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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 12271 “AI meets
Formal Software Development”. This seminar brought together researchers from formal methods
and AI. The participants addressed the issue of how AI can aid the formal software develop-
ment process, including modelling and proof. There was a pleasing number of participants from
industry and this made it possible to ground the discussions on industrial-scale problems.
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1 Executive Summary

Cliff B. Jones
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This seminar brought together researchers from formal methods and AI. The participants
addressed the issue of how AI can aid the formal software development process, including
modelling and proof. There was a pleasing number of participants from industry and this
made it possible to ground the discussions on industrial-scale problems.

Background
Industrial use of formal methods is certainly increasing but in order to make it more
mainstream, the cost of applying formal methods, in terms of mathematical skill level and
development time, must be reduced — and we believe that AI can help with these issues.

Rigorous software development using formal methods allows the construction of an
accurate characterisation of a problem domain that is firmly based on mathematics; by
applying standard mathematical analyses, these methods can be used to prove that systems
satisfy formal specifications. A recent ACM computing survey [1] describes over sixty

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY-NC-ND 3.0 Unported license

AI meets Formal Software Development, Dagstuhl Reports, Vol. 2, Issue 7, pp. 1–29
Editors: Alan Bundy, Dieter Hutter, Cliff B. Jones, and J Strother Moore

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12271
http://dx.doi.org/10.4230/DagRep.2.7.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de
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industrial projects and discusses the effect formal methods have on time, cost, and quality. It
shows that with tools backed by mature theory, formal methods are becoming cost effective
and their use is easier to justify, not as an academic exercise or legal requirement, but as part
of a business case. Furthermore, the use of such formal methods is no longer confined to safety
critical systems: the list of industrial partners in the DEPLOY project1 is one indication
of this broader use. Most methods tend to be posit-and-prove, where the user posits a
development step (expressed in terms of specifications of yet-to-be-realised components)
that has to be justified by proofs. The associated properties that must be verified are often
called proof obligations (POs) or verification conditions. In most cases, such proofs require
mechanical support by theorem provers.

One can distinguish between automatic and interactive provers, where the latter are
generally more expressive but require user interaction. Examples of state-of-the-art interactive
theorem provers are ACL2, Isabelle, HOL, Coq and PVS, while E, SPASS, Vampire and Z3
are examples of automatic provers.

AI has had a large impact on the development of provers. In fact, one of the first AI
application was a theorem prover and all theorem provers now contain heuristics to reduce
the search space that can be attributed to AI. Nevertheless, theorem proving research and
(pure) AI research have diverged, and theorem proving is barely considered to be AI-related
anymore.

There follows a list of background references.
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Organisation of the seminar
It might be useful to organisers of future seminars to record some organisational issues. We
asked participants to prepare only short talks that introduced topics and –just as we wished–
a number of the talks were actually prepared at the seminar location and with the benefit
of having heard other talks. This free format worked well for our exchange of ideas and
in most regards we were pleased that we started with only the Monday morning actually
scheduled. Perhaps the biggest casualty of the fluid organisation (coupled with so many
interesting participants) was that there was no time left for Panel Sessions. However, the
differing lengths of discussions (and liberal use of breaks and a “hike” for people to establish
new links) led to intensive interaction.

Notes on nearly all of the talks are contained in Section 3 of the current document.
It is a pleasure to extend our thanks to everyone involved in the Dagstuhl organisation:

they provide a supportive and friendly context in which such fruitful scientific exchanges can
develop unhindered by distraction.

Results
It is possible to address the results under the phases of the development cycle. Requirements
capture is traditionally a pre-formal exercise and is the phase where one would expect least
impact from formal ideas. There is certainly scope here for the use of ontologies and some
hope for help in detecting inconsistencies in requirements but little time was spent in the
seminar on these topics.

Once development moves to the creation of a specification, the scope for formalism
increases and with it the hope for a greater contribution from AI. Essentially, a formal
specification is a model. Formal proof can be used to establish internal consistency properties
or to prove that properties match expectations about the required system. Model checking
approaches are often the most efficient way of detecting inconsistencies.

Steps of development (in the posit and prove approaches) essentially introduce further
models which should relate in precise ways to each other. The technical details vary between
development methods but the overall implications for the use of proof and the contribution
of AI are similar. It is perhaps worth reemphasising here that the seminar was trying to
address problems of an industrial scale.

An interesting dichotomy was explored at the seminar concerning POs that fail to
discharge. One school of thought is to interpose extra models in order to cause the generation
of simpler POs; the alternative is to take the POs as fixed and develop “theories” (collections
of auxiliary functions and lemmas) to complete the proof process. Suffice it to say here that
AI was seen to have a role in both approaches.

12271
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More generally, the whole task of refactoring models and reusing libraries of established
material is another area seen as being in need of help from AI thinking.

Turning to the richest area of collaboration –that of proof itself– a prominent theme was
on the ways in which machine learning can help. There are many facets of this question
including analogy with previous proofs, data mining of proofs (and failures) and proof
strategy languages.

One particularly important aspect of the cost of proof in an industrial setting is proof
maintenance. In practical settings, many things change and it is unlikely to be acceptable to
have to repeat the whole proof process after each change.

Another area that led to useful interactions between participants was the subject of failure
analysis and repair. It was observed that it is useful to have strong expectations as to how
proofs were meant to succeed.

In conclusion many points of contact can be seen in the material presented below.
Unsurprisingly, the material ranges from hopes for future research to mature results that can
be readily applied. It is not only a hope that the links between ideas and researchers made
at the seminar will persist — we already have clear proof of collaborative work.

The four organisers are extremely grateful to Andrius Velykis who took on the whole of
the task of collecting and tidying the input in Section 3 representing the contributions of the
speakers.
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3 Overviews of Talks

3.1 Applying Formal Methods In Industry
Rob Arthan (Lemma 1 Ltd. – Reading, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Rob Arthan

Joint work of Arthan, Rob; Jones, Roger; O’Halloran, Colin

The talk was an overview of the speaker’s experience of industrial applications of formal
methods mostly involving the Z Notation and the ProofPower tools for specification and
verification. This included a description of the CLawZ toolset that combines ProofPower and
other tools into a system for verifying code that is automatically generated from Simulink
specifications. Developed by Colin O’Halloran and others of DRisQ Ltd (http://drisq.com),
CLawZ offers an independent verification path allowing the use of an untrusted code generator
in the development of safety-critical systems, such as avionics control systems.

The talk concluded with some discussion of software engineering generally and offered
a challenge for AI and formal methods: software developers often need to “work around”
problems in software in the field that arise as a result of errors in the development process
or of change in operating environments. What help can AI and formal methods offer to
engineers who have to reason about systems that include flawed components?

3.2 Structure Formation in Formal Theories
Serge Autexier (DFKI Bremen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Serge Autexier

It has been long recognized that the modularity of specifications is an indispensable pre-
requisite for an efficient reasoning in complex domains. Algebraic specification techniques
provide appropriate frameworks for structuring complex specifications and the notion of
development graphs has been introduced as a technical means to work with and reason about
such structured specifications. In this work we are concerned with assisting the process of
structuring specifications in order to make intrinsic structures that are hidden explicit. Based
on development graphs, we present an initial methodology and a formal calculus to transform
unstructured specifications into structured ones. The calculus rules operate on development
graphs allowing one to separate specifications coalesced in one theory into a structured graph.
The calculus can both be used to structure a flat specification into sensible modules or to
restructure existing structurings. We present an initial methodology to support the process
of structure formations in large unstructured specifications.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://drisq.com
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
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3.3 Automated Reasoning and Formal Methods
Alan Bundy (University of Edinburgh, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alan Bundy

URL http://www.ai4fm.org

We review progress in automated reasoning in the last four decades and ask whether our
provers are now sufficiently mature to support formal methods in mainstream ICT system
development. We look at improvements due to Moore’s Law and improvements in decision
procedures, automatic provers, inductive provers and interactive provers. We ask what more
AI can offer to further improve the situation. In particular, we speculate about the role of
machine learning, e.g., to data-mine interactive proofs to extract proof tactics to be used to
increase automation.

The slides for this talk are available on the AI4FM project website (http://www.ai4fm.org).

3.4 Explicit vs Implicit Search Guidance
Alan Bundy (University of Edinburgh, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alan Bundy

URL http://www.ai4fm.org

Suppose we want to analyse an interactively produced proof of a proof obligation, extract the
proof strategy underlying this source proof and then apply it to guide the target automatic
proofs of similar proof obligations. What form should such strategies take? We compare and
contrast two alternatives, which we characterise as explicit and implicit. Explicit strategies
are hierarchies of proof tactics, such as those described by Gudmund Grov in his talk at
this Seminar. Implicit strategies are schemas that abstract the additional lemmas that are
introduced in the source proof. We can then use theory exploration tools, such as Omar
Montano Rivas’s IsaScheme, to generate similar lemmas for the target proof by instantiating
these schemas and proving the resulting conjectures. The implicit strategies trade off a loss
of fine control for increased flexibility. The hypothesis to be evaluated is whether our provers
are now sufficiently autonomous to find the right way to use the newly instantiated lemmas
in the target proofs.

The slides for this talk are available on the AI4FM project website (http://www.ai4fm.org).

3.5 Reflections on AI meets Formal Software Development
Alan Bundy (University of Edinburgh, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alan Bundy

URL http://www.ai4fm.org

These are my wrap-up slides at the end of the Seminar. I tried to itemise all the points
of contact that had emerged during the meeting. I grouped these under the headings of:
requirements capture, modelling, proof, and failure analysis and repair.

The slides for this talk are available on the AI4FM project website (http://www.ai4fm.org).
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3.6 Can IsaScheme be Used for Recursive Predicate Invention?
Alan Bundy (University of Edinburgh, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alan Bundy

URL https://dream.inf.ed.ac.uk/protected/Bluenote

At the Dagstuhl seminar “AI meets Formal Software Development” in July 2012, several
people remarked on the importance of lemmas with conditions and the creativity involved
in inventing these conditions. For instance, one sometimes wants to define new (recursive)
predicates to provide these conditions. It occurred to me that IsaScheme might be used
to generate these conditions and invent new recursive predicates. Blue book note 1763 at
https://dream.inf.ed.ac.uk/protected/Bluenote explains the idea. If you don’t have access to
this protected area, contact me at a.bundy@ed.ac.uk for a copy.

3.7 Automated Theorem Proving in Perfect Developer and Escher C
Verifier

David Crocker (Escher Technologies – Aldershot, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© David Crocker

We have two formal tools intended for development of high integrity software. Perfect
Developer uses the specify-refine-generate paradigm, while Escher C Verifier is for formal
verification of annotated hand-written MISRA-C code. Both have been used in developing
industrial critical systems, and both use the same non-interactive theorem prover. I discuss
different approaches to logics and theorem proving for software verification, drawing a
comparison with the RISC/CISC processor wars of the 1990s, and outline the approach used
by our prover. Finally, I discuss some areas where I think AI might be applied to improve
the automation of our product.

3.8 Synthesizing Domain-specific Annotations
Ewen W. Denney (NASA – Moffett Field, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ewen W. Denney

Joint work of Denney, Ewen; Fischer, Bernd

Verifying interesting properties on code typically requires logical annotations. If these
annotations need to be added manually, this presents a significant bottleneck to automated
verification. Here, we describe a language for encoding the domain knowledge needed to
automatically generate such annotations for a class of mathematical properties. Interestingly,
the problem of generating annotations turns out to essentially be a form of code generation.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://dream.inf.ed.ac.uk/protected/Bluenote
https://dream.inf.ed.ac.uk/protected/Bluenote
a.bundy@ed.ac.uk
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
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3.9 Capturing and Inferring the Proof Process (Part 1: Case Studies)
Leo Freitas (Newcastle University, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Leo Freitas

We report current work on inferring the proof process of an expert by wire-tapping various
theorem proving environments (e.g. Isabelle/HOL, Z/EVES, etc). The idea is to have
enough (meta-)proof information (i.e. user intent, lemmas used, points of failure and ways
of recovery, various proof attempts [sub- ]trees, etc.), in order to be able to do meta-level
reasoning about proofs, in particular for proof reuse, but also for proof maintenance and
transferability to non-expert users. For that we have worked on a number of case studies,
large (e.g. EMV smart cards, Xenon security hypervisor), medium (e.g. Tokeneer ID station,
Federated Cloud workflows properties, etc.), and small (e.g. Transitive closure lemma library,
Union/Find Fisher/Galler problem characterisation, etc.). We are currently working on
a paper describing this work to appear soon. Please visit http://www.ai4fm.org for more
information.

3.10 Learning Component Abstractions
Dimitra Giannakopoulou (NASA – Moffett Field, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Dimitra Giannakopoulou

Automata learning algorithms are used increasingly in the research community to generate
component abstractions or models. In this talk, we presented two of the learning-based
frameworks that we have developed over the years, which use the automata learning algorithm
L*. In the first framework, L* interacts with model checking to generate abstractions that
are used as assumptions for automated compositional verification [1]. The second framework
combines L* with symbolic execution to generate component interfaces [2]; the interfaces are
three-valued, capturing whether a sequence of method invocations is safe, unsafe, or its effect
on the component state is unresolved by the symbolic execution engine. The latter framework
is available as the jpf-psyco project within the JavaPathfinder open source model checker
for Java bytecode.

We then discussed other uses of learning in software engineering, including model and
specification mining for black box or library components, potentially based on existing code
that uses the components and is available on the Web. We believe that cross-fertilization
with heuristic search used in AI applications will also be beneficial because exhaustive
techniques often hit scalability issues. Finally, we believe that ultimately engineers should
take verification into account when designing systems, and it is possible that machine learning
could help us in the detection of good design or specification patterns.

References
1 J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for compo-

sitional verification. In H. Garavel and J. Hatcliff, editors, 9th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2003), volume
2619 of LNCS, pages 331–346. Springer, 2003.
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2 D. Giannakopoulou, Z. Rakamaric, and V. Raman. Symbolic learning of component inter-
faces. In A. Miné and D. Schmidt, editors, 19th Static Analysis Symposium (SAS 2012),
volume 7460 of LNCS, pages 248–264. Springer, 2012.

3.11 A strategy language to facilitate proof re-use
Gudmund Grov (University of Edinburgh, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gudmund Grov

Joint work of Grov, Gudmund; Bundy, Alan; Komandantskaya, Katya; Dixon, Lucas

Within refinement-based formal methods, such as B, Event-B, VDM and Z, many proofs
follow a similar pattern. The ability to re-use expert-provided proofs to automatically
discharge proof within the same family could therefore greatly improve automation of such
proofs—which is currently a bottleneck for industrial application beyond niche markets. A
similar phenomenon is also observed in mathematics through proof by analogy.

An observation we have made is that in order to capture sufficiently generic strategies,
both goal and proof technique properties must be captured, which is not supported by
current tactic languages. Here, we introduced work-in-progress on a graph based strategy
language, where nodes are proof techniques and edges contains goal properties. Evaluation is
then achieved by sending actual goals down the edges of the graph, and updating the proof
by applying the technique to the input goal, and sending new goals to the output edges.
We outlined some properties about this language, and briefly discussed a combination of
stochastic learning methods (for pattern discovery) and logic-based learning methods (for
strategy extraction/generalisation) in order to learn new proof strategies represented in this
language.

3.12 Glassbox vs Blackbox Software Analysis
Reiner Haehnle (TU Darmstadt, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Reiner Haehnle

Many approaches to software analysis/verification/synthesis/testing can be classified as
either “glassbox” or “blackbox”. Both kinds have specific advantages and disadvantages, the
latter preventing wider industrial usage. We argue that there is considerable potential in a
systematic combination of both and sketch the outlines of a possible way to do this.

3.13 Beyond pure verification: AI for software development
Dieter Hutter (DFKI Bremen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Dieter Hutter

Traditionally, verification is a process separated from standard development processes. We
have our own methodologies and tools. Hence often Formal Methods (in particular theorem
proving) is applied post mortem, i.e. after the actual development has been completed to
ensure that everything went right at the end. From the viewpoint of a standard software
engineer, Formal Methods are just a nuisance in the development process.
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However, in the last ten years we have also seen the upcoming of semantic-based ap-
proaches to ease the software development process: model driven architecture, domain specific
languages, a variety of web services and their (dynamic) composition, etc. We at DFKI
have spent a lot of time in developing a change management for software development that
maintain the relations between documents using semantic knowledge about them. Analysing
informal documents in depth requires NL-understanding and thus a detailed ontology of the
domain.

Thus, formally specified application domains are not only needed to verify the imple-
mentation but are also required to guide the overall design process, to automate (parts
of) refinement process and to realize a powerful change (or development) management sys-
tem. Combining these efforts in an integrated design process would multiply the benefits
of applying formal methods but also ease the formal specification process becoming now
incremental (starting at a simple ontology analogous to a standard glossary and ending in
full fledged formal specs).

3.14 Reasoned Modelling: Exploiting the Synergy between Reasoning
and Modelling

Andrew Ireland (Heriot-Watt University Edinburgh, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Ireland, Andrew; Grov, Gudmund; Llano, Maria Teresa; Pease, Alison

While the rigour of building formal models brings significant benefits, formal reasoning
remains a major barrier to the wider acceptance of formalism within the development of
software intensive systems. In our work we abstract away from the complexities of low-level
proof obligations, providing high-level modelling guidance. We have achieved this through a
combination of techniques from Artificial Intelligence, i.e. planning, proof-failure analysis,
automated theory formation, and Formal Methods, i.e. formal modelling, proof and simulation.
Our aim is to increase the accessibility and productivity of Formal Methods—allowing smart
designers to make better use of their time.

3.15 HipSpec: Theory Exploration for Automating Inductive Proofs
Moa Johansson (Chalmers UT – Göteborg, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Joint work of Claessen, Koen; Johansson, Moa; Rosén, Dan; Smallbone, Nicholas
Main reference K. Claessen, M. Johansson, D. Rosén, and N. Smallbone, “HipSpec: Automating inductive proofs

of program properties,” in IJCAR Workshop on Automated Theory eXploration (ATX 2012),
Manchester, UK, July 2012.

URL http://web.student.chalmers.se/~danr/hipspec-atx.pdf

HipSpec is an inductive theorem prover for proving properties about Haskell programs [1].
It implements a novel bottom-up approach to lemma discovery, where theory exploration
is used to first derive a background theory consisting of potentially useful lemmas about
available functions and datatypes.

HipSpec consists of several sub-systems: Hip is an inductive theorem prover. It translates
Haskell function definitions to first order logic and applies induction to given conjectures.
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Resulting proof obligations are passed to an off the shelf prover (for instance E or Z3).
QuickSpec is responsible for generating candidate lemmas about available functions and
datatypes. It generates terms which are divided up into equivalence classes using counter-
example testing. From these equivalence classes, equations can be derived. These are passed
to Hip for proof. Those that are proved are added to the background theory and may be
used in subsequent proofs.

Initial results are encouraging, HipSpec performs very well compared to other automated
inductive theorem provers such as IsaPlanner, Zeno and Dafny.

HipSpec is available online from: http://github.com/danr/hipspec.

References
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3.16 Formalism: pitfalls and overcoming them (with AI?)
Cliff B. Jones (Newcastle University, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
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This was a general, opening, talk. Based partly on recent experience in the EU-funded
DEPLOY project, I described typical industrial figures where decent heuristics might auto-
matically discharge over 90 percent of the required proof obligations (POs) but that this can
still leave a large enough collection of proof tasks needing hand-assisted proofs that industrial
engineers find it a disincentive to use formal tools. The issue is of course not going to go
away: any set of heuristics will have their limitations.

The good news is that such collections of undischarged POs appear to fall into families
and that a single idea will be the key to discharging many POs. The “ideas” are sometimes
expressible as high level strategies or can be captured as lemmas (or shapes thereof). A
useful approach is therefore to try to capture these key ideas whilst an expert is doing one
proof from the family and to use this to then obtain automatic proofs of the remaining tasks
in that family. The discovery and replay of these ideas looks like an interesting AI challenge.

There is an additional payoff when, as so often happens, specifications change and POs
are regenerated.

These ideas are behind (and are evolving in) the UK research project AI4FM (see
http://www.ai4fm.org).

3.17 Languages and States: another view of "Why"
Cliff B. Jones (Newcastle University, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
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Like the view in my introductory talk, this also relates to ongoing work in the AI4FM project.
If we are to capture the key ideas in the interaction between a user and a theorem proving

system, we essentially have to have a “language” for high-level strategies. The talk put the
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point of view that, if one wants to design a language, the best way to start is to think about
the “state” that the language constructs can manipulate. In AI4FM we talk about trying
to capture the “Why” of what the user is doing. (The talk by Andrius Velykis showed an
architecture for snooping on the interactions between user and theorem prover.) I sketched
some points about a state for “Models of Why” but the details are less important (and are
anyway still changing) than the general idea of starting thoughts about the design of our
future system to learn from experts by discussing its state.

Since Ursula Martin had made kind references to the “mural” system build in the
1980s I took the opportunity to dig out some screen shots. This was an experiment in
the design of of an interaction style. As [1] shows, this system was also designed from
its formal specification (the cited book is now out of print but freely available on-line at
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/mural.pdf).
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3.18 Machine Learning for the Working Logician
Ekaterina Komendantskaya (University of Dundee, GB)
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extracting proof strategies from exemplar proofs,” in ICML’12 Workshop on Statistical Relational
Learning (SRL-2012), Edinburgh, UK, July 2012.

URL http://www.computing.dundee.ac.uk/staff/katya/srl12.pdf

The talk consisted of two parts: Part 1 discussed the motivation for using Statistical Machine
Learning in Automated Theorem Proving (ATP). In particular, the following research question
was chosen for discussion: how can we identify application areas within automated theorem
proving where machine-learning will be both genuinely needed and trusted by the ATP users?

Part 2 addressed this question by showing results of some recent experiments on data-
mining first-order proofs. Coinductive proof trees for first-order logic programs were data-
mined using Neural Networks and SVMs. This proof data-mining method allowed to solve
five types of proof-classification problems: recognition of well-formed proofs, proofs belonging
to the same proof-family, well-typed proofs, as well as proofs from a success family and a
well-typed family of proofs.

Discovery of various proof families was identified as the most promising of these. This
provided my tentative answer to the research question posed in the beginning.
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3 G. Grov, E. Komendantskaya, and A. Bundy. A statistical relational learning challenge

– extracting proof strategies from exemplar proofs. In ICML’12 Workshop on Statistical
Relational Learning (SRL-2012), Edinburgh, UK, July 2012.

4 J. Denzinger, M. Fuchs, C. Goller, and S. Schulz. Learning from previous proof experience:
A survey. Technical report, Fachbereich Informatik, 1999.
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5 J. Denzinger and S. Schulz. Automatic acquisition of search control knowledge from multiple
proof attempts. Inf. Comput., 162(1-2):59–79, 2000.
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2008), volume 5195 of LNCS, pages 441–456. Springer, 2008.

3.19 Is there a human to save the model, proof?
Thierry Lecomte (ClearSy – Aix-en-Provence, FR)
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Checking a model against properties is a demanding process, as it requires to cope with state-
of-the-art demonstrators (theorem provers, tableaux-method, model checkers). In several
cases, the demonstrator is not able to complete the demonstration and the human operator
is in charge of finding a way to help the tool efficiently. As of today, if the demonstrator
is not able to complete the proof, most of the time all the proof mechanisms have to be
disabled, leaving the human operator to use this tools just as a sophisticated calculator
(built-in mechanisms automatically going to a wrong direction).

However there is room for improvement at input level:
requirements are usually not abstract enough,
models need to be adapted to proof tools,
the human operator needs abstraction skills to deal properly with modelling.

The exception is for data validation where ProB model-checker is strong enough to handle
100k Excel cells and 200 rules, without any human intervention.
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3.20 Induction and coinduction in an automatic program verifier
K. Rustan M. Leino (Microsoft Research – Redmond, US)
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and A. Voronkov, editors, 16th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR-16), volume 6355 of LNCS, pp. 348–370. Springer, 2010.

URL http://research.microsoft.com/en-us/projects/dafny/

Program verifiers are good tools for verifying programs. Theorem provers are good tools for
proving theorems. But the line between the two kinds of tools often gets blurry. Theorem
provers can also be used to verify programs and program verifiers can also be used to prove
theorems.

In this talk, I show a number of programs whose verification also requires some lemmas.
The programs and lemmas are both proved using the program verifier Dafny [1]. I also
demonstrate how to manually write inductive proofs in Dafny and show Dafny’s automatic
induction tactic [2]. Moreover, I show some experimental features for dealing with co-
induction.

I expect that some AI techniques developed in the theorem proving and AI communities
could be useful in program verifiers like Dafny.
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3.21 ProB Tool Demonstration and Thoughts on Using Artificial
Intelligence for Formal Methods

Michael Leuschel (Universität Düsseldorf, DE)
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In this talk I gave a demonstration of the validation tool ProB [1, 2]. In particular, I
concentrate on model checking and the constraint solving kernel and how this links with
proof and intelligent search. In particular, I believe that proof, model checking and constraint
solving should go hand-in-hand, and that tackling high-level (higher-order) formalisms such
as B is extremely challenging, but provides more potential for intelligent search.
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3.22 The Use of Rippling to Automate Event-B Invariant Preservation
Proofs

Yuhui Lin (University of Edinburgh, GB)
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proofs,” in A. Goodloe and S. Person, editors, NASA Formal Methods, volume 7226 of LNCS,
pages 231–236. Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-28891-3_23

Proof automation is a common bottleneck for industrial adoption of formal methods. In
Event-B a significant proportion of proof obligations which requires human interaction falls
into a family called invariant preservation. In this talk we show that rippling can increase
the automation of proof in this family, and extend this technique by combining two existing
approaches.

3.23 Discovery of Invariants through Automated Theory Formation
Maria Teresa Llano Rodriguez (Heriot-Watt University Edinburgh, GB)
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in 15th International Refinement Workshop (Refine 2011), volume 55 of EPTCS, pp. 1–19,
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Refinement is a powerful mechanism for mastering the complexities that arise when formally
modelling systems. Refinement also brings with it additional proof obligations – requiring a
developer to discover properties relating to their design decisions. With the goal of reducing
this burden, we have investigated how a general purpose theory formation tool, HR, can
be used to automate the discovery of such properties within the context of Event-B. This
gave rise to an integrated approach to automated invariant discovery. In addition to formal
modelling and automated theory formation, our approach relies upon the simulation of system
models as a key input to the invariant discovery process as well as automated proof-failure
analysis.

3.24 Abstraction in Formal Verification and Development
Christoph Lueth (DFKI Bremen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
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Besides correctness, another aspect of formal verification is that it turns the development
into a formal object which we can reason over, and which we can manipulate. One possibility
is abstraction, i.e. the process of making a given proof or development applicable in different
situations. We talk about three different kind of abstractions here, datatype abstraction,
development abstraction, and structure abstraction, to highlight potential avenues of research
and their uses.
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3.25 A study of cooperative online math
Ursula Martin (Queen Mary University of London, GB)
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Blogs, question answering systems and “crowdsourced” proofs provide effective new ways
for groups of people, who may be unknown to each other, to use the internet to conduct
mathematical research. They also provide a rich resource to shed light on mathematical
practice and how mathematics advances, with the internet making visible and codified
matters which have heretofore been ephemeral to study.

We discuss the first steps in such a research programme, looking at two examples to
see what we can learn about mathematics as practiced on the internet. Does it differ from
non-internet practice, and does it support or refute traditional theories of how mathematics
is made, and who makes it, in particular those of Lakatos, or does it suggest new ones.

Polymath supports “crowdsourced proofs” and provides a structured way for a number
of people to work on a proof simultaneously, capturing not only the final result, but also
the discussion, missteps, informal arguments and social mechanisms in use along the way.
Mathoverflow supports asking and answering research level mathematical questions and
provides 25 thousand mathematical conversations for analysis, again providing a record of
the informal mathematical activity that goes into answering them, and the social processes
underlying production, acceptance or rejection of “answers”. We look at a sample of questions
about algebra, and provide a typology of the kinds of questions asked, and consider the
features of the discussions and answers they generate.

We hope that this work will lead to collaboration with the formal methods community,
in understanding proof or in researching proof archives to compare and contrast with the
maths community.

3.26 TLA+ Proofs
Stephan Merz (INRIA – Nancy, FR)
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The TLA+ Proof System (TLAPS) is mainly intended for the deductive verification of
(models of) distributed algorithms. At the heart of TLAPS lies a hierarchical and explicit
proof language. Leaf proof steps are discharged by different automatic backend provers. In
order to ensure the overall coherence of a proof, backend provers may provide a detailed
proof that can be checked within Isabelle/TLA+, an encoding of TLA+ as an object logic in
the logical framework Isabelle.
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The system has been designed for developing large interactive proofs. In particular, the
GUI provides commands for reading and writing hierarchical proofs by letting the user focus
on part of a proof. TLAPS uses a fingerprinting mechanism to store proof obligations and
their status. It thus avoids reproving previously proved obligations, even after a model or
a proof has been restructured, and it facilitates the analysis of what parts of a proof are
affected by changes in the model.

The paper is a longer version of an article published at FM 2012.

3.27 Case Based Specifications – reusing specifications, programs and
proofs

Rosemary Monahan (Nat. University of Ireland, IE)
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Many software verification tools use the design-by-contract approach to annotate programs
with assertions so that tools, such as compilers, can generate the proof obligations required
to verify that a program satisfies its specification. Theorem provers and SMT solvers are
then used to, often automatically, discharge the proof obligations that have been generated.

While verification tools are becoming more powerful and more popular, the major
difficulties facing their users concern learning how to interact efficiently with these tools.
These issues include learning how to write good assertions so that the specification expresses
what the program must achieve and writing good implementations so that the program
verification is easily achieved [4, 5]. In this presentation we discuss guiding the user in
these aspects by making use of verifications from previously written programs. That is by
finding a similar or analogous program to the one under development, we can apply the
same implementation and specification approaches. Our strategy is to use a graph-based
representation of a program and its specification as the basis for identifying similar programs.

Graph-matching was identified as the key to elucidating analogical comparisons in the
seminal work on Structure Mapping Theory [1]. By representing two sets of information as
relational graphs, structure mapping allows us to generate the detailed comparison between
the two concepts involved. So given two graphs we can identify the detailed comparison using
graph matching algorithms. For one application of graph matching to process geographic
and spatial data see [3]. However, we may not always have an identified “source” to apply
to our given problem. Thus, more recent work has taken a problem description, searching
through a number of potentially analogous descriptions, to identify the most similar past
solution to that problem [2].

Our work will develop a graph matching framework for program verification. The
associated tools will operate on a collection of previously verified programs, identifying
specifications that are similar to those under development. The program associated with
this “matching specification” will guide the programmer to construct a program that can
be verified as correct with respect to the given specification. Likewise, the strategy can
be applied when the starting point is a program for which we need to construct a correct
specification.

The core matching process can be thought of as a K+J colored graph-matching algorithm,
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which coupled with analogical transfer will re-apply the old solution to a new problem. Graphs
can be flow graphs, UML diagrams, parse trees or another representation of a specification.
Therefore, an iterative implementation of a sigma function (say) using tail recursion will be
analogous to another recursive implementation—possibly using head-recursion. Similarly,
iterative calculations of the same function using while and for loops will be more analogous to
one another. Identical graph matching (isomorphism) will identify exact matches, given the
representation, while non-identical (homomorphic) matches will identify the best available
solutions.

In summary, our work will help to make software specification and verification more
accessible to programmers by guiding users with knowledge of previously verified programs.
A graphical representation of the specification, coupled with graph matching algorithms, is
used as the basis of an analogical approach to support reuse of specification strategies.
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3.28 Can AI Help ACL2?
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ACL2 stands for “A Computational Logic for Applicative Common Lisp,” and is a fully
integrated verification environment for functional Common Lisp. I briefly mentioned some of
its industrial applications, primarily in microprocessor design, especially floating-point unit
design, and security. ACL2 is used to prove functional correctness of industrial designs. I
then demonstrated an ACL2 model of the Java Virtual Machine highlighting (a) the size and
scale of the formal model, (b) the fact that it was executable and thus was a JVM engine, and
(c) ACL2 can be configured so that code proofs are often automatic. I then turned to how AI
could help the ACL2 user, including: facilitating proof maintenance in the face of continued
evolution of designs; facilitating team interaction in team based proofs (e.g., automatically
informing team member A that team member B has already proved a lemma that seems
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to be related to the one A is trying to formulate); intelligent, semantic-based search of the
data bases of participating users exploiting the common, formal language used to express
concepts; concept and lemma formation; and inductive generalization. I concluded with the
lament that many people attracted to modern AI seem to be put off by formality. This is
not to say they are imprecise, only that they seem more interested in studying less rigid
systems than formal proof systems. I see theorem proving as a game, like chess: there are
fixed rules that every game must follow, but there is plenty of room for statistical learning,
probabilistic methods, and intelligent/heuristic strategies as long as they ultimately result in
the recommendation of helpful legal moves. The title of this talk suggests there is a question
of whether AI could help ACL2. But in fact, there is no question that it could, if the right
sort of expertise is brought to bear on the problem.

3.29 Boogie Verification Debugger
Michał Moskal (Microsoft Research – Redmond, US)
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The Boogie Verification Debugger (BVD) is a tool that lets users explore the potential
program errors reported by a deductive program verifier. The user interface is like that of
a dynamic debugger, but the debugging happens statically without executing the program.
BVD integrates with the program verification engine Boogie. Just as Boogie supports multiple
language front-ends, BVD can work with those front-ends through a plug-in architecture.
BVD plugins have been implemented for two state-of-the-art verifiers, VCC and Dafny.

3.30 Formal software verification in avionics
Yannick Moy (AdaCore, Paris, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Yannick Moy

Joint work of Comar, Cyrille; Kanig, Johannes; Moy, Yannick
Main reference C. Comar, J. Kanig, Y. Moy, “Integrating formal program verification with testing,” in J. Sifakis

and J. Botti, editors, Embedded Real Time Software and Systems (ERTS2 2012), 2012.
URL http://www.open-do.org/wp-content/uploads/2011/12/hi-lite-erts2012.pdf

Certification of civilian avionics software is a very costly process, partly due to the pervasive
use of testing. To reduce these costs, the avionics industry is now looking at using formal
methods instead of testing, which is allowed by the new version of the certification standard
(DO-178C). Based on previous experience with formal verification of avionics software, we
propose a methodology and tools based on formal methods to address the DO-178C objective
of verifying that code correctly implements low-level requirements. Our approach simplifies
the adoption of formal verification by using the executable semantics of assertions familiar to
engineers, by relying on a combination of automatic proof and testing, and by having tools
that support the development of specifications. We take advantage of the latest version (2012)
of the Ada language, which includes many specification features like pre- and postconditions
for subprograms.
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3.31 What I’ve Learned from the VFS Challenge thus far
José Nuno Oliveira (Universidade de Minho – Braga, PT)
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The question “Is Abstraction the Key to Computing?” (Jeff Kramer) is central to formal
methods. The “yes!” answer is widely accepted, but perhaps there are other unanswered
questions, for instance: “Are we using the right notation, formal language?”

In this talk I described how the experience in handling a concrete case study—the Verified
File System (VFS) challenge in computing put forward by Joshi and Holzmann—changed
my way of doing FMs, starting from a grand scale tool-chain involving several notations and
tools (model checkers, animators, theorem-provers) to a minimalist approach, relying on
quantifier-free relational notation and the Alloy model checker only.

Another question (central to the seminar) is “How can AI help?” The same experience
points towards two fields where this may well happen in the future: requirements “engineering”
based on semantics-rich boilerplates and ontologies of invariant theories specified around
what in the talk was referred to as “the 4-relation invariant pattern”.

3.32 The Need for AI in Software Engineering – A Message from the
Trenches

Stephan Schulz (TU München, DE)
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© Stephan Schulz

I discuss existing structured software development processes as used by a medium sized system
integrator in the field of Air Traffic Control, highlighting the variability of the processes
driven by both customer capability and market demands. There often are large gaps between
current practice and the prerequisites for large-scale application of formal methods.

I suggest how AI can help to bridge some of these gaps and can improve industrial
software development processes as used by SMEs. One particular hotspot which could profit
from AI techniques is requirements engineering. In requirements capture and engineering, AI
techniques can help structuring the requirements, guiding the refinement process, and point
out where specifications appear to be unclear or contradictory.

Another significant problem is the large amount of existing legacy code, often embodying
decades worth of domain knowledge and testing, but usually not written to today’s standards.
The ability to re-engineer existing code bases, documenting dependencies, side effects, pre-
and postconditions, and invariants, would make existing libraries much more amendable to
be combined with more rigorously developed new code.
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3.33 Finding and Responding to Failure in Large Formal Verifications
Mark Staples (NICTA, AU)
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The L4.verified project has completed the formal verification, to the level of C source code, of
the full functional correctness of the seL4 microkernel [2]. The project proceeded in several
phases, with internal iterations, and ongoing maintenance [1]. The team can now claim there
are zero bugs in the microkernel, subject to assumptions and conditions. The scale and detail
in the project raise challenges of potential interest for Artificial Intelligence (AI) and Formal
Methods (FM). I discuss two of these.

Firstly, changes to the specification, design, code, and invariants are almost inevitable in
large formal verification projects, because of bug fixes or enhancements. Changes mean the
system must be re-verified, and all lemmas must be re-proved. The automated re-proof of
some lemmas may fail, because they are no longer true and must be reworked, or because
the proof scripts are too fragile and must be reworked. Reverification is a management and
technical challenge for which AI techniques may be relevant. Specific challenges include: In
what order should lemmas be reworked? How can proof scripts be made more robust to
minor changes to lemmas?

Secondly, the existence of extra-logical “gaps” between formal models and the real world
(actual requirements and implementations) is well known in the FM community. Formal
methods are empirical too, because the properties proved about software are claims about how
it will behave and satisfy requirements in the world. Nonetheless, it is less well known how to
address these gaps. The L4.verified team identified some extra-logical assumptions, including
that assembly-code, C compiler, and hardware are correct. What other key assumptions
might there be, and how can we identify them? Can heuristic search techniques help to
identify or test such assumptions?
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3.34 Formal Verification of QVT Transformations
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We present a formal calculus for operational QVT. The calculus is implemented in the
interactive theorem prover KIV and allows to prove properties of QVT transformations for
arbitrary meta models.

Additionally we present a framework for provably correct Java code generation. The
framework uses a meta model for a Java abstract syntax tree as the target of QVT trans-
formations. This meta model is mapped to a formal Java semantics in KIV. This makes it
possible to formally prove with the QVT calculus that a transformation always generates a
Java model (i.e. a program) that is type correct and has certain semantical properties. The
Java model can be used to generate source code by a model-to-text transformation or byte
code directly.

Finally, we report on experiences with the development of the new calculus.

3.35 Modeling and Proving
Werner Stephan (DFKI – Saarbrücken, DE)
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To turn Formal Methods into an engineering discipline (beyond use in the academic commu-
nity) modeling has to be taken seriously: attack the real problems, make explicit (hidden)
assumptions, follow certain guidelines, provide (informal) interpretations for the interaction
with non-formal parts, and allow for a third party assessment. To that end we still need
modeling experts. Although their expertise might be domain specific they will be able to
perform proofs in state-of-the-art interactive proof systems. However, typically they will not
be able to develop complete (proof) strategies. Interactive systems offer the flexibility that
is often needed for adequate models. Considerable progress has been made with respect to
partial automation, user interaction, and the engineering of interactive proofs. For example
our proof strategy for protocol verification selects around 85% of the steps automatically. In
simple standard case it gets close to 100%. Unfortunately sophisticated real world problems
in many cases tend to be ‘out of range’ of a given fixed strategy (to a varying degree).
Adapting strategies still requires (sometimes a lot of) paper work and is completely out of
range for users. The challenge (dream) therefore is to support the development of strategies
within the system in an interactive way such that at least for simpler cases even users are
able to perform these modifications themselves.
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3.36 Overview of CSP||B for railway modelling
Helen Treharne (University of Surrey, GB)
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CSP||B is a formal approach that has been developed at the University of Surrey over a
number of years; it combines two well-established formal methods: CSP and B. At the heart
of the method is a compositional verification framework. Our recent work has been using
CSP||B in the verification of railway systems in collaboration with the University of Swansea.
Our motivation is to develop a modelling and verification approach accessible to railway
engineers: it is vital that they can validate the models and verification conditions, and—in
the case of design errors—obtain comprehensible feedback. In this talk, we presented an
overview of the style of formalization that we have adopted. It is aligned with the way
engineers think about railway systems, and we have involved our industrial partner in detailed
discussions at every stage. The railway models can become large when complex track plans
are being modelled. We also discussed our ongoing work which is focusing on identifying
abstractions of track plans so that model checking complex track plans is possible.
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3.37 AI via/for Large Mathematical Knowledge Bases
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The talk introduces the recently appeared large mathematical knowledge bases as a suitable
repository for combining deductive and inductive AI methods. Several examples of ATP/AI
systems working in this setting are given, including the Machine Learner for Automated
Reasoning (MaLARea) and the Machine Learning Connection Prover (MaLeCoP). Some
lessons learned from working on such systems are discussed and some future work topics are
mentioned.
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3.38 Capturing and Inferring the Proof Process (Part 2: Architecture)
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Interactive theorem proving can be used to verify formal models and specifications as well
as justify their development process. A large portion of the proof can be automated using
general heuristics available in state-of-the-art automatic theorem provers, but significant
manual work still gets left for human experts.

In this talk we ask how enough information can be collected from an interactive formal
proof to capture an expert’s ideas as a high-level proof process. Such information would
then serve for extracting proof strategies to facilitate automation of similar proofs. We
explore the question: what describes a proof process? The talk presents our take: we
need structural information (e.g. proof granularity / multiple attempts) as well as proof
meta-information (e.g. proof features). Furthermore, we present the architecture of a new
ProofProcess framework, which is developed to support collecting and inferring the proof
process (automatically, or by asking the expert). It aims to provide a generic way to capture
proof process information from different theorem provers.

3.39 More Abstractions
Laurent Voisin (SYSTEREL – Aix-en-Provence, FR)
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Based on 10+ years of formal modelling in industry, I advocate the use of domain theories
and modelling patterns in system modelling.

When modelling a system, one has to somehow encode some domain data structures
into some mathematical notation (e.g., set-theory for Event-B). This encoding is not trivial,
except for very simple case studies. Inlining this encoding within a model makes it difficult
to read and consequently difficult to prove. It is much better to separate the encoding in
a separate file (i.e., a theory) which will describe the data structure, provide operators for
updating it together with proof rules for reasoning about them. The model is then free from
clutter and can be expressed at the same level of discourse as domain experts.

I think that AI could provide significant benefits by detecting when a model is not at
the correct level of discourse and contains too much encoding. This could be detected by
inspecting the model and assessing its intrinsic complexity. This would be particularly useful
for beginners who usually have difficulty to separate concerns.

Another use of AI is to implement refinement plans (see paper by Grov, Ireland and
Llano presented at ABZ 2012). In this setting, a failing proof is analysed with respect to
some refinement patterns and the tool suggests amendment to the model that would allow to
fix its proof. I think that it would be much more valuable if the refinement patterns would
be in the form of generic models. The tool would then propose to instantiate the generic
pattern and suggest ways to instantiate it (e.g., provide actual parameters). This would
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reuse not only the pattern but also its associated proof. The user would only have to prove
that the actual parameters fulfill the pattern pre-conditions.

More generally, AI could be used to mine existing models to extract generic patterns
from them. This would allow to build a library of recurring patterns. As for refinement
plans, AI could also be used for guiding users within the library and help them select the
appropriate patterns with respect to their modelling needs.

In conclusion, using both theories and generic model patterns makes models more easy
to develop, read and prove, by allowing better reuse. AI could be of great help in assisting
users for making the better use of these tools.

3.40 Finding Counterexamples through Heuristic Search
Martin Wehrle (Universität Basel, CH)
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AI planning considers the task of automatically finding a sequence of actions such that
applying these actions leads to a state that satisfies a given goal condition. A popular
approach to solve planning tasks is based on heuristic search.

From an abstract point of view, AI planning is related to finding counterexamples in
model checking. This talk shows the basic idea of computing distance heuristics automatically
based on a general problem description, and shows how heuristic search techniques can be
applied to finding counterexamples in model checking.
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