
Report from Dagstuhl Seminar 12342

Engineering Multiagent Systems
Edited by
Jürgen Dix1, Koen V. Hindriks2, Brian Logan3, and
Wayne Wobcke4

1 TU Clausthal, DE, dix@tu-clausthal.de
2 TU Delft, NL, k.v.hindriks@tudelft.nl
3 University of Nottingham, GB, bsl@cs.nott.ac.uk
4 UNSW - Sydney, AU, wobcke@cse.unsw.edu.au

Abstract
This report documents the programme and outcomes of Dagstuhl Seminar 12342 “Engineering
Multiagent Systems”. The seminar brought together researchers from both academia and indus-
try to identify the potential for and facilitate convergence towards standards for agent technology.
As such it was particularly relevant to industrial research. A key objective of the seminar, moreo-
ver, has been to establish a roadmap for engineering multiagent systems. Various research areas
have been identified as important topics for a research agenda with a focus on the development of
multiagent systems. Among others, these include the integration of agent technology and legacy
systems, component-based agent design, standards for tooling, establishing benchmarks for agent
technology, and the development of frameworks for coordination and organisation of multiagent
systems. This report presents a more detailed discussion of these and other research challenges
that were identified. The unique atmosphere of Dagstuhl provided the perfect environment for
leading researchers from a wide variety of backgrounds to discuss future directions in program-
ming languages, tools and platforms for multiagent systems, and the roadmap produced by the
seminar will have a timely and decisive impact on the future of this whole area of research.

Seminar 19.–24. August, 2012 – http://www.dagstuhl.de/12342
1998 ACM Subject Classification I.2.11 Distributed Artificial Intelligence – Multiagent systems,

Intelligent agents, D.2 SOFTWARE ENGINEERING
Keywords and phrases Agent-oriented programming, Multiagent systems, Software methodolo-

gies for distributed systems, Programming distributed systems, Empirical evaluation
Digital Object Identifier 10.4230/DagRep.2.8.74
Edited in cooperation with Federico Schlesinger

1 Executive Summary

Jürgen Dix
Koen V. Hindriks
Brian Logan
Wayne Wobcke

License Creative Commons BY-NC-ND 3.0 Unported license
© Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke

In 1993, Yoav Shoham’s paper on agent-oriented programming was published in the Artificial
Intelligence Journal. Shoham’s ideas, and the work on agent-oriented programming it inspired,
has had a profound impact on the field of multiagent systems, as evidenced by Shoham’s
paper receiving a 2011 IFAAMAS Influential Paper Award recognising seminal work in the

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY-NC-ND 3.0 Unported license

Engineering Multiagent Systems, Dagstuhl Reports, Vol. 2, Issue 8, pp. 74–98
Editors: Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12342
http://dx.doi.org/10.4230/DagRep.2.8.74
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 75

field. Agent-oriented programming offers a natural approach to the development of complex
systems in dynamic environments, and technology to support the development of agents
and multiagent systems is beginning to play a more important role in today’s software
development at an industrial level.

Since Shoham’s initial work, a range of platforms that support agent orientation have
become available, and considerable experience has been gained with these platforms. Some
key issues have also emerged from this work, however. First, given the plethora of systems
and approaches that have become available in the field for developing multiagent systems, it
is no longer clear which of these technologies is most appropriate for developing a particular
application or what the distinctive benefits of various approaches are. It is especially important
for practitioners to understand the benefits resulting from a particular choice of technology,
when and how to apply it, and to develop standards that support the application of agent
technology. Secondly, the very different style of agent-oriented programming potentially
hampers the uptake of agent development tools and methods. To successfully apply the
agent-oriented paradigm and to support the implementation and testing phases of agent-
oriented development it is therefore very important to establish best practices and evaluate
lessons learned from applying the technology in practice.

The aim of this seminar was to bring together researchers from both academia and
industry to identify the potential for and facilitate convergence towards standards for agent
technology. The seminar was very relevant for industrial research. The seminar meetings
were meant to enable interaction, cross-fertilisation, and mutual feedback among researchers
and practitioners from the different, but related areas, and provide the opportunity to discuss
diverse views and research findings. The interaction in a Dagstuhl seminar was considered to
be ideal for establishing common ground for defining standards, identifying best practices,
and developing approaches to applying agent technology to the large scale, realistic scenarios
found in industry. The aim of the discussions that were planned was therefore to establish a
future research agenda, i.e. a roadmap, based on an evaluation of current state-of-the-art of
agent-oriented programming languages, tools and techniques that are particularly important
for large scale industrial applications.

The seminar took place August 19–24, 2012, with 37 participants from 15 countries. The
programme included presentations by the participants and group discussions. Presentations
were about 30 minutes long, including questions. We specifically asked participants not to
present current research (their next conference paper), but rather asked for what should be
considered the next step in their research area.

Participants were encouraged to use their presentations to provide input for discussion
about the roadmap. They should show their perspectives and discuss what they think should
be on the research agenda, try to explain why, and what it is they think this community
should be aiming for. The group discussions took place in the afternoon, after the coffee break
until 6pm. We put together four groups of 8-10 members, each headed by one discussion
leader (see Section 4 below for more details). The results of each working group were then
presented to all participants before dinner. The seminar concluded with a general discussion
on Friday morning and a wrap-up.

We identified the following important outcomes of the seminar.

MAS: Understanding of the uptake of multiagent systems technology in industry is seriously
hampered by the current situation concerning paper acceptance at scientific conferences
and workshops: While new theoretical approaches easily find their way into these events,
papers about serious implementations that scale up and put theoretical concepts to work
are often considered not innovative enough and are thus not considered appropriate as

12342

76 12342 – Engineering Multiagent Systems

scientific papers. We need a forum to publish such papers in order to generate research
on the transfer of agent technology to industry.

Merger: During the seminar, eight out of 12 steering committee members of three important
workshops in the area of agent systems development (ProMAS, DALT, and AOSE) met to
discuss the possibility of merging the workshops. Based on the discussions at the seminar,
it was generally agreed that greater focus is needed, and a single venue to present work in
the field would be desirable. The workshop steering committees therefore decided (during
the seminar) to merge ProMAS, DALT and AOSE to form a new workshop Engineering
Multiagent Systems. 2012 will therefore be the last year in which the workshops will
be held separately: They will be replaced by the new EMAS workshop at next year’s
AAMAS.

Roadmap: The organisers agreed to start a draft on the roadmap, based on the results of
the group sessions. We plan to include the group leaders to produce a first draft, discuss
it with the participants and afterwards, to finalise it.

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 77

2 Table of Contents

Executive Summary
Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 74

Overview of Talks
Challenges in MAS Verification
Natasha Alechina . 79

Agents in Unmanned Aerial Vehicle Applications
Jeremy Baxter . 79

Reflections on Multiagent Oriented Programming
Rafael H. Bordini . 79

Building Multiagent Systems for the Real World: A Company’s Perspective
Paolo Busetta . 80

Experiences with Agent Factory
Rem Collier . 80

Handling High Frequency Perception / Agents and Enterprise Computing
Stephen Cranefield . 80

Engineering Multiagent Systems: Lessons and Challenges
Mehdi Dastani . 81

Timeliness Issues in Agent Based Control of Satellites, Among Other Things
Louise Dennis . 81

What We Talk About When We Talk About Agents
Virginia Dignum . 82

Agent Technology integration with Maven for an Ambient Assisted Living Case
Study
Jorge J. Gomez-Sanz . 82

Perspectives and Roadmap for Engineering Multiagent Systems
Christian Guttmann . 83

Multiagent Oriented Programming with JaCaMo
Jomi Hübner . 83

Lessons and Perspectives on Agent Languages
Yves Lespérance . 84

Programming Agents
Brian Logan . 84

On Engineering Emotional Agent Systems
John-Jules Ch. Meyer . 84

Observations from Current and Past Projects: 1. Shaping the Intelligent Home of
the Future, 2. Settlers of Catan
Berndt Müller . 84

Application Impact of Multiagent Systems and Technologies
Jörg P. Müller . 85

12342

78 12342 – Engineering Multiagent Systems

Exploring Agents as a Mainstream Programming Paradigm: The simpAL Project
Alessandro Ricci . 85

MAS for Engineering Complex Systems
Amal El Fallah Seghrouchni . 86

Agents in Space for Real: Lessons Learned from Applying Agent Technology in
NASAs Mission Control
Maarten Sierhuis . 86

Empirical Software Engineering for Agent Programming
Birna van Riemsdijk . 87

Engineering Multiagent Systems - Reflections
Jørgen Villadsen . 87

Challenges and Directions for Engineering Multiagent Systems
Michael Winikoff . 88

Decoupling in Industry
Cees Witteveen . 88

Engineering Multiagent Systems: Where is the Pain (and the Opportunity)?
Wayne Wobcke . 89

Working Groups
Integration and Validation . 89

Coordination and Organisation . 92

Tools, Languages and Technologies . 93

Component-Based Agent Design . 94

Open Problems . 96

Panel Discussions . 96

Participants . 98

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 79

3 Overview of Talks

3.1 Challenges in MAS Verification
Natasha Alechina (University of Nottingham, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Natasha Alechina

Joint work of Alechina, Natasha; Logan, Brian; Nguyen, Nga; Rakib, Abdur; Doan, Trang; Dastani, Mehdi;
Meyer, John-Jules

I give a brief overview of the state of the art in verification of multiagent systems where
agents are implemented in BDI agent programming languages, and list the challenges. The
main challenges are: - Ability to represent MAS at a suitably high level of abstraction-
Ability to formulate properties in a suitable language- Scalability improvements

3.2 Agents in Unmanned Aerial Vehicle Applications
Jeremy Baxter (QinetiQ - Malvern, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jeremy Baxter

I discuss my background in multiagent systems and my experience with using multiagent
toolkits. I have used agents to control small teams of unmanned air vehicles both in simulation
and in test flight. The main focus of the work has been using agents to co-ordinate multiple
vehicles and to integrate different types of planning and reasoning. When developing systems
only a small part of the effort is a core agent system, the majority is interfaces. Testing is a
major element of the development and is not well supported by current agent tools. There is
a steep learning curve with new tools and languages which can be hard to justify in a project.
I conclude that design patterns and libraries of components might gain better acceptance
than complete new languages and development environments.

3.3 Reflections on Multiagent Oriented Programming
Rafael H. Bordini (PUCRS - Porto Alegre, BR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Rafael H. Bordini

URL http://dx.doi.org/10.1016/j.scico.2011.10.004

In this talk I discussed some reflections on multiagent oriented programming based on my own
experiences, and in particular recent experiences with the JaCaMo platform, in joint work
with Jomi Hübner, Olivier Boissier, Alessandro Ricci, and Andrea Santi. I made the point
that after years of research we have not yet been able to define precisely what multiagent
orientation entails as a programming paradigm. I also argued that achieving such shared
view of a paradigm is essential if our work is to reach out to other research communities
within computer science.

12342

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.scico.2011.10.004

80 12342 – Engineering Multiagent Systems

3.4 Building Multiagent Systems for the Real World: A Company’s
Perspective

Paolo Busetta (AOS Ltd. - Cambridge, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Paolo Busetta

AOS is one of the few companies on the market whose business is focused on multiagent
platforms and applications. AOS’ main product, JACK, was originally released in 1997.
Since then, AOS has been involved in a large number of diverse research and applicative
projects, varying from cognitive simulation in virtual reality to safety-critical embedded
systems. In this talk, I will present a few important technical challenges that AOS has faced
in its 15 years of existence. These experiences have contributed to shape the new agent
platform under development, called C-BDI. I will briefly introduce some of its novelties and
how they are meant to address the needs of its expected main domains of application, in
particular autonomous operational systems and serious games.

3.5 Experiences with Agent Factory
Rem Collier (University College Dublin, IE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Rem Collier

Joint work of Collier, Rem; O’Hare, Gregory

This talk is broken into two parts. The first part presents an overview of the history of
Agent Factory; a cohesive framework for the development and deployment of multiagent
systems that has been under development and in constant use since 1996. It briefly reflects
on the design choices made for each version of the framework and the improvements made.
Where relevant a selection of applications built using the specific version of the framework
are described. The second part reflects on some experiences gained from the use of Agent
Factory both in terms of the development of demonstrators and in terms of its use as a
teaching platform. Specific comments made in part 2 include: the lack of online community
resources that promote the field; the challenge of meeting users expectations in terms of tool
support; and the lack of significant work on evaluation of agent programming languages /
comparison of agent-based solutions with non-agent based solutions.

3.6 Handling High Frequency Perception / Agents and Enterprise
Computing

Stephen Cranefield (University of Otago, NZ)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stephen Cranefield

Joint work of Cranefield, Stephen; Ranathunga, Surangika; Purvis, Martin
Main reference Surangika Ranathunga, Stephen Cranefield and Martin Purvis. Identifying Events Taking Place in

Second Life Virtual Environments. Applied Artificial Intelligence, (26)1-2:137-181, 2012
URL http://dx.doi.org/10.1080/08839514.2012.629559

In the first part of this talk I briefly discussed some work at the University of Otago on
connecting agents with virtual worlds such as Second Life, and used this to motivate a proposal

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1080/08839514.2012.629559
http://dx.doi.org/10.1080/08839514.2012.629559
http://dx.doi.org/10.1080/08839514.2012.629559

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 81

for enhancing agent platforms with support for handling high frequency state changes. In the
second part, I considered the role that agents might play in enterprise computing and how
they might be integrated into enterprise applications and business processes. I argued that
agents can play a useful role as components of larger businesses processes, and that agent
development tools should provide an interface between agents and the existing integration
technology used in enterprise computing. In particular, I proposed that a simple interface
between agents and enterprise computing infrastructure can be provided by defining agent
“endpoints” for enterprise message routing and mediation engines such as Apache Camel.
These configurable endpoints would translate (selectively) between internal agent entities
such as beliefs and ACL messages and the message exchange abstraction used in the enterprise
integration patterns (EIPs) of Hohpe and Woolf [1]. Message routing and mediation rules
could then be defined outside the agent platform to interconnect the agents with any other
protocols and services that have endpoints defined (such as the 130+ that are available for
Apache Camel).

References
1 G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and De-

ploying Messaging Solutions.Addison-Wesley, 2004.

3.7 Engineering Multiagent Systems: Lessons and Challenges
Mehdi Dastani (Utrecht University, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Mehdi Dastani

In my presentation I explained the aims of multiagent programming research field as formula-
ted in this community and gave a brief presentation of the activities within this community
in the last decade. A distinction is made between academic and industry perspectives. I
argued that although both perspectives are valuable and challenging, their activities and
aims are different. For each perspective I presented some challenges and future directions for
research. I ended the presentation by emphasising the role of transfer of knowledge from the
academic perspective to the industry perspective.

3.8 Timeliness Issues in Agent Based Control of Satellites, Among
Other Things

Louise Dennis (University of Liverpool, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Louise Dennis

Joint work of Fisher, Michael; Veres, Sandor; Lincoln, Nicholas; Lisitsa, Alexei; Gao, Yang; Bordini, Rafael;
Muller, Berndt

The talk consisted of three parts: 1) The Engineering Autonomous Space Software project
investigated the integration of real-time control systems with a rational agent layer for
decision making. The focus of the project was on the abstraction of continuous data to
discrete data. The implementation ran into a number of issues related to the speed with
which data or commands generated by one part of the system could be processed by another
part of the system. Since this did not form the core focus of the project these issues were

12342

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

82 12342 – Engineering Multiagent Systems

worked around in an ad hoc fashion. This talk provided an overview of the problems, the
“quick fixes” and throw out a couple of ideas for how the problems might be dealt with
more coherently. 2) An overview of the Agent Infrastructure Layer, a Java-based toolkit
for implementing the operational semantics of BDI agent systems and then model checking
programs written in the systems. In particular I considered the question of whether the
Agent Infrastructure Layer constituted a Virtual Machine for BDI agent languages. 3) An
overview of the aims of the newly awarded Reconfigurable Autonomy project.

3.9 What We Talk About When We Talk About Agents
Virginia Dignum (TU Delft, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Virginia Dignum

Joint work of Dignum, Virginia; Frank Dignum
Main reference Virginia Dignum, Frank Dignum: Designing agent systems: state of the practice; International

Journal of Agent-oriented Software Engineering - IJAOSE , vol. 4, no. 3, pp. 224-243, 2010
URL http://dx.doi.org/10.1504/IJAOSE.2010.036983

In this presentation, I discussed different views on agent technology and its applications.
Guidelines to decide on agent approaches and its consequences for (agent-oriented) software
engineering lifecycle. I furthermore introduced a few extra issues to be included in the
roadmap: Scaling / multi-level models; Evolution / re-design; and the role of people in the
loop.

3.10 Agent Technology integration with Maven for an Ambient
Assisted Living Case Study

Jorge J. Gomez-Sanz (Univ. Comp. de Madrid, ES)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jorge J. Gomez-Sanz

URL http://sociaal.sf.net, http://ingenias.sf.net

The talk introduces some recent advances in the INGENIAS Development Kit to deal with
challenges found in an Ambient Assisted Living (AAL) oriented project and how the Maven
project management tool contributed to this goal. Ambient Assisted Living systems tries
to make the life of people easier by assisting them in different ways. Most of them have
to do with a smart use of sensors and actuators situated all of them in the environment of
the user. Literature in AAL tells a natural candidate for become the main building block
in this kind of proposal is agent technology. The name of project mentioned in this talk is
SociAAL, because it tries to focus on social aspects that influence this kind of systems. The
project is inherently challenging because of the mixture of different technologies for which
standard agent oriented development environments are not the best choice. Current tools do
not strongly support integration and require installing different plugins that do not ensure
two technologies can work together. A candidate solution is the Maven framework. Maven
is a tool created by the Apache Foundation. Quoting them “Apache Maven is a software
project management and comprehension tool”. In SociAAL project, Maven integration has
meant a possibility of putting together in a straight forward way the development of OSGi
objects, XML documents, XML transformations, INGENIAS agents, and other artefacts.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1504/IJAOSE.2010.036983
http://dx.doi.org/10.1504/IJAOSE.2010.036983
http://dx.doi.org/10.1504/IJAOSE.2010.036983
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://sociaal.sf.net, http://ingenias.sf.net

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 83

The introduction and justification of this framework has served to explore stages of the
development which are not covered usually by AOSE methodologies. As a result, the talk
introduces how well is AOSE dealing with a complete software development using as driver
the software lifecycle according to the standard IEEE Glossary of Software Engineering. The
conclusion of the talk is that many work is needed in AOSE to understand the role of agent
technology in a long term development. In this endeavour, frameworks like Maven can help,
since they are widely used mainstream software engineering tools and can be trusted to
identify meaningful aspects of a development. By integrating with Maven, AOSE will have
to tell what “compiling”,“generating sources”, “documenting”, “testing”, or “packaging” the
multiagent system means. This will introduce better our technology to people used to work
with software.

3.11 Perspectives and Roadmap for Engineering Multiagent Systems
Christian Guttmann (IBM R&D Labs, Melbourne, AU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christian Guttmann

On our agent roadmap, we have not advanced as far as we ought to. Academic and industrial
agent projects still lack consistent and unified design and engineering patterns, and advantages
of agent engineering over other engineering approaches are not entirely clear. Hence, it is
difficult to evaluate the benefit and potential of agents as an approach and methodology for
ambitious projects, and hence it is difficult to make a well informed choice of using agents. I
will support this statement by revisiting how far we have come on existing agent roadmaps,
and also by reporting on my recent experience on defining and leading R&D projects that
extend and use agent technologies in the area of health and medicine. A few ideas are offered
to extend the agent roadmaps. Our community may benefit from engaging more in the
technology transfer process (showing the value of agent engineering), and engaging more
with other research communities and stakeholders, where the key is to identify and define
challenges together, rather than in isolated labs and research groups.

3.12 Multiagent Oriented Programming with JaCaMo
Jomi Hübner (Federal University of Santa Catarina - Brazil, BR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jomi Hübner

This talk brings together agent-oriented programming, organisation-oriented programming
and environment-oriented programming, all of which are programming paradigms that emer-
ged out of research in the area of multiagent systems. In putting together a programming
model and concrete platform called JaCaMo which integrates important results and technolo-
gies in all those research directions, we show in this paper that with the combined paradigm,
that we prefer to call “multiagent oriented programming”, the full potential of multiagent
systems as a programming paradigm. JaCaMo builds upon three existing platforms: Jason for
programming autonomous agents, Moise for programming agent organisations, and CArtAgO
for programming shared environments.

12342

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

84 12342 – Engineering Multiagent Systems

3.13 Lessons and Perspectives on Agent Languages
Yves Lespérance (York University - Toronto, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Yves Lespérance

In the talk I briefly review the main features of the Golog family of Situation Calculus-based
agent programming languages and application where they have been used and put out some
ideas for future research on Engineering Multiagent Systems. One topic raised for future
work is modeling and reasoning about the mental states of other agents (Theory of Mind) in
agent programming languages, and I briefly discuss some initial work in that area.

3.14 Programming Agents
Brian Logan (University of Nottingham, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Brian Logan

Joint work of Logan, Brian; Alechina, Natasha; Bordini, Rafael; Dastani, Mehdi; Gordon, Elizabeth; Hindriks,
Koen; Madden, Neil; Meyer, John-Jules; Sloman, Aaron; Vikhorev, Konstantin

In this talk, I consider agent programming from the perspective of Artificial Intelligence. I
briefly outline some lessons learned from our work on developing approaches to tractable
deliberation for intention scheduling in the agent programming languages ARTS, AgentS-
peak(RT) and N-2APL, and highlight some unsolved problems in deliberation about deadlines
and plan durations. I also sketch some future directions for agent programming.

3.15 On Engineering Emotional Agent Systems
John-Jules Ch. Meyer (Utrecht University, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© John-Jules Ch. Meyer

In this talk I go through the following: Why emotional agent systems? The main idea.
Methodology. How far we have got. Intuition of 4 basic types of emotion. Deliberation with
emotions. Future work.

3.16 Observations from Current and Past Projects: 1. Shaping the
Intelligent Home of the Future, 2. Settlers of Catan

Berndt Müller (University of Glamorgan, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Berndt Müller

We discuss our experience from projects using agent-based techniques and point out some
research topics that will have to be addressed if multiagent based systems become ubiquitous.
These include legal and ethical issues, security, and verification. The latter needs to be more
rigorous (generating reasoning engines from semantic specifications) and ideally needs to take

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 85

notions of resource and location into account. Of further importance to the acceptance of
MAS as a programming paradigm, is the availability of a component-based approach and the
availability of agent libraries. This is illustrated by an example of agent-based development
of a turn-based game using high-level Petri nets based on the nets-within-nets paradigm.

3.17 Application Impact of Multiagent Systems and Technologies
Jörg P. Müller (TU Clausthal, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jörg P. Müller

There appears to be a common perception among Multiagent Systems (MAS) researchers
that their research field has still some room left in creating impact outside our own research
community. However, there are no recent studies that allow us to back up or rebut this
hypothesis. In this talk I am providing some thoughts and observations related to the
application impact of MAS. I review some models of ICT impact known from the literature
and discuss their applicability to MAS research. Further, I discuss previous work related to
research on application impact in our research community. I come to the conclusion that it
is beneficial to include research activities related to the study of application impact into a
research roadmap on multiagent systems and technologies. I propose some desiderata for
such research, and inform about an ongoing survey activity.

3.18 Exploring Agents as a Mainstream Programming Paradigm: The
simpAL Project

Alessandro Ricci (University of Bologna, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alessandro Ricci

Main reference Alessandro Ricci, Andrea Santi. “Designing a general-purpose programming language based on
agent-oriented abstractions: the simpAL project”. Proceeding ofSPLASH ’11 Workshops
Proceedings of the compilation of the co-located workshops on DSM’11, TMC’11, AGERE!’11,
AOOPES’11, NEAT’11, VMIL’11.

URL http://dx.doi.org/10.1145/2095050.2095078

Agent-Oriented Programming has been explored so far mainly in the context of Distributed
AI and Multiagent Systems, and it is almost totally unknown in the context of programming
languages and software engineering. In spite of that, we argue that agent-oriented concepts
and abstractions could be effective to tackle main problems that affect modern program-
ming, beyond object-oriented programming and actor-based programming. Accordingly, our
medium-term objective is to shape a new programming paradigm based on agent-oriented
abstractions, as a natural evolution of the object and actor ones. This calls for devising
programming languages – as well as related models and technologies – that, besides being
based on agent-oriented abstractions, would provide features and mechanisms that are im-
portant when programming and software development is of concerns. In this presentation we
discuss our progress in that direction, represented by the simpAL programming language
and platform.

12342

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1145/2095050.2095078
http://dx.doi.org/10.1145/2095050.2095078
http://dx.doi.org/10.1145/2095050.2095078
http://dx.doi.org/10.1145/2095050.2095078
http://dx.doi.org/10.1145/2095050.2095078

86 12342 – Engineering Multiagent Systems

3.19 MAS for Engineering Complex Systems
Amal El Fallah Seghrouchni (UPMC - Paris, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Amal El Fallah Seghrouchni

This talk will present my main experiences of MAS engineering within industrial context. It
aims to show where and how MAS may bring an added-value for complex systems design.

The first part of my talk outlines some examples of simulations of complex systems
and also some prospective projects we have developed in the aerospace domain. Two main
projects are described: 1) SCALA is a project for mission interception based on reactive
multiagent planning (collaboration with Dassault-Aviation) and 2) the coordination of fleet of
UAVs where several aspects of MAS are involved such as planning, elicitation of preferences
and multiagent decision (collaboration with Thales Airborne Systems).

The second part of my talk goes on to relate some lessons learnt from the development of
two languages for MAS programming, namely CLAIM and its extension S-CLAIM (Smart
Claim) to deploy MAS an smart devices. S-CLAIM is a declarative agent-oriented language
for Ambient Intelligence (AmI) - S-CLAIM - that allows programming reactive or cognitive
mobile agents in a simple, easy-to-use manner while meeting AmI requirements. Based
on a hierarchical representation of the agents, the language offers a natural solution to
achieve context-sensitivity. S-CLAIM is an evolution of the CLAIM language, its predecessor.
It is light-weight and, being transparently underpinned by the JADE framework, allows
deployment on mobile devices and easy interoperation with other components by means
of web services. The usefulness of the proposed language for AmI is illustrated through a
scenario and a demo featuring an AmI application in a Smart Room (see also the attached
paper presented at ANT’2012). My talk concludes with a positive note concerning the
transfer in the field of MAS from academia to industry.

3.20 Agents in Space for Real: Lessons Learned from Applying Agent
Technology in NASAs Mission Control

Maarten Sierhuis (Ejenta Inc., US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Maarten Sierhuis

This talk provides lessons learned from developing and implementing the first multiagent
workflow system that automates the work of the OCA flight controller in NASA’s Mission
Control Centre for the International Space Station. OCAMS was first simulated and then
developed and deployed using the Brahms agent language and NASA’s Brahms environ-
ment. Ejenta, Inc. is a startup in San Francisco, CA and has as its mission to develop
intelligent personal agent technology. Ejenta provides a commercial version of the Brahms
agent simulation and development environment and its associated NASA applications and
technology, including the OCAMS multiagent procedure execution workflow environment
and the Individual Mobile Agent System. For more information, please contact the author.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 87

3.21 Empirical Software Engineering for Agent Programming
Birna van Riemsdijk (TU Delft, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Birna van Riemsdijk

Joint work of van Riemsdijk, M. Birna; Hindriks, Koen; Jonker, Catholijn M.
Main reference M. B. van Riemsdijk, K. V. Hindriks, and C. M. Jonker. An empirical study of cognitive agent

programs. Multiagent and Grid Systems (MAGS), 8(2):187-222, 2012.

In this talk I argue for increasing use of empirical software engineering in the development of
agent programming languages and techniques. Empirical software engineering is a branch of
computer science in which empirical methods are used to study how people use the technologies
and to what extent certain techniques are better than others. We need to investigate how
software quality characteristics as identified in mainstream software engineering apply in the
context of engineering multiagent systems, and define dedicated attributes and metrics to
measure to what extent these are present in the software product. In this way we can improve
the techniques based on data. Also we need to develop or come to agreement concerning
what ’counts’ as good empirical research for engineering multiagent systems.

3.22 Engineering Multiagent Systems - Reflections
Jørgen Villadsen (Technical University of Denmark - Lyngby, DK)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jørgen Villadsen

Joint work of Villadsen, Jørgen; Jakobsen, Troels Christian
Main reference Troels Christian Jakobsen: “I wouldn’t have thought of it myself” - Emergence and unexpected

intelligence in theater performances designed as self-organising critical systems. In proceedings:
Algolog Multiagent Programming Seminar 2011 (AMAPS2011) - Technical University of Denmark -
Lyngby

URL http://www.imm.dtu.dk/algolog/index.php?n=Home.AMAPS

In the first part I look at a theater performance by artistic director Troels Christian Jakobsen
as a multiagent system. It is designed as a self-organising critical system using a framework
where within its borders but without a script there is real interaction between the elements
of the performance. In the second part I discuss the ideas behind my recent monograph on
propositional attitudes and inconsistency tolerance. Natural language sentences are parsed
using a categorial grammar and correctness of arguments are decided using a paraconsistent
logic. In the third part I present a curriculum for the MSc in Computer Science and
Engineering program at the Technical University of Denmark with a focus on multiagent
systems. As the director of studies I have observed that the students are working hard
and with much creativity in advanced courses and projects involving intelligent agents, in
particular in the agent contest 2009-2012.

12342

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
M. B. van Riemsdijk, K. V. Hindriks, and C. M. Jonker. An empirical study of cognitive agent programs. Multiagent and Grid Systems (MAGS), 8(2):187-222, 2012.
M. B. van Riemsdijk, K. V. Hindriks, and C. M. Jonker. An empirical study of cognitive agent programs. Multiagent and Grid Systems (MAGS), 8(2):187-222, 2012.
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.imm.dtu.dk/algolog/index.php?n=Home.AMAPS
http://www.imm.dtu.dk/algolog/index.php?n=Home.AMAPS
http://www.imm.dtu.dk/algolog/index.php?n=Home.AMAPS
http://www.imm.dtu.dk/algolog/index.php?n=Home.AMAPS
http://www.imm.dtu.dk/algolog/index.php?n=Home.AMAPS

88 12342 – Engineering Multiagent Systems

3.23 Challenges and Directions for Engineering Multiagent Systems
Michael Winikoff (University of Otago, NZ)

License Creative Commons BY-NC-ND 3.0 Unported license
© Michael Winikoff

Main reference “Future directions for agent-based software engineering”, Int. J. Agent-Oriented Software
Engineering, Vol. 3, No. 4, pp. 402-410.

URL http://dx.doi.org/10.1504/IJAOSE.2009.025319
URL http://arxiv.org/pdf/1209.1428.pdf

In this talk I review where we stand regarding the engineering of multiagent systems. There
is both good news and bad news. The good news is that over the past decade we’ve made
considerable progress on techniques for engineering multiagent systems: we have good, usable
methodologies, and mature tools. Furthermore, we’ve seen a wide range of demonstrated
applications, and have even begun to quantify the advantages of agent technology. However,
industry involvement in AAMAS appears to be declining (as measured by industry sponsorship
of the conference), and industry affiliated attendants at AAMAS 2012 were few (1-2%).
Furthermore, looking at the applications of agents being reported at recent AAMAS, usage
of Agent Oriented Software Engineering (AOSE) and of Agent Oriented Programming
Languages (AOPL) is quite limited, which is also supported by the results of a 2008 survey by
Frank and Virginia Dignum (“Designing agent systems: state of the practice”, IJAOSE 2010,
4(3):224-243). Based on these observations, I make five recommendations: 1. Re-engage with
industry 2. Stop designing AOPLs and AOSE methodologies ... and instead ... 3. Move to
the “macro” level: develop techniques for designing and implementing interaction, integrate
micro (single cognitive agent) and macro (MAS) design and implementation 4. Develop
techniques for the Assurance of MAS 5. Re-engage with the US.

3.24 Decoupling in Industry
Cees Witteveen (TU Delft, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Cees Witteveen

I discuss an application of agent technology in maintenance. The industrial partner is part
of the Dutch Railway company responsible for maintenance. They are interested in flexible
schedules and distribution of a global operational scheduling problem over several teams.
These teams should be able to schedule their activities independently. We applie some ideas
derived from temporal decoupling, but also from classical OR to solve their problems. The
main lessons learned are: (1) use the language and concepts of your partner, (2) make very
concrete promises and fulfil them in a verifiable way; (3) do not hesitate to consider agents
only as a useful metaphor.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1504/IJAOSE.2009.025319
http://dx.doi.org/10.1504/IJAOSE.2009.025319
http://dx.doi.org/10.1504/IJAOSE.2009.025319
http://arxiv.org/pdf/1209.1428.pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 89

3.25 Engineering Multiagent Systems: Where is the Pain (and the
Opportunity)?

Wayne Wobcke (UNSW - Sydney, AU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Wayne Wobcke

I first describe two multiagent systems, one a “smart personal assistant” providing spoken
dialogue interaction with a collection of personal agents in e-mail and calendar management
(built using JACK), and the second an agent-based model for risk assessment of routine
clinical processes, estimating the risk associated with patient misidentification and infection
control (built using Brahms). I then reflect on the main difficulties in engineering these
systems and the opportunities presented for further research. In summary, the main problems
are not with particular programming languages or platforms, but of two types: (i) integration,
where the agent aspect of the system is a small part of a much larger system, and (ii)
validation of an agent model against reality. I conclude with a proposal of developing tools
for semi-automatically constructing agent models using a mixture of knowledge acquisition
and machine learning/data mining techniques, validating against traces of existing system
behaviour, with particular application to the medical domain. This approach has recently
become feasible due to the availability of “big” data sets.

4 Working Groups

There were three group-discussion sessions. The organisers separated participants into four
groups (of size 8–10), which varied for the different sessions. The outcomes of the discussions
in each group were presented to the other groups at the end of each session and a general
discussion followed.

For the first session, we did not specify a particular topic. As this session took place on
the very first day of the seminar, we just collected ideas and identified important topics.

For the second session, the four groups were assigned different topics, focussing on
particular research areas: Integration and Validation, Coordination and Organisation, Tools,
Languages and Technologies and Component-Based Agent Design.

The third session was again directed towards the structure of the roadmap. The motto
for this session was:

What do you want to do in the next 10 years (research, applications)? Pick the top 10
topics out of a list or add new ones. Put them into clusters or state how they relate
to each other.

4.1 Integration and Validation
One objective of this Dagstuhl seminar was to bring together academic researchers and
industry practitioners working on a variety of applications, to compare experiences, identify
common problems in deploying agent technology, and propose ways to alleviate these problems
in the future. A premise of the seminar was that there is currently a large variety of deployed
agent applications, but that this was not widely recognised by the agents research community.
The breadth of existing work was confirmed with presentations on: (i) avionics and defence

12342

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

90 12342 – Engineering Multiagent Systems

(unmanned aerial vehicles), (ii) smart cities (ambient intelligence, crowd simulation), (iii)
transportation (traffic modelling and simulation), (iv) logistics (warehouse management,
maintenance scheduling), (v) workflow management, (vi) decision support (process monitoring,
disaster management), (vii) healthcare (agent-based modelling, care coordination, patient
monitoring), (viii) personal assistants (dialogue management), (ix) real-time control systems
(mission planning), (x) power engineering (grid management), (xi) information integration
(sensor networks), and (xii) virtual environments (games, training).

Most participants in this working group agreed on two major distinctive benefits of agent
technology: autonomous decision making and explicit problem decomposition and
coordination mechanisms. There was also clear consensus that the main problems
facing deployment of agent/multiagent systems fall under three related areas: integration,
validation and software engineering.

4.1.1 Integration

A basic problem is that an agent/multiagent system is generally only a small part of a
much larger system containing any number of other complex hardware/software components.
While traditionally a system can be organised “hierarchically” as a collection of agents
(providing interfaces to the user and wrappers for other components), this is not generally the
case for many applications. More commonly, agents need to interact with other non-agent
components without the use of agent communication protocols, and need to be provided
with information about the rest of the system’s behaviour in order to perform their function.
This means that the agent part of the system cannot easily be isolated from the remainder
of the system, both in software development and for the purpose of reasoning about agent
and system behaviour.

Integration can take place at multiple layers of abstraction, e.g. the implementation
level, conceptual level, business level, etc. Furthermore, the design of the non-agent part
of the system is typically outside the agent developer’s control, so the agent programming
language/platform needs to be highly flexible in allowing integration with interchangeable
components (that may be at different abstraction layers), facilitate customisation of the
agent/multiagent system to different application scenarios as needed, and support system
maintenance of the whole system as it evolves. It is also desirable (for simplicity and
efficiency) to be able to select only a subset of features of an agent platform needed for a
given application rather than being required to use all features of a large and complicated
agent platform.

4.1.2 Validation

The major potential benefits of agent technology arising from autonomous decision making
present, paradoxically, a significant barrier to the adoption of the technology, since users
typically require performance guarantees (preferably quantifiable and verifiable) that agent
actions, though understood to be not completely predictable, are within acceptable bounds.
Thus validation or assurance of agent/multiagent systems is particularly important. The
level of system assurance required varies with the application area, but is most stringent
in defence, where formal certification is required. Other sorts of applications need to be
“trusted” by users, regulators and the community.

The type of properties that may need validation include safety, security, scalability, quality,
maintainability, performance and interoperability. Validation is extremely difficult due to
the complexity of agent behaviour and interactions, particularly as validation needs to be

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 91

not only of the agent part of the system but of the system as a whole (and as noted above,
agent/multiagent systems are tightly integrated into larger systems of agent and non-agent
components). Validation of the agent part of a system is difficult because this part of the
system cannot (in general) be isolated from the rest of the system, and because some desired
properties may need to be derived from those of the agent development platform, which
in turn may need to be validated/certified. In the specific area of agent-based modelling,
validation is often ignored and datasets are often insufficient to provide adequate rigorous
validation of models. Verification may sometimes be possible, but this is the exception
rather than the rule with today’s complex applications, considering the limitations of current
approaches for specification and verification.

4.1.3 Software Engineering

It was commented by one participant that agent-based software development is 10% multiagent
systems engineering and 90% standard software engineering. Whatever the breakdown, a
consequence of the need for integration of agents into larger systems is that standard software
engineering is heavily involved in the deployment of agent/multiagent systems. To improve
the ease of adoption of agent/multiagent systems, what is needed are not more special-purpose
“agent-oriented software engineering” methodologies, which often emphasise the distinctive
nature of agent-based systems or which are closely tied to particular agent languages or
platforms. Similarly, special-purpose agent programming languages present a barrier to
deployment if they do not provide support for integration with existing software, creating
undesirable “lock-in” to particular platforms and/or duplication of effort when non-agent
components need to be translated into a particular agent model/language to enable interaction
with agents.

Instead, what is required is better incorporation of agent-oriented software development
within mainstream software engineering practices, and conversely, the use of more standard
software engineering methodologies and tools within agent-oriented software development.
This involves: (i) providing support for agent development within the whole software
development lifecycle, from requirements engineering and architectural design through to
testing and maintenance, (ii) integration with mainstream software development environments
and especially tools, (iii) adoption of widely used software engineering approaches such as
design patterns and pattern languages, (iv) compliance with software engineering standards,
(v) “reaching out” to the software engineering research community through publication
in software engineering venues, and (vi) comparison of agent-based software development
platforms with standard programming language environments. The overall objective is
to make it easier to deploy and maintain agent/multiagent systems within mainstream
applications.

The term component is used above loosely to refer to some part of a larger hardware/soft-
ware system. The topic of a specific “component-based” software engineering paradigm for
agents was a subtheme of this working group discussion, but meant a number of things: (i)
treating agents as interchangeable components in a larger system (“plug-and-play” agents or
agent components, perhaps taken from a component library or repository), (ii) a declarative
platform-independent representation for agents to enable reuse of agents from one system
to another or to make it easier to construct agent models using third party tools, and
(iii) building single agents out of simpler interchangeable components (e.g. belief database,
reasoning engine, etc.). Despite the unresolved ambiguity, the idea of component-based agent
software engineering was felt worthy of much further research.

12342

92 12342 – Engineering Multiagent Systems

4.2 Coordination and Organisation
The notions of interaction and organisation are important in Multiagent Systems (MAS),
but they are important in other systems as well. However, the coordination and organisation
have never been studied in a homogeneous fashion. We need answers to why there are such
big differences. For example it should be explained why elements which are a concern in other
systems are not a concern in MAS. As an example, for a newcomer with some knowledge
in distributed systems, it is surprising that classical problems in concurrent systems, like
deadlock or starvation, are hardly mentioned today. While we cannot define the problems
with deadlock and starvation away, we claim that it is the agent paradigm, with its levels of
abstraction and decentralised solutions, that helps to define these notions appropriately. We
feel agent technology helps to better understand the problem, provides tools to deal with
them and, in the end, verification of these and other properties is possible. One community
dedicated to these topics is the COIN (COIN: Coordination, Organisation, Institutions
and Norms). A big part of COIN is more concerned with abstractions and much less with
implementations. There are important connections to the multiagent oriented paradigm
that are not yet fully explored. Different technologies to enable coordination are not able to
represent concepts needed in MAOP (Multi-Agent Oriented Programming) beyond messages.
We believe that a semantical underpinning (as opposed to classical tuple spaces without
any messages) makes message interchange easily possible and also helps to implement it.In
a solution for interaction and organisation applied to a multiagent system, we would look
for an organisation model subsuming both aspects. In an organisational model, we need to
determine (1) the elements required to define a coordination, and (2) what goals should be
pursued. Agents then acquire or are given these goals and commit to them in ways compliant
with the organisation model.

Ideally, we are looking for an organisation specification language that could be translated
into explicit organisations at the execution level. We can look for optimisations at two levels:
(1) looking for first-class-citizen representation of concepts belonging to the organisation
model; or (2) focusing on protocols/algorithms that implement the coordination/organisation
which have certain properties (e.g., being deadlock-free) we might even verify. Also, we
assume such MAS can change its coordination behavior (the proper (local or global) strategy)
each time. In any case, the organisational approach makes explicit the strategy of the system
in those cases. These observations are also important for our planned roadmap. Coordination
in industry is often solved with dirty hacks. There is no general methodology. Techniques
and concepts are needed.We feel we really need an agreement about the kind of high level
concepts that define the coordination. In academia we often program just single agents
instead of defining the MAS from the very beginning. Once the language is chosen, the
coordination problem needs to be worked out and different coordination solutions can be
compared. We need some kind of coordination engineering.

To sum up, we considered the following tasks to be particularly important:(1) to develop
coordination mechanisms for large distributed open systems,(2) to take runtime organisation
seriously, (3) to develop platforms that incorporate coordination/organisation support,(4)
to make an organisation live as a distributed system (this is not just the design of the
organisation), (5) to develop both top-down as well as bottom-up methods (from agents to
organisations and back).

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 93

4.3 Tools, Languages and Technologies
Tooling and programming languages for multiagent systems are very important for the uptake
of the multiagent programming paradigm. In particular, the need for more sophisticated
approaches and tools for testing and debugging was clear to the participants of the seminar.
Multiagent systems pose many new challenges in this area. First of all, the behavior of agents
is often dynamic and may change over time. Multiagent systems are also typically distributed
systems which introduces additional challenges. Multiagent systems, moreover, are used to
control complex, dynamic and non-deterministic environments. Such environments do not
support, for example, easy replay of one and the same test case. A key challenge therefore
is to establish an approach for testing such complex systems. In order to manage this
complexity tests are needed at different levels of a multiagent system similar to unit and
integration tests in more traditional object-oriented approaches. There is a need to identify
the equivalents of these tests for agent technology. Different techniques may need to be
introduced such as mock agents for protocol testing. For example, it was felt that a language
for expressing test cases may advance the state of the art significantly. Such a language
would need to provide support for defining the state of the agents’ environment and for the
state of the agents themselves.

A need for test beds that are made widely available for collecting data on and for
comparing various platforms was also identified. The variety of platforms available for
engineering multiagent systems for developers raises the issue of which to choose. Various
benchmarks should be developed to identify the benefits and weaknesses of platforms. As a
community, we should agree on a list of common benchmarks that relate to specific aspects
of a multiagent system. Relevant aspects that are specific for multiagent systems include,
for example, components of agents such as percept processing, belief revision, and intention
reconsideration, as well as more general aspects such as reactivity and scalability. An
important issue is how to ensure that similar things are measured in different platforms.
One solution would be to use standardised interfaces for e.g. connecting to environments. It
was suggested to create and use a web portal to publish and discuss benchmarks to make
progress in this area.

A related but different topic concerns the usability of different agent platforms. The
learning curve associated with one platform may differ greatly from that of another, while
usability from the perspective of the capabilities offered by the latter platform may be rated
higher by expert users than that of the former platform. Methodologies are needed to be
able to perform systematic studies into usability aspects. Here both qualitative as well as
quantitative techniques will need to be used, in particular at this stage of the research where
only few studies are available that look at usability issues. As in the case for benchmarks, a
range of different tasks will need to be designed that can be used as test cases in usability
studies. Moreover, the skill and experience level of users will need to be taken into account.
In order to be able to study differences between platforms we also need to develop techniques
for comparing different solutions programmed in different agent programming languages (e.g.
a simple comparison of lines of codes will not do). Usability studies may also be used to
enhance teaching and improve courses on how to engineer multiagent systems. This could
even lead to an increase of the number of universities that adopt agent technology and
programming languages in courses related to engineering intelligent and multiagent systems.

One of the main contributions of the multiagent programming paradigm is to introduce a
new set of abstractions for programming software systems. Apart from the notion of an agent,
the focus of the multiagent paradigm on concurrent and event-driven programming may
provide the proper level of abstraction for programming distributed systems by abstracting

12342

94 12342 – Engineering Multiagent Systems

away low-level concerns related to, for example, threads. If research in our community
would focus more on these aspects this could possibly lead to (re)connecting multiagent
programming to mainstream computing science research on related issues. Also, at the
conceptual level, multiagent systems raise important new issues such as how to incorporate
norms and program the organisational structure of a multiagent system. Finally, various more
technical challenges need to be faced relating to the scalability of multiagent systems. The
management of huge number of agents in, for example, large-scale (cognitive) agent-based
simulations remains an important challenge that needs to be addressed.

4.4 Component-Based Agent Design
The working group explored the hypothesis that the monolithic nature of many current agent
programming languages and platforms is both a barrier to the adoption of agent technology
in “mainstream” software development and industry and an impediment to research, and
results in a dilution of effort in the development and maintenance of agent platforms, with
useful new features or capabilities being reimplemented for different platforms rather than
being improved.1

Feedback from industrial participants and academics working on large scale deployed
applications stressed both the relatively small size of the “agent component” in many systems
employing agent technology, and the need for the agent components to integrate with
existing software engineering methodologies and tools (see Section 4.1.3). In this context,
both the overarching agent-centric nature of many agent development methodologies and
the monolithic nature of agent platforms are an issue. In some cases, ideas prototyped
in an agent programming language/platform have been re-implemented using “traditional”
software development methodologies and languages when the system is deployed, either
to facilitate integration and maintenance of the agent components by traditional software
developers or because the overheads of a complex agent platform could not be justified
when only a subset of its capabilities is required. A more modular approach would address
these concerns, by allowing developers to directly incorporate only those features that are
required for a particular application (“allowing agent language complexity to be application
specific”). In addition, the overhead of learning new agent technologies is also reduced for
mainstream developers and in undergraduate teaching (seen as a barrier for many). Only
those components and APIs relevant to the current project must be mastered, facilitating a
piecemeal, demand-driven integration of agent technology, starting with simple applications of
agents, e.g., simple decision making, and progressively expanding outwards to more complex
capabilities, e.g., negotiation, as developers gain experience with, and confidence in, agent
technology.

A more component-based approach would facilitate research, particularly at the single-
agent level, where considerable work remains to be done. Currently, extending a feature
of an agent language or platform, such as extending deliberation to incorporate reasoning
under uncertainty, or adding a new feature, such as learning, involves mastering the details
of the agent platform, and often requires a project of PhD length. This hinders innovation
and makes it difficult to create ad-hoc prototypes, e.g., to demonstrate the benefits of agent
technology to other communities. A more modular approach with standardised interfaces
would address these concerns by allowing researchers to target a single component or small

1 Component-based agent software engineering was also discussed in the Integration and Validation group.

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 95

number of components, rather than the agent platform as a whole. The loose coupling
inherent in a component-based approach may also facilitate the development of novel agent
architectures incorporating, e.g., multiple asynchronous deliberation cycles, or concurrent
reactive and deliberative cycles. This may in turn help “bridge the gap” between architectures
for software agents and those found in autonomous robots such as UAVs and spacecraft.
Much can be learned from the experiences of the robotics community, which is coalescing
around component-based platforms such as ROS that provide libraries and tools to help
researchers and software developers create robot applications.2 A more modular approach
also raises novel short-term research challenges at the component integration level. Key
issues include interfaces between components (should these be based on standard languages
for representing beliefs, goals and plans, or on syntax neutral approaches based on queries),
how coordination between components can be coordinated, and how such coordination rules
can best be expressed. In the medium to longer term, componentisation of agent designs
should foster the development of a reference model for agent technology. Such a reference
model would be a powerful tool both for structuring agents research, and in clarifying to the
mainstream software development community that “agents” represents a suite of technologies
that can be adopted as needed in applications.

Lastly, it was argued that component-based approaches would also help agent technologies
achieve critical mass, both within the agent programming community and, more generally, in
the mainstream software development community. The relatively small agent programming
community is currently structured around several competing agent programming languages
and platforms. While this has been very successful in driving innovation, useful innovations
must be re-implemented for each platform (at considerable cost) rather than effort being
concentrated on expanding and improving innovative features and their documentation.
Focussing on common components would lead to more rapid advances in “whole platform”
capabilities (since features no longer have to be re-implemented), promote standardisation
regarding key concepts and technologies, and should result in higher quality implementations
more likely to be adopted by mainstream developers. Again, there is much that can be learned
from recent developments in the robotics community and in other related communities, such
as computer vision and the re-use of high-quality BDD libraries in model checking.

A key challenge in adopting a component-based approach is to identify and develop compo-
nents and their APIs. Fortunately, there is a pool of existing agent platform implementations
that can serve as a basis for components, and the agent development community has already
made some initial steps in the direction of common interfaces, such as the environment
interface standard,3 and modularisation (within a single platform) is now common. However
much remains to be done. Another key challenge is in the development of middleware to
support the interaction of components, and how this interaction can best be specified. This
area is less explored, but even here there is preliminary work on which the community can
build.

2 www.ros.org
3 http://sourceforge.net/projects/apleis

12342

www.ros.org
http://sourceforge.net/projects/apleis

96 12342 – Engineering Multiagent Systems

5 Open Problems

While much research will continue to be devoted to foundational work, there needs to be
an increased appreciation within the community of the challenges involved in engineering
large-scale multiagent systems. Agents conferences and workshops should encourage
submission and acceptance of papers that address these concerns, and should work towards
setting and maintaining standards to ensure that work of this kind is of high quality.
From the industry perspective, although it is very clear what steps can be taken to
facilitate the deployment of agent technology, it is uncertain (a) which organisations
are best capable of doing this work, (b) how this work will be funded, and (c) whether
the needs of end users are sufficient to provide the impetus for the work to be done
commercially.
There remain significant technological barriers to the deployment of multiagent systems
which requires research into new techniques, lessons learned from applications, and more
generally software engineering type of papers that use existing agent technologies (and
not common languages such as Java to build multiagent systems).
Another challenge that remains is to identify the application areas and types of applications
where agent technology provides a critical advantage (such as “autonomous decision
making” or explicit multiagent coordination mechanisms), and if possible, to quantify the
benefits of using the technology.

6 Panel Discussions

A plenary session was organised on Friday, the last day of the seminar, in which summary
reports of the four groups were presented and discussed. The purpose of this session was to
identify key challenges and ideas for future research based on discussions during the seminar.

One of the ideas that repeatedly came up during discussions relates to the development
of a modular or component-based agent architecture. The idea is that engineering multiagent
systems may be facilitated by a set of components that can be relatively easily exchanged
and reused between agent-based applications. Developers within industry may be interested
in using some instead of all components of existing agent architectures. Moreover, developing
such components may also give rise to some degree of standardisation. It may also give rise
to a reference model for agent technology. The main challenge here remains to identify and
develop these components.

A related topic concerns the need to continue research at the single agent level. The
notion of BDI+ was coined to refer to the need to integrate, for example, emotions in a more
systematic way into agent architectures. Another example in this area concerns learning.
Integrating learning into the agent architecture raises new and interesting challenges that
are different from the typical issues studied in the machine learning community. Another
challenge is to design new components that extend the capabilities of agents in order to
support, for example, reasoning under uncertainty. Finally, more research is needed on the
capability of agents to explain their behavior which not only may provide a selling point for
the technology but also may be used in debugging tools to identify the reasons for observed
behavior.

Another topic that has been quite extensively discussed during the seminar and obtained
quite a lot of support as a topic for the research agenda concerns metrics and the development
of benchmarks for agent technology. Some agent programming languages and frameworks

Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke 97

may, for example, facilitate the design of scalable systems. But how do we identify these
languages and the features that support the engineering of scalable multiagent systems? Are
there specific metrics that apply to multiagent systems. How can we measure, for example,
concepts that are often mentioned in the literature such as believability and flexibility of
agents?

Tooling has been identified as a main topic for future research as it is very important
for the uptake of any technology. The application of agent technology in commercial and
business applications requires integration of this technology into the full software life cycle.
However, we should not reinvent but rather reuse techniques and tools wherever possible.
More research is needed to more clearly identify where tooling developed within the more
broader software engineering community can be used to provide this support and where
agent-specific tools are needed. Generally, a need was felt to focus on debugging support
initially as providing assurance for a multiagent system seems to be of key importance.
Moreover, it may be useful to connect to and integrate the work from the Agent-Oriented
Programming and Software Engineering communities better.

12342

98 12342 – Engineering Multiagent Systems

Participants

Natasha Alechina
University of Nottingham, GB

Jeremy Baxter
QinetiQ - Malvern, GB

Michal Bida
Charles University - Prague, CZ

Olivier Boissier
Ecole des Mines - St. Etienne,
FR

Rafael H. Bordini
PUCRS - Porto Alegre, BR

Lars Braubach
Universität Hamburg, DE

Paolo Busetta
AOS Ltd. - Cambridge, GB

Rem Collier
University College Dublin, IE

Stephen Cranefield
University of Otago, NZ

Mehdi Dastani
Utrecht University, NL

Louise Dennis
University of Liverpool, GB

Virginia Dignum
TU Delft, NL

Jürgen Dix
TU Clausthal, DE

Jorge J. Gomez-Sanz
Univ. Comp. de Madrid, ES

Christian Guttmann
IBM R&D Labs; AU; EBTIC
Abu Dhabi, AE; Monash
University, AU

Axel Heßler
TU Berlin, DE

Koen V. Hindriks
TU Delft, NL

Tom Holvoet
KU Leuven, BE

Jomi Hübner
Federal University of Santa
Catarina - Brazil, BR

Yves Lespérance
York University - Toronto, CA

Brian Logan
University of Nottingham, GB

John-Jules Ch. Meyer
Utrecht University, NL

Berndt Müller
University of Glamorgan, GB

Jörg P. Müller
TU Clausthal, DE

Alexander Pokahr
Universität Hamburg, DE

Alessandro Ricci
University of Bologna, IT

Andrea Santi
University of Bologna, IT

Federico Schlesinger
TU Clausthal, DE

Amal El Fallah Seghrouchni
UPMC - Paris, FR

Maarten Sierhuis
Ejenta Inc., US

Marija Slavkovik
University of Liverpool, GB

Bas J. G. Testerink
Utrecht University, NL

Birna van Riemsdijk
TU Delft, NL

Jørgen Villadsen
Technical University of Denmark
- Lyngby, DK

Michael Winikoff
University of Otago, NZ

Cees Witteveen
TU Delft, NL

Wayne Wobcke
UNSW - Sydney, AU

	Executive Summary Jürgen Dix, Koen V. Hindriks, Brian Logan, and Wayne Wobcke
	Table of Contents
	Overview of Talks
	Challenges in MAS Verification Natasha Alechina
	Agents in Unmanned Aerial Vehicle Applications Jeremy Baxter
	Reflections on Multiagent Oriented Programming Rafael H. Bordini
	Building Multiagent Systems for the Real World: A Company's Perspective Paolo Busetta
	Experiences with Agent Factory Rem Collier
	Handling High Frequency Perception / Agents and Enterprise Computing Stephen Cranefield
	Engineering Multiagent Systems: Lessons and Challenges Mehdi Dastani
	Timeliness Issues in Agent Based Control of Satellites, Among Other Things Louise Dennis
	What We Talk About When We Talk About Agents Virginia Dignum
	Agent Technology integration with Maven for an Ambient Assisted Living Case Study Jorge J. Gomez-Sanz
	Perspectives and Roadmap for Engineering Multiagent Systems Christian Guttmann
	Multiagent Oriented Programming with JaCaMo Jomi Hübner
	Lessons and Perspectives on Agent Languages Yves Lespérance
	Programming Agents Brian Logan
	On Engineering Emotional Agent Systems John-Jules Ch. Meyer
	Observations from Current and Past Projects: 1. Shaping the Intelligent Home of the Future, 2. Settlers of Catan Berndt Müller
	Application Impact of Multiagent Systems and Technologies Jörg P. Müller
	Exploring Agents as a Mainstream Programming Paradigm: The simpAL Project Alessandro Ricci
	MAS for Engineering Complex Systems Amal El Fallah Seghrouchni
	Agents in Space for Real: Lessons Learned from Applying Agent Technology in NASAs Mission Control Maarten Sierhuis
	Empirical Software Engineering for Agent Programming Birna van Riemsdijk
	Engineering Multiagent Systems - Reflections Jørgen Villadsen
	Challenges and Directions for Engineering Multiagent Systems Michael Winikoff
	Decoupling in Industry Cees Witteveen
	Engineering Multiagent Systems: Where is the Pain (and the Opportunity)? Wayne Wobcke

	Working Groups
	Integration and Validation
	Coordination and Organisation
	Tools, Languages and Technologies
	Component-Based Agent Design

	Open Problems
	Panel Discussions
	Participants

