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Abstract
The topic of visualizing biological data has recently seen growing interest. Visualization ap-
proaches can help researchers understand and analyze today’s large and complex biological
datasets. The aim of this seminar was to bring together biologists, bioinformaticians, and com-
puter scientists to survey the current state of tools for visualizing biological data and to define a
research agenda for developing the next generation of tools. During the seminar, the participants
formed working groups on nine different topics, reflected on the ongoing research in those areas,
and discussed how to address key challenges; six talks complemented the work in the break-
out groups. This report documents the program and the outcome of Dagstuhl Seminar 12372
“Biological Data Visualization”.
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Introduction and Motivation

Biology is rapidly evolving into a ‘big data’ science, and as a consequence there is an urgent
and growing need to improve the methods and tools used for gaining insight and understanding
from biological data. Over the last two decades, the emerging fields of computational biology
and bioinformatics have led to significant advances primarily in automated data analysis.
Today, however, biologists increasingly deal with large, complex datasets (e.g., ‘omics’ data)
where it is not known in advance what they are looking for and thus, automated analyses alone
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cannot solve their problems. Interactive visualizations that can facilitate exploratory data
analysis and support biologists in creating new hypotheses lend themselves to complement
automated analyses. Bioinformaticians already have built a variety of tools for visualizing
different types of biological data and those tools are widely used in the community. So
far, most bio-related visualization research has been conducted by people outside of the
visualization community, people who have learned about visualization but are often not
aware of research in the visualization community. Consequently, the current tools do not
embody the latest advancements in design, usability, visualization principles, and evaluation.

One main goal of this first Dagstuhl Seminar on Biological Data Visualization was to
bring together the users (biologists), current visualization tool builders (bioinformaticians),
and visualization researchers to survey the state-of-the-art of the current tools and define
a research agenda for systematically developing the next generation of tools for visualizing
biological data. Only a close collaboration of the researchers from all three communities can
create the synergies necessary to address the challenges in analyzing and visualizing large
and complex biological datasets.

Topics discussed during the seminar included:
Challenges in visualizing biological data. Biological data is very heterogeneous. It contains
spatial data, graphs, tabular data, and textual data. Challenges are wide spread: open-
ended data quantity, open-ended exploratory tasks, long-term analyses, rich analytics,
heterogeneous data, usability and evaluation of tools.
Design and visualization principles, research in human-centered design, usability, and
evaluation of interactive data-analysis tools.
Creating a common research agenda and a common understanding of the problem field of
biological data visualization.
Integration of multiple visualizations for different data types and tasks into one tool to
support more complex analysis scenarios.
Designing an infrastructure for next generation visualization tools.
Establishing collaborations between computer scientists and biologists.

Participants and Program

41 researchers from 9 countries participated in this seminar. Many participants came from
the US and from Germany, others came from Canada, Australia, and a number of other
European countries (see Figure 1). There was a good mix of researchers from the visualization,
bioinformatics, and biology communities. About a third of the participants attended their
first seminar at Dagstuhl.

Figure 1 Participant statistics of the seminar.
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Monday Tuesday Wednesday Thursday Friday

Introduction
Personal Ads

Talk
Reporting Session

Talk
Reporting Session

Talk
Breakout Groups

Reporting Session

Discussion:
Topics for
Breakout Groups

Breakout Groups Discussion:
Topics for new
Breakout Groups

Breakout Groups Discussion:
BioVis Community

Talk
Breakout Groups

Talk
Breakout Groups

Excursion to Trier

Talk
Breakout Groups

Breakout Groups Breakout Groups Breakout Groups

Table 1 Final schedule of the seminar. The breakout groups on Monday/Tuesday discussed topics
on Ontologies in Biological Data Visualization, Comparative Analysis of Heterogeneous Networks,
Sequence Data Visualization, and Bridging Structural & Systems Biology; the breakout groups
on Wednesday/Thursday discussed topics on Uncertainty Visualization, Infrastructure, Multiscale
Visualization, Effective Visualization Design, and Evaluation.

Table 1 provides an overview of the final seminar schedule. The program was designed
to facilitate in-depth discussions in small working groups. To get to know each other—the
seminar brought together researchers from different communities—participants introduced
themselves and their research interests with a ‘personal ad’ in the Monday morning session.
This was a great way to set the tone for informal and engaging discussions during the seminar.

Previous to the seminar, the organizers collected interesting ideas and suggestions from
the participants for possible topics for working groups. To allow participants to work on
different topics and with different people, the topics and groups changed halfway through the
seminar. On Monday morning and Wednesday morning all participants discussed and refined
the suggested topics and formed groups according to their interests. The groups (four on
Monday/Tuesday and five on Wednesday/Thursday) worked in parallel on their topics and
reported regularly on their progress. The work in the breakout groups was complemented by
a discussion on the BioVis Community on Friday and a number of talks given throughout
the seminar:

Seán I. O’Donoghue: BioVis Introduction: A Practitioner’s Viewpoint
Daniel Evanko: Visualization on nature.com
Matt Ward: Biovisualization Education: What Should Students Know?
Arthur J. Olson: The Promise and Challenge of Tangible Molecular Interfaces
Martin Krzywinski: visualization – communicating, clearly
Bang Wong: Concepts gleaned from disparate communities

These talks, presented to all participants in the morning sessions and after the lunch
breaks, intentionally touched on broad and high-level topics to make them more interesting
to the diverse audience in the seminar. The abstracts of the talks are presented in Section 3.

Discussion and Outcome

Some of the working groups followed a classical design process [6, 8] to structure their
collaborative work. They split their discussions into a problem phase and a solution phase.
Both phases featured divergent and convergent stages: discover and define for the problem
phase and develop and deliver for the solution phase. Francis Rowland, a seminar participant
with expertise in user experience design, facilitated these discussions.

12372
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Figure 2 shows some artifacts produced by the Ontologies in Biological Data Visualization
working group that followed this design process. The Four C’s approach (left) is an example
for the discover and design stages. The group broke down their topic into four aspects:
Components (parts), Characters (people involved), Challenges, and Characteristics (features
and behavior). The Four C’s approach helped the group to provide a holistic view on the
design problem and to better define the topic. The Draw the Box approach (right) is an
example for the develop and deliver stages. Members of the group collaboratively imagined
an end product of their work that would be sold in a box on a shelf and designed its package.
This approach helped the group members to gather ideas, visualize the outcome, and focus
on the most important features of the product.

Figure 2 Examples of design processes: the Four C’s approach (left) and the Draw the Box
approach (right).

The diverse outcomes from the nine working groups are summarized below. The detailed
reports are presented in Section 4.

Comparative Analysis of Heterogeneous Networks: The analysis of the transcrip-
tome produces a large number of putatively disrupted transcripts, and prioritizing which
disruptions are most likely to be meaningful (causal or diagnostic) is a time-consuming pro-
cess. To guide their interpretation researchers create heterogeneous networks by integrating
information from a wide variety of annotation databases. The working group investigated how
the analysis of the transcriptome can be facilitated by interactive visualizations of transcrip-
tome assemblies and proposed a method to infer the functional consequence of a transcript’s
disruption based on the local structure of the annotation networks. A tight coupling of
network analysis algorithms and interactive visualizations, specifically designed to support
these analysis tasks, could accelerate identification of important transcript alterations.

Sequence Data Visualization: Genome-associated data is growing at a fast rate and
genome browsers are still the tool of choice for integrating and analyzing different types
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of data in one single representation. The working group analyzed the different challenges
of visualizing genome-associated data and separated them into two different dimensions:
problems associated with rearrangements of the genomic coordinates and problems with
the abundance of data at each genomic position. To address these problems, the group
discussed and developed a number of possible solutions, including the development of a
reference-free gene-centric approach, compressing tracks by aggregation or summarization,
and using meta-data or data itself as a novel way for selecting tracks. These approaches can
lay the foundation for the development of new visualization tools.

Bridging Structural & Systems Biology via DataVis: There exist several gaps
between the field of structural biology, which has yielded detailed insight into the molecular
machines of life, and the field of systems biology, which has evolved more recently in the
wake of the genomics revolution, but separately from the advances of the more structural
view of biology. The integration of both fields and their visualization tools could create new
tool sets to enhance the exploration and understanding of biological systems. The working
group analyzed and described the existing gaps and proposed seven strategies to facilitate
collaboration and professional advancement in structural biology, systems biology, and data
visualization.

Ontologies in Biological Data Visualization: Ontologies are graph-based knowledge
representations in which nodes represent concepts and edges represent relationships between
concepts. They are widely used in biology and biomedical research, for the most part as
computational models, in computational analyses, and for text mining approaches. The
working group examined the potential impact of ontologies on biological data visualization.
The group identified challenges and opportunities from the perspectives of three different
stakeholders: ontologists (who create and maintain ontologies), data curators (who use
ontologies for annotation purposes), and data analysts (who use ontologies through appli-
cations to analyze experimental data). Identified challenges include the dynamic nature of
ontologies, scalability, how to utilize the complex set of relationships expressed in ontologies,
and how to make ontologies more useful for data analysis. Identified research opportunities
include the visualization of ontologies themselves, automated generation of visualization
using ontologies, and the visualization of ontological context to support search. The group
submitted a Viewpoints article on Ontologies in Biological Data Visualization to the IEEE
Computer Graphics & Applications journal.

A Framework for Effective Visualization Design: Visualizations are not only an
important aspect of how scientists make sense of their data, but also how they communicate
their findings. The techniques and guidelines that govern how to design effective visualizations,
however, can be quite different whether the goal is to explore or to explain. Unfortunately,
scientists are often not aware of the spectrum of considerations when creating visualizations.
To help clarify this problem, the working group has developed a framework to reason about
the spectrum and considerations to help scientists better match their visualization goals with
appropriate design considerations.

Uncertainty Visualization: Uncertainty is common in all areas of science, and it poses
a difficult problem for visualization research. Visualization of uncertainty has received much
attention in the areas of scientific visualization and geographic visualization; however, it
appears much less common in information visualization and in biological data visualization.
The working group analyzed and described the sources of uncertainty and types of uncertainty
specific to biology. Uncertainty visualization in networks was identified as an open issue,
including uncertainty in the network topology and uncertainty in attributes on nodes, edges,
and their interdependencies. The group started a survey of the literature on uncertainty
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visualization for biological data and proposed to construct a taxonomy of uncertainty
visualization approaches, and investigate how they could be employed in the context of a
collection of biological problems.

Evaluation: The working group identified two central problems with respect to the
evaluation of tools for visualizing biological data: (1) How to motivate biologists to participate
in evaluations? and (2) How to evaluate the tools? The answer to the first question was
(simply) that biologists have to benefit from the evaluation to be motivated to participate,
e.g. they might get a tool they can use to solve their problems. The second question was
more complex and the working group discerned a number of dimensions, centered around
what, why, when, where, and how. The discussion of these dimensions lead to the insight that
there is a strong difference between approaches taken by designers working at a bio-institute
and approaches taken by infovis researchers. Both approaches have merit, the challenge is to
close the gap and combine them.

Multiscale Visualization: Biology involves data and models at a wide range of scales
and researchers routinely examine phenomena and explore data at multiple scales. Visual
representations of multi-scale datasets are powerful tools that can support data analysis and
exploration, however, visualizing multi-scale datasets is challenging and not many approaches
exist. The working group identified four common dimensions of biological multi-scale datasets:
3D space, time, data complexity (modality), and data volume (size). The group produced
a short video to introduce each dimension independently in order to provide a quick and
understandable view on the nature of the different scales and how they apply to biological
data and exploration. Additionally, the group discussed in more detail a number of biological
multi-scale data and models that can be visualized across multiple dimensions and introduced
case studies to highlight issues like navigation, interaction, and human-computer interfaces.
Carsten Görg presented a talk on the results from this working group at the 2012 Rocky
Mountain Bioinformatics Conference.

Infrastructure: The working group discussed needs from both a technical and com-
munity standpoint regarding the challenges involved in the analysis of biomedical data and
mechanisms to facilitate interactions between visualization communities in computer science
and biology. Eight key criteria were identified: interoperability, reusability, compatibility,
references & benchmarks, middleware, vertical integration, scalability, and sustainability.
The group developed a model for a community-maintained, biological visualization resource
that would enable biological questions, task descriptions, sample datasets and existing tools
for the problems to be disseminated to the computational visualization and biological research
communities. Additionally, the group developed a detailed use-case based on the data and
analysis pipelines of the cancer genome atlas that will allow technical aspects of the eight
key criteria to be explored and practical solutions proposed.

Finally, based on feedback from the participants (from the seminar questionnaire as well as
from personal communication with the organizers) another important outcome of the seminar
was to establish collaborations between computer scientists and biologists. The academic
cultures in biology and computer science, including publication models, are quite different. In
addition, biologists have a different mindset than computer scientists: biologists often work in
a detail-oriented manner whereas computer scientists often seek to generalize. Understanding
each other’s culture is important for successful collaborations and the Dagstuhl seminar
provided a unique setting to meet enthusiastic people from different communities, have long
group discussions with a focus on problem solving, and form synergies with researchers that
have a different outlook and expertise.
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3 Overview of Talks

3.1 BioVis Introduction: A Practitioner’s Viewpoint
Seán I. O’Donoghue (CSIRO and the Garvan Institute of Medical Research, AU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Seán I. O’Donoghue

Experimental methods in biological research are delivering data of rapidly increasing volume
and complexity. However, many current methods and tools used to visualize and analyse these
data are inadequate, and urgent improvements are needed if life scientists are to gain insight
from this data deluge, rather than being overwhelmed. I will discuss a recent switch in focus
away from algorithmic bioinformatics towards data visualization and usability principles,
illustrating how such a focus can have significant impact, illustrating these points with
examples from work on macromolecular structures, systems biology, and literature mining.
I will also discuss a recent, international community initiative that brings visualization
experts together with computational biologists, bioinformatics, graphic designers, animators,
and medical illustrators, and aims to raise the global standard of bioinformatics software
(http://vizbi.org/).

3.2 Visualization on nature.com
Daniel Evanko (Nature Publishing Group, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Daniel Evanko

Nature very recently published results of the Encyclopedia of DNA Elements (ENCODE)
project. To aid the discoverability of information in these manuscripts Nature Publishing
Group developed the ENCODE Explorer and threaded presentations of the results to allow
targeted reading of single selected topics through all 36 manuscripts of the project. We
also created Javascript-based interactive figures with the intention of further developing
and reusing these visualizations elsewhere. As a further aid to information discoverability,
technical editors are beginning to annotate all gene, protein and chemical entities in original
research papers published in a limited number of Nature research journals. We hope to make
this information accessible through APIs.

3.3 Biovisualization Education: What Should Students Know?
Matt Ward (Worcester Polytechnic Institute, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Matt Ward

In recent years, the level of activity in the area of visualization of biological data has greatly
increased, both in terms of users and developers. An important question is what sort of
training should be provided for students in this area? Can we use existing courses in biology
and data/information visualization, or do we need one or more courses that fuse these two
distinct fields? In this talk I describe my experiences in designing and delivering a course
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on biovisualization to upper level undergraduate and graduate students majoring in either
computer science or bioinformatics and computational biology. The project oriented course
covers both basic principles of information visualization as well as the data models typically
found in biology – sequences, networks, tabular data, and spatial structures. For each data
type I describe the common analysis tasks performed on the data as well as a variety of
visual mappings that can be applied. I also describe standard rules for effective visualization
design and common methods for evaluating the resulting visualizations. I summarize my
observations on the best and weakest aspects of the course and welcome feedback from the
seminar attendees on ways to improve the course.

3.4 The Promise and Challenge of Tangible Molecular Interfaces
Arthur J. Olson (The Scripps Research Institute – La Jolla, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Arthur J. Olson

Structural molecular biology is a key science in connecting the worlds of physics and chemistry
to biology. It is a discipline that focuses on three and four-dimensional relationships of
complex shapes and functions. As such, it has been a fertile proving ground for novel
technologies that can enhance interaction and visualization of such systems for the purposes
of exploration, understanding and communication.

Physical models have been used for centuries to aid in the process of modeling and
visualization in many areas of science. In the latter part of the last century computer
graphics largely superseded physical models for these purposes. This advance in technology
was accompanied by a loss of the perceptual richness inherent in the human interaction with
real physical objects. The tactile and proprioceptive senses provide key cues to our ability to
understand 3 dimensional form and to perform physical manipulations, but are now currently
under-utilized in fields such as molecular biology.

We have been developing new ways to represent, visualize and interact with the molecular
structures that make up the machinery of life. We are adapting two emerging computer
technologies, solid printing and augmented reality, to create a natural and intuitive way to
manipulate, explore and learn from molecular models. We create tangible models utilizing
computer autofabrication. Each model can be custom made, with an ease similar to that
of printing an image on a piece of paper. Specific model assembly kits can be made with
this technology to create molecular Legos that go well beyond the chemical models of the
nineteenth and twentieth centuries. Augmented reality is used to combine computer-generated
information with the physical models in the same perceptual space. By real-time video
tracking of the models as they are manipulated we can superimpose text and graphics onto
the models to enhance the information content and drive interactive computation.

These models and tangible interfaces have been used in both research and educational
settings. The talk will include a live demonstration of the models and interactive use in an
augmented reality setting.

http://creativecommons.org/licenses/by-nc-nd/3.0/
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3.5 visualization – communicating, clearly
Martin Krzywinski (BC Cancer Research Centre, CA))

License Creative Commons BY-NC-ND 3.0 Unported license
© Martin Krzywinski

We should think about visualization not only in terms of effective data encodings, but also
in terms of design. We use visualizations to communicate patterns and concepts and are
more effective if we incorporate design principles in our figures. Clutter and redundancy can
muddle a figure – two pitfalls into which many figures fall. Using examples of redesigned
figures, I will motivate how mitigating these two issues can improve visual communication. I
will also work through a Nature figure redesign in detail to demonstrate the process and how
you can apply it in your workflow.

3.6 Concepts gleaned from disparate communities
Bang Wong (Broad Institute of MIT & Harvard – Cambridge, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Bang Wong
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4 Working Groups

4.1 Comparative Analysis of Heterogeneous Networks
Andreas Kerren, Corinna Vehlow, Jessie Kennedy, Karsten Klein, Kasper Dinkla, Michel
Westenberg, Miriah Meyer, Mark Ragan, Martin Graham, Martin Krzywinski, and Tom
Freeman

License Creative Commons BY-NC-ND 3.0 Unported license
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Transcriptome sequencing of a large cohort is now a routine method of interrogating the profile
of expressed gene products of many individuals. Analysis of the transcriptome produces
a large number of putatively disrupted transcripts, and prioritizing which disruptions are
most likely to be meaningful (causal or diagnostic) is a time-consuming process. Researchers
integrate information from a wide variety of annotation databases, many of which are
interaction or pathway networks, to guide their interpretation of how a disrupted transcript
might affect the functioning of a cell.

We investigated how this analysis can be facilitated by interactive visualizations of
transcriptome assemblies in the context of these networks. The goal of our proposed method
is to infer the functional consequence of a transcript’s disruption based on local structure
of the annotation networks (Figure 3). For example, the investigator may have identified
functional motifs in the network that are relevant to their hypotheses, and conclude that any
disrupted transcripts found in these motifs are likely to be important.

Figure 3 Transcript assemblies from the sequencing of a cancer genome produce indication of
disrupted or unobserved transcripts. The existence of reference annotation networks onto which
these transcripts can be mapped provides a method of assessing the functional implications of the
disruption.

We claim that a tight coupling of network analysis algorithms and interactive visualizations,
specifically designed to support these analysis tasks, would accelerate identification of
important transcript alterations. A software system that realizes such a coupling could
streamline the process of identifying influential network motifs, determining whether disrupted
transcripts fall within these motifs, and support the process of deriving a priority rank based
on the results of this search. By using a system of linked views, each showing one of the
reference networks, the system could provide the researcher a means of mapping transcript
disruptions onto the networks. The views would show constrained locales of each motif to
decrease the information burden — the reference networks are typically very large (10,000+
nodes) — and preserve the users’ mental map. This concept supports the analysis of
disruptions in the context of different reference networks at a time and therefore helps users
to assess the impact of the disruption.
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Our plan is to formalize this analysis method and implement a software system to realize
it in practice.

4.2 Sequence Data Visualization
Jan Aerts, Jean-Fred Fontaine, Michael Lappe, Raghu Machiraju, Cydney Nielsen, Andrea
Schafferhans, Svenja Simon, Matt Ward, and Jarke J. van Wijk
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© Jan Aerts, Jean-Fred Fontaine, Michael Lappe, Raghu Machiraju, Cydney Nielsen, Andrea
Schafferhans, Svenja Simon, Matt Ward, and Jarke J. van Wijk

Introduction

Genome-associated data is growing at a fast rate. Since the advent of large genome sequencing
efforts such as the Human Genome Project, the genome browser (e.g. UCSC genome browser,
Ensembl) has been the tool bringing all types of data together into a single representation.
This report serves to analyze the shortcomings of current genome browsers and to suggest
options for solving the problems.We identified two main use cases in using genome browsers:
hypothesis verification and hypothesis generation. In the first use case (hypothesis verification)
users want to verify a hypothesis (e.g. the involvement of a certain gene in the development
of cancer) by checking whether experimental data can support this hypothesis. Current
genome browsers allow uploading custom experimental data in order to analyze it in context
of other data. In the second use case (hypothesis generation), users often have access to much
experimental data that needs to be interpreted and are looking for significant signals that
fall into regions where there is evidence of functional relevance.Although generic genome
browsers have clearly proven their worth, they are now starting to show clear shortcomings.
These can be separated into two dimensions. First, using a fixed genome coordinate system
works as long as one is only interested in the reference sequence and features that have
fixed and clear positions on that reference sequence. When, however, considering structural
genomic variations (i.e. duplications, deletions, inversions, and translocations) the paradigm
of annotation vis-a-vis a fixed reference starts to break down. Second, the current concept
of displaying features in different tracks becomes cumbersome with the immense growth
of annotation data. The increasing number of annotation tracks to be selected/deselected
for display makes keeping an overview of the available data nearly impossible.In addition
to the issues when considering structural variation or large track lists, the integration of
uncertainty in feature visualization is still lacking. This uncertainty exists at two different
forms: statistical uncertainty and positional uncertainty. Statistical uncertainty reflects the
confidence that one has towards the existence or correctness of that feature or not. Therefore,
it is important to not only view summarizing annotations, but also to be able to investigate
the underlying evidence. The representation of statistical uncertainty was the topic of a
separate Dagstuhl breakout group, and therefore not further considered within the current
group. Positional uncertainty considers the resolution of feature annotation. The boundaries
(breakpoints) of deletions, for example, can often not be identified exactly, but can be known
to lie within a certain range. At present this type of information is not displayed in the
generic genome browsers.Below we examine the two dimensions to the problem of displaying
genomic information, namely the reliance on a single genomic coordinate system and the
large number of feature tracks.
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Visualizing genomic structural variation

A structural variant consists of a DNA sequence, typically >1 kilobase, that deviates from a
reference sequence in content, order and/or orientation. A distinction can be made between
balanced variations (i.e. inversions and translocation) that do not change the total genome
content, and unbalanced variations (i.e. deletions and duplications) that do result in a
change of the total genome content (see Figure 4). The latter therefore are also known as
copy number variations or CNVs. Although detection of structural variations has long been
possible using e.g. fluorescent in situ hybridization (FISH) or array comparative genome
hybridization (aCGH), they are now routinely detected using next-generation sequencing
(NGS) technology. After paired-end sequencing of one or more samples and mapping these
reads to the reference genome, patterns in read depth as well as aberrant distance between
and/or orientation of paired-end sequences can indicate structural variations.

Figure 4 Types of structural genomic variation (taken from [1]).

Problem Statement

The issue with representing structural variation using generic genome browsers is two-fold.
First, the data to be represented (both underlying read mapping data and resulting variations)
often involves features that are linked at two different loci in the genome. Read pairs, for
example, consist of two reads that do belong together but can be mapped to very distant
regions in the genome. Duplications and translocations also inherently constituted of two
elements: the locus that acts as the source for the duplication/translocation, and the locus
that acts as the target. Some efforts have been made to resolve this issue, e.g. by providing
a split-pane view on the data (Integrative Genome Viewer; Robinson et al, 2011). There is
however a second and more profound issue of reliance on a single reference genome. Any
variation between a sample and the reference can only be displayed as a feature in a track of
the genome browser (see Figure 5). As a result, two different samples cannot be compared
directly to each other, but can only be compared by how each differs from the reference. In
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addition, the reference-genome based representation does not reflect the in vivo configuration
of the sample chromosome. For example, a region of the reference genome that is deleted in
a sample can be highlighted with colored bars in a genome browser (see red bars in Figure 5).
But this requires that the user build a mental-model of which genomic regions are now
adjacent as a result of the deletion in the sample rather than being able to observe the new
junction directly. This is fairly straightforward for simple variants, but quickly becomes
challenging for more complex structural changes.

Figure 5 Structural variations annotated around the BCR gene on chromosome 22 (picture taken
from the UCSC genome browser). Duplications are in blue, deletions in red, inversions (not shown
here) in purple.

Our Approach

Some inroads have been made into representing features with more than one position (e.g.
read pairs, or duplications and translocations). Visualization approaches and software tools
have been reviewed previously ([13, 12]). Most notable is the use of the Circos viewer ([11]).
This circular visualization maps the different chromosomes onto a circle and links related loci
through the use of bezier curves (see Figure 6). Another approach is the dot plot in which the
x and y axes correspond to the two sequences being compared, and points indicate sequence
identity. Diagonal lines indicate corresponding sequence segments and the horizontal offset
highlights reordering.

Both circular and dot plot representations emphasize the positions of structural variants
on the genomic coordinate. Since the start of the genome browsers, the main nugget of
information to be displayed has always been positional. Researchers have become accustomed
to this habit, and novel visualization concepts are necessary. One option is to consider the
genome as a collection of functional elements rather than a linear scaffold and emphasize
the biological consequences of the variants rather than their genomic arrangement. Indeed,
the location of a functional element (i.e. a gene together with any cis-acting regulators) on
a chromosome is irrelevant for most purposes. A reference-free gene-centric approach will
therefore be developed where the emphasis is on the contents of the genome rather than on
its linear structure. In addition, a genome can be represented as a collection of segments
that can be rearranged between different individuals in a graph-like structure. We can draw
inspiration from previous work in this area ([14, 7]). By combining these representations
with a circularized linear layout (such as Circos), we believe that a researcher can build a
comprehensive overview of the effects of a structural variation.
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Figure 6 Example of Circos (taken from [17]).

Track compression

Many different annotations and measurements are associated with genomic positions. Since
not all available data will fit on a screen, let alone be interpretable to a user, some compression
has to take place. This can be achieved by selecting relevant data or by aggregating or
summarizing different tracks. In this section, we analyze the chances and challenges of these
approaches.

Data Description

The data associated with sequences can be separated into two main types: qualitative or
enriched description of a region or quantitative data associated with positions. The region
definition usually refers to the reference genome. In cases where one aims at comparing data
stemming from different genomic sequences, mapping the data to a common reference scheme
can already be a challenge (refer to previous section). The label usually refers to a function
of the genomic region, e.g. “protein coding region” referring to the encoded protein, or a
summary of quantitative data. In order to be informative to a user not familiar with the
different data types, the label often needs to refer to several disparate pieces of information.
Quantitative data usually detail the value of measurements per residue position. Different
tracks can refer to very different types of measurements, (e.g. expression data) or type of
sequenced sample (e.g. tissue or disease group). This can be a challenge to aggregating
quantitative data, because accumulating or averaging may not be appropriate.
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Track Selection

One approach to managing the multitude of data is to select that subset of data that is
relevant to the subject under investigation. An ideal track selection tool would help the user
select tracks relevant to their research, which can then be displayed in a genome browser.
However, this selection is not trivial:

The data sets are usually characterized by a concise name that is helpful for the respective
domain experts. But for exploration it is hard to find out the content that might be
relevant to a specific question. Even if one has found a signal in a region of interest, it is
not obvious what that signal means. Reading through all linked data descriptions is very
tedious.
There might be significant overlap and redundancy in the data. Therefore, adding more
tracks does not always add more information. In these cases aggregation might be possible.
On the other hand information might be discovered in measurements the user is not
aware of.

We identified two distinct approaches of selecting relevant tracks: using meta-data or using
the data itself:

The different tracks are currently characterized by names and descriptions. Various
genome browsers use hierarchical organization and categorization to enable searching
relevant data. However, we believe a more sophisticated use of controlled vocabulary
or ontologies together with search systems could make the data more accessible. This
categorization should allow to group data by different types of approaches, e.g. sample
characterization (population, disease association, tissue, cell cycle), types of experiment
(expression level, epigenetic modification), or type of summary annotation. An important
requirement for this meta-data annotation is to allow grouping together tracks that can
be aggregated without mixing apples and oranges.
The data itself contains information that can help in selecting relevant selections or
aggregation. Especially if users have experimental results they want to analyze in
the context of the genomic information, looking for other signals that are statistically
associated (correlated) with that data can help to find relationships and lead to new
interpretations. This can also help to sort the tracks by relevance. Another related
approach is to focus on region(s) of interest. Here, a simple filter can help to highlight
those tracks that contain more than noise in the specified region. The remaining regions
could be analyzed statistically to identify those tracks that show similar signals. On the
one hand, this can help to aggregate related data to provide a more concise view; on the
other hand the statistical analysis might point to common mechanisms governing the
data and lead to new biological insight.

A very different approach to the selection of relevant tracks is the information contained
in the community of users of the data. Very similar to the community recommendations used
on sales web sites (e.g. Amazon) or social networks (e.g. LinkedIn), the data browser could
suggest relevant tracks based on the usage statistics. Users with a high overlap of interest
could make each other aware of interesting new directions to explore.

Data Aggregation

Another solution to making the data more manageable is aggregating different tracks into
one. For example, if the user is only interested in finding out whether some variations fall
into coding regions, all annotations of mRNA-mappings could be aggregated. However, here
are a number of problems to solve:
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The semantical problem is to decide which tracks contain comparable information that
may be aggregated, e.g. experimental results of a similar type or annotations of a similar
type, but from different sources. Here, a good meta-data description, as described in the
track selection section, is needed. This meta-data description should enable aggregation
by different criteria, e.g. organized by cell or disease type.
The visualization problem is how to show as much information as possible without
overloading the user and without obscuring data. For example, if different quantitative
measurements are shown simultaneously, using color or symbols to indicate the different
measurements, it becomes hard to discern the different lines. Here a representation of e.g.
the mean, the standard deviation, and specific outliers might be more helpful to show
the most interesting aspects of the data.

Summary and Outlook

In the Dagstuhl workshop, we have analyzed the different challenges of visualizing genome-
associated data and separated them into different dimensions: problems associated with
rearrangements of the genomic coordinates and problems with the abundance of data at each
genomic position. The problems and approaches for finding solutions outlined in this report
will now be taken up in the development of new visualization tools. Although the discussion
focussed on issues related to genomic sequence data, similar problems also exist in the realm
of protein sequences. Therefore, the new concepts for visualizing data associated with genome
sequences will hopefully also help to provide better overviews of protein sequences.

4.3 Bridging Structural & Systems Biology via DataVis
Graham Johnson, Julian Heinrich, Torsten Möller, Seán O’Donoghue, Art Olson, James
Procter, and Christian Stolte
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Introduction

Over 50 years of structural biology has yielded detailed insight into the molecular machines of
life – from the scale of atoms to organs; the significance of this work with has been recognized
by many Nobel Prizes. In contrast, systems biology has evolved over the past 20 years in the
wake of the genomics revolution, but separately from the advances of the more structural
view of biology. Visualization techniques for both structural and systems biology have both
evolved in response to the need to analyze experimental data; in contrast, more general data
visualization (datavis) approaches have evolved from a variety of application areas, where
biology did not play a major role.
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Describing the Gaps between Scientific Disciplines

Systems biology has traditionally utilized data ranging from genomics, proteomics, meta-
balomics, etc. which attempt to characterized in a systematic way the flow of molecular
interaction and information/control. Structural biology, on the other hand, seeks to charac-
terize the physical nature of such interactions and information flow by characterizing spatial
and temporal structures. Connecting these two views is a challenge that requires techniques
that have been developed on both sides of the gap. Likewise a gap exists between builders of
computational tools from the biological community, and those from the computer science
community. Within the visualization community, these gaps exist along several dimensions.
Firstly, integrating the different data modalities and algorithmic approaches that arise from
the structural and systems biology has been a significant challenge. Secondly, the viewpoint
of the biologist focuses mostly on the biological question, while that of the visualization
specialist focuses on the complete user experience. In addition, there also exist significant
cultural gaps between these communities. The biology community and the visualization
community publish in different ways, meet at different conferences, and evaluate their work
using different criteria. Biology meetings are overloaded with data and urgent, important
and unsolved problems, and unmet requirements – as a result, they are segmented into tiny
subfields. By contrast, computer science meetings are data- and problem-hungry. These gaps
are significant but surmountable, and bridging them holds the promise of pushing biology to
the next level. The purpose of this white paper is to propose some strategies and tactics
that may help to build these bridges.

Bridging the Gaps

The contrasting metrics for performance in each discipline mean that models for research
dissemination do not allow sufficiently rapid transfer of new problems and new visualization
solutions between the two domains. This is critical, however, and as a key outcome of
this discussion, we define the following recommend strategies to facilitate collaboration and
professional advancement in structural biology, systems biology, and datavis.

Mentoring and exchange programs amongst biological visualization, structural
biology, and systems biology research groups. The most direct route to enable ideas
and approaches to cross fertilize our fields is to facilitate interdisciplinary training. Orthogonal
integration, where data visualization students and researchers are temporarily embedded in
biology groups, will enhance the exchange of state of the art principles and approaches, and
familiarize all parties with the tools, technology and data architectures involved.

Interdisciplinary conferences and symposia. The VIZBI and BioVis meetings already
incorporate a range of mechanisms to encourage productive engagement between these
communities; this could be strengthen by modeling other interdisciplinary meetings, such as
ISMB. In addition, these mechanisms could be encouraged in the larger, more mainstream
meetings in each field.

Co-localized hackathons and tutorial workshops. Much of the fundamental software
tools used in structural biology today were created by bringing together specialists in
numerical computation, physicists, physical chemists and biochemists. Focused workshops
would enable engineers, theoreticians and applied researchers to identify new problems and
design and prototype solutions informed by the latest visualization research. Whilst virtual
participation is eminently feasible for these events, a one or two week period where specialists
are physically co-located would maximize productivity. Tutorial sessions and facilitation
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would be essential in these events to allow specialists to quickly understand and begin to
apply their own knowledge to the problems at hand.

Exploitation of prepublication data repositories. Biological data repositories now play
a key role for international collaboration, and could provide a means for data visualization
researchers to access data and analysis problem solutions which would allow new solutions
to be developed and evaluated in parallel with ongoing biological research programs.

Critical assessment of methodology exercises. Both communities have well established
challenges that enable researchers to devise new solutions for data analysis problems. The
model originally devised by Moult et al. in 1991 (http://www.predictioncenter.org) applied
for the assessment of biomolecular structure prediction approaches has lead to a number of
initiatives assessing approaches for biological text mining (http://www.biocreative.org) and
biological systems reverse engineering (http://www.the-dream-project.org). These enterprises
are distinct from the challenges in the data visualization field such as VAST and the BioVis
challenge, since they employ real biological data which is accepted for publication but not
yet released.

Clear definition of datavis challenges. If structural and system biologists were to clearly
define specific visualization challenges, this would help the datavis community, enabling it
to focus on more relevant problems that are likely to be adopted and to help advance the
life science. The 2010 Nature Methods special issue (Vol. 7 No 3) and the ongoing VIZBI
conference series are useful steps in this direction. The discussion group highlighted the
following as key visualization challenges: analysis & comparison of macromolecular ensembles;
uncertainty / confidence visualization; mapping of abstract data onto 3D structures, including
text, URLs, community curations, as well as data from networks, pathways, populations,
geographic distributions, and phylogenies. In accordance with the previous goal of critical
assessment, it would help to define several concrete showcases: an example could the 3D
models of HIV being developed by Johnson et al. [2], as these combine many of the data
types mentioned above.

Education. Science educators regularly employ data visualization techniques to commu-
nicate structural biology, but many biological systems have well established visual repre-
sentations that conflict or entirely disregard best practices identified by data visualization
practitioners. Communication of best practice is essential in order to ensure that new ap-
proaches for mesoscale structural visualization maximize the potential of these visual analysis
tools, and correct terminology employed to allow biologists to discuss data visualization
approaches with computer scientists.

Conclusions

Structural biology can now provide a detailed view of the information environment of systems
biology. As the available data on structures and omic-scale systems grow and become more
complex, the visualization tools developed in both communities need to be integrated with
datavis methods into new toolsets for enhancing both exploration and understanding of these
biological systems.

http://www.predictioncenter.org
http://www.biocreative.org
http://www.the-dream-project.org
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4.4 Ontologies in Biological Data Visualization
Sheelagh Carpendale, Min Chen, Daniel Evanko, Nils Gehlenborg, Carsten Görg, Lawrence
Hunter, Francis Rowland, Margaret-Anne Storey, Hendrik Strobelt
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Introduction

Ontologies are graph-based knowledge representations in which nodes represent concepts
and edges represent relationships between concepts. Ontologies have been used extensively
as computational models in natural language processing, artificial intelligence, and the
web sciences. A number of disciplines in which visualization plays an important role,
including biology, are using ontologies to support the analysis of large and complex datasets.
We examined how ontologies can be used to support biological data visualization and
identified challenges and opportunities from the perspectives of three different stakeholders:
ontologists (who create and maintain ontologies), data curators (who use ontologies for
annotation purposes), and data analysts (who use ontologies through applications to analyze
experimental data). A summary of the challenges and opportunities is presented below; we
also submitted a more detailed discussion as a Viewpoints article on Ontologies in Biological
Data Visualization to the IEEE Computer Graphics & Applications journal.

Challenges

A first challenge is centered around the dynamic nature of ontologies. Many ontologies
constantly change and evolve due to discoveries and newly acquired knowledge in the domain
they represent. The creation of multiple versions of ontologies is prone to inconsistencies and
also adds downstream complexity for their users (humans as well as computer programs).
Keeping track of evolution becomes even more daunting for ontologies that integrate multiple
data sources. The evolution of ontologies affects all three types of stakeholders.

A second challenge is scale: many ontologies represent an overwhelming amount of data.
These large ontologies are usually developed and maintained by a team of ontologists which
requires a framework that supports the collaborative work on ontologies. Data curators often
face the problem of finding the most appropriate concepts in these large ontologies when
they annotate terms in documents or samples in experimental data. For data analysts, the
amount of ontology annotations can be easily overwhelming, especially if documents or data
are annotated with multiple ontologies.

A third challenge is related to the relationships and types that are represented in
ontologies. So far, most applications do not take advantage of the complex set of relationships
in ontologies but rather reduce them to a simple hierarchy. While this approach is certainly
useful for data analysts it does not exploit the full potential of ontologies. The underlying
problem here is that the representation and visualization of complex relationships is hard.
The complex set of relationships within ontologies, combined with the large size of ontologies,
makes their manual maintenance a considerable effort for ontologists

Finally, to make ontologies more useful for data analysis, it is crucial to understand what
analysts want to investigate and how they can use ontologies for their specific tasks. To this
end, user studies are required to understand the workflows and aims of the analysts.
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Research Opportunities

Visualization of Ontologies: Despite much research on the topic of ontology visualization,
the majority of the tools developed thus far are focused on visualizing or navigating the
ontologies themselves, rather than on visualizing content that has been annotated with
ontological concepts. We propose that there is a need to develop tools that are both powerful
and easy to use for curators of content as well as for users browsing ontologically annotated
content (such as journal articles). Such tools can furthermore support the consumers of this
content to do richer analyses of associated content.

Automated Generation of Visualization using Ontology: The availability of
domain-specific ontologies provides an exciting opportunity for developing automated visu-
alization methods and services. Although interaction remains as an important apparatus
for facilitating data exploration, it may incur costly time and learning effort for using a
visualization system. In many application scenarios, automatically-generated visualizations
may serve users more efficiently and effectively, and can facilitate knowledge sharing among
users.

Visualization of Ontological Context in Supporting Search: The application
of ontologies and even multiple ontologies to annotate text corpora offers new potential
and new challenges. Search is currently being explored within ontologies. This can be
expanded to consider search across multiple related ontologies and inverted to include
search via multiple ontologies. Ontologically annotated text provides semantically rich
meta-data. Since visualizing even simple meta-data has been shown to enhance serendipity in
information exploration, visualizing ontologically annotated text is very promising. However,
the complexity of text visualization coupled with the complexity of ontology visualization
makes this a big challenge.

Conclusion

By capitalizing on ontologies as knowledge representations, we will be able to make a
significant step towards the realization of knowledge-assisted visualization [3]. It may take
the form of automated visual annotation of texts, documents and corpora, automated
construction of visualization for novice users, or automated visualization of ontological
context in information retrieval.

4.5 A Framework for Effective Visualization Design
Miriah Meyer, Jan Aerts, Dan Evanko, Jean-Fred Fontaine, Martin Krzywinski, Raghu
Machiraju, Kay Nieselt, Jos Roerdink, and Bang Wong
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Visualizations are not only an important aspect of how scientists make sense of their data,
but also how they communicate their findings. The techniques and guidelines that govern
how to design effective visualizations, however, can be quite different whether the goal is
to explore or to explain. For example, if the goal is to support hypothesis generation from
a large, genomics data set then techniques like multiple-linked views and data-rich visual
representations are good considerations, as opposed to a visualization used in a conference
presentation where significant abstraction of the data and simple visuals are necessary.
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Unfortunately, scientists are often not aware of the spectrum of considerations when
creating visualizations, resulting in ineffective figures, diagrams, and tools when there is a
mismatch between the goal of the visualization and the design decisions. These considerations
encompass audience, presentation modality, and the amount explanation versus exploration
that is needed. To help clarify this problem, we have developed a framework to reason about
the spectrum and considerations to help scientists better match their visualization goals
with appropriate design considerations. We believe that awareness about this spectrum can
improve visualization, particularly those targeting explanatory goals, as well as enable more
fruitful discussions between scientists and visualization designers.

The framework (Figure 7) has a major axis that describes how exploratory or explanatory
a a visualization task is. On one end, pure exploratory visualizations are mostly likely
to be interactive, and are often meant to support hypothesis generation, data and model
validation, and scientific insight. On the other end, pure explanatory visualization are meant
to communicate an idea, story, or scientific finding, usually in a highly abstract, simple
way. It is important to map goals to a position along this axis because different design
considerations exist from left to right. Things to consider are: who am I communication to?
Someone in my lab? In my department? In my scientific community? In the general public?

Figure 7 Data Visualization Communication Framework.

These different locations on the task axis have different design consideration. For
exploratory visualizations, these considerations are largely drawn from computer science,
and are things such as interactivity, how to display or summarize large data sets, and how to
support complex relationships. For explanatory visualizations, these considerations come
largely from the design community, such as how to abstractly represent data and relationships,
how to filter out unnecessary data and details, and how to tell a story visually.

The task axis also coincides with numerous other secondary consideration axes. Some
of these are: considering the richness of the data, how much complexity can be shown;
considering the amount of data, how much of the data must be filtered out; considering
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hypothesis generation, can the viewer form new and different hypotheses; considering the
time commitment of the viewer, can they get the message in 5 seconds, 5 minutes, or 5 hours;
and considering the domain expertise, how much specific knowledge does it require.The
second axis describes the effectiveness of the visualization. Considering this axis there is
an important implication: moving back and forth has gravity. What this means is that
an effective visualization at one point within the space will almost always be less effective
when used directly for an application further along the major axis. For example, using an
interactive genome browser with a full data set is effective for exploration, but will perform
terribly in a conference presentation on a scientific finding. And conversely, a diagram
for the general public explaining a scientific concept will almost certainly fail to produce
new hypotheses for a research scientist. In summary, knowing where you are within the
framework can help in picking appropriate design guidelines and visualizations for a specific
communication goal.

4.6 Uncertainty Visualization
Min Chen, Julian Heinrich, Jessie Kennedy, Andreas Kerren, Falk Schreiber, Svenia Simon,
Christian Stolte, Corinna Vehlow, Michel Westenberg, and Bang Wong

License Creative Commons BY-NC-ND 3.0 Unported license
© Min Chen, Julian Heinrich, Jessie Kennedy, Andreas Kerren, Falk Schreiber, Svenia Simon,
Christian Stolte, Corinna Vehlow, Michel Westenberg, and Bang Wong

Uncertainty is common in all areas of science, and it poses a hard problem to deal with in
terms of visualization. There is no well-established definition of uncertainty, but several types
of uncertainty are generally distinguished: measurement precision, completeness, inference,
credibility, and disagreement [18]. Visualization of uncertainty has received much attention
in the areas of scientific visualization and geographic visualization. Several techniques have
been proposed employing special visual encodings (transparency, blur, error bars), addition of
glyphs, modification of geometry, and animation, to name a few. Application of uncertainty
visualization appears much less common in information visualization and in biological data
visualization.

The working group looked at sources of uncertainty and types of uncertainty specific to
biology. We studied a (RNA) sequencing (RNAseq [21]) pipeline, and identified the types of
ambiguity that can be introduced in each step, see Fig. 8. Many steps are prone to introduce
errors, some of which create a certain bias in what RNA fragments are ultimately amplified
and sequenced. The output that comes from the pipeline is a set of mapped reads with
an associated quality value that could be used (but is rarely in practice) in visualizing the
sequences.

We also looked at computational models derived from the literature. Here, uncertainty is
apparent in the model itself (granularity and structure), in the simulation (initial parameters,
numerical inaccuracy), and verification of the simulated model by lab experiments (measure-
ment errors). An open issue that we identified here concerns uncertainty visualization in
networks (which represent the model): uncertainty in network topology, and the problem of
dealing with dynamic (uncertain) attributes on nodes, edges, and their interdependencies.

The working group performed a quick scan of recent papers that employ some form
of uncertainty visualization for biological data. We found several examples, including
applications in population variability [4], expression data analysis [9, 22], data cleansing [15],
and network modeling [16, 20].
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Figure 8 Uncertainty (red text) in the sequencing pipeline.

Our plan is to further extend the result of this quick scan into a literature survey paper
that specifically addresses uncertainty visualization in biology. We propose to construct
a taxonomy of uncertainty visualization approaches, and investigate how they could be
employed in the context of a collection of biological problems.

4.7 Evaluation
Jarke J. van Wijk, Kasper Dinkla, Martin Graham, Graham Johnson, Francis Rowland, and
Andrea Schafferhaus
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In our breakout group we discussed issues concerning evaluation in biovis. We agreed that two
problems were central. First, how to get biologists motivated to participate in evaluations?
During the talk we had a questionnaire send out and asked for feedback. The main result was
(simply) that biologists have to get something out of it to motivate them: a tool they can use
to solve their problems, and also chocolate and beer were suggested.Second, we focussed on
how to evaluate. We discerned a number of dimensions, centered around what, why, when,
where, and how. We found a strong difference between designers working at a bio-institute
and infovis researchers. The former is characterized by close cooperation during development,
a qualitative approach, and a focus on creating a tool; whereas the latter group performs
evaluation typically afterwards, aims at quantitative results and creation of new techniques.
Both have merit, the challenge is to close the gap.We decided that it would be great to
develop a tool that shows various options for evaluation methods, given a specification of the
problem, and designed a first mock-up, consisting of a set of filters/choices and a scatterplot
showing approaches (see Figure 9). We aim to develop this idea further after the seminar.
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Figure 9 First sketch of a tool that shows various options for evaluation methods.

4.8 Multiscale Visualization
Carsten Görg, Graham Johnson, Karsten Klein, Oliver Kohlbacher, Thorsten Möller, Arthur
Olson, Francis Rowland, and Matt Ward
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Overview

In recent years the progress in the understanding of biological processes, in combination
with the corresponding collection of large amounts of heterogeneous experimental data, led
to raised requirements for corresponding visualizations. These visualizations should allow
biologists to analyze data with respect to complex and even whole-organism models [10],
that combine data of differing type, multiple dimensions such as space and time, as well as
multiple scales in those dimensions.

While there are still visualization problems to solve for single dimensional data (e.g.
effective comparison or representation of dynamics for protein interactions changing over
time), the additional challenges here include the linking of different scales and types of
data for presentation or interactive exploration. Stephen Prevenas (thelazygeeks.com) uses
the following analogy to describe the shortcomings of just combining current single scale
solutions:

Think of trying to watch The Empire Strikes Back, but the actors are on your TV,
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the scenery is on your iPad, and the soundtrack is on an 8-track. Ok, maybe not an
8-track, that makes this analogy absurd. Say the soundtrack is on a CD, which I
admit is only marginally more believable at this point, but I also shouldn’t assume
you have an iPad and an iPod.

We started to study these challenges, identify the underlying problems, and summarize
them to lay the foundation for further research.

Goals and Discussion

We first had an exchange on the personal background and expectation of the group members
regarding the working group. Even though the backgrounds were quite heterogeneous,
including people from visualization, design, bioinformatics, and biology, the expectations
were similar. We agreed that multiscale visualizations of biological data have many aspects
and cover such diverse application fields that we first had to agree on a basic characterization
of what multiscale means in the context of our discussion before we could even start working
on the corresponding challenges. In addition, we wanted to collect examples of practical
multiscale problems that combine multiple dimensions of scale, which could help us to derive
a characterization.

We thus worked towards the following two aims:
1. Discussing and defining a formal characterization of multiscale visualizations of biological

data.
2. Collecting multi-scale visualization examples to foster our search for a practically useful

characterization and to present to the seminar participants.

It turned out that both problems were not easy to solve. We did not find examples that
cover more than one or two dimensions (usually spatio-temporal dimensions), and several
levels of scale; in fact, we were not aware of well-defined levels and dimensions besides the
standard spatial and temporal dimensions. We also agreed that there is no sufficient, and at
the same time unambiguous and generally accepted definition of multiscale in the domain of
biology, and that this lack of definition would hinder further discussions in our group. We
therefore decided that the first task of our group would be to develop our own definition,
or at least try to cover the most important aspects in a characterization, and that we then
should discuss the challenges and open problems with respect to the most interesting tasks
and data.

The main questions we discussed in the following tried to link these two tasks: How
can multiscale examples be systematically classified or categorized and what are reasonable
dimensions in which scaling takes place. We spent half of the time of our meeting to discuss
the nature of model and data modalities, different corresponding potential dimensions, and
how they could be clearly separated. It turned out that it was a difficult task to agree on a
simple but precise characterization that is useful as a base for further investigation. As our
first approach to come to some understanding what defines a multiscale visualization challenge,
we decided to describe corresponding processes, data, and tasks in terms of a coordinate
system that is made up of the dimensions that fully characterize their multiscale nature.
However, we discovered that the proposed dimensions often overlapped, were impossible to
grasp and define formally, or seemed not to be useful enough for further investigations. In
particular, there was a long discussion about the term “data complexity”. The questions we
asked were, among others:

How can “complexity” of data be captured, is it represented e.g. by the entropy, and
does it include the size of the data?
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Is instead data size one of the scales, and if yes, does this cover problems where different
data sizes are part of the visualization output, e.g. for comparison, or also cover problems
where different amounts of input data are processed?

Obviously data volume does not directly translate into content information, but content
information alone does not fully cover the corresponding problems. In the end, we decided
that due to problems like limited human perception and computational complexity the data
volume, i.e. the data size, has to be taken into account as one of the data dimensions.
Since we also wanted to capture at least some aspect of complexity besides data volume,
we discussed to also add the number of sources of the data, i.e. the method to generate
it, and the number of representations as additional dimensions. In the end we reduced our
characterization to an easy to understand four dimensional coordinate system that covers the
complexity at least to a significant extent. These four dimensions of scaling include the quite
natural and well-accepted time and space dimensions. In addition, we chose the number of
modalities, which is a way to cover complexity without having to define a complexity metric
for all kinds of data, and data volume as the two other dimensions.

After we agreed on this basic characterization we started collecting examples of multiscale
visualizations to (1) provide an understandable view of the nature of the different scales and
how they apply to biological data and exploration, and (2) to investigate the shortcomings
of existing approaches. As a goal, we would like to bring together good and bad examples,
where a classification according to the extent with which they cover the dimensions of our
multi-scale characterization should allow better access to our collection.

We decided to produce a short informational video that presents multiscale visualizations
for the different dimensions in our coordinate system, both for presentation and getting
feedback from the seminar participants, as well as a prototype for a result to be published
later. To have a clear and easy to understand demonstration of the different dimensions, we
selected a common topic that allows to cover each of them. We chose the human body for
that purpose and picked examples for each dimension that represent different aspects.

Another (short) topic of discussion was how to actually represent different scales like
cellular and molecular level. Several approaches exist: (1) fly through the scales consistently
from one to another, (2) combined visualizations (focus), and (3) multiple linked views (e.g.
a magnifying glass). Linked to that is the problem of transition between different modalities
(like a graph and the physical representation), and if they can be combined or need to be
visualized in parallel. In order to make use of these representations, suitable interaction
techniques need to be developed, but this discussion was outside the scope of this working
group.

Outcome

“Understanding Multi-Scale Visualization” is a design and prototype for a short video
exposition on the nature of multi-scale data, models and visualization in biology. Its goal is
to provide a quick and understandable view of the nature of the different scales and how they
apply to biological data and exploration. Our characterization could be used as a foundation
for a taxonomy of multiscale techniques, and our example collection could show which parts
of biological data space have been explored already.
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Overview

The infrastructure working group discussed needs from both a technical and community
standpoint regarding the challenges involved in the analysis of biomedical data derived
from the Cancer Genome Atlas project and mechanisms to facilitate interactions between
visualization communities in computer science and biology. Eight key criteria were identified:
Interoperability, reusability, compatibility, references & benchmarks, middleware, vertical
integration, scalability, and sustainability, and two outcomes. The first outcome is a model
for a community-maintained, biological visualization resource that would enable biological
questions, task descriptions, sample datasets and existing tools for the problems to be
disseminated to the computational visualization and biological research communities. The
second is a detailed use-case based on the data and analysis pipelines of the cancer genome
atlas that will allow technical aspects of the eight key criteria to be explored and practical
solutions proposed.

Key Criteria for BioVis Infrastructure

Interoperability. The success of systems such as Galaxy [5] and Vistrails (http://www.
vistrails.org) demonstrates that BioVis tools developed by different groups in the community
must interoperate, at the very least through consistent data exchange standards, but also
in the provision of well designed and documented control interfaces to allow pipelining and
orchestration.

Reusability. Best practices are needed to encourage groups to develop tools with standard
interfaces that allow them to be embedded or combined with other tools (e.g. as widgets) in
a variety of situations.

Comparability. Two aspects were identified: It should be straightforward to compare differ-
ent tools that perform a similar function in order to assess which one is most appropriate for
a use case. Effective BioVis tools should also provide visualizations that support comparative
analysis of biological data.

References & Benchmarks. A standard model and repository is needed to allow reference
biological problems to be described, along with representative datasets and analysis outcomes.
Benchmark problems should be significant and representative of key biological questions,
and task descriptions should be presented in a predigested manner such that a non-specialist
in the field can understand the analysis processes required without deep knowledge. These
reference descriptions can be used a benchmarks to evaluate existing BioVis tools and inform
the design of new tools in the future.

Middleware. Middleware can facilitate interoperability, reusability, comparability, and
vertical integration, providing it is easy to use, it also lowers the cost of entry to the field. In
fact, several middleware libraries exist for biological data, but they are typically associated
with a particular modality or biological domain. A new breed of middleware is needed
that can draw together standard technical solutions from all relevant biological information
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domains, such as image processing, text mining, and biomolecular sequence and structure
analysis.

Vertical integration. Computational analysis pipelines are commonly used in biology, but
it is essential that these can be published in a way that allows an analysis to be reproduced by
other researchers. A number of systems that support provenance and pipeline dissemination
have been developed in computer science (e.g. myExperiment, VisTrails, etc.) but the Bio &
Vis communities must work to make their use routine in data driven biology.

Scalability. It is safe to assume that any notion of ‘big data’ currently described will be
relatively small compared to the volume of data that must be handled by our tools in the
future. Technical solutions (e.g. data/processing clouds) already exist, but the users of the
system are often the most serious bottleneck and data and derived analysis results need to
be delivered in a usable manner.

Sustainability. Open Sustainability models are required for software as well as data created
by grant-based biological research, to ensure the community at large can access the outcomes
of research. Such practices are not commonplace in computer science laboratories, where
prototypes serve only as proof-of-concepts to be abandoned rather than refined to make them
usable by biologists. New standards for software tools must be declared in both communities,
and public repositories (such as the one described below) should be created to enable rapid
interchange of new tools and datasets, and maintenance of previously developed tools.

Outcomes

We decided to develop two outcomes following our initial discussions. A community resource
for biological task, data and tool dissemination and a case study to explore the software
infrastructure necessary to support a current biomedical research problem.

Community resource for benchmark problems, datasets and available tools
A web platform to support community maintained descriptions, datasets and instances of
tools relevant to BioVis could be provided that would act as a bridge between the CS and
biological BioVis communities by integrating with both the biovis.net and vizbi.org sites. It
will provide:

Biological problem/analysis task descriptions described in a way that is accessible to
lay-biologists and computer scientists.
Data sets relevant to problems, using standard file formats or links to archive quality web
based databases.
Descriptions of available tools. Each tool should be linked to, or archived on the site so
that it can be launched, along with instructions describing how to perform the task with
this tool.

It is essential that tasks, datasets, and tools provided by the resource are significant,
representative, selective, and predigested in order to ensure that the resource is relevant to
both the computer science and biological community. A number of starting points were
proposed, including reaping problem descriptions and tools that solve problems from the
burgeoning number of Stack Overflow style sites [19] and deriving descriptions from the
reviews created by the VIZBI community. In order to be sustainable the resource will require
a community of editors to be recruited and the engagement of tool authors to maintain the
public descriptions of their work.
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Use case based on the Cancer Genome Atlas (CGA)
“The CGA is a comprehensive and coordinated effort to accelerate our understanding of the
molecular basis of cancer through the application of genome analysis technologies, including
large-scale genome sequencing.” (from the CGA’s own materials). Although at a preliminary
phase, the numbers involved in this experimental study are already staggering: 20 tumor
types are being investigated by analyzing affected and unaffected tissue from 500 patients to
identify variation in single nucleotide polymorphisms (SNPs), copy number (CNVs), DNA
methylation, mRNA and microRNA transcripts, and gene mutations.

Data from each experiment requires one or more computational analysis pipelines, and
the results must be validated, integrated and understood in order to elucidate the driving
mechanisms in each tumor type, and evaluate the efficacy of available therapies for each
individual. The CGA have developed a data and result staging system, Firehose, and a visu-
alization tool – StratomeX, based on Caleydo (an Eclipse Rich Client Platform (RCP)), that
provides genome-scale integrated genome/transcriptome views across these data. However, a
number of data curation and deep biological analysis tasks are very difficult.

The following criteria were identified for a next generation CGA visualization system:

1. Data Provenance. System needs to display the origin and processing pathway for the
data currently visualized, and ideally allow comparison of results of alternate processing
pathways.

2. Standardized representation of data and analysis processes. Provenance models require
well defined representations such as the Predictive Model Markup Language [Wikipedia]
to describe the transformations that data undergoes prior to visualization. Formal
representations also enable interoperability and reproducibility.

3. Remote access to data. Most sets of data are too large to fit into memory – the system
needs aggregation and subsetting mechanisms to allow browsing of the complete dataset
on any reasonable user platform.

4. Pluggable architecture. Alternate visualizations for the same data, or additional visualiza-
tions for new or derived data facilitate deep analysis, and encourages contribution from
third-parties. Architecture will also allow new data format and analysis process support.

5. Communication between plugins/modules. Synergies are important: communication
between distinct visualization modules with shared selections, colorings, etc. allow greater
insight. The modules in the system should also be able to select appropriate modules
for performing particular purposes – such as computing a distance matrix for particular
biological entities and then clustering to yield an appropriate visualization.

6. Global communication/user experience. Several different types of users will enter and use
the system in different ways – a core system event model will need to support arbitrary
routes through the data and analysis process.

These criteria were explored further, to identify base layer software components and the
key visualizations that would be needed and the kind of provenance associated with each one.
A user story describing how a typical cancer biologist will employ the system was proposed to
explore how the different analysis and visualization components will be required to interact.

Conclusion

The infrastructure working group identified a number of technical and social requirements
that should be addressed by the community. We proposed the development of a community
resource to collate problems and solutions for biological visualization tasks, and this will be
explored further. We also developed a detailed use case based on a current biomedical research
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problem to help identify technical and conceptual challenges in biological visualization that
the community should prioritize in the future.
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