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Abstract
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In recent years, concepts and techniques adapted from combinatorial and algebraic topology
have led to a variety of promising new results in several areas of Computer Science, including
distributed computing, sensor networks, semantics of concurrency, robotics, and vision.

The recent Dagstuhl seminar Applications of Combinatorial Topology to Computer Science
(12121), brought together researchers in these fields, both to share ideas and experiences,
and to establish the basis for a common research community. Because of differences in
terminology and academic culture, it is often difficult for researchers in one area to become
aware of work in other areas that may rely on similar mathematical techniques, sometimes
resulting in duplication of effort. This Dagstuhl seminar provided a valuable opportunity to
bring together researchers in both computer science and mathematics who share a common
interest in emerging applications of combinatorial topology.
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3 Overview of Talks

3.1 Evasion paths in mobile sensor networks
Henry Adams (Stanford University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Henry Adams

Imagine that disk-shaped sensors wander in a planar domain. A sensor can’t measure its
location but does know when it overlaps a nearby sensor. We say that an evasion path exists
in this sensor network if a moving evader can avoid detection. A theorem of Vin de Silva and
Robert Ghrist gives a necessary condition, depending only on the time-varying connectivity
graph of the sensor network, for an evasion path to exist. Can we sharpen this theorem?
We’ll consider examples that show the existence of an evasion path depends not only on the
network’s connectivity data but also on its embedding.

3.2 An equivariance theorem with applications to renaming
Armando Castañeda (IRISA / INSA – Rennes, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Armando Castañeda

Joint work of Castañeda, Armando; Herlihy, Maurice; Rajsbaum, Sergio

In the M -renaming task, each of n+ 1 processes is issued a unique name taken from a large
namespace, and after coordinating with one another, each chooses a unique name taken from
a (much smaller) namespace of size M . Processes are asynchronous (there is no bound on
their relative speeds), and potentially faulty (any proper subset may halt without warning).
Assuming processes communicate through a shared read- write memory, for which values of
M can we devise a protocol that ensures that all non-faulty processes choose unique names?

To rule out trivial solutions, we require that any such protocol be anonymous: informally
stated, in any execution, the name a process chooses can depend only on the name it was
originally issued and how its protocol steps are interleaved with the others.

This problem was first proposed by Attiya et al. [1], who provided a protocol forM = 2n+1,
and showed that there is no protocol for M = n + 2. Later, Herlihy and Shavit [6] used
chain complexes, a construct borrowed from Algebraic Topology, to show impossibility for
M = 2n. Unfortunately, this proof, and its later refinements [2, 6, 7], had a flaw: because of a
calculation error, the proof did not apply to certain dimensions satisfying a number-theoretic
property described below. Castañeda and Rajsbaum [3] provided a new proof based on
combinatorial properties of black-and-white simplicial colorings, and were able to show that
in these dimensions, and only for them, protocols do exist for M = 2n. Nevertheless, this
later proof was highly specialized for the weak symmetry breaking task, a task equivalent to
renaming with M = 2n, so it was difficult to compare it directly to earlier proofs, either for
renaming, or for other distributed problems. In the weak symmetry breaking task [4, 6], each
of n+ 1 processes chooses a binary output value, 0 or 1, such that there is no execution in
which the n+ 1 processes choose the same value.

In this talk we present an algebraic topology theorem that captures the impossibility
of the renaming task. While this theorem requires more mathematical machinery than the
specialized combinatorial arguments used by Castañeda and Rajsbaum, the chain complex
formalism is significantly more general. While earlier work has focused on protocols for an
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asynchronous model where all processes but one may fail (“wait-free” protocols), the chain
complex formalism applies to any model where one can compute the connectivity of the
“protocol complexes” associated with that model. This approach has also proved broadly
applicable to a range of other problems in Distributed Computing [5, 7]. In this way, we
incorporate the renaming task in a broader framework of distributed problems. The second
contribution is to point out where the flaw is in previous renaming lower bound proofs [6, 7].

As in earlier work [5, 7], the existence (or not) of a protocol is equivalent to the existence
of a certain kind of chain map between certain chain complexes. Here, we replace the ad-hoc
conditions used by prior work [6, 7] to capture the informal notion of anonymity with the
well-established mathematical notion of equivariance. We prove a purely topological theorem
characterizing when there exists an equivariant map between the chain complexes of an n-
simplex and the chain complexes of an annulus. The desired map exists in dimension n if
and only if n+ 1 is not a prime power. These are exactly the dimensions for which renaming
is possible for M = 2n [3].

In a more precisely way, the theorem is the following. Let σn be the simplex {P0, . . . , Pn}.
For brevity, let σn denote the complex containing σn and all its faces. Let Sn be the
symmetric group of order n + 1. Clearly, C(σn) is an Sn-chain complex: for each π ∈ Sn,
π(〈P0P1 . . . Pj〉) = 〈π(P0)π(P1) . . . π(Pj)〉. Now consider the following annulus An defined
as follows. Each vertex has the form (Pi, bi), where Pi ∈ σn and vi is 0 or 1. A set of
vertexes {(P0, v0), . . . , (Pj , vj)} defines a simplex of An if the Pi are distinct, and if j = n

then the bi are not all 0 or all 1. Clearly, C(An) is a Sn-chain complex: for each π ∈ Sn,
π(〈(P0, b0) . . . (Pj , bj)〉) = 〈(π(P0), b0) . . . (π(Pj), bj)〉.

I Theorem 1. There exists a non-trivial Sn-equivariant chain map

a : C(σn)→ C(An)

if and only if n+ 1 is not a prime power.

References
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3.3 Persistence based signatures for compact metric spaces
Frederic Chazal (INRIA Saclay – Orsay, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Frederic Chazal

Joint work of Chazal, Frederic; de Silva, Vin; Oudot, Steve
URL http://geometrica.saclay.inria.fr/team/Fred.Chazal/papers/RipsCompactTalk.pdf

We introduce a family of signatures for compact metric spaces, possibly endowed with real
valued functions, based on the persistence diagrams of suitable filtrations built on top of
these spaces. We prove the stability of these signatures with respect to the Gromov-Hausdorff
metric. We illustrate their use through an application in shape classification.

3.4 Lower bounds on multiple sensor estimation
Frederick R. Cohen (University of Rochester, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Frederick R. Cohen

Joint work of Moran, Bill; Cochran, Doug; Suvarova, Sofia; Howard, Stephen; Taylor, Tom
Main reference In preparation

This summary represents joint work with Bill Moran, Doug Cochran, Sofia Suvarova, Stephen
Howard, and Tom Taylor.

Given sensor reports of counts of agents, a typical classical problem is to try to deduce
the total number of agents reported by the sensors. One standard method is given by
“inclusion-exclusion” as well as the Bonferroni inequalities. The main focus here is to refine
techniques to provide estimates of minimum total numbers.

The new input here is the use of topology and geometry to give some estimates.

1. With natural assumptions concerning the sensor regions, methods are given for minimum
counts via topology.

2. Three features are an introduction of
a. a universal solution,
b. topological methods to give criteria for whether “atoms are represented”, and
c. an infinite polytope which has an action of an integral lattice with some describable
vertices and which gives a potential list of vertices for testing of minima.

Specific examples arise from a hexagonal tesselation of the plane and the introduction of
a universal polytope with data concerning the structure of some of the vertices.

3.5 Why so persistent?
Herbert Edelsbrunner (IST Austria – Klosterneuburg, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Herbert Edelsbrunner

[Abstract omitted.] Herbert Edelsbrunner gave a survey talk about his work on proteins
with E.P. Mücke and C.J.A. Delfinado, persistence with D. Letscher and A. Zomorodian,
and stability with D. Cohen-Steiner, J. Harer, and D. Morozov.
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3.6 Ditopology: A short tutorial
Lisbeth Fajstrup (Aalborg University, DK)

License Creative Commons BY-NC-ND 3.0 Unported license
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3.6.1 Introduction

The objects of ditopology are d-spaces, topological spaces with a selected set of directed
paths. Such spaces provide a geometric model for the most powerful model of concurrent
computing, Higher Dimensional Automata [3]. Dipaths model executions and paths which
are directed homotopic model equivalent executions.

3.6.2 Definitions

I Definition 1. A pair (X, ~P ), where X is a topological space and ~P ⊂ XI is a set of paths,
is a d-space if

~P contains all constant paths.
~P is closed under concatenation.
For γ ∈ ~P and α : I → I non-decreasing, γ ◦ α ∈ ~P .

For p, q ∈ X, the set of directed paths ~P (X)(p, q) is a topological space with the compact-open
topology.

The trace space is the quotient space ~T (X)(p, q) = ~P (X)(p, q)/R where R is the relation
generated by non-decreasing reparametrization. See [1].

I Definition 2. A trace σ ∈ ~T (X)(p′, p) induces maps σ∗ : ~T (X)(p, q) → ~T (X)(p′, q) and
σ∗ : ~T (X)(r, p′)→ ~T (X)(r, p) by concatenation σ∗([γ]) = [γ ◦ σ] and σ∗([µ]) = [σ ◦ µ].

The directed topology of X is the (ordinary) topology of ~T (X)(p, q) for all pairs of points
p, q, and of the induced maps.

I Definition 3. The fundamental category of a d-space (X, ~P ) has objects all points of X.
The morphisms from p to q are ~π1(X)(p, q), the directed homotopy classes of dipaths from p

to q.

In other words: The morphisms are the connected components of ~T (X)(p, q). There are no
inverses, so the dihomotopy classes and concatenation gives rise to a fundamental groupoid;
not a group.

3.6.3 Examples

Prominent examples of d-spaces are built from cubes In with the coordinate wise order or as
subsets of cubes:

I Example 1. The geometric model of a Higher Dimensional Automaton is a the geometric
realization of a cubical complex. This gives rise to a d-space, where the directed paths in a
cube are paths which increase in all coordinates. The space ~P is obtained by concatenation
and non-decreasing reparametrization of d-paths in cubes.

I Example 2. In Dijkstra’s PV -model, n processes share some resources R1, . . . , Rl, which
allow the access of a finite number k1, . . . , kl of processes. Each process is modelled as
a directed graph Γi. The geometric model of the concurrent execution is the product
Y = Γ1 × · · · × Γn representing the joint progress of each process. A subset of the product,

http://creativecommons.org/licenses/by-nc-nd/3.0/
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the forbidden region, is removed – the points corresponding to states where more than ki
processes access resource Ri.

In the simpler case when processes neither loop nor branch, Γi is an interval and the
concurrent model is a cube [0, 1]n. The forbidden region is a union of n-rectangles. When
kj ≥ n there is no conflict at Rj . When ki ≤ n− 1, and at least ki + 1 processes want access
to Ri, the forbidden rectangle is ×nj=1Jj where Jj =]aij , bij [ if the process j wants access to
Ri at time aij and releases Ri at time bij and Jj = [0, 1] else. It is a generalized cylinder.

I Example 3. Dipaths may be homotopy equivalent but not dihomotopy equivalent:
Let X be I3 \ F where F = R1 ∪ R2 ∪ R3 R1 =]1/7, 2/7[×]1/7, 2/7[×[0, 1], R2 =

]5/7, 6/7[×]5/7, 6/7[×[0, 1], R3 =]3/7, 4/7[×]1/7, 6/7[×]1/4, 3/4[. The piecewise linear di-
rected paths γ1 through (0, 0, 0), (1/7, 2/7, 0), (1, 2/7, 0), (1, 1, 1) and γ2 through (0, 0, 0),
(1/7, 2/7, 1), (1, 2/7, 1), (1, 1, 1) are homotopy equivalent, but not dihomotopy equivalent,
since a homotopy between them will include a path whose second coordinate either passes
2/7 before 1/7 (to get over R1, then under R3) or it passes 6/7 before 5/7 (to get over R3
then under R2).

3.6.4 Calculations

When X = In \ F and F is the union of a finite set of rectangles, Raussen’s algorithm [5]
provides a prod-simplicial model of the trace space. This has been implemented and there is
a preliminary version of an extension to the case with loops [2]. The connected components
of the trace space are calculated and used for static analysis. Moreover, calculation of higher
homology is being implemented by M.Juda with the coreduction technique of M.Mrozek and
B. Batko [4].

References
1 Ulrich Fahrenberg and Martin Raussen, Reparametrizations of continuous paths, J. Homo-

topy Relat. Struct. 2 (2007), 93–117.
2 L. Fajstrup, E.Goubault, E. Haucourt, S. Mimram, and M. Raussen, Trace spaces: An

efficient new technique for state-space reduction, Programming Languages and Systems.
21st European Symposium on Programming, ESOP 2012, Lect. Notes Comp. Sci., vol.
7211/2012, Springer Verlag, 2012, pp. 274–294.

3 L. Fajstrup, E. Goubault, and M. Raussen, Algebraic topology and concurrency, Theoretical
Computer Science 357 (2006), 241–278.

4 M. Mrozek and B Batko, Coreduction homology algorithm, Discrete and Computational
Geometry, 41 (2009), 96–118.

5 M. Raussen, Simplicial models of trace spaces, Algebraic and Geometric Topology 10 (2010),
1683–1714.

3.7 Random manifolds and random simplicial complexes
Michael Farber (University of Warwick, GB)
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In the talk I described the construction of random closed smooth manifolds arising as
configuration spaces of linkages with random bar lengths. I also stated and explained
theorems of M. Farber, T. Kappeler, C. Mazza, and C. Dombry on the asymptotic values of
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Betti number of these random manifolds. In the second part of the talk I considered the
Linial-Meshulam model of random simplicial complexes. I stated a recent joint result with A.
Costa stating that in certain range of the probability parameter p a random complex can
be made aspherical by puncturing all contained in it tetrahedral; the obtained punctured
complex satisfied the Whitehead conjecture, a.a.s.

3.8 Combinatorial algebraic topology
Dmitry Feichtner-Kozlov (Universität Bremen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Dmitry Feichtner-Kozlov

Combinatorial Algebraic Topology is concerned with computing algebraic invariants for
combinatorial complexes with combinatorial means, and more generally to study properties
of such complexes.

A number of applications in theoretical computer science (in particular, recently in
theoretical distributed computing) use such combinatorial complexes, and the methods of
combinatorial algebraic topology turn out to be quite useful in this context.

This talk is a survey, in part following my textbook, and is aimed at computer scientists
as well as interested mathematicians working in related areas.

3.9 Some research notes on G-invariant persistent homology
Patrizio Frosini (University of Bologna, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
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In this talk we would like to illustrate a current research about the problem of adapting
Persistent Homology, in order to obtain a theory that is invariant with respect to a given
subgroup G of the group of all the homeomorphisms from a compact topological space to
itself. This research is motivated both by applications in shape comparison and by the need
of mathematical tools to compute lower bounds for the natural pseudo-distance associated
with the group G.

3.10 Some elements on Static Analysis and Geometry
Eric Goubault (CEA LIST and Ecole Polytechnique, France)

License Creative Commons BY-NC-ND 3.0 Unported license
© Eric Goubault

[Abstract omitted.] Eric Goubault’s talk began with a tour of semantics/static analysis
of sequential programs. He then described techniques for geometric analysis of concurrent
programs and the inherent difficulties in analysis due to the interleaving semantics.
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3.11 Introduction to combinatorial topology and distributed computing
Maurice Herlihy (Brown University – Providence, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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This talk describes how simplicial complexes can be used to describe many kinds of distributed
computing.

3.12 Torsion in computations
Anil N. Hirani (Univ. of Illinois – Urbana, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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The absence of relative torsion in a simplicial complex leads to a polynomial time algorithm
for finding smallest chains homologous to a given chain. This seems to be the first appearance
of torsion in computations. I will give a brief exposition of what torsion is and how it is
related to the constraint polyhedron of linear programming. Then I will describe a few
variants of the problem and show an application to finding least spanning area surface of a
knot. This is joint work with T. Dey, N. Dunfield, and B. Krishnamoorthy.

3.13 CAPD::RedHom – Homology software based on reduction
algorithms

Mateusz Juda (Jagiellonian University – Krakow, PL)

License Creative Commons BY-NC-ND 3.0 Unported license
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URL http://redhom.ii.uj.edu.pl/

In the talk I presented CAPD::RedHom software (http://redhom.ii.uj.edu.pl/) – a software
for efficient computation of the homology of sets.

As an input we use cubical, simplicial, or in some cases CW complexes. The software
uses geometric and algebraic reduction to speed up classical Smith diagonalization or even
the diagonalization is not required. During the talk we discussed following methods:

acyclic subspace construction,
elementary reductions and coreductions,
discrete Morse theory.

The presentation contained also numerical experiments, comparison with other packages,
and latest results for huge data sets.
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3.14 Spectral methods in probabilistic topology
Matthew Kahle (Ohio State University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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There has been quite a bit of interest in recent years in the study of the expected topological
properties of various kinds of random spaces. Dunfield and Thurston constructed random 3-
manifolds from random walks on mapping class groups. Linial and Meshulam introduced the
study of random simplicial complexes with independent faces, providing higher-dimensional
analogues of Erdos-Renyi random graphs.

Some of my recent work has focused on using spectral methods to prove theorems
about random simplicial complexes. These methods depend on theorems of Ballman and
Swiatkowski, and of Zuk, and the main idea goes back to foundational work of Garland,
where he introduced the notion of p-adic curvature.

In joint work with Hoffman and Paquette, we found a sharp threshold for Property (T)
of the fundamental group of random 2-complexes. This work requires new results for the
spectral gap of random graphs near the connectivity threshold. Using similar techniques, I
was recently able to show that with high probability, a random d-dimensional flag complex
has nontrivial homology only in middle degree.

This most recent result helps make measure-theoretic sense of the fact that so many
complexes arising in combinatorics have homology concentrated in a small number of degrees.

3.15 Distributed computing mishmash: the operational perspective
Petr Kuznetsov (TU Berlin, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Petr Kuznetsov

Joint work of Gafni, Eli; Kuznetsov, Petr

One difficulty in addressing computability questions in distributed computing is the huge
diversity of existing models of distributed systems, abstractions for distributed programming,
and complexity metrics, with no apparent connection. In particular, the computational power
of a model depends on synchrony assumptions, communications primitives, and (possibly
non-uniform) patterns in which processes may fail.

In this talk, we focus on a large class of shared-memory adversarial models. In these
models, processes communicate via reading and writing in the shared memory and their
failure patterns are described as a set system on the set of process subsets. In every run of
the model, the set of correct processes must belong to the set system.

We overview a set of recent (operational) simulations that allow reducing the question
of colorless task solvability given an arbitrary adversary to a similar question in the more
studied and better understood wait-free model. We speculate how topological methods can
be used to extend these results to more general classes of distributed computing problems.
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3.16 Persistence for shape comparison
Claudia Landi (University of Modena e Reggio Emilio, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
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Main reference S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, M. Spagnolo,
“Describing shapes by geometrical- topological properties of real functions,” ACM Computing
Surveys, Vol 40, No. 4, Article No. 12, pp. 1–87, 2008.

URL http://dx.doi.org/10.1145/1391729.1391731

Persistence is a theory for Topological Data Analysis based on analyzing the scale at which
topological features of a topological space appear and disappear along a filtration of the
space itself. As such, it is particularly suited for handling qualitative rather than quantitative
information about the studied space. Moreover, persistence deals with noise consistently, in
that noisy data do not need to be smoothed out in advance. Last but not least, it is modular,
meaning that different filtrations give insights from different perspectives on the space under
study.

For all these reasons persistence turns out to be a well-suited tool for shape comparison,
i.e. the task of assessing similarity between digital shapes.

In particular, persistence provides a shape descriptor, the persistence diagram, and a
distance between these diagrams, the bottleneck distance. Thus the similarity between two
shapes, represented by spaces endowed by functions, is measured by the bottleneck distance
between the corresponding persistence diagrams.

Persistence diagrams are very concise descriptors, consisting of finitely many points of
the plane. Moreover, the bottleneck distance between persistence diagrams is stable in the
sense that small changes in the filtration imply small changes in the bottleneck distance.
Finally, the bottleneck distance between persistence diagrams bounds from below the natural
pseudo-distance between the original shapes.

3.17 Random methods in discrete topology: Discrete Morse functions
and the complicatedness of triangulations

Frank H. Lutz (TU Berlin, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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We introduce a measure for the complicatedness of triangulations. For this, we define the
discrete Morse spectrum of a simplicial complex as the distribution of discrete Morse vectors
that are obtained by choosing free faces for collapses and critical faces uniformly at random.
The complicatedness then is the expected number of critical cells.

It is hopeless to compute the discrete Morse spectrum for larger complexes, but it can easily
be approximated by random experiments. In particular, the concept works well for manifolds
and allows to compute optimal discrete Morse vectors in many cases. For example, we showed
collapsibility of a nontrivial 5-manifold with f -vector (5013, 72300, 290944, 495912, 383136,
110880).
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3.18 Topology of random complexes
Roy Meshulam (Technion – Haifa, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Aronshtam, Lior; Linial, Nathan; Luczak, Tomasz; Meshulam, Roy; Wallach, Nathan

Let Y be a random d-dimensional subcomplex of the (n− 1)-simplex S obtained by starting
with the full (d− 1)-dimensional skeleton of S and then adding each d-simplex independently
with probability p.

For d = 1 this coincides with the Erdos-Renyi model G(n, p) of random graphs, and
the topology of Y in G(n, p) is thoroughly understood. We’ll survey some recent work on
the topology of Y for d > 1, where much less is known. In particular, we’ll discuss results
concerning:
1. The threshold probability for vanishing of the (d− 1)-dimensional homology of Y (Joint

work with N. Linial and with N. Wallach).
2. The threshold probabilities for the vanishing of the d-dimensional homology of Y and for

the d-collapsibility of Y (Joint work with L. Aronshtam, N. Linial and T. Luczak).

3.19 Homology and robustness of levelsets
Dmitriy Morozov (Stanford University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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Given a function f : X → R on a topological space, we consider its levelsets and their
homology groups. We quantify the robustness of the homology classes under perturbations
of f using well groups, and we show how to read the ranks of these groups from the extended
persistence diagram. The special case X = R3 has ramifications in the fields of medical
imaging and scientific visualization.

3.20 Impossibility of set agreement and renaming
Ami Paz (Technion – Haifa, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
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We present new proofs for two impossibility results for wait-free computation in asynchronous
shared-memory systems, with only read / write operations. The results apply to two
fundamental problems for n processes:

(n− 1)-set agreement, and
renaming with a rank-based algorithm, when n is a prime power.

Both proofs are purely combinatorial and rely on simple counting arguments, and on
results about the structure of restricted executions.
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3.21 Locality and checkability in wait-free computing
Sergio Rajsbaum (Universidad Nacional Autonoma – Mexico, MX)

License Creative Commons BY-NC-ND 3.0 Unported license
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Main reference P. Fraigniaud, S. Rajsbaum, C. Travers, “Locality and Checkability in Wait-Free Computing,” in
Proc. of 25th Int’l Symp. on Distributed Computing (DISC’11), LNCS, Vol. 6950, pp. 333-347,
Springer, 2011.

URL http://dx.doi.org/10.1007/978-3-642-24100-0_34

Given a task T = (I,O,∆) and a black box protocol that claims to solve it, a distributed
checker tries to find out whether the result of an execution is correct. Each process pi gets
as input (si, ti), the i-th entries of an input-output pair (s, t) ∈ I × O produced by the
black box, that is supposedly correct, i.e., t ∈ ∆(s). In a DISC 2011 paper we introduced
and-checkers, namely after communicating wait-free with the other processes, each process
must output either “yes” or “no”, with the following interpretation: every process says “yes”
if and only if t ∈ ∆(s). We showed that there are many tasks that are and-checkable. Yet,
important tasks such as consensus and set agreement, are not.

In a new paper we generalize the and-checker notion as a pair (E,D), respectively called
the encoder and the decoder. The encoder E is a wait-free distributed protocol that takes as
input a pair (s, t) ∈ I×O, where each process pi receives as input a pair (si, ti), communicates
with the others, and eventually returns an output value ui ∈ U , where U is the range of E.
The decoder D is a centralized algorithm that takes as input any multiset S of values from
U output by the processes, and returns either “yes” or “no.” For every pair (s, t) ∈ I ×O, it
is required that t ∈ ∆(s) if and only if D(E(s, t)) = “yes”.

We show that every task has a parsimonious checker, based on a set U , independent of
the task, and of small size. Tasks that are more difficult to check require a set U of larger
size. We show that, for every task T on n processes, there exists a checker with range of
size at most n+ 1. The main result is a tight bound on the size |U | of the encoder’s range
enabling every task on n processes to be checked. As a consequence, a classification of tasks
in terms of their checkability difficulty is provided. We thus explain why consensus and set
agreement are not and-checkable: a range of three values is necessary to check consensus,
while for k-set agreement the range of values needed depends on k.

3.22 Directed algebraic topology – with an eye to concurrency theory
Martin Raussen (Aalborg University, DK)

License Creative Commons BY-NC-ND 3.0 Unported license
© Martin Raussen

Higher-Dimensional Automata (HDA) are a framework for concurrency theory generalizing
mutual exclusion using semaphores. These models consist of a geometric space (given
combinatorially as a pre-cubical complex) with preferred directions, a so-called d-space.
The space models the allowable (non-forbidden) states of all program counters. Not all
continuous paths in that space are allowed; only so-called d-paths through the interleaving
states, progressing with time.

A 1-parameter family of such d-paths (preserving the time constraint) is called a dihomo-
topy. Dihomotopic d-paths represent schedules that will always give the same result for a
concurrent calculation. Therefore it is relevant to study d-paths up to dihomotopy; likewise
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to study d-spaces and d-maps between them (preserving d-paths) up to the dihomotopy
relation.

Algebraic Topology offers a rich kit of insights, methods and tools to handle continuous
geometric spaces (and their combinatorial counterparts) up to homotopy; in particular
translating questions of a geometric flavor into algebraic problems that can solve the question
or prove non-existence/unsolvability. We try to add a toolbox to the discipline taking explicit
care of directedness. The algebra gets more complicated, since d-paths most often are not
invertible.

Therefore, group theoretic constructions (like the fundamental group) have to be replaced
by categorical constructions (like the fundamental category).

In general, one would like to get hold on properties of the space of all d-paths (or traces,
i.e., d-paths up to directed reparametrization) in a d-space. One would like to calculate
the number of components, to describe the homotopy types or at least some topological
invariants of these components. For that purpose, we have constructed at least for simple
HDA an algorithmic method yielding a description of the space of all d-paths (schedules) in
such an automaton between given start and end points – as a simplicial complex. In principle,
it is therefore possible to calculate invariants by known (computer) algorithms. In praxis,
these complexes tend to be huge, and this is why we work on

smaller representations yielding the same homotopy type,
adaptations that work well when directed loops are part of the model, and
general results concerning, e.g., the (higher) connectivity of the resulting spaces of d-paths.

At least formally, there are relations to multidimensional persistence to understand and
to develop. These arise when the start and end point of a computation (schedule) are allowed
to vary. Hence, one needs to understand, at what thresholds and how the trace spaces change
under variations at end points. The goal is to subdivide the state space (or rather, its square)
into a number of components: Trace spaces with end points in the same component should
be homotopy equivalent to each other.

Moreover, we would like to explore relations to the methods from combinatorial algebraic
topology used in distributed computing. This involves modeling further communication
primitives and associated HDA. Moreover, one would need to compare d-spaces and their
schedules for a variety of (live/dead) processors participating in the solution of a task.

3.23 A spectral sequence for parallelized persistence
Mikael Vejdemo-Johansson (University of St Andrews, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Vejdemo-Johansson, Mikael; Skraba, Primoz; Lipsky, David
Main reference D. Lipsky, P. Skraba, M. Vejdemo-Johansson, “A spectral sequence for parallelized persistence,”

arXiv:1112.1245v1 [cs.CG]
URL http://arXiv.org/abs/1112.1245v1

We describe a spectral sequence approach to a parallel algorithm to compute persistent ho-
mology. The spectral sequence of the double complex C∗∗ with Cij =

⊕
σ∈N (U)j

Ci
⋂
k∈σ Uk,

where U = {Uj} is a covering of X, will converge to the homology H∗X of the total space.
We are able to describe all higher differentials in the spectral sequence, and to adapt the

computation to persistence modules, which we hope will yield parallelizable algorithms for
computing persistent homology.
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3.24 Directed paths in d-simplicial complexes
Krzysztof Ziemianski (University of Warsaw, PL)
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Main reference K.Ziemiański, “A cubical model for path spaces in d-simplicial complexes,” Topology and its
Applications, vol. 159, issue 8, pp. 2127–2145. 2012.

URL http://dx.doi.org/10.1016/j.topol.2012.02.005

A d-simplicial complex is a simplicial complex equipped with a suitable relation on the set of
its vertices which allows one to define a d-structure on its geometric realization. Given a
d-simplicial complex ~K and two of its vertices v and w I will construct a cubical complex
CT ( ~K) which is homotopy equivalent (under some mild conditions) to the space of directed
paths on | ~K| from v to w. This construction gives the minimal functorial model for spaces
of directed paths. Then, I will present a similar construction for cubical complexes; in this
case the model for directed paths is a CW-complex which has a structure of permutohedral
complex.

4 Panel Discussions

4.1 Persistent homology
Herbert Edelsbrunner and Dmitriy Morozov served on a panel for a discussion about persistent
homology and its history.
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