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Abstract
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Preprocessing (data reduction or kernelization) is used universally in almost every practical
computer implementation that aims to deal with an NP-hard problem. The history of
preprocessing, such as applying reduction rules to simplify truth functions, can be traced
back to the origins of Computer Science — the 1950’s work of Quine, and much more. A
modern example showing the striking power of efficient preprocessing is the commercial integer
linear program solver CPLEX. The goal of a preprocessing subroutine is to solve efficiently
the “easy parts” of a problem instance and reduce it (shrinking it) to its computationally
difficult “core” structure (the problem kernel of the instance).

How can we measure the efficiency of such a kernelization subroutine? For a long time,
the mathematical analysis of polynomial time preprocessing algorithms was neglected. The
basic reason for this anomalous development of theoretical computer science, was that if we
seek to start with an instance I of an NP-hard problem and try to find an efficient (P-time)
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subroutine to replace I with an equivalent instance I ′ with |I ′| < |I| then success would imply
P=NP — discouraging efforts in this research direction, from a mathematically-powered
point of view.

The situation in regards the systematic, mathematically sophisticated investigation of
preprocessing subroutines has changed drastically with advent of parameterized complexity,
where the issues are naturally framed. More specifically, we ask for upper bounds on the
reduced instance sizes as a function of a parameter of the input, assuming a polynomial time
reduction/preprocessing algorithm.

A typical example is the famous Nemhauser-Trotter kernel for the Vertex Cover problem,
showing that a “kernel" of at most 2k vertices can be obtained, with k the requested maximum
size of a solution. A large number of results have been obtained in the past years, and the
research in this area shows a rapid growth, not only in terms of number of papers appearing
in top Theoretical Computer Science and Algorithms conferences and journals, but also in
terms of techniques. Importantly, very recent developments were the introduction of new
lower bound techniques, showing (under complexity theoretic assumptions) that certain
problems must have kernels of at least certain sizes, meta-results that show that large classes
of problems all have small (e.g., linear) kernels — these include a large collection of problems
on planar graphs and matroid based techniques to obtain randomized kernels.

Kernelization is a vibrant and rapidly developing area. This meeting on kernelization
consolidated the results achieved in the recent years, discussed future research directions, and
exploreed further the applications potential of kernelization algorithms, and gave excellent
opportunities for the participants to engage in joint research and discussions on open problems
and future directions. This workshop was also special as we celebrated the 60th birthday of
one of the founder of parameterized complexity, Prof. Michael R. Fellows. We organised a
special day in which we remembered his contributions to parameterized complexity, science
in general and mathematics for children.

The main highlights of the workshop were talks on the solution to two main open problems
in the area of kernelization. We give a brief overview of these new developments below.

The AND Conjecture

The OR-SAT problem asks if, given m formulas each of size n, at least one of them is
satisfiable. In 2008, Fortnow and Santhanam showed that if there is a reduction from
OR-SAT to any language L with the property that the reduction reduces to instances of
size polynomial in n (independent of m) then the polynomial-time hierarchy collapses. Such
a reduction is called an OR-distillation, and this work motivated the notion of an OR-
composition, which produces a boolean OR of parameterized instances of a given problem,
without any restriction on the size. It was then established that an OR-composition and
a polynomial kernel cannot co-exist, because these ingredients can be combined to lead to
an OR-distillation. Thus, an OR-composition counts as evidence against the existence of a
polynomial kernel, and it has turned into a very successful framework for establishing kernel
lower bounds.

The question of whether there is similar evidence against the existence of an AND-
distillation (defined analogously) has since been open. Such a result would imply that
problems that have AND-compositions are also unlikely to admit polynomial kernels, and
would therefore be a significant addition to the kernel lower bound toolkit. The question has
been a central open problem for the kernelization community and was settled by Drucker in
his work on classical and quantum instance compression. The route to the result is quite
involved, and forges new connections between classical and parameterized complexity.
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Tools from Matroid and Odd Cycle Traversal

The Odd Cycle Traversal problem asks if, given a graph G, there is a subset S of size at
most k whose removal makes the graph bipartite. Equivalently, the question is if there is a
subset S of size at most k that intersects every odd cycle in G. The problem was first shown
to be FPT by Reed, Smith, and Vetta in 2004, and this was also the first illustration of the
technique of iterative compression. However, the question of whether the problem admits a
polynomial kernel was among the main open questions in the study of kernelization.

A breakthrough was recently made in work by Kratsch and Wahlström, providing the
first (randomized) polynomial kernelization for the problem. It is a novel approach based on
matroid theory, where all relevant information about a problem instance is encoded into a
matroid with a representation of size polynomial in k.

Organization of the seminar and activities

The seminar consisted of twenty two talks, a session on open questions, and informal
discussions among the participants. The organizers selected the talks in order to have
comprehensive lectures giving overview of main topics and communications of new research
results. Each day consisted of talks and free time for informal gatherings among participants.
On the fourth day of the seminar we celebrated the 60th birthday of Mike Fellows, one of
the founder of parameterized complexity. On this day we had several talks on the origin,
history and the current developments in the field of parameterized complexity.
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3 Overview of Talks

3.1 Graph decompositions for algorithms and graph structure
Bruno Courcelle (Université Bordeaux, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Bruno Courcelle

Several graph decompositions are important for algorithmic purposes, and not only tree-
decompositions, rank-decompositions and those for clique-width. Many of them lead to
"multi-kernelization" as they reduce a problem to several related problems for "prime" or
"indecomposable" subgraphs.

I will review the algorithmic properties and uses of several known *canonical* decomposi-
tions: Tutte decomposition in 3-connected components, modular decomposition and split
decomposition.

I will introduce a new one for strongly connected graphs, linked to Tutte decomposition
that I call the **atomic decomposition**. The initial motivation is the study of Gauss words
(curves in the plane) but there are other applications in view. It is related but different to a
noncanonical decomposition of the same graphs by Knuth (1974)

3.2 (Non)constructive advances
Hans L. Bodlaender (Utrecht University, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
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The talk surveys early results of Fellows and Langston and memorates Mike Fellows contri-
butions to the field.

3.3 Tight Compression Bounds for Problems in Graphs with Small
Degeneracy

Marek Cygan (University of Warsaw, PL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Marek Cygan

We study kernelization in d-degenerate graphs. It is known that a few problems admit kO(d)

kernels in d-degenerate graphs, including Induced Matching, Independent Dominating Set,
Capacitated Vertex Cover, Connected Vertex Cover. Moreover a kO(d2) kernel is known for
Dominating Set. Simple reductions show that for Capacitated Vertex Cover and Connected
Vertex Cover kΩ(d) lower bounds exist. We show kΩ(d) lower bounds for Induced Matching
and Independent Dominating Set.

Furthermore, most interestingly, we also prove kΩ(d2)lower bound for Dominating Set,
which matches the known upper bound by Philip et al. [TALG] for this problem as well.
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3.4 New Evidence for the AND- and OR-Conjectures
Andrew Drucker (MIT – Cambridge, US)

License Creative Commons BY-NC-ND 3.0 Unported license
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In the OR(SAT) problem, one is given a collection of Boolean formulas, each of length at
most k, and wants to know whether at least one is satisfiable. Similarly, in the AND(SAT)
problem, one wants to know whether all the formulas are individually satisfiable.

These problems are not known to have polynomial kernels. Work beginning with [Harnik
and Naor ’06; Bodlaender, Downey, Fellows, and Hermelin ’08] has established that, if
OR(SAT) is not polynomially kernelizable, then many other natural problems fail to have
polynomial kernels. Bodlaender et al. also showed that the "kernelization-hardness" of
AND(SAT) would imply a number of other hardness results. Thus, these two hypotheses,
the "OR-" and "AND- conjectures," have a great deal of explanatory power. But should we
believe them? In support of the OR-conjecture, [Fortnow and Santhanam ’08] showed that
OR(SAT) does not have polynomial kernels unless NP is in coNP/poly.

In this work we provide equally strong evidence for the AND-conjecture: if AND(SAT)
has poly kernels then NP is in coNP/poly, and even in SZK/poly. We also extend the
hardness evidence for OR(SAT) in several ways; for instance, we give the first strong evidence
against probabilistic kernelizations for OR(SAT) with two-sided bounded error. To prove
our results, we exploit the information bottleneck of a kernelization reduction, using a new,
general method to "disguise" information being fed into a compressive mapping.

3.5 Train marshaling is fixed parameter tractable
Rudolf Fleischer (German University of Technology – Oman, OM)

License Creative Commons BY-NC-ND 3.0 Unported license
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The train marshalling problem is about reordering the cars of a train using as few auxiliary
rails as possible. The problem is known to be NP-complete. We show that it is fixed
parameter tractable (FPT) with the number of auxiliary rails as parameter.

3.6 Parameterized Complexity of the Workflow Satisfiability Problem
Gregory Z. Gutin (RHUL – London, GB)

Joint work of Jason Crampton, Gregory Z. Gutin and Anders Yeo.
License Creative Commons BY-NC-ND 3.0 Unported license

© Gregory Z. Gutin

The Workflow Satisfiability Problem (WSP) defined below arises in Access Control in
Information Security.

In WSP, we are given a set S of steps and a set U of users and asked to decide whether
there is a function π : S → U that satisfies some constraints. Firstly, each step can be
assigned (mapped to) some subset of U . Secondly, there are some relations ρ on U (ie.,
ρ ⊆ U × U) such that all constraints of the type (ρ, S′, S”), where S′, S′′ are subsets of S,
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must be satisfied meaning that there exist s′ ∈ S′ and s′′ ∈ S′′ such that (π(s′), π(s′′)) ∈ ρ.
Examples of ρ include = and 6=.

Wang and Li (ACM Trans. Inf. Syst. Secur., 2010) proved that WSP is NP-hard. They
also observed that k = |S| is relatively small (with respect to n = |U |) and proved that
k-WSP is W[1]-hard. They obtained a fixed-parameter algorithm for special cases of k-WSP
when only relations = and 6= are allowed.

Using a result of Bjorklund, Husfeldt and Koivisto (SIAM J. Comput., 2009) we obtain a
new fixed-parameter algorithm that significantly improves the runtime of Wang and Li and
widen the special case for which k-WSP is fpt (including there organizations with hierarchical
structures). In particular, we improve a result of Fellows, Friedrich, Hermelin, Narodytska,
and Rosamond (IJCAI 2011). We also investigate the existence of polynomial-size kernels and
obtain both positive and negative results using, in particular, a result of Dom, Lokshtanov
and Saurabh (ICALP 2009).

3.7 Faster than Courcelle’s Theorem on Shrubs
Petr Hlineny (Masaryk University, CZ)

License Creative Commons BY-NC-ND 3.0 Unported license
© Petr Hlineny

URL http://arxiv.org/abs/1204.5194

Famous Courcelle’s theorem claims FPT solvability of any MSO2-definable property in linear
FPT time on the graphs of bounded tree-width (alternatively, of MSO1 on clique-width
by Courcelle-Makowsky-Rotics). A drawback of this powerful algorithmic metatheorem is
that its runtime has a nonelementary dependence on the quantifier alternation depth of the
defining formula. This is indeed unavoidable in full generality (even on trees) as shown by
Frick and Grohe.

We show a new kernelization approach to this problem, giving an MSO model checking
algorithm on trees of bounded height in FPT with elementary dependence on the formula;
actually, we “trade” a nonelementary runtime dependence on the formula for a nonelementary
dependence of our kernel on the tree height. This implies a faster (than Courcelle’s) new
algorithm for all MSO2-definable properties on the graphs of bounded tree-depth, and
similarly a faster algorithm for all MSO1-definable properties on the classes of bounded
shrub-depth.

3.8 Preprocessing Subgraph and Minor Problems: When Does a Small
Vertex Cover Help?

Bart Jansen (Utrecht University, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Bart Jansen

We prove a number of results around kernelization of problems parameterized by the vertex
cover of a graph. We provide two simple general conditions characterizing problems admitting
kernels of polynomial size. Our characterizations not only give generic explanations for
the existence of many known polynomial kernels for problems like Odd Cycle Transversal,
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Chordal Deletion, Planarization, η-Transversal, Long Path, Long Cycle, or H-packing, they
also imply new polynomial kernels for problems like F-Minor-Free Deletion, which is to
delete at most k vertices to obtain a graph with no minor from a fixed finite set F .

While our characterization captures many interesting problems, the kernelization com-
plexity landscape of problems parameterized by vertex cover is much more involved. We
demonstrate this by several results about induced subgraph and minor containment, which
we find surprising. While it was known that testing for an induced complete subgraph has
no polynomial kernel unless NP is in coNP/poly, we show that the problem of testing if a
graph contains a given complete graph on t vertices as a minor admits a polynomial kernel.
On the other hand, it was known that testing for a path on t vertices as a minor admits a
polynomial kernel, but we show that testing for containment of an induced path on t vertices
is unlikely to admit a polynomial kernel.

3.9 Max-Cut Parameterized Above the Edwards-Erdos Bound
Mark Jones (RHUL – London, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Mark Jones

We study the problem Max Cut: Given a graph, find a bipartite subgraph with the most
edges. The Edwards-Erdos bound states that for any connected graph with n vertices, m
edges, there is a bipartite subgraph with at least m/2 + (n− 1)/4 edges.

We study Max Cut parameterized above this bound: Given a connected graph with n
vertices, m edges, decide whether there is a bipartite subgraph with at leastm/2+(n−1)/4+k
edges. We show that the problem is fixed-parameter tractable with running time 2(3k)nO(1),
and has a kernel of size O(k5).

3.10 Data Reduction for Finding Diameter-Two Subgraphs
Christian Komusiewicz (TU Berlin, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christian Komusiewicz

Given an undirected graph G = (V,E) and an integer l > 1, the NP-hard 2-club problem
asks for a vertex set S ⊆ V of size at least l such that G[S] has diameter at most 2.

We study the 2-club problem with respect to many-to-one- and Turing-kernelizability for
a variety of parameters such as bandwidth of G, vertex cover size of G, the dual parameter
|V | − l, and the feedback edge set number of G.
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3.11 Kernel lower bounds using co-nondeterminism: Finding induced
hereditary subgraphs

Stefan Kratsch (Utrecht University, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stefan Kratsch

This work further explores the applications of co-nondeterminism for showing kerneliza-
tion lower bounds. The only known example excludes polynomial kernelizations for the
RAMSEY(k) problem of finding an independent set or a clique of at least k vertices in
a given graph (Kratsch, SODA 2012). We study the more general problem of finding in-
duced subgraphs on k vertices fulfilling some hereditary property Π, called Π-INDUCED
SUBGRAPH(k). The problem is NP-hard for all non-trivial choices of Π by a classic result
of Lewis and Yannakakis (JCSS 1980). The parameterized complexity of this problem was
classified by Khot and Raman (TCS 2002) depending on the choice of Π. The interesting
cases for kernelization are for Π containing all independent sets and all cliques, since the
problem is trivial or W[1]-hard otherwise.

Our results are twofold. Regarding Π-INDUCED SUBGRAPH(k), we show that for a
large choice of natural graph properties Π, including chordal, perfect, cluster, and cograph,
there is no polynomial kernel with respect to k. This is established by two theorems: one
using a co-nondeterministic variant of cross-composition and one by a polynomial parameter
transformation from RAMSEY(k).

Additionally, we show how to use improvement versions of NP-hard problems as source
problems for lower bounds, without requiring their NP-hardness. E.g., for Π-INDUCED
SUBGRAPH(k) our compositions may assume existing solutions of size k − 1. We believe
this to be useful for further lower bound proofs, since improvement versions simplify the
construction of a disjunction (OR) of instances required in compositions. This adds a second
way of using co-nondeterminism for lower bounds

3.12 Planar F-Deletion: Kernelization, Approximation and FPT
Algorithms (I)

Daniel Lokshtanov (University of California – San Diego, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Daniel Lokshtanov

In the F-Deletion problem you are given a graph G and integer k and asked whether there
is a set S on at most k vertices such that G does not contain any minors from F , where F
is a finite list of graphs. We show that if F contains at least one planar graph, then the
F -Deletion problem admits polynomial kernels, constant factor approximation algorithms. If
additionally all graphs in F are connected the F-Deletion problem admits ck · n time FPT
algorithms. On the way we develop some new and interesting tools. Our results are stringed
together by a common theme of polynomial time preprocessing
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3.13 FPT suspects and tough customers: Open problems of Downey
and Fellows

Dániel Marx (MTA – Budapest, HU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Dániel Marx

We give an update on the status of open problems from the book “Parameterized Complexity"
by Downey and Fellows.

3.14 Planar-F Deletion: Approximation, Kernelization and Optimal
FPT Algorithms (II)

Neeldhara Misra (The Institute of Mathematical Sciences – Chennai, IN)

License Creative Commons BY-NC-ND 3.0 Unported license
© Neeldhara Misra

The notion of protrusions – constant treewidth subgraphs that can be separated from the
instance by constant-sized separators – has been very useful in the context of kernelization
algorithms on sparse graphs. When the optimization problem in question has certain
properties, protrusions lend themselves to vastly general reduction rules, leading to a number
of interesting meta theorems on sparse graphs. Unfortunately, however, the technique is not
easily amenable to work the same way on general graphs.

In particular, for the Planar F -deletion problem on general graphs, it turns out that even
for apparently simply cases, non-trivial degree reduction rules crafted "by hand" have to
come into play before protrusion-based reductions can be applied. It is not clear that this
approach is amenable to generalization for more complex cases.

We therefore revisit the notion of a protrusion and introduce a more flexible variant,
namely a near-protrusion. Informally, a near-protrusion is a subgraph which can become
a protrusion in the future, after removing some vertices of some optimal solution. The
usefulness of near-protrusions is that they allow us to find an irrelevant edge, i.e., an edge
which removal does not change the problem.

We give a brief overview of the ideas involved in making protrusion-based reductions
work in more general situations.

3.15 Planar-F deletion in parameterized single exponential time
Christophe Paul (CNRS, Université Montpellier II, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christophe Paul

Let F be a finite family of graphs containing at least one planar graph. In the parameterized
PLANAR-F DELETION problem, we are given an n-vertex graph G and a non-negative
integer k (the parameter), and the question is whether G has a set X of vertices of size
at most k such that G−X is H-minor-free for every H in F . This problem encompasses
a number of well-studied parameterized problems such as Vertex Cover, Feedback Vertex
Set, or Treewidth-t Vertex Deletion for every value of t ≥ 0. We present a algorithm
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for the parameterized PLANAR-F DELETION problem running in parameterized single-
exponential time. Our approach significantly deviates from previous work as we do not use
any reduction rule, but instead we apply a series of branching steps. This allows us to deal,
in particular, with the case where the graphs in F are not necessarily connected, which was
not known to admit a single-exponential algorithm

3.16 Graph separation: New incompressibility results
Marcin Pilipczuk (University of Warsaw, PL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Marcin Pilipczuk

In the talk we plan to present the recent developments on the kernelization hardness of graph
separation problems. We show that, unless NP is contained in coNP/poly, the following
parameterized problems do not admit a polynomial kernel:

Directed Edge/Vertex Multiway Cut, parameterized by the size of the cutset, even in the
case of two terminals,
Edge/Vertex Multicut, parameterized by the size of the cutset,
and k-Way Cut, parameterized by the size of the cutset.

Our results complement very recent developments in designing parameterized algorithms for
cut problems by Marx and Razgon [STOC’11], Bousquet et al. [STOC’11], Kawarabayashi
and Thorup [FOCS’11] and Chitnis et al. [SODA’12].

The presented results are included in the ICALP’12 paper "Clique cover and graph
separation: New incompressibility results" (joint work with Marek Cygan, Stefan Kratsch,
Michal Pilipczuk and Magnus Wahlstrom).

3.17 Tight bounds for Edge Clique Cover
Michal Pilipczuk (University of Bergen, NO)

License Creative Commons BY-NC-ND 3.0 Unported license
© Michal Pilipczuk

In the EDGE CLIQUE COVER problem, given a graph G and an integer k, we ask whether
the edges of G can be covered with k complete subgraphs of G or, equivalently, whether G
admits an intersection model on k-element universe. Gramm et al. [JEA 2008] have shown
a set of simple rules that reduce the number of vertices of G to 2k, and no algorithm is
known with significantly better running time bound than a brute-force search on this reduced
instance. In this work we show that the approach of Gramm et al. is essentially optimal: we
present a polynomial time algorithm that reduces an arbitrary 3-CNF-SAT formula with
n variables and m clauses to an equivalent EDGE CLIQUE COVER instance (G, k) with
k = O(logn) and |V (G)| = O(n+m). This implies that EDGE CLIQUE COVER does not
admit an FPT algorithm that has better than doubly-exponential running time dependency
on k, unless ETH fails. Moreover, we exclude subexponential kernels for the problem under
ETH and under NP not contained in coNP/poly. This refines previous work together with
Stefan Kratsch and Magnus Wahlstroem [ICALP 2012], in which we proved that polynomial
kernelization would contradict the second complexity assumption.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


Michael R. Fellows, Jiong Guo, Dániel Marx, and Saket Saurabh 39

3.18 Linear Kernels on Graphs Excluding a Topological Minor
Somnath Sikdar (RWTH Aachen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Somnath Sikdar

In this talk, we will sketch a proof of the following result: a parameterized graph problem
that has finite integer index and satisfies a property that we call "treewidth-bounding" admits
a linear kernel on the class of H-topological-minor free graphs, where H is an arbitrary but
fixed graph. This builds on earlier work on the existence of linear kernels by Bodlaender et
al. on graphs of bounded genus and by Fomin et al. on H-minor-free graphs. This result
implies that several problems, including Chordal Vertex Deletion, Feedback Vertex Set and
Edge Dominating Set, admit linear kernels on H-topological-minor-free graphs.

3.19 A Polynomial kernel for Proper Interval Vertex Deletion
Yngve Villanger (University of Bergen, NO)

License Creative Commons BY-NC-ND 3.0 Unported license
© Yngve Villanger

It is known that the problem of deleting at most k vertices to obtain a proper interval graph
(Proper Interval Vertex Deletion) is fixed parameter tractable. However, whether the problem
admits a polynomial kernel or not was open. Here, we answers this question in affirmative
by obtaining a polynomial kernel for Proper Interval Vertex Deletion. This resolves an open
question of van Bevern, Komusiewicz, Moser, and Niedermeier

3.20 Uses of Matroids in Kernelization
Magnus Wahlström (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Magnus Wahlström

In some recent results (Kratsch and Wahlström, SODA 2012; Kratsch and Wahlström, pre-
print, 2012), tools from matroid theory have shown themselves to have powerful applications
in polynomial kernelization; in particular, a tool known as representative sets (Marx, 2006;
Lovász, 1980) has proved itself very useful.

In this talk, I will give an overview of the use of these tools, illustrating with applications
to kernels for Almost 2-SAT and for graph cut problems.

3.21 Different parameterizations of the Test Cover problem
Anders Yeo (RHUL – London, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Anders Yeo

In the Test Cover problem we are given a set {1, . . . , n} of items together with a collection,
T , of distinct subsets of these items called tests. We assume that T is a test cover, i.e., for
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each pair of items there is a test in T containing exactly one of the items. The objective is
to find a minimum size subcollection of T which is still a test cover.

This problem is NP-hard, so we consider the following parameterizations of the problem,
where k is the parameter and m is the number of tests available.

1. Is there a solution with at most k tests?
2. Is there a solution with at most n− k tests?
3. . Is there a solution with at most m− k tests, where m is the size of T?
4. Is there a solution with at most (logn) + k tests?
The above is of interest as n and m are upper bounds for the size of an optimal solution and
logn is a lower bounds. We state the FPT-complexities of the above parameterizations and
focus on (non-)polynomial kernel results. In particular we will illustrate why parameterization
1 has no polynomial kernel (unless NP is a subset of coNP/poly).

4 Open Problems

4.1 Above Guarantee Independent Set on Planar Graphs
Venkatesh Raman (The Institute of Mathematical Sciences – Chennai, IN)

License Creative Commons BY-NC-ND 3.0 Unported license
© Venkatesh Raman

It is well known that every planar graph admits an independent set on at least n/4 vertices,
as an easy consequence of the Four Color Theorem. The above guarantee version of the
question involve asking for an independent set of size at least n

(4+k) . The parameterized
complexity of this question, parameterized by k, is open. As an aside, we note that the
question is non-trivial even when k = 1.

4.2 Biclique
Mike Fellows (Charles Darwin University – Darwin, AU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Mike Fellows

The parameterized complexity of finding Kk,k as a subgraph when parmeterized by k is a
long-standing and notorious open problem.

The multicolored variant (where the vertex set is partitioned into 2k parts and we would
like to find a subgraph that involves exactly one vertex from each part) is known to be
W[1]-hard (see Appendix, [10]). It is also known that counting bicliques is #W[1]-hard
parameterized by k. If the input graph has no induced paths of length s, then the problem
is fixed-parameter linear parameterized by k and s [1].
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4.3 Chromatic Number of P5-free graphs
Fedor Fomin (University of Bergen, NO)

License Creative Commons BY-NC-ND 3.0 Unported license
© Fedor Fomin

The chromatic number of a P4-free graph can be computed in polynomial time and it is
NP-hard to compute the chromatic number of a P5-free graph. However, the question of
whether the chromatic number of a P5-free graph is at most k admits a XP algorithm [21].
It is open as to whether there the problem is FPT.

4.4 Clique for Line Segments
Dániel Marx (MTA – Budapest, HU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Dániel Marx

The problem of finding a maximum sized clique on the intersection graph of line segments in
the plane is known to be NP-hard [4]. However, the parameterized complexity remains open.

4.5 Cliquewidth
Daniel Lokshtanov (University of California – San Diego, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Daniel Lokshtanov

While problems parameterized by cliquewidth are studied extensively, computing cliquewidth
remains elusive.

A well-known fact is that if the tree-width of a graph is t then its clique-width is bounded
by 3 · 2t−1 [7]. On the other hand, complete graphs have clique-width 2 and unbounded
tree-width. However, for sparse graphs the treewidth and cliquewidth are linearly related.

Hlineny and Oum obtained an algorithm running in polynomial time and computing
(2k+1 − 1)-expressions for a graph G of clique-width at most k [20].

An FPT algorithm for computing cliquewidth remains an open problem.

4.6 Contraction Decomposition Beyond H-minor Free Graphs
MohammadTaghi Hajiaghayi (University of Maryland – College Park, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© MohammadTaghi Hajiaghayi

A contraction decomposition is a partition of the edges of a graph into a desired number k
of color classes such that contracting the edges in any one color class results in a graph of
treewidth linear in k.

A series of results on contraction decompositions finally culminated in this paper [11],
which showed that such decompositions exist for H-minor free graphs and can be computed
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in polynomial time. This leads to a general framework for approximation and fixed-parameter
algorithms for problems closed under contractions in graphs excluding a fixed minor. For
example, one of the implications is (another) fixed-parameter algorithm for k-cut in H-minor-
free graphs, which was an open problem of Downey et al. even for planar graphs.

Can such decompositions be constructed for other classes of graphs?

4.7 Directed Feedback Vertex Set
Saket Saurabh (The Institute of Mathematical Sciences – Chennai, IN), Stefan Kratsch
(Utrecht University, NL), and Magnus Wahlström (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Saket Saurabh, Stefan Kratsch, and Magnus Wahlström

Directed Feedback Vertex Set is known to be FPT parameterized by solution size [5], however,
the question of whether it admits a polynomial kernel remains open. Little progress has been
made on this question, even on special graph classes.

4.8 Disjoint Paths
Saket Saurabh (The Institute of Mathematical Sciences – Chennai, IN)

License Creative Commons BY-NC-ND 3.0 Unported license
© Saket Saurabh

The Disjoint Paths problem asks for vertex disjoint paths connecting k terminal pairs. It
is known to be NP-complete even on planar graphs [25], and is FPT parameterized by k.
However, the FPT result relies on graph minor theory. An explicit FPT algorithm that
avoids this route – even an explicit FPT approximation – remains open.

4.9 Even Set
Mike Fellows (Charles Darwin University – Darwin, AU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Mike Fellows

The Even Set problem takes a red/blue bipartite graph as input and asks for a non-empty
set of at most k red vertices R such that each blue vertex has an even number of neighbors
in R. The problem is known to be NP-complete [29] and the exact version of the problem,
where |R| = k, is W[1]-hard [13]. The problem can be reformulated in a number ways in a
variety of contexts, and its parameterized complexity is an important unsolved problem.
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4.10 Group Feedback Edge/Vertex Set
Stefan Kratsch (Utrecht University, NL) and Magnus Wahlström (MPI für Informatik –
Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stefan Kratsch and Magnus Wahlström

Group Feedback Vertex Set (GFVS) is a broad generalization of the Odd Cycle
Transversal problem (OCT). In this problem, the input is a graph G with edges labeled
by elements from a group Γ, and the task is to delete vertices (or edges) to remove any cycles
whose labels do not sum up to zero. OCT corresponds to the case where Γ =GF(2); see
the literature for more precise definitions. The problem is known to be FPT, even in quite
general variants; see [19, 9]. When Γ is fixed, the problem has a polynomial kernel [23], but
the case of a non-fixed group is open and interesting. Depending on the choice of group
representation and parameter, the strength of the problem seems to vary, but it is known
to subsume both Multiway Cut, for an arbitrary large-enough group [23], and Subset
Feedback Vertex Set, for a group with 2O(n) elements given via oracle access [9]. A
polynomial kernel for this most-general setting would be surprising, but even this is not
excluded; failing this, though, the question is for what settings and parameter combinations
the problem allows a polynomial kernel.
Open: GFVS(k+|Γ|) and GFVS(k). (In explicit or oracle representation of the group)

4.11 Knapsack Parameterized by Items
Stefan Kratsch (Utrecht University, NL) and Magnus Wahlström (MPI für Informatik –
Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stefan Kratsch and Magnus Wahlström

We know that subset sum is W[1]-hard if parameterized by the size of the subset of numbers
sought. On the other hand, it is also admits a randomized polynomial kernel parameterized
by n. Does an analogous result hold (in the kernelization context) for knapsack parameterized
by the number of items?

4.12 Lower Bounds for Turing Kernels
Mike Fellos (Charles Darwin University – Darwin, AU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Mike Fellows

Turing kernels were introduced as a potential coping strategy for problems that are not
expected to have polynomial kernels under standard complexity-theoretic assumptions [16].
Informally speaking, these are “many polynomial kernels” – that are independent of each
other and can therefore be processed in parallel. The number of kernels is allowed to be a
function of n. Formulating a lower bound framework for Turing kernels remains an open
problem.
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4.13 Multiway Cut
Stefan Kratsch (Utrecht University, NL) and Magnus Wahlström (MPI für Informatik –
Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stefan Kratsch and Magnus Wahlström

Arguably a polynomial kernelization for Multiway Cut parameterized by the size k of the
requested cutset is one of the biggest open questions in kernelization of cut problems (along
with DFVS). It is known that there are randomized polynomial kernels with O(ks+1) vertices
when the number of terminals is bounded by some constant s, and with O(k3) vertices when
terminals are deletable (the latter is equivalent to having terminal-degrees equal to one) [23].
The main open question is what happens when s may be unbounded; note though, that
known reduction rules give s ≤ 2k so parameterization by k+ s is just as hard. Furthermore,
the edge deletion variant holds independent interest.
Open: Multiway Cut(k).

4.14 Multicut
Stefan Kratsch (Utrecht University, NL) and Magnus Wahlström (MPI für Informatik –
Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stefan Kratsch and Magnus Wahlström

The standard parameterization by the size of the requested cutset was recently showed not
to admit a polynomial kernelization under the standard assumption [8], following the recent
breakthrough results that show its fixed-parameter tractability [3, 27]. However, the used
cross-composition from 3-Multiway Cut creates a large number of terminal pairs [8]. Hence,
it is interesting to know whether parameterization by k+ s (here s is the number of terminal
pairs) is helpful for getting a polynomial kernelization. Similarly to Multiway Cut, there
is a randomized polynomial kernelization when the number of terminal pairs is bounded by
some constant s. Note that deleteable terminals do not help, since terminals can be easily
copied without creating undesired requests (unlike for Multiway Cut).
Open: Multicut(k + s).

4.15 Multiway Cut and Multicut in directed graphs
Stefan Kratsch (Utrecht University, NL) and Magnus Wahlström (MPI für Informatik –
Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stefan Kratsch and Magnus Wahlström

It is known that the standard parameterizations of Directed Multiway Cut and Directed
Multicut do not admit polynomial kernelizations even when there are only two terminals
respectively one terminal pair [8]. Note that Directed Multiway Cut is FPT [6] and
Directed Multicut is W[1]-hard [27]. For Directed Multicut the restriction to directed
acyclic graphs (DAGs) remains W[1]-hard when parameterized by the cutset only but it is
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FPT when parameterized by the cutset k plus the number s of terminal pairs [22]; this leaves
open whether it admits a polynomial kernelization parameterized by k + s or parameterized
by k and with s fixed (the restriction to DAGs prevents the lower bound construction used
for general directed graphs).
Open: Multicut-in-DAGs(k + s) and s-Multicut-in-DAGs(k).

4.16 Parameterized Approximation for Dominating Set
Mike Fellows (Charles Darwin University – Darwin, AU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Mike Fellows

The following question is open: Is there an FPT algorithm that, given a graph G and
parameter k, either determines that G has no k-Dominating Set, or or produces a dominating
set of size at most g(k) (where g(k) is some fixed function of k?

It is known that there is no such FPT algorithm for g(k) of the form (k+ c) (where c is a
fixed constant), unless FPT = W[2]. Also, it is known that there is no such FPT algorithm
for any g(k) for the Independent Dominating Set problem unless FPT = W[2] [14]. The
Threshold Set problem is also known to be FPT inapproximable for any function g unless
FPT = W[1] [26].

4.17 Polynomial Kernels for F-deletion
Daniel Lokshtanov (University of California – San Diego, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Daniel Lokshtanov

The F deletion problem asks for a subset of vertices of size at most k whose removal makes
a graph H-minor free for allowed H ∈ F . It is known that the problem admits a polynomial
kernel (parameterized by k) if F contains at least one planar graph [17], but the kernelization
complexity is open for the case when F contains only non-planar graphs.

4.18 Polynomial Kernel for Imbalance
Saket Saurabh (The Institute of Mathematical Sciences – Chennai, IN)

License Creative Commons BY-NC-ND 3.0 Unported license
© Saket Saurabh

The problem of checking if a graph admits a layout with imbalance at most k is known to be
FPT parameterized by k [24]. The question of whether the problem admits a polynomial
kernel is open.
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4.19 Quadratic Integer Programming
Daniel Lokshtanov (University of California – San Diego, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Daniel Lokshtanov

While integer linear programs are known to have FPT algorithms parameterized by the
number of variables, the parameterized complexity is unsettled for quadratic integer programs
parameterized by the number of variables.

A FPT algorithm would imply that Optimal Linear Arrangement is FPT when paramet-
erized by Vertex Cover [15].

4.20 Treewidth
Hans L. Bodlaender (Utrecht University, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Hans L. Bodlaender

Treewidth is a fundamental structural parameter that has played a central role in algorithmic
graph theory in general and in obtaining FPT algorithms in particular. The complexity of
computing treewidth is of great interest, and here are some of the challenging open problems.

1. What is the complexity of treewidth on planar graphs? A (3/2)-approximation is known
since branchwidth can be computed in polynomial time [28], but even NP-hardness
remains open. It is also known that the treewidth of a planar graph is linear in the
tree-length of the graph [12].

2. Is there a constant-factor approximation for treewidth? The answer is in the negative
assuming the Small Set Expansion conjecture [2].

3. Is 2(O(k3)) optimal for tree width in terms of the function of k?
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