clones are often recognized by the pro-
grammers that work on a system as to intent, and therefore an abstracted clone has both
a concept and a realization, as well as an obvious use in the type of software from which
it is extracted.

4.4.3 Clone refactoring: State-of-the-art

At present, most clone detection systems are not associated with any ability to refactor clones
for removal (exceptions: CloneDR3 [5], Erlang [12] and Haskell [7], a functional language).

2 We suggest using the specific term “clone refactoring” to distinguish this specific activity in the more
generic set of activities called “refactoring”.

3 CloneDR was able early in its life to refactor C code with macros, and COBOL code with COPYLIBs.
That capability is presently not used.

12071

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

44 12071 – Software Clone Management Towards Industrial Application

We considered what technology is available to support clone removal.
The maturity of certain conventional refactorings suggests clone refactoring is practical:

“pull up method”, and “form procedure”, both having elements needed for clone refactoring,
are generally reliable in participants experience. This suggests that clone refactoring itself
should be reliably implementable. There was some contradictory concern that behaviour
preserving refactoring is not solved reliably (especially for sequences of refactorings).

One key problem is to obtain robust tools to manipulate the program representation
(ASTs, symbol tables, flow analysis), especially for the essentially endless variety of languages
for which clone detection seems to be applicable. Most clone analysis tools, e.g., those that
match text strings, token sequences, or class files, do not actually have access to such a
representation; they have to be integrated with some other tool ecosystem (Eclipse, Clang,
. . .) to support such refactoring. Clone detectors such a CloneDR [5] built with a general
purpose program transformation engine such as DMS [4] should be easier to morph into a
clone refactoring tool; such tools have been used to carry out complex code restructurings on
languages such as C++ [1].

4.4.4 Clone Refactoring Issues

It is not easy being green. All kinds of issues must be addressed to refactor clones.

Under the somewhat suspect notion that one wants to remove all clones, can one use an
entirely automated approach to remove them? We think this is unlikely: the resulting
code is not likely to be understandable, as it is unclear how such a tool would choose
a sensible clone abstraction name. Perhaps there are clues in names of variables or in
comments or in the nature of the detected clone.
What are the criteria for suggesting a reasonable refactoring candidate? Can it be tiny
(perhaps, if there are hundreds of instances)? Can it have a large number of parameters?
Must it be abstractable using a language capability? Should it have some indication of
high code churn within the individual clones?
The right abstraction depends on a lot of information: the parameters (e.g., relationship
and count of the different locations), and this seems to be different for each clone. One
might desire to refactor (or not!) subsets of a large clone set differently to take advantage
of identical parameter bindings. The implications are that removal is likely to be an
interactive task.
Is there only one way to remove a clone? Likely not: several abstractions may be available
in the programming language (conditionals, macros, subroutines, . . .) for procedural
clones, and others available for declaration clones (macros, classes, . . .). For any given
clone instance, syntax/semantic category, language or client, is there a single preferred
way? If so, a clone refactoring tool could have a default method for removal; the user
decides if she wants a clone refactored that way. If not, can we provide a catalog of
prioritized abstraction possibilities for each detected clone type to help a user choose
quickly?
Is clone removal done only by abstraction capabilities available in the language in which the
clone was found, or can one step outside the language and use external metaprogramming
techniques to abstract the clone? How does a clone removal tool know about the
abstraction methods offered by all the languages it can handle? How does it know about
the external metaprogramming facilities?

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 45

4.4.5 Structural Clones

Before we discuss abstractions outside the language, we will first examine structural clones
[2], as they will play a big role in later discussion on refactoring in this report. The key
notion here is that smaller clones may in fact be part of a larger pattern; getters tend to be
associated with setters, and so one should expect cloned getters to have corresponding cloned
setters. Structural clone detectors use potentially multiple conventional code clone detectors
to find clones that form elements of structure clones, and then hunt for repeated patterns of
such elements in larger container structures (methods, classes, files, entire directories).

[2] offers one structural clone detector based on item-set frequency analysis. Are there
other means to detect structural clones? Can we measure or compare the quality? An open
question is “what kind of patterns can be formed from elements to make up a structural
clone”? Is the pattern a possible parameter of a structural clone? (e.g., elements A . . .B are
found in one container; elements B . . .A are found in another, forming a structural clone
with a boolean parameter: “forward order of elements’).

Abstracting structural clones is conceptually very difficult; they may cross many types
of language, abstraction and file boundaries. A lot of domain/expert knowledge may be
required to abstract a structural clone.

4.4.6 Abstractions outside the language

When refactoring clones, one set of abstraction mechanisms are those offered by the formal
language in which the clones were found, e.g„ macro and function calls for C, templates
and classes for Java, etc. We discussed the idea that a clone refactoring tool might offer
refactorings using abstraction mechanism that are not available to that language. A variety
of useful generic abstraction/reification mechanisms are available:

General macro processors: One might use (Unix) M4 to supply text-based macro
capability to languages that do not have it. (An uglier but similar idea already occurs
commonly in large Fortran codes that use the C preprocessor to provide configuration
conditionals as well as macros.)
Frame generators: These provide what amounts to tree-structured text macros that
generate entire files from explicit configuration parameters driving sophisticated con-
ditionals (Frames [3] or XVCL [10]). GenVoca has been suggested as a generalization
of frame technology [6]. We remark that XVCL, being able to produce arbitrary text
artifacts, has been used successfully to abstract structural clones.
File level selection: These tools choose between alternatives for files based on config-
uration conditionals. In essence, these are implicit preprocessor conditionals at the file
level. (A product line management tool, Gears [11] offers this as one of its features).
Code generators and DSLs: These generate result code given an input specification
in some chosen specification language. A key problem is choosing an appropriate specific-
ation language (raising the domain analysis/engineering question), and determining a
specification that can be realized to match the clone instances. A special case of this are
program transformation systems (e.g., DMS [4]), which can convert abstract operations
to target code by applying refinement transformations, and can abstract optimizations
as guided sets of transformations. A special case of program transformation systems is
intentional programming [13] which might be considered to be a kind of feature language.
Feature languages: These are DSLs that used named, possibly parametrized “features”
(perhaps contingent upon others) as abstractions to be realized [8].

12071

46 12071 – Software Clone Management Towards Industrial Application

Table 4 Abstraction methods for clones in executable and declarative code

method executable declarative
common lambda inference (e.g., extract method) . . .
extended to lift lambda to common area x –
“template method” (abstract algorithm, interface, API)
may need to merge several clones x –
text-based techniques x x
– macros, includes x x
– compile-time configuration (preprocessor) conditionals, file level x x
– frame generator (e.g., XVCL) x x
code generator (transformation, intention [Simony95]) x x
runtime configuration conditionals (if/then/else, switch/case) x –
aspects x -
typedefs (e.g., structs => union) – x
abstract data types – x
object formation (e.g., legacy => OO) x x
normalized representation (e.g., date format) – x
feature formation intentional/conceptual (Type-5)? x ?
purpose annotation for conceptual clones x x

4.4.7 Summary of possible code abstraction mechanisms

Most clone detection work seems to focus on cloned executable code. With CloneDR, it was
observed that there are many clones in (data) declarations as well as code. We considered
what kinds of abstractions might be available for code clones, and for declaration clones, to
produce Table 4.

Table 4 should be extended if possible; a survey might be a useful research topic. It
might be useful to collect a rather complete set of abstraction mechanisms used in software
engineering (category theory, anyone?), and consider the mechanisms required to support
these in clone refactoring. Which of these should be offered as a standard set to support
clone refactoring opportunities? Is this standard set independent of the language in which
the clones are found? How does one handle the availability of a customer-unique abstraction
mechanism?

A brief discussion ensued about “clone types”. Clone Type-1 corresponds to exact-match
code (perhaps modulo blanks), Type-2 to clones with single-token parameters, Type-3 to
clones with larger parameters, although it is unclear how complex a parameter might be or
even if it must be contiguous in the code text. Type-4 has been used to to classify clones
that match semantically; since the discussion is often about clones detected with automation,
presumably these are clones recognized using some semantic comparison mechanism (e.g.,
isomorphic dataflows), for which there are practical and theoretical limits on capability.

In considering how one might abstract code in general, it struck us that in general one
might have conceptual clones, that is, blocks of code whose purpose has similar abstractable
intention, but for which no mechanical detector is available (e.g., bitonic sort and radix
sort routines), but have reasonable abstractions (e.g., intentions [13]). Such conceptual
clones must be discovered in part by use of a human oracle. There does not seem to be a
(conceptual!) problem with conceptual parameters for such clones. Should such clones have
a designated type (e.g., Type-5?)

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 47

It is also a little unclear where structural clones fit in this spectrum; it is clear they have
common parts including conceptual clones; as an odd extreme, one might have a structural
clone that was composed entirely of conceptual subclones. Structural clones may have
parameters (Type 2 or 3) induced by their component subclones, but are there “parameters”
induced by the regions around the structural clones? We do not seem to have any kind of
useful characterization of the nature of parameters that a clone may have; how are we to
abstract without understanding what parameters might be? In the same vein, what are the
parameters of variation of the structure itself?

4.4.8 Managerial Aspects of Clone Refactoring

Assuming that one can refactor clones, there is the issue of should one refactor? We briefly
discussed the following:

Decision to declone based on cost-benefit: We do not have clear economic models of the
benefit of removing clones. It is becoming clearer that removing all clones may not pay
off. How do we measure costs and impacts? How do we decide which ones to remove?
How do we decide which abstraction mechanism to apply? How do we manage the rest,
if at all?
Cost of having changed the code: When determining cost benefit, completion of refactoring
a clone is not the end of the cost; as a practical matter, changed code must be re-compiled,
re-tested, re-deployed. Management often has a “do not touch anything that works”
attitude partly to control this. Are some clones easier to remove? Can some be removed
without doing retest? What about performance impacts of functionally reliable decloning?
How to minimize manual refactoring work: One can automate the removal of all clones,
but this is generally not a good idea. Given the possibility that each clone pair/set might
be remedied differently (including not remedied), fully automated removal is likely to
produce clones remedied inappropriately4. So there likely needs to be some interactive
selection of how individual clones are removed. Given that 10% of a code based might
be cloned, a million line system might have 20,000 5-line clones in 10.000 clone pairs.
Interactive review of such a huge amount of data is daunting at best. Perhaps one can
design defaults or heuristics so that the reviewing engineer has a simple interaction once
per clone (“one click to orbit”) remediation to accept the default.

4.4.9 Refactoring To Product Lines

The code base for large software systems sometimes gets forked (multiple times!), and the
resulting large-scale clones (e.g., full-code bases) then begin largely independent lives at
great maintenance costs to the owning organization5. It is often clear after the fact that a
product line should have been constructed, but the sheer scale of the systems and lack of
deep understanding of process or usable tools prevent the organized construction of such a
product line by somehow merging the forks. Can we refactor such enormous clones6 into a
product line? What process and technologies are needed?

4 An early version of CloneDR removed all clones in a C system by converting them into macros, producing
legal, compilable, runnable code, that the programmers instantly rejected because their individual code
was not remedied as they would have desired.

5 Semantic Designs has a client with 30 copies of a large-scale core-banking system, customized to different
countries legal systems and cultural product needs.

6 Clearly one can apply clone detection management techniques within a product instance, but for product
lines, we are interested only in clones across the product line instances.

12071

48 12071 – Software Clone Management Towards Industrial Application

Figure 3 Forming a product line from system instances

This is especially difficult in that the component languages which comprise the code base
for the product line as a practical matter almost surely cannot express an abstraction that
covers the entire code base. To abstract system clones, one must step outside the component
languages.

What is needed are:

means to describe the resulting product line (e.g., a specification-type of abstraction)
methods to detect the similarities across the cloned systems
methods to abstract the similarities into elements controlled by the specification style
methods to manage the differences in the systems

Abstractions for classic software clones can usually be expressed in the language in which
the clone was found. For product lines, often composed of multiple different computer
languages as well as informal documentation, no obvious unified abstraction mechanism
exists. In essence, one has to move to some kind of generator scheme in which the abstraction
is expressed as some kind of specification, and a corresponding generator can produce the
instance system code needed for a particular specification instance. One might choose some
kind of abstract interconnection model (e.g., UML, Component/Connector architectues, [9],
Module Interconnection Languages [14]) or a (set of cooperating) domain specific languages;
if the latter, where does domain knowledge come into the process? A “generic” class of DSLs
such as feature description languages [8] appear to be reasonable candidates for encoding
the abstraction, to the extent that the features can be coupled to some kind of generative
process that can produce instance systems from a selected set of feature specifications.
Oversimplifying, Gears [11] suggests abstracting product lines with features that select entire
files that comprise the product, and offers a commercial product for managing product lines
using this technique.

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 49

Product line abstraction from code. Regardless of the final abstraction, somehow the
similarities and the differences of the system clones must be found and eventually integrated
into the product line. In the seminar, we generated Figure 3. We see the variety of ways
in which various types of clone detection and abstraction techniques might be applied to
two systems instances. At the lowest level, standard code clone detection techniques can be
used to discover parametrized code abstractions that the product line generator will likely
need to instantiate. Because code clone detectors cannot identify code blocks with similar
intent but unsimilar code, one is likely to need to allow conceptual clones to be interactively
identified; perhaps domain ontologies would be helpful. Structural clone detectors are
needed to determine where sets of clones across the system instances indicate a higher level
application structure; we draw attention to the fact that such structure-clone detectors must
operate over the results of any of the lower-level clone detectors and even recursively over
smaller detected structural clones. Any remaining code fragments not allocated to structural
clones or abstracted away become (possibly enormous) parametric values of the product line
instances themselves.

Product line abstraction from models. An alternative is to somehow model the systems,
forming corresponding models (e.g., UML, Petri Net, . . .), and apply clone detection over the
models to generate an abstract model. Since feature models are models, it might be useful
to build a feature model of individual systems, and do clone detection over those features.
Is it possible or useful to do both abstraction from models and code in a synergistic way?
We remark that structural clones might contain subclones derived from code and subclones
derived from models.

Either approach leaves open the question of how the detected (structural or model) clones
are abstracted back to features, specifications, or DSL elements.

It would be interesting research to manually construct a product line using clone detection
processes on system instances, to provide some insight and details about how such a product
line forming process might work.

4.4.10 Summary

It is remarkable how much ground one can cover in small, lively subgroup in just a few hours.
The discussion was not anywhere near as linear as this report implies. This reporter has
tried to do the discussion justice and augmented it somewhat, particularly adding references
that seemed relevant. Any errors or misconceptions in this summary are the fault of the
reporter, not the group. Thanks go to Jochen for capturing excellent notes, and to the
seminar organizers for enabling us to have this discussion.

We close with a summary in Table 5 describing how to apply clone refactoring to various
types of artifacts. This table should be extended to handle non-code artifacts.

4.4.11 Participants

Participants of this working group were as follows:

Ira Baxter, Moderator, Reporter
Sandro Schulze
Ravindra Naik
Hamid Abdul Basit
Angela Lozano
Yingnong Dang
Jochen Quante, Scribe

12071

50 12071 – Software Clone Management Towards Industrial Application

Table 5 Clone refactoring in various types of artifacts

artifacts refactoring technology
code see Table 4
data see Table 4
feature model (UML, ontology, ...) unknown
conceptual clones human provided abstraction
product line instances – combination of above refactorings
same language/technologies
product line instances – unknown. Likely conceptual clones,
different technologies domain analysis/engineering

References
1 R. Akers, I Baxter, and M. Mehlich. Re-Engineering C++ Components Via Automatic

Program Transformation. 2004 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation

2 Hamid Abdul Basit, Stanislaw Jarzabek. Towards Structural Clones – Analysis and Semi-
Automated Detection of Design-Level Similarities in Software. VDM 2010: I-XII, 1-153

3 P.G. Bassett. The Case for Frame-Based Software Engineering, IEEE Software, July 2007,
pp. 90–99

4 I.D. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program Transformation for Practical
Scalable Software Evolution. International Conference on Software Engineering, pp. 625-
634, 2004.

5 I.D. Baxter, A. Yahin, L. Moura, M. Sant‘Anna, and L. Bier. Clone Detection Using Ab-
stract Syntax Trees. International Conference on Software Maintenance, IEEE Press, 1998

6 James Blair and Don Batory. A Comparison of Generative Approaches: XVCL and Gen-
Voca, Department of Computer Sciences. www.cs.utexas.edu/ftp/predator/xvcl-compare.
pdf

7 C. Brown and S. Thompson. Clone Detection and Elimination for Haskell, PEPM’10, Janu-
ary 18–19, 2010.

8 Krzysztof Czarnecki. Understanding Variability Abstraction and Realization. International
Conference on Software Reuse ICSR 2011: 1-3

9 D. Garlan and R. Allen. Formalizing Architectural Connection, Proceedings ICSE 16, IEEE
1994.

10 S. Jarzabek and S.Li. Eliminating Redundancies with a ’Composition and Adaptation’
Meta-Programming Technique, Proc. European Software Eng. Conf./ACM/SIGSOFT
Symp. Foundations of Software Engineering, (ESEC/FSE 03), ACM Press, 2003, pp. 237–
246;

11 Charles W. Krueger. The BigLever Software Gears, Systems and Software Product Line
Lifecycle Framework. SPLC Workshop 2010: 297

12 H. Li and S. Thompson. Clone Detection and Removal for Erlang/OTP within a Refactoring
Environment. ACM SIGPLANWorkshop on Partial Evaluation and Program Manipulation
(PEPM’09).

13 Charles Simonyi. The Death of Computer Languages, the Birth of Intentional Programming
(technical report) 1995

14 R. Prieto-Diaz and J. Neighbors. Module Interconnection Languages, Journal of Systems
and Software 6, 1986.

www.cs.utexas.edu/ftp/predator/xvcl-compare.pdf
www.cs.utexas.edu/ftp/predator/xvcl-compare.pdf

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 51

4.5 Working group on clone management (process)
Jens Krinke (UCL, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jens Krinke

What follows are the notes kept on the seminar wiki of this working group.

4.5.1 Clones and Process

Where may clone analysis play a role in the development and maintenance process?

4.5.1.1 During Development

As a part of QA in Continuous Integration, seen as a testing / integration / metric
activity.
It can be integrated with commits.

Generate commit messages automatically (“Copied X from Y.”) which can be edited
and/or augmented by the user.
Prevent commits that would create clones (or too large clones).
Automatically create annotations (traceability links) between the copied code and the
copy.

It can be used before and after commits.
During editing, providing immediate feedback (“similar code to the one you are editing
exists at A, B, and C”).
Tracking the copy/paste operations may generate useful information but may also create
too much information.

4.5.1.2 During Requirements Engineering

Observation: clones in requirements may lead to semantic clones in the code (different
developers implementing the same feature because of cloned requirements).

Clone detection during requirements engineering may prevent clones in later stages.

4.5.1.3 During Testing

Lots of clones exist in (unit) test suites. If code is cloned, is the test code cloned with it?
Must the test code be cloned first in TDD?

4.5.1.4 After Deployment

Is my code leaking to other products? (Provenance)

4.5.2 Code Search and Cloning

Programmers use code search to find code that already does what they want to do, which is
then copied. This may increase copied code – however, is this bad? Not necessarily, because
cloning code is cheaper than developing a feature from scratch. Moreover, detecting of such
clones is easier / possible in comparison to detect semantic clones due to reimplementation
from scratch. Maybe another case of good cloning?

Other code search: search for similar / cloned code: Where does similar code exist?
Notifications of clones: what are the implications of them at edit time and commit time?

12071

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

52 12071 – Software Clone Management Towards Industrial Application

4.5.3 Recommender Systems

Recommender systems for cloned code: “You edit a clone, maybe you want to edit X and Y,
too?” Implications may be similar to co-change based recommender systems: “You edit X
and you have always edited X with Y and Z in the past.” However, there is no correlation
between co-changes and clones. Moreover, half of the time clones evolve independently
(Lague did such a study already in 1997).

What can be recommended? (e.g., API mining)
In which way? As wizard? As clippy?
Depends on use / business case.

4.5.4 More questions

What are interesting clones?
Can clones be ranked? How?
What to do with bugs and clones, bugs in clones?
Are large Type-1 clones the most interesting ones?

All of the above questions may have a different answer for different development tasks.
“Often, developers/management think that they are in control of the cloning and don’t

have to act on it. What if they are wrong?”

How to define “wrong”?
Is a general question, not specific for cloning

When to
track

At commit.
At copy/paste actions? Necessary for immediate feedback.
What is the granularity of the tracking?

detect in real-time
Good as long as it does not get in the way.

refactor
When the user needs it.
Depends on the use /business case.

Can copy/paste information be used for clone detection? “Maybe there is a clone. . . ”
We need an ethnographic study.
Clone analysis may play an important role in a software product line development process.
Clones are created because of code ownership as it is hard to change other developer’s

code (clone-to-own).
Larger issues: Forks are created of “social” reasons (see forks of major open-source

software). We are missing an “integration culture”.

4.5.5 Participants

Participants of this working group were as follows:

Michael Godfrey, University of Waterloo, CA
Jindae Kim, The Hong Kong University of Science & Technology, HK
Jens Krinke, University College London, GB

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 53

Angela Lozano, UC Louvain-la-Neuve, BE
Ravindra Naik, Tata Consultancy Services – Pune, IN
Werner Teppe, Amadeus Germany GmbH, DE
Minhaz Zibran, University of Saskatchewan, CA

4.6 Working group on provenance and clones in artifacts that are not
source code

Serge Demeyer (University of Antwerp, BE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Serge Demeyer

What follows are the notes kept on the seminar wiki of this working group.

4.6.1 Clone Analysis in Binaries

4.6.1.1 Use cases

License infringement. Example: The app store problem – is open source used in the app
store?
Malware Detection. Example: Microsoft releases a patch – detect the differences; where
are you vulnerable?
Abuse case example: detect the difference; where can I exploit?

4.6.1.2 All boils down to two different cases

1. You know that the corpus contains the subject (in that case you can try all techniques
until you find whatever you are looking for).

2. You do not know whether the corpus contains the subject (in which case you can just
argue adequacy; legal term = “due diligence” = I did my best to according to the state
of the art in the field).

4.6.1.3 What is the information you can exploit?

Call graphs
Libraries used
Signatures of methods/classes
Strings (and constants)
Runtime analysis (observing behaviour)
File name
Call usage (call graphs)
No code (data files used, services used)
Metrics of the binary
Op codes
Frequency based analysis (spectography)

Open question: what is important (in a pool of information)?

12071

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

54 12071 – Software Clone Management Towards Industrial Application

4.6.1.4 Research agenda problems/questions

How to create traceability links to maintain the history of an artifact?
How to insert this into organizational process / awareness / . . . ?
How to certify the origin; what should be in the “manifest” that accompanies a software
artefact?

Diffing
in the case where you have two binaries which you know are descendants from one
another;
challenging because some differences are caused by irrelevant changes (change in
compiler version, options)

Origin
Which point in time in the VCS was used to generate this binary? Example: You have
the DEBIAN VCS and a binary; which version of DEBIAN does it come from?
Given a binary and the source code; is the source code the actual source code used to
create the binary?
People copying JAR files and dropping version info; what version did I use?
Which version of telnet was used in malware?

How do we evaluate that our methods are good? (⇒ Benchmarks)
What are the common tasks?
Malware detection problems?
What in the case of obfuscation?

Building a Corpus in the case of provenance
Language dependent issues
Adversial? (incl. obfuscation)

4.6.2 Provenance

4.6.2.1 Can we automatically add some meta-data, signatures to binaries?

Similar to EXIF for JPG files;
currently based on a web of trust; when downloading open-source software the signatures
and the binaries are kept together; there is no separate authority that authorizes signatures

4.6.2.2 Who did what post-mortem?

Manifest of a software artefact; like in ship cargo (what’s inside the container) or like a
software bill of materials

There is an industry motivated group who is standardizing this software manifest concept
– Software Package Data Exchange
Clarity of the supply chain; which are the organizations who produced a given component?

4.6.2.3 IEEE malware working group proposal

Working group has a taggant effort7. Packers compress executables. The IEEE working
group would like the packer vendors to create packers that sign the packed executables with a
digital signature that can be traced back to the packer vendor and packer vendor’s customer,

7 http://standards.ieee.org/develop/indconn/icsg/malware.html

http://standards.ieee.org/develop/indconn/icsg/malware.html

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 55

and permit the signature to be revoked if the packer is stolen or the packer vendor plays
both sides (sells to both white and black hats).

4.6.2.4 Where would such a “centralized authority” come from?

www.OHLOH.net: a web-site which keeps statistics of all open source software

4.6.2.5 Research Agenda

There are various non-technical issues which severely challenge the use cases applications.
Tool support is really missing. Triangulating with partial information is a potential way

to go. Clone detection may contribute there.

4.6.3 Clones in models

4.6.3.1 Use Case; e.g., Simulink

Jim Cordy is looking for clones in Simulink models. GM wants to answer a question like “Is
a given piece of a model –where we suspect there is a safety issue– used elsewhere in the
car?” This boils down to the question we have seen elsewhere. If you discovered an issue in
one model, can you look for it in others?

4.6.3.2 Observation: Culture of clones in other engineering disciplines

In other engineering it is an accepted practice of scaling up by replicating proven designs.
In computer science, we do not do that; we create our own abstractions and then repeat
the abstractions.
Clones are a symptom for the potential of creating such abstractions.
However, the language must allow for “program-like” abstraction facilities.
Most engineering disciplines lack the languages for expressing said abstractions.
Within engineering modelling there is a new wind; with expressing higher order abstrac-
tions.
Automotive is a good example: engineers would like to control (hence model) the emerging
properties of systems.
Example: if I push on this emergency button, will the system stop in time? The current
best practice is to run many simulations and worst case scenarios.

4.6.3.3 Questions

How does duplication in models trigger abstraction?
Having a replication of a good idea;
pattern matching on languages/models used in other engineering disciplines is a prerequis-
ite.

4.6.3.4 Clones in pictures

Models usually have a graphical representation; couldn’t we just use clone detection of
images? Example: Getty wants to protect its copyright and spies the web for copies of its
images.

Google is now able to detect “clones” of PNG files.
What would happen if you use that kind of facility on UML diagrams?

12071

http://www.ohloh.net

56 12071 – Software Clone Management Towards Industrial Application

Here as well: having copies of UML diagrams implies that it is a good design since people
want to copy it; it is not about license infringement or so.

4.6.3.5 Research Agenda

Look how other disciplines how they deal with duplication / replication: First thing to
watch out for: Do there exist “program like” abstraction facilities?
Reach out to other communities: Show nice examples of things we have achieved with
clone research.

4.6.4 Clones in bug reports

Clones in stack traces / debug back traces (i.e., the stack traces associated with a bug).

Clone detection there might help to identify most frequently (re-)occurring bugs.
Canonical (the company behind the Ubuntu linux version) would be very eager for
knowing which bugs occur frequently in the field.
Integrators (= organizations combining components coming from various sources) might
very interested as well. It would help them to identify which subcontractor caused the
bug. Same applies for (distributed programming) teams; assigning a bug report to the
right team is critical to reduce bug resolution time.

4.6.4.1 Research agenda

Clone detection on stack traces looks promising.

4.6.5 Overall research agenda

When approaching “other” documents to search for clones there are two starting points:
1. look for catalogs of patterns/abstractions/domain concepts; knowing what to search

for is important as a first step
2. verify whether there exist “program like” abstraction facilities in the languages used.

This helps in identifying potential for removal of clones, or whether it stays at searching
for similar occurrences.

Observation: Clone detection, diffing, provenance and even search are intimately linked;
a common thread throughout all what we discussed

4.6.5.1 Side note: Bizarre application for Type-4 clones

In n-version programs, verify whether the versions are indeed Type-4 clones (= semantically
equivalent) but not Type-3 or lower (= syntactic equivalence).

4.6.6 Participants

Participants of this working group were as follows:

Mike Godfrey
Andrew Walenstein
Serge Demeyer (scribe)
Niko Schwarz
Jens Krinke
Armijn Hemel
Daniel M. German
Douglas Martin

Rainer Koschke, Ira D. Baxter, Michael Conradt, and James R. Cordy 57

Participants

Hamid Abdul Basit
LUMS – Lahore, PK

Ira D. Baxter
Semantic Designs – Austin, US

Saman Bazrafshan
Universität Bremen, DE

Michel Chilowicz
Université Paris-Est –
Marne-la-Vallée, FR

Michael Conradt
Google – München, DE

James R. Cordy
Queen’s Univ. – Kingston, CA

Yingnong Dang
Microsoft Research – Beijing, CN

Serge Demeyer
University of Antwerpen, BE

Stephan Diehl
Universität Trier, DE

Daniel M. German
University of Victoria, CA

Michael W. Godfrey
University of Waterloo, CA

Nils Göde
CQSE GmbH – Garching, DE

Jan Harder
Universität Bremen, DE

Armijn Hemel
GPL Violations Project, NL

Elmar Jürgens
CQSE GmbH – Garching, DE

Cory J. Kapser
Calgary, Alberta, CA

Jindae Kim
The Hong Kong University of
Science & Technology, HK

Rainer Koschke
Universität Bremen, DE

Jens Krinke
University College London, GB

Thierry Lavoie
Ecole Polytechnique –
Montreal, CA

Angela Lozano
UC Louvain-la-Neuve, BE

Douglas Martin
Queen’s Univ. – Kingston, CA

Ravindra Naik
Tata Consultancy Services –
Pune, IN

Jochen Quante
Robert Bosch GmbH –
Stuttgart, DE

Martin P. Robillard
McGill Univ. – Montreal, CA

Sandro Schulze
Universität Magdeburg, DE

Niko Schwarz
Universität Bern, CH

Werner Teppe
Amadeus Germany GmbH, DE

Rebecca Tiarks
Universität Bremen, DE

Gunther Vogel
Robert Bosch GmbH –
Stuttgart, DE

Andrew Walenstein
University of Louisiana at
Lafayette, US

Minhaz Zibran
University of Saskatchewan, CA

12071

	Executive Summary Rainer Koschke
	Table of Contents
	Overview of Talks
	Reducing ROM Consumption by Unifying Clones in Safety-Critical Software Systems Gunther Vogel
	Code Clone Detection Experience at Microsoft Yingong Dang
	Clones @ Bosch Jochen Quante
	Semantic Designs' experience Ira Baxter
	Clone Detection @Google Michael Conradt
	Industrial Clone and Malware Detection Andrew Walenstein
	Where is the ``business'' case for software clones? Serge Demeyer
	A Controlled Experiment on Software Clones Jan Harder
	Issues in detecting license violations Armijn Hemel
	Good and Evil clones Angela Lozano
	Improving Software Architecture – Role for Software Clones Ravindra Naik

	Working Groups
	Working group on clone detection Thierry Lavoie
	Working group on clone presentation Sandro Schulze, Niko Schwarz
	Working group on interoperability Cory Kapser, Jan Harder, Ira Baxter, Douglas Martin
	Working group on refactoring Ira Baxter
	Working group on clone management (process) Jens Krinke
	Working group on provenance and clones in artifacts that are not source code Serge Demeyer

	Participants

