
Report from Dagstuhl Seminar 12442

Requirements Management – Novel Perspectives and
Challenges
Edited by
Jane Cleland-Huang1, Matthias Jarke2, Lin Liu3, and
Kalle Lyytinen4

1 DePaul University – Chicago, US, jhuang@cs.depaul.edu
2 RWTH Aachen and Fraunhofer FIT, DE, jarke@cs.rwth-aachen.de
3 Tsinghua University Beijing, CN, linliu@tsinghua.edu.cn
4 Case Western Reserve University – Cleveland, US, kalle@case.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 12442 “Requirements
Management – Novel Perspectives and Challenges”. Changes in computational paradigms and
capabilities that draw upon platform strategies, web services, and virtualization of both applica-
tion services and development platforms have significant implications for views of modularity and
requirements evolution, complexity of RE tasks, and the economics of system development and
operations. The aim of the seminar was to bring together experts from multiple fields to discuss
models and theories around these changes. Three key challenges and associated solution ideas
were addressed, namely (1) to better deal with context changes and business goal management to
reduce the “black swan” rate of badly failed large projects, (2) to exploit recent theories of tech-
nological and institutional evolution to understand better how to control complexity and leverage
it for innovation at the same time, and (3) the demand for runtime re-organization of existing
large-scale systems with respect to new operational goals such as energy efficiency. Future RE
must see itself as the marketplace where responsibility for all these complexities and evolutionary
steps is traded.

Seminar 28.–31. October, 2012 – www.dagstuhl.de/12442
1998 ACM Subject Classification D.2.1 Requirements, D.2.2 Design Tools and Techniques,

D.2.11 Software Architectures
Keywords and phrases requirements engineering, system complexity, software evolution, socio-

technical systems
Digital Object Identifier 10.4230/DagRep.2.10.117
Edited in cooperation with Anna Hannemann (RWTH Aachen, DE)

1 Executive Summary

Matthias Jarke

License Creative Commons BY-NC-ND 3.0 Unported license
© Matthias Jarke

Since its inception in the 1970s, much of the research in requirements engineering (RE) has
focused on the development of formal notations and protocols to represent requirements
and to analyze their properties, such as consistency, correctness, completeness, and validity.
Some work has analyzed the impacts of these requirements on downstream development
tasks (e.g., traceability), or managing and reconciling conflicts in the requirements process.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY-NC-ND 3.0 Unported license

Requirements Management – Novel Perspectives and Challenges, Dagstuhl Reports, Vol. 2, Issue 10, pp. 117–152
Editors: Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12442
http://dx.doi.org/10.4230/DagRep.2.10.117
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

118 12442 – Requirements Management – Novel Perspectives and Challenges

Much of requirements research has also assumed that the scope of RE is isolated to a specific
project or even a specific stage of that project. The demand for a shift in focus is dictated
by changes in computational paradigms and capabilities that draw upon platform strategies,
web services, and virtualization of both application services and development platforms.
These trends have significant implications for views of modularity and requirements evolution,
complexity of RE tasks, and the economics and costs related to application and service use
and development. The aim of the seminar was to bring together experts from multiple fields
to discuss models and theories around these changes, focusing on a series of interrelated
question such as:

How to theorize and study complexity within RE tasks?
What theoretical perspectives can inform how and why requirements knowledge evolves
as it is generated, validated, and distributed?
How do requirements, system evolution, and environmental change interact?
How do different types of knowledge interact to shape requirements and their evolution?
What are the origins and flows of influence of requirements knowledge? How can non-linear
influences be effectively managed in RE evolution?
What is the effect of speed and scale in requirements processes?
What is the role of goals and constraints and their complex interactions in RE?

In particular we sought better integration of theories of socio-technical system evolution,
distributed cognition, models of RE and design knowledge and their economic effects, the
impact of strategy and related knowledge endowments in RE processes (e.g., explorative
vs. exploitative processes of requirements discovery), and the role of ambiguity, uncertainty
and complexity in managing requirements knowledge. Attention was also placed on new
research approaches and methods that can be brought to bear in addressing these problems.
The seminar thus built and expanded on some of the critical themes that had been brought
up five years earlier in two NSF-sponsored workshops in Cleveland [5] and Dagstuhl [4], [3].
The seminar brought together 33 researchers (exactly one third female) from 12 countries in
four continents, with 22% industry participation. Participants felt that this unusually high
diversity together with a good mix of junior and senior people of different disciplines, interests
and expertise contributed strongly to lively and fruitful discussions. Several cooperative
projects have emerged from these discussions. Selected results of the discussions and
presentations will be published in a special issue of the ACM Transactions on Management
Information Systems in 2014.The program of the seminar was organized into four panels
with plenary talks and discussion, five parallel working groups with central reporting, and a
final reflection session. With the parallel Dagstuhl seminar on “Foundations and Challenges
of Change and Evolution of Ontology” we moreover organized a crossover plenary panel
session in which we tried to converge to a better mutual understanding of the different
perspectives on Evolution in AI and RE and explored possibilities for future cooperation.
Several individual researchers later got together to agree on specific cooperative research. In
the final reflection session, the main results, issues and challenges, also taking into account
the ontology perspective, can be summarized as follows.

Jackson and Zave [2] have formulated an AI-inspired formalization of the traditional RE
viewpoint as a kind of model-based diagnosis: Given a set of domain assumptions D and a
set of requirements R, find a suitable specification S such that S, D ⇒ R. In RE research,
the R have often been interpreted as goals, to be refined and satisfied in some extended
AND −OR graph structure.

From a social science and business informatics perspective, however, requirements en-
gineering (RE) is in essence a boundary spanning task between the developers and the

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 119

other stakeholders (users, management, regulators, . . .) concerning the goals, functions and
constraints of a system. The traditional viewpoint, where RE is just seen as an “early phase”
(resulting in a contract) and the “last phase” (where acceptance testing takes place) is far too
narrow. The following citation by Robert Glass wonderfully characterizes the situation RE
has entered since the turn of the century: “Walking on water, and programming according
to specifications is easy – as long as both of them are frozen” At least three key challenges
to research and practice were identified in the seminar, together with counter-strategies
where promising first steps for solutions were observed: Firstly, large-scale projects encounter
changes in D, R, and the technology underlying S is shifting. As a consequence,

90% of these projects run over budget and time (this is similar to other big engineering
projects, so not a drama in itself)
One sixth so-called Black Swan projects show budget overruns of 70% and time overruns
of 200% (this is true only for 1% of other engineering projects, so this is a real drama of
software engineering).

A central cause is politically motivated over-ambitious goals with systematic under-estimation
of the nature and scope of requirements, budget, and cost both on the side of customers
and vendors, as well as poor change tracking. As a consequence, we strongly recommend to
not just consider goals of stakeholders but also social structures and strategic dependencies
in initial system analysis. Moreover, customer and other stakeholder requirements must be
continuously monitored during the development process (and sometimes beyond). To ensure
product and process compliance and effectively assess the impact of change, requirements
traceability should be focused by using trace patterns to maintain transparency and keep
the monitoring effort acceptable and feasible.

Secondly, we need architectural mechanisms that constrain, but also leverage complexity.
In the seminar, John King pointed out the difference between “complicated” and “complex”
problems. Complicated problems can be solved by experienced, highly competent engineers
with foreseeable effort. In contrast, complex problems can only be explored with uncertain
results; thus, taking on a project that tries to solve a complex problem in one shot is bound
to lead to disaster – and apparently, it is exactly the tendency to take on such nice-sounding
complex projects that leads to the unusually high share of Black Swans in software projects.
Theories like Arthur’s theory of Technology Evolution [1] or Thornton’s theory of institutional
evolution [6] were cited in the seminar as showing a way forward, which we can also observe
in practice. Platform strategies offer complicated but manageable base solutions that are
now being offered both by open source communities and by big players in different sectors,
such as IBM, Google, Facebook, and mobile phone vendors/operators. With a uniform
infrastructure, they limit complexity. But by enabling innovation at the margin, e.g. end-user
developed app’s, they at the same time also leverage new complexity at the higher level. The
easy entry, combined with ruthless selection of a very small percentage of truly successful
apps, then offers a hotbed of complex evolutionary change. Which eventually will grow
into, or be replaced again by yet another layer of platforms, as pointed out by both Brian
Arthur and the earlier book by Thomas Friedman “The World is Flat”. Beyond such market
selection mechanisms, software vendors employ various mechanisms to participate in this
game in a more controlled way. We mention here the now broad area of software product
families, but also Google’s 70 : 20 : 10 work rule where employees are free to spend a
significant part of their work time on their own ideas, thus fostering continuous internal
innovation. Methods for runtime requirements monitoring and requirements mining from
usage patterns can be important contributions of the RE field in this context. Last not
least, the future will not reduce the challenges of complexity and evolution. Our seminar

12442

120 12442 – Requirements Management – Novel Perspectives and Challenges

understood information systems as socio-technical systems, but in fact many of today’s
systems are neither truly social nor truly technical. From a social perspective, there is the new
question for sustainability of systems, with the demand for re-optimization from the viewpoint
of user rights (e.g. asymmetric information and market powers, privacy, data ownership,
copyright vs. freedom of information), energy efficiency, and environmental footprint. From
a technical perspective, the explosive expected growth of Cyberphysical Systems (Internet
of Things) in business, engineering and science is not just an approach to monitor and
actuate at a much more fine-grained level, but a significant source of more complexity and
evolutionary challenges. Generating and implementing e.g. the visions of smart cities is just
but one example. Rather than just talking grand new visions here, methods for how to get
there step-by-step in an “only” complicated way – without exposing whole city to the chaos
caused by over-ambitious “complex” systems – are urgently needed.In our world of more and
more ubiquitous computing, where the impact and complexity of systems continuously seem
to grow, RE is the marketplace where responsibility is traded, as communication, mutual
understanding, and transparent well-structured information management are at the heart of
this field.

References
1 B. Arthur (2009). The Nature of Technology: What it is and how it Evolves. Free Press.
2 M. Jackson, P. Zave (1995): Deriving specifications from requirements: an example. Proc.

17th ICSE.
3 M. Jarke, K. Lyytinen, eds. (2010): High Impact Requirements Engineering. Special Issue,

Wirtschaftsinformatik/BISE 52, 3.
4 M. Jarke, P. Loucopoulos, K. Lyytinen, J. Mylopoulos, W.N. Robinson (2011): The brave

new world of design requirements. Information Systems 36(7): 992–1008.
5 K. Lyytinen, P. Loucopoulos, J. Mylopoulos, W.N. Robinson, eds. (2009). Design Require-

ments Engineering – A Ten-Year Perspective. Springer LNBIP 14.
6 P. Thornton, W. Occasio, M. Lounsbury (2012). The Institutional Logics Perspective: A

New Approach to Culture, Structure, and Process. Oxford University Press.

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 121

2 Table of Contents

Executive Summary
Matthias Jarke . 117

Overview of Talks
Requirements for Digital Infrastructure Innovation: Three Broad Strategies for
Organizations
Nicholas Berente . 124

Models of Institutional Evolution for Requirements Engineering
Nicholas Berente . 126

Has Time Stood Still in Requirements Engineering?
Richard Berntsson Svensson . 127

Requirements Engineering for Requirements Engineering
Joerg Doerr . 128

Requirements Management for Service Providers: the Case of Services for Citizens
Xavier Franch . 128

The Importance of Continuous Value Based Project Management in the Context of
Requirements Engineering
Gilbert Fridgen and Julia Heidemann . 129

Requirements Engineering Discovery in Open Source Software Projects
Anna Hannemann . 129

Requirements Engineering as a Distributed Cognitive Process
Sean Hansen . 129

Orthogonal Perspectives on Taming Complexity
Jane Cleland-Huang . 130

Walk Before You Run: A Dialogue with Three US Developers on “Within” Com-
plexity of Requirements
Jane Huffmann Hayes . 130

Complexity Explained
John Leslie King . 131

Where is the human mind in requirements engineering (research) and what do we
think and know of it?
Kim Lauenroth . 131

Software Requirements Are Soft
Julio Cesar Leite . 132

The evolution of requirements: towards an ecological theory
Kalle Lyytinen . 132

Interactive Traceability Querying and Visualization for Coping With Development
Complexity
Patrick Maeder . 133

Requirements Complexity and Evolution: A Computational Perspective
John Mylopoulos . 133

12442

122 12442 – Requirements Management – Novel Perspectives and Challenges

Large Scale Business System Evolution
Andreas Oberweis . 134

Requirements Engineering Intelligence: Dealing with Complexity and Change
Barbara Paech . 134

Managing Requirements Evolution in Software Product Lines
Xin Peng . 135

Software evolution in complex environments
Barbara Pernici . 135

Boundary Spanning in RE
Balasubramaniam Ramesh . 136

Dealing with uncertainty and iterations in design processes: An entrepreneurial
perspective
Isabelle Reymen . 137

Understanding Software System Evolution through Requirements Monitoring
William N. Robinson . 138

Getting to the Shalls: Facilitating Sense-Making in Requirements Engineering
Christoph Rosenkranz . 139

Platforms wars as a source of complexity
Matti Rossi . 139

Extreme Requirements: The Challenge of Ultra Large Scale Systems
Alistair G. Sutcliffe . 140

A general-to-specific architectural design for managing requirements evolution
Fan Yang-Turner . 140

Modeling and (social) complexity – a perspective from conceptualizing the BI-
enabled adaptive enterprise
Eric S. Yu . 141

A Feature Model Centric Approach to Requirements Management and Reuse
Haiyan Zhao . 142

Requirements Issues in SoC and SoS
Andrea Zisman . 142

A quest for building theories of requirements evolution
Didar Zowghi . 142

Working Groups
Managing Complexity within Requirements
Andrea Zisman . 144

Requirements Discovery and Negotiation in Complex Environments: Work Group
Discussion
Gilbert Fridgen . 145

Managing complexity through requirements
Anna Hannemann . 146

Managing Complex Systems Evolution with Requirements Models
Matthias Jarke . 147

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 123

Understanding Evolution: Biological, Cultural and Technological Perspectives
Lin Liu . 148

Joint Panel with the Dagstuhl Seminar on “Foundations and Challenges of
Change and Evolution in ontologies”
“When worlds collide: Requirements evolution and ontologies”
Matthias Jarke and Ulrike Sattler . 149

Participants . 152

12442

124 12442 – Requirements Management – Novel Perspectives and Challenges

3 Overview of Talks

3.1 Requirements for Digital Infrastructure Innovation: Three Broad
Strategies for Organizations

Nicholas Berente (University of Georgia, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Nicholas Berente

Trends in requirements engineering are shifting from a focus on discrete software projects
for a particular user community in a particular organization to broad co-evolving and
interdependent ecosystems of hardware, software, communications, social practices, business
processes, and organizational structures ([7]). This shift is reflected in the increased emphasis
on architectures, platforms, and integration that enable ongoing emergent and unpredictable
phenomena ([5]; [7]). Contemporary artifacts are increasingly infrastructural, and innovation
on digital infrastructures is a fundamentally different sort of thing from the discrete software
engineering context around which the requirements engineering discipline grew up. According
to Tilson, Lyytinen and Sorensen:

“digital infrastructures can be defined as shared, unbounded, heterogeneous, open, and
evolving sociotechnical systems comprising of an installed base of diverse information techno-
logy capabilities and their user, operations, and design communities.” ([11] p. 748-749, based
on [6])

Many organizations – of a variety of different stripes – are looking to participate in and
capitalize on digital infrastructure innovation. Organizations do this for a variety of reasons,
including:

Direct Return (examples: Microsoft Office; Apple’s platform) – ownership of infra-
structures such as platforms as a key element of their product strategy, and associated
competitive and profitability issues ([12]);
Indirect Return (examples: Red Hat Linux; Yahoo! and Hadoop) – building compet-
encies and access to resources which enable indirect business models associated with
competitiveness in other domains or complementary products ([4]; [2]);
Infrastructural Stewardship (examples: U.S. Cyberinfrastructure Centers; Apache and
Hadoop) – the organization’s mission is to tend to and guide (i.e. “steward”) the emergence
of a particular digital infrastructure domain ([2]).

Although organizations do look to participate in digital infrastructure innovation, this is
not so simple a task. Digital infrastructures are complex and emergent ‚ which poses a
number of challenges to their design and management ([6]; [12]). It is simply not possible to
specify requirements for an entire infrastructure because of this complexity, and also because
of the open, layered generativity that accompanies digital innovation ([13]; [11]). Given
this complexity, at this point there is no clear guidance for how organizations who wish to
participate in digital infrastructure innovation should go about their requirements activity
to define the scope of such innovation.

To begin addressing this situation, we draw upon research into U.S. cyberinfrastructure
centers [2] and how they handle requirements for infrastructural innovation. We find three
broad strategies that go from less to more centrally controlled: (1) a problem solving strategy;
(2) a portfolio & market strategy; and (3) an institutional shift strategy. Next we briefly
address the challenges of digital infrastructure innovation and present these three strategies
with brief examples from our research. We conclude with a discussion on the merits of the
portfolio and market strategy for organizations wishing to engage in digital infrastructure

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 125

innovation and motivate the need to understand what requirements for this form of innovation
look like.

References
1 Berente, N., Claggett, J., Howison, J. Knobel, C. and Rubleske, J., (2012) “Managing

CI Centers: An Agenda for Organizational Scholarship and Cyberinfrastructure Innova-
tion,” report on the workshop: ’Managing CI Centers.’ Available at SSRN (August 14,
2012):http://ssrn.com/abstract=2128872.

2 Dahlander, L. and Magnusson, M. How do Firms Make Use of Open Source Communities?
Long Range Planning 41, 6 (2008), 629–649.

3 Edwards, P., Jackson, S., Bowker, G., and Knobel, C. (2007). Report to the NSF of a Work-
shop on “History and Theory of Infrastructures: Lessons for new scientific infrastructures.”
University of Michigan, School of Information.

4 Fitzgerald, B. (2006). The transformation of Open Source Software. MIS Quarterly, 30(4).
5 Hansen, S., Berente N. and Lyytinen, K., (2009) “Requirements in the 21st Century: Cur-

rent Practice & Emerging Trends,” in Lyytinen, Loucopoulos, Mylopoulos, Robinson eds,
Design Requirements Engineering: A Ten-Year Perspective, Springer-Verlag (Lecture Notes
in Business Information Processing Series Vol.14), 2009.

6 Hanseth, O., and Lyytinen, K. (2010). Design theory for dynamic complexity in information
infrastructures: the case of building internet. Journal of Information Technology, 25, 1–19.

7 Jarke, M. (2009) “On Technology Convergence and Platforms: Requirements Challenges
from New Technologies and System Architectures,” in Lyytinen, Loucopoulos, Mylopoulos,
Robinson eds, Design Requirements Engineering: A Ten-Year Perspective, Springer-Verlag
(Lecture Notes in Business Information Processing Series Vol.14), 2009.

8 Mitra, S. (2005). Information technology as an enabler of growth in firms: An empirical
assessment. JOURNAL OF MANAGEMENT INFORMATION SYSTEMS, 22(2), 279–300.

9 Ribes, David, and Finholt, T. A. (2009). The Long Now of Technology Infrastructure:
Articulating Tensions in Development. Journal of the Association for Information Systems,
10(5), 375–398.

10 Star, S., and Ruhleder, K. (1996). Steps toward an ecology of infrastructure: Design and
access for large information spaces. INFORMATION SYSTEMS RESEARCH, 7(1), 111-
134.

11 Tilson, D., Lyytinen, K., and Sorensen, C. (2010). Digital Infrastructures: The Miss-
ing IS Research Agenda. INFORMATION SYSTEMS RESEARCH, 21(4), 748-759.
doi:10.1287/isre.1100.0318

12 Tiwana, A., Konsynski, B., and Bush, A.A. 2010. “Platform Evolution: Coevolution of
Platform Architecture, Governance, and Environmental Dynamics,” Information Systems
Research (21:4), pp 685–687.

13 Yoo, Y., Henfridsson, O., and Lyytinen, K. (2010). The New Organizing Logic of Digital
Innovation: An Agenda for Information Systems Research. Information Systems Research,
4(21), 724–735.

12442

http://dx.doi.org/10.1287/isre.1100.0318

126 12442 – Requirements Management – Novel Perspectives and Challenges

3.2 Models of Institutional Evolution for Requirements Engineering
Nicholas Berente (University of Georgia, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Nicholas Berente

Requirements engineering as a discipline is fundamentally concerned with change. Certain
sociotechnical practices, however, are deeply entrenched in organizational contexts and,
as a result, can be quite difficult to change. As the quotes above indicate, practices can
be reinforced from a number of sources: ‚“the way we do things around here‚” implies
cognitive economizing; professional pressures imply norms that are driven by identities; and
compliance with government mandates implies regulatory pressures. These three forces for
deeply entrenching sociotechnical practices are often described as the “pillars” of institutional
analysis ([8]). Cognitive, normative, and regulatory sources for institutional persistence and
stability.

Sometimes people resist just because they don’t want to change. Other times, however,
users resist change efforts because there are powerful ‘social’ forces (of the cognitive, normative,
and regulatory variety) that may be reinforcing the existing situation. The former may just
be an issue of convincing the person to change and perhaps appeal to their self-interest,
whereas the latter may require substantially rethinking the situation. In these situations
that are more deeply at odds, it is sometimes useful to investigate whether the “institutional
logics” ([5]) that guide the action are consistent between the local context and the change.
Institutional logics are the symbolically shaped goals and assumptions implied by patterns
of action in a particular domain ([9]). Institutional logics embody the “rules of the game”
so to speak ([2]). Organizational contexts are institutionally plural ([6]) and are rife with
multiple, often contradictory institutional logics. In cases where the resistance to change is
more deeply grounded in contrasting goals, values and assumptions about particular actions
that might undermine user identities, the institutional logics of the local context and the
change are contradictory ([2]). When business analysts and software engineers go about
eliciting requirements for a sociotechnical change, it is important understand those “social”
forces that may lead people to resist what appears to be a perfectly reasonable change from
the perspective of the development team.

Just as some of these institutional forces tend to reinforce existing situation, new institu-
tional pressure can also help drive change in ways consistent with prevailing or dominant
institutions. Organizational actors respond to coercive, normative, and mimetic mechanisms
for change ([3]). Thus we can see institutional pressure as simultaneously either a force for
stability and a force for change of existing sociotechnical patterns of action. The clash of
contradictory institutions is a key driver for bringing about institutional change ([7]). Indi-
viduals who draw upon alternative logics to change existing institutions are often described
as “institutional entrepreneurs” ([4]; [9]).

Given the stability of organizational contexts borne of entrenched institutions, how
can requirements professionals thus navigate this institutional landscape of persistence an
isomorphic change? In this essay, we briefly introduce the recent model for institutional
evolution following the new “institutional logics perspective” of institutional change ([9]) and
reflect on how this model may be relevant for requirements engineering.

References
1 Berente, N. and Yoo, Y. (2012) “Institutional Contradictions and Loose Coupling: Post-

Implementation ofNASA’s Enterprise Information System,” Information Systems Research,
Vol.23, No. 2.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 127

2 Bourdieu, P. and Wacquant, L.J.D. (1992) An Invitation to Reflexive Sociology, University
of Chicago Press.

3 DiMaggio, P.J., and Powell, W.W. (1983). The Iron Cage Revisited – Institutional Iso-
morphism andCollective Rationality in Organizational Fields. American Sociological Re-
view, 48(2), 147–160.

4 DiMaggio, P. (1988) “Interest and Agency in Institutional Theory,” In L. Zucker (ed) In-
stitutional Patternsand Organizations,Balinger Pub.

5 Friedland, R., and Alford, R.R. (1991) “Bringing Society Back In: Symbols, Practices, and
InstitutionalContradictions,” in Powell, W.W., and DiMaggio, P.J. eds (1991), The New
Institutionalism inOrganizational Analysis, The University of Chicago Press, 1991.

6 Kraatz, M.S. and Block, E.S. (2008) “Organizational Implications of Institutional Plural-
ism.” In R. Greenwood, et al (eds.) Handbook of Organizational Institutionalism, London:
Sage

7 Seo, M.G. and Creed, W.E.D. (2002) “Institutional contradictions, praxis, and institutional
change: Adialectical perspective.” Academy of Management Review, v. 27 issue 2, 2002, p.
222.

8 Scott, W.R. (2008) Institutions and Organizations, third edition, Sage Publications, 2008.
9 Thornton, P.M., Ocasio, W., and Lounsbury, M. (2012) The Institutional Logics Perspect-

ive: A New Approach to Culture, Structure, and Process, Oxford University Press.

3.3 Has Time Stood Still in Requirements Engineering?
Richard Berntsson Svensson (Lund University, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Richard Berntsson Svensson

Since the inception of requirements engineering in the 1970s, a major shift has taken place.
This shift is not only related to, e.g. changes in globalization, but also changes in economic
activities and the merge of traditional industries and technology industries. Just as the
industrial revolution replaced agriculture as the dominant economic activity, the ‘creativity
age’ is replacing the ‘information age’ as the next dominant global economic activity. Although
the importance of creativity in requirements engineering is argued, both by empirical evidence
and that creativity has received more attention in requirements engineering research in the
last couple of years, relatively little requirements engineering research has addressed creativity.
I believe that economic and market trends imply that requirements engineering will have to
become significantly more creative to realize the potential of future software applications.
These changes lead to that the complexity and size of software-intensive systems continues
to increase. Hence, scaling software in a controlled and efficient way may become a crucial
competitive advantage. How many requirements can an industrial system development
organization manage with available requirements engineering processes? This is hard to
know as requirements engineering research often falls short in characterizing the scalability
of proposed methods.

12442

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

128 12442 – Requirements Management – Novel Perspectives and Challenges

3.4 Requirements Engineering for Requirements Engineering
Joerg Doerr (Fraunhofer IESE – Kaiserslautern, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Joerg Doerr

Joint work of Doerr, Joerg; Hess, Anne
Main reference A. Gross, J.Doerr, “What You Need Is What You Get! The Vision of View-Based Requirements

Specifications,” in Proc. of 20th IEEE Int’l Requirements Engineering Conf. (RE), pp. 171-180,
2012.

URL http://dx.doi.org/10.1109/RE.2012.6345801

Software requirements specifications play a crucial role in software development projects.
Especially in large projects, these specifications serve as a source of communication and
information for a variety of roles involved in downstream activities like architecture, design,
and testing. The Dagstuhl Workshop claims that there is a major shift in how we need
to approach the RE task due to changes in computational paradigms and to development
of organizational capabilities. This position paper argues that our RE community has
currently little knowledge about what our stakeholders, i.e., the stakeholders of requirements
specifications want to see in requirements specifications and that this will even be worse in
the light of the prospected major shift to RE. It argues that in order to create high-quality
requirements specifications that fit the specific demands of successive document stakeholders,
our research community needs to better understand the particular information needs of
requirements specification’s stakeholders, but especially the downstream development roles
like architects and testers. So more Requirements Engineering for Requirements Engineering
needs to take place.

3.5 Requirements Management for Service Providers: the Case of
Services for Citizens

Xavier Franch (UPC – Barcelona Tech – Barcelona, ES)

License Creative Commons BY-NC-ND 3.0 Unported license
© Xavier Franch

Main reference X. Franch, “Requirements Management for Service Providers: the Case of Services for Citizens,”
arXiv:1301.4600v1 [cs.SE], 2013.

URL http://arxiv.org/abs/1301.4600

Take the Internet of Things, a piece of cloud computing, a handful of smart cities, don’t
forget social platforms, flavor it with mobile technologies and ever-changing environments,
shake it up and... voilà! What a wonderful service! Oops! Wait a minute, where did my
requirements go?

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1109/RE.2012.6345801
http://dx.doi.org/10.1109/RE.2012.6345801
http://dx.doi.org/10.1109/RE.2012.6345801
http://dx.doi.org/10.1109/RE.2012.6345801
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://arxiv.org/abs/1301.4600
http://arxiv.org/abs/1301.4600
http://arxiv.org/abs/1301.4600

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 129

3.6 The Importance of Continuous Value Based Project Management
in the Context of Requirements Engineering

Gilbert Fridgen (Universität Augsburg, DE) and Julia Heidemann (McKinsey & Company,
DE / Universiät Regensburg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gilbert Fridgen and Julia Heidemann

Joint work of Fridgen, Gilbert; Heidemann, Julia
Main reference G. Fridgen, J. Heidemann, “The Importance of Continuous Value Based Project Management in

the Context of Requirements Engineering,” arXiv:1301.5438v1 [cs.SE], 2013.
URL http://arxiv.org/abs/1301.5438

Despite several scientific achievements in the last years, there are still a lot of IT projects
that fail. Researchers found that one out of five IT-projects run out of time, budget or value.
Major reasons for this failure are unexpected economic risk factors that emerge during the
runtime of projects. In order to be able to identify emerging risks early and to counteract
reasonably, financial methods for a continuous IT-project-steering are necessary, which as of
today to the best of our knowledge are missing within scientific literature.

3.7 Requirements Engineering Discovery in Open Source Software
Projects

Anna Hannemann (RWTH Aachen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Anna Hannemann

Open source software (OSS) presents a class of successful community-driven systems. Software
engineering (SE) in OSS is a subject of many studies. The researchers discover, investigate,
and even simulate the organization of development processes within open-source communities
using data from publicly available OSS code repositories and communication platforms.
However, organization of requirements engineering (RE) in OSS is seldom addressed. The
requirements in OSS are not explicitly defined. They are intertwined into the development
and communication process of open-source community members.

By analyzing RE in OSS, we can learn, how different layers within communities are
integrated in OSS development process. Does their voice matter? Which structural and
organizational changes do influence significantly an OSS project in general and organization
of RE in particular? Are there different participation model in terms of requirements
negotiation? The answers to these and other related research questions can help us to
design community-oriented RE for development of complex, socio-technical systems within
interdisciplinary, distributed teams.

3.8 Requirements Engineering as a Distributed Cognitive Process
Sean Hansen (Rochester Institute of Technology, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sean Hansen

Effective requirements engineering has remained a persistent impediment to the success of
information systems projects. In this research, we undertake a novel reframing of requirements

12442

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://arxiv.org/abs/1301.543
http://arxiv.org/abs/1301.543
http://arxiv.org/abs/1301.5438
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

130 12442 – Requirements Management – Novel Perspectives and Challenges

engineering as a socio-technical distributed cognitive process in which diverse stakeholders
collaborate to reach a collectively-held and feasible understanding of design requirements.
This pursuit of shared understanding represents the ‘computing’ of a closure on a requirements
set based on distributed representations. We draw upon the theory of distributed cognition
to analyze the ways in which requirements processes become distributed across social,
structural, and temporal boundaries and how the requirements computation unfolds in
diverse development environments. In this position paper, we highlight the complementarities
and challenges that a distributed cognitive perspective presents for long-standing topics in
requirements engineering research. In addition, we posit a number of new lines of inquiry
that this approach engenders.

3.9 Orthogonal Perspectives on Taming Complexity
Jane Cleland-Huang (DePaul University – Chicago, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jane Cleland-Huang

This position paper discusses several different forms of software complexity. It describes a
variety of techniques for managing, embracing, and living-with complexity throughout the
software development life-cycle. Finally, the paper advocates creating strategic traceability
links that can be used to generate comprehensible and meaningful views that slice the system
and provide the stakeholders with the information they need to perform specific tasks.

3.10 Walk Before You Run: A Dialogue with Three US Developers on
“Within” Complexity of Requirements

Jane Huffmann Hayes (University of Kentucky, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jane Huffmann Hayes

When considering how to manage complexity within requirements, it is prudent to understand
industry opinion. Toward that end, three developers were consulted, one from IBM, one
from HP (a startup bought by HP), and one from a small industrial programming company
(use some automation to accomplish manufacturing). Based on their feedback, it is the
position of this author that much of Industry is still attempting to ensure capture and use of
requirements; we may be asking them to run before they walk if we ‘push’ techniques aimed
at managing complexity. The questions and industry responses follow. A suggestion of a
first step toward addressing complexity closes out the paper.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 131

3.11 Complexity Explained
John Leslie King (University of Michigan – Ann Arbor, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© John Leslie King

URL http://jlking.people.si.umich.edu

The title for this was assigned to me. As my colleague said when the assignment was made,
“I’m sure you can talk about this.” Hmmm. Turns out he was right: I can talk about it. And
it is important.

People use the term “complexity” a lot in requirements, but there is more to it than
meets the eye. What people often talk about as complex is, in fact, complicated. What is the
difference? Complicated means lots of parts, and perhaps lots of causal connections between
the parts. Complicated might be hard to understand but it can be understood. Complex, in
contrast, typically means things that are changing, evolving, becoming something that is at
once similar to and different from the thing it used to be. The important issue is control.
We typically at least can control things that are complicated; we typically cannot control
things that are complex. This does not mean that we cannot understand complex things, we
sometimes can. But it is hubris to think that just because we understand something we can
control it. And it is worse than hubris to think we can control things we do not understand.*

This brings us to the issue of requirements. I used to think that requirements engineering
was a way to help us address complexity. I have changed my mind on that. I think
that requirements engineering can be useful when helping us to create systems that address
complicated problems, but the moment we cross from complicated into complex, requirements
engineering fails us. Put simply, we can build software that deals with complicated things,
but we cannot build software that deals with complex things. And requirements engineering
– or any other methods-based approaches to improving software development – will save
us from this fact. The smart requirements engineer, therefore, keeps the effort focused
on dealing with the complicated, and out of the complex. Complicated is hard enough.
Complex is impossible. Maybe this should be a new tenet of requirements engineering: keep
it complicated, but not complex.

———
*We deal all the time, and often successfully, with things we do not understand at

some level. We have managed to control many kinds of physical materials without fully
understanding the nature of matter. We have applied ‘fuzzy logic’ to making things work
even though we do not completely understand them. Good workarounds allow us to work
around problems. Also, what we can control changes over time, as we come to understand
things or create workarounds.

3.12 Where is the human mind in requirements engineering (research)
and what do we think and know of it?

Kim Lauenroth (adesso AG – Dortmund, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Kim Lauenroth

We have to reconsider our theories, methods, models and tools taking into account the
limitations and abilities of the human mind on both sides, the requirements engineer’s

12442

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://jlking.people.si.umich.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

132 12442 – Requirements Management – Novel Perspectives and Challenges

side and the stakeholder’s side. Without a profound understanding of our own mind, the
development of requirements engineering theories, methods, models, techniques etc. is not
optimal since we are developing ‘software’ for a machine that have not understood properly.

3.13 Software Requirements Are Soft
Julio Cesar Leite (PUC-Rio de Janeiro, BR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Julio Cesar Leite

Software requirements and the engineering of software requirements stands upon the name
require and the suffix: ment, which according to the Online Etymology Dictionary means:
“suffix forming nouns, originally from French and representing L. -mentum, which was added
to verb stems sometimes to represent the result or product of the action.”. It occurs that
the result of the action require, in this context, is a fuzzy one. As such, the construction
of software suffers from a basic hard problem, an unstable soil. Dealing with environment
instability is hard. We are studying the concept of requirements awareness as a way of
tackling environment instability in order to support software evolution policies.

3.14 The evolution of requirements: towards an ecological theory
Kalle Lyytinen (Case Western Reserve University – Cleveland, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Kalle Lyytinen

This paper addresses long waves and changes in the requirements engineering environments
similar to punctuated shifts studied in organization theory or Kondratieff waves in macroeco-
nomics. The is issue at stake is are the tectonic shifts how the requirement work is expected
to conducted. My answer is yes. The key is that requirements engineers face a larger context,
a larger multitude of mechanisms and new dynamics in which design spaces and solution
spaces interact - the key target of requirements work. While the old world of requirements
engineering was largely engaged in digitizing the cowpaths and where the movement was
from existing task or function to a isolated computer solution. Here the key challenges
were cognitive, economic (cost/risk) and technological and requirements were carried out to
estimate the failure to execute the plan. In the new world the design and solution spaces
are recursively and dynamically organized and involve a constant orchestration of largely
existing digital assets to come to a wholly new computational solution which does not have
counterpart in the past. The key question to ask is : “What will you do when you can
compute anything?” In such situations it is assumed that the effect size of technology
increases as variation in combining technological assets increases (Arthur 2010). Overall,
this means that the mutation rate of technologies and solutions change resulting in shifts in
ecologies where solutions and problems are matched. The key question what requirements
engineers must address is to find applications/system that match technological capability
and stakeholder needs often in radical/disruptive manner. This is a generative model which
assumed multiple evolutionary paths for software and system evolution through functions of
informating, embedding into new contexts, and expansion of technological capabilities. The
key drivers for variation are classic forms of evolutionary change: code and task mutation,

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 133

selection, retention mechanisms. The key form of RE is Exploration where analysts seeks to
minimize the risk of failing to discover.

The main challenges are entrenchment and related cognitive barriers, speed at generating
variety which requires experimentation, understanding the effects of asset ecologies and forms
of platformization (architectural control), and the effects of network externalities on software
asset use. I offered an example from the evolution of music industry and related digital assets
how new software and service solutions have emerged over the last 20 years.

3.15 Interactive Traceability Querying and Visualization for Coping
With Development Complexity

Patrick Maeder (TU Ilmenau, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Patrick Maeder

Main reference P. Mäder, “Interactive Traceability Querying and Visualization for Coping With Development
Complexity,” arXiv:1301.5363v1 [cs.SE], 2013.

URL http://arxiv.org/abs/1301.5363

Requirements traceability can in principle support stakeholders coping with rising development
complexity. However, studies showed that practitioners rarely use available traceability
information after its initial creation. In the position paper for the Dagstuhl seminar 1242,
we argued that a more integrated approach allowing interactive traceability queries and
context-specific traceability visualizations is needed to let practitioner access and use valuable
traceability information. The information retrieved via traceability can be very specific to a
current task of a stakeholder, abstracting from everything that is not required to solve the
task.

3.16 Requirements Complexity and Evolution: A Computational
Perspective

John Mylopoulos (University of Toronto, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© John Mylopoulos

Joint work of Ernst, Neil; Borgida, Alexander; Mylopoulos, John; Jureta, Ivan
Main reference E. Neil, A. Borgida J. Mylopoulos, I. Jureta, “Agile Requirements Evolution via Paraconsistent

Reasoning", in Proc. of 24th Int’l Conf. on Advanced Information Systems Engineering
(CAiSE’12), Gdansk, LNCS, Vol. 7328, pp. 382–397, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-31095-9_25

We review the requirements problem as defined by Jackson and Zave [2]. We then discuss
how computational complexity creeps in and how to cope with it. In addition, we sketch
some approaches for dealing with requirements evolution, adopted from the PhD thesis of
Neil Ernst [1].

References
1 N. Ernst, A. Borgida, J. Mylopoulos, I. Jureta (2012) Agile Requirements Evolution via

Paraconsistent Reasoning, Proc. 24th Int. Conference on Advanced Information Systems
Engineering (CAiSE’12), Gdansk, June 2012.

2 M. Jackson, P. Zave (1995). Deriving specifications from requirements: an example. Proc.
17th ICSE.

12442

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://arxiv.org/abs/1301.5363
http://arxiv.org/abs/1301.5363
http://arxiv.org/abs/1301.5363
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-31095-9_25
http://dx.doi.org/10.1007/978-3-642-31095-9_25
http://dx.doi.org/10.1007/978-3-642-31095-9_25
http://dx.doi.org/10.1007/978-3-642-31095-9_25

134 12442 – Requirements Management – Novel Perspectives and Challenges

3.17 Large Scale Business System Evolution
Andreas Oberweis (KIT – Karlsruhe Institute of Technology, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andreas Oberweis

Business systems are sociotechnical systems, which are embedded in an organization. The
organization itself is embedded in supplier, customer and/or technical markets. Business
systems usually contribute to an organization’s (strategic) goal.

In the literature several definitions for the term "evolution" have been proposed, sometimes
inspired by the interpretation of this term in biology. In practice of business systems the
term evolution can be found in different variants: evolution as the result of a proactive plan
for sequences of change, evolution as a sequence of some spontaneous or random change
events, and evolution as reactions to environmental changes.

Business systems evolve in evolution cycles (or life cycles). However, the business system
evolution cycle is strongly related to the evolution cycles of business process, business
objects, organizational structures, markets, and legal systems. A business system consists of
components, each one possibly having an evolution cycle of its own.

Business systems are individually implemented or results of customizing a standard
software system. In case of standard software systems there are overlapping evolution cycles
of the standard business system (under responsibility of the software vendor) and of the
customized business system (under responsibility of the software buyer). Some important
challenges of complex business system evolution are:

Develop mechanisms to support synchronization of different evolution cycles (the term
"synchronization" still has to be clarified).
Find optimization criteria for synchronization efforts (besides cost).
Decide between central and decentral control of evolution (if possible).
Manage (reduce?) complexity of relationships between different evolution cycles.
Decide between system replacement and system evolution. Can an evolving business
system finally die?
Develop languages to model and methods to analyze system evolution and evolution cycle
synchronization.

3.18 Requirements Engineering Intelligence: Dealing with Complexity
and Change

Barbara Paech (Universität Heidelberg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Barbara Paech

Similarly to business intelligence, requirements engineering intelligence captures data about
software and its development, operation and use, and leverages intelligent mechanisms such
as mining and analytics for decision support in requirements engineering and management.
In this paper we distinguish usage, system and operation, and development process data
capturing either plan, rationale or execution. We discuss open issues in answering the
following questions based on this data: what is the current situation of the system and its
usage,what changes to the system are necessary and why, what is the impact of a change,
when should which change be executed.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 135

3.19 Managing Requirements Evolution in Software Product Lines
Xin Peng (Fudan University – Shanghai, CN)

License Creative Commons BY-NC-ND 3.0 Unported license
© Xin Peng

A software product line (SPL) is a set of similar applications that share a common, managed
set of features and are developed from a common set of core assets. A produce line evolves
when existing applications change, core assets evolve, or new applications are derived. In
an ideal setting, applications always keep consistent with the core assets in the evolution of
a product line. However, in real product lines, it is often the case that applications evolve
independently to some extent and may deviate from core assets. Therefore, for SPL evolution
management, there is a need to balance independent application evolution for quick response
and the desire of SPL evolving as a whole. To this end, SPL evolution management needs to
monitor and track the evolution trends of core assets and applications and conduct periodic
synchronization among them.

3.20 Software evolution in complex environments
Barbara Pernici (Politecnico di Milano, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Barbara Pernici

Evolution of software can be considered from several different points of view. First of all,
evolution can be an issue in service-based systems, where services adapt themselves on the
basis of a set of available adaptation actions. For instance, service compositions can select
different components, or Quality of Service requirements for invoked service may vary.

A wider perspective is given when complex environments are considered, in which external
factors are involved, as in the case of software running in variable contexts or changing users’
requirements.

Project such as the S-Cube (the European Network of Excellence in Software Services
and Systems, http://www.s-cube-network.eu/) have studied the impact on the software
life cycle of adaptive environments, where services adapt to changes. The life cycle in this
case is composed of two cycles, one focusing on design for adaptation, the other one on
adaptation at execution time, where monitoring is the basis for identifying contexts which
require adaptation to satisfy requirements in a changing environment. Adaptation includes
strategies such as dynamic service selection, substitution, repair, and so on. When available
adaptation strategies are not sufficient to meet the requirements, a redesign of the application
can be considered, thus evolving the existing system.

However, one of the goals in adaptive systems is to minimize this evolution and to perform
it only when necessary, minimizing change in the system, As a consequence, research goals
are to study the areas of designing applications for adaptation, trying to improve their
dependability, to minimize evolution, and to identify adaptation contexts and patterns.

On the other hand, evolution has often to be analyzed in the context of complex environ-
ments, including not only software components, but also users and business level requirements
and the underlying physical infrastructure. In this case, evolution is based on monitoring
and control at different levels, and several factors need to be taken into account:

considering multiple instances and multiple applications

12442

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.s-cube-network.eu/

136 12442 – Requirements Management – Novel Perspectives and Challenges

goals might be variable and context-dependent
the effect of adaptation decisions may be not always clear.

As an example, adaptation of services and systems with the goal of reaching energy efficiency
and optimizing the environmental impact of IT (e.g., as considered in the European projects
GAMES – http://www.green-datacenters.eu/ – and ECO2Clouds – http://eco2clouds.eu),
requires to consider multiple layers at the same time: applications, services, and infrastructure
layers.

In this case many conflicting goals might be present, and actions intended to reach a set
of goals might have a negative impact on other ones.

Therefore, when considering complex environments, evolution should take into considera-
tion different aspects:

rather than considering single applications, patterns of usage of applications should be
taken into account
user behavior can change, also considering feedback from the monitoring system
the definition of requirements in a multi-layer and adaptive system needs a redefinition
of the way requirements are usually specified and considered
in addition to requirements on functionalities and quality of service, data usage require-
ments should also be considered.

From the discussion in the workshop, ideas emerged on dealing with manageable evolu-
tion (distinguishing between complicated and complex systems) and the need of managing
requirements at different abstraction levels.

3.21 Boundary Spanning in RE
Balasubramaniam Ramesh (Georgia State University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Balasubramaniam Ramesh

Joint work of Ramesh, Balasubramaniam; Mohan, Kannan

Boundary spanning is a central activity in requirements engineering. Research on viewpoint
management, requirements traceability and development methods provide several mechanisms
that facilitate boundary spanning by suggesting boundary objects and boundary spanning
roles. Our research examines the role of boundary spanning in three different contexts:
collaborative development, projects characterized by cognitive conflicts and mixed motive
conflicts. Our findings suggest that boundary spanning practices must be tailored to the
specific project context. In addition, the evolving nature of boundaries due to changes in
the external, organizational, and project context necessitates adaptations/evolution of RE
tools/processes that fit the context.

http://www.green- datacenters.eu/
http://eco2clouds.eu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 137

3.22 Dealing with uncertainty and iterations in design processes: An
entrepreneurial perspective

Isabelle Reymen (TU Eindhoven, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Isabelle Reymen

This abstract aims to question the relation between requirements management and two
important characteristics of design processes, namely the iterative character and dealing with
uncertainty about the environment. It brings forward the entrepreneurial effectuation theory
[6] as a perspective that might inform requirements management.

An important characteristic of design processes is iteration [4]. Much of the complexity
of design processes is due to iterations [10]. A recent study focusing on long-term process
dynamics in design processes in a real-life context [1] found that the iterativity of designing
occurs along multiple dimensions, at multiple levels of analysis, and on multiple different
time scales. Another important characteristic of design processes is dealing with uncertainty
about the environment. Simon [9] already noted the importance of dealing with changing
complexities in the outer environment.

Effectuation theory is a recent entrepreneurship theory developed by Sarasvathy [6]. The
creation of new ventures is a process characterized by the need to decide and take action in
the face of uncertainty. The entrepreneurship literature to date has advanced two contrasting
approaches to decision-making (so-called decision-making logics) under uncertainty. The first
logic aims to lower uncertainty based on prediction and is termed “causation” by Sarasvathy
[6]. Cuastion is contrasted with a second logic labeled “effectuation”. Effectuation allows
to control uncertainty by being adaptive, seeking feedback and leveraging existing means
and stakeholder contacts. The most important principles behind the effectuation logic are
means orientation (instead of goal orientation), affordable loss (instead of expected return),
strategic alliances (instead of competitive analyses) and exploiting contingencies (instead of
preexisting knowledge).

Effectual logic is thus especially useful for (design) decision making under situations of
high uncertainty, leaving also room for much iteration in the design process. What can
we learn from this decision making logic for managing requirements in complex design
processes? It would be worth trying to apply the effectuation principles for designing complex
processes. Agile methods, and especially the agile design method Scrum [8] comes really
close to the effectuation principles and are already used in (software) design processes in
practice. Evaluation of these processes from an effectuation perspective can give insight in
the pros and cons of applying effectual principles in design practice, more specifically, under
which conditions does they work, and which type of iterations are supported in the process.

When finding inspiration for the requirements process in using effectuation logic, it
is important to realize that recent studies point at the combined use of effectuation and
causation in practice. Whereas effectual and causal logics were often contrasted in the
literature, there is some empirical evidence that individual entrepreneurs use both logics
[7], [3]. The combination of effectuation and causation was also found empirically in
innovation/design processes in small firms [2]. In addition, Sarasvathy suggests that ventures
should switch between effectual and causal logics depending on the degree of uncertainty the
venture is confronted with. A recent study [5] focuses on the potential shifts in effectual and
causal decision-making over time (in new venture development processes). Such a dynamic
perspective is necessary for moving beyond the discussion of causation and effectuation as
contrasting approaches. It can shed light on whether, how and why both approaches are

12442

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

138 12442 – Requirements Management – Novel Perspectives and Challenges

alternated or combined over time. These insights can then also be applied to the requirements
managing field, ultimately retrieving guidelines for how to organize requirements processes
taking into account increasing complexity and allowing for several type of iterations in the
design process.

Concluding, ingredients for finding a relation between requirements management and two
important characteristics of design processes, namely the iterative character and dealing with
uncertainty about the environment are discussed, thereby making use of the entrepreneurial
effectuation theory; but the relations are not yet clear. I hope at least some food for thought
was offered that initiates nice discussions on these topics.

References
1 Berends, H., Reymen, I.M.M.J., Stultiens, R.G.L., Peutz, M. (2011) External designers in

product design processes of small manufacturing firms. Design Studies, 32(1), pp. 86-108.
2 Berends, H., Jelinek, M., Reymen, I.M.M.J., Stultiens, R.G.L. (2012) Product Innovation

Processes in Small Firms: Combining entrepreneurial effectuation and managerial causa-
tion, Journal of Product Innovation Management. (forthcoming)

3 Dew, N., Read, S., Sarasvathy, S.D., Wiltbank, R. (2009) Effectual versus predictive logics
in entrepreneurial decision-making: Differences between experts and novices. Journal of
Business Venturing, 24: 287-309.

4 Dorst, K., & Cross, N. (2001) Creativity in the design process: co-evolution of problem-
solution. Design Studies 22, 425-437.

5 Reymen, I.M.M.J., Andries, P., Berends, H., Mauer, R., Stephan, U., van Burg, J.C. (2012)
Dynamics of Effectuation and Causation in Technology- based New Ventures, Proceedings
of the 2012 Academy of Management Annual Meeting, August 3-7, 2012, Boston, Mas-
sachusetts. (pp. 1-39). Boston: Academy of Management.

6 Sarasvathy, S.D.(2001) Causation and effectuation: Toward a theoretical shift from eco-
nomic inevitability to entrepreneurial contingency, Academy of Management Review, 26(2),
pp. 243-263.

7 Sarasvathy, S.D. (2008) Effectuation: Elements of entrepreneurial expertise. Northampton,
MA: Edward Elgar.

8 Schwaber, K. and Beedle, M. (2002) Agile Software Development with SCRUM, Upper
Saddle River, NJ, Prentice-Hall.

9 Simon, H.A. (1996) The sciences of the artificial, 3rd ed, MIT Press, Cambridge, Massachu-
setts.

10 Smith, R. P., & Morrow, J.A. (1999) Product development process modelling. Design
Studies 20, 237-261.

3.23 Understanding Software System Evolution through Requirements
Monitoring

William N. Robinson (Georgia State University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© William N. Robinson

Main reference W.N. Robinson, S. Fickas, “Designs Can Talk: A Case of Feedback for Design Evolution in
Assistive Technology,” in Design Requirements Engineering: A Ten-Year Perspective, K. Lyytinen,
P. Loucopoulos, J. Mylopoulos, and W. Robinson, Eds., pp. 215–237, LNBIP, Vol. 14,
Springer-Verlag, 2009.

URL http://dx.doi.org/10.1007/978-3-540-92966-6_12

This paper presents the challenge of understanding system behaviors. Software systems
are complex, and we do need the traditional computing techniques, such as requirements

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-540-92966-6_12
http://dx.doi.org/10.1007/978-3-540-92966-6_12
http://dx.doi.org/10.1007/978-3-540-92966-6_12
http://dx.doi.org/10.1007/978-3-540-92966-6_12
http://dx.doi.org/10.1007/978-3-540-92966-6_12

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 139

discovery, modeling, simulation, and automation. Improvements in these traditional areas
will significantly improve software and software development. New approaches may also
be beneficial. Herein, we consider the relatively new approach of requirements systems
monitoring (not to be confused with traditional techniques of systems monitoring or telemetry).
Requirements monitoring is fundamentally an interpretation problem: What is the system
doing?, as expressed in high-level behaviors and qualities. This perspective can be applied
to software execution or to software development, where the system is the community of
developers. In both contexts, we want to know if the system is meeting its requirements and
moving toward a successful conclusion. Monitoring includes specific techniques, but also
includes the philosophy that continuous monitoring enables continuous improvement, which
is fundamental to successful systems in uncertain and evolving environments.

3.24 Getting to the Shalls: Facilitating Sense-Making in Requirements
Engineering

Christoph Rosenkranz (Goethe-Universität Frankfurt am Main, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christoph Rosenkranz

Knowledge transfer, communication, and shared understanding between project stakeholders
are critical, problematic factors in requirements engineering (RE). Yet, specifying complete
and unambiguous requirements in the face of the complexity inherent in RE remains a
significant challenge. There is a lack of systematic procedures that facilitate a structured
analysis of the qualitative data in RE. We propose the use of a procedural approach to fill
this gap that builds on Linguistic Analysis and Grounded Theory Method.

3.25 Platforms wars as a source of complexity
Matti Rossi (Aalto University, FI)

License Creative Commons BY-NC-ND 3.0 Unported license
© Matti Rossi

For last 15 years most end-user applications have been developed for Windows and server
software for various flavors of UNIX. There were other platforms, but they were niches. This
made certain platform constraints easy to deal with and more or less fixed.

All this has changed in last 5 years. A proliferation of mobile platforms and totally
new user interaction forms has created a maze of options to work with. It would be easy if
everyone just developed software and services using HTML5 as a standard rendering platform
and browser as an execution platform. However, the major operating systems are shifting
and it is not Chrome the browser that is the largest operating system, but rather Android
that competes with iOS. This creates a wealth of issues.

First issue to choose is whether to develop a user interface for desktop, mobile or tablet
form factor. Then one has to decide whether to use mouse, touch, menus etc. All this and
still the actual execution platform and its exact form factor and API’s have to be selected.
When these are done, one can choose a distribution channel (store) and perhaps an in-app
payment method. If the choices are right and the developers have luck and good timing, they
have an instant potential and addressable market of tens or even hundreds of millions devices

12442

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

140 12442 – Requirements Management – Novel Perspectives and Challenges

and users. However, at the same time the platforms are on the mercy of fashion and fads. So
if wrong constraints are acknowledged in the start and/or development is delayed, it could
be that a new killer app is deployed against last season’s platform, which is no longer viable.

To understand the platform risks and constraints, there should be more research on
path dependencies and whether we are moving towards hardware or software platforms.
Furthermore, the economics of moving to fragmented and closed versus open platforms should
be studied to understand the long term evolution.

3.26 Extreme Requirements: The Challenge of Ultra Large Scale
Systems

Alistair G. Sutcliffe (Univ. of Manchester, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alistair G. Sutcliffe

I review the drivers of complexity in very large scale systems arguing that human unpredict-
ability, exception conditions in social systems, functional bloat, environmental change, and
increasing connectivity are inescapable trends creating over complex, global scale systems
which current RE methods can not address. Dealing with complex systems is confounded by
long development times in changing worlds and communication problem within groups of
developers. Possible solutions for large scale socio-technical systems are explored, ranging
from simulations to understanding the constraints on high level system goals, to evolutionary
approaches which generate and test solutions, where requirements become fitness criteria for
surviving in operational environments. Finally I propose a challenge for developing a sound
abstraction theory to bridge requirements to conceptual system architectures and argue that
abstraction theory will be necessary to effectively ‘divide and conquer’ requirements problems
in complex systems.

3.27 A general-to-specific architectural design for managing
requirements evolution

Fan Yang-Turner (University of Leeds, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Fan Yang-Turner

Deriving requirements from users to support issues with cognitive complexity (such as sense
making or creative thinking) or social complexity (such as trust enhancement or culture
awareness) are difficult. Applications that support these complex issues are often developed
in a fast prototyping manner. The requirements are constantly evolving because of the
interaction between the users and designers catalyzed by the prototype. Meanwhile, few
theories or conceptual models from cognitive science or social science have been reused
to the level of design or development. To manage requirements evolution for cognitive
or social complex issues, I posit a general-to-specific architectural design underpinned by
theoretical models. In this paper, I illustrate this design in a development project, which
creates a platform that facilitates sense making and decision making in data-intensive and
cognitively-complex settings.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 141

3.28 Modeling and (social) complexity – a perspective from
conceptualizing the BI-enabled adaptive enterprise

Eric S. Yu (University of Toronto, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Eric S. Yu

Is complexity good? Is complexity bad? Modern living takes for granted numerous conveni-
ences that are built upon layers upon layers of complexity, most of which are hidden from
us.

Complexity is good, as long as someone else takes care of it. Complex societies derive
value from complexity. We are all benefitting from complexity. Social complexity is achieved
through mechanisms of social organization, such as division of labour, specialization, trust,
commitment, delegation, exchange, markets, power, and politics. Complexity is hidden by
exploiting locality, but is exposed when the locality boundary fails, resulting in (side-)effects
propagating across boundaries.

Requirements arise at the boundary between localized social units (abstract social actors),
as dependencies from service consumer to service provider. Requirements are inherently
distributed. There are numerous consumer/provider interfaces in a society or in an enterprise.
In the classical requirements paradigm, the focus is on the one-time activity of obtaining
a set of high-quality requirements for a single "system". This paradigm applies only in the
context of inflexible, slow-moving, and monolithic service providers. This no longer works in
the "brave new world" [1].

Requirements dynamics result from dynamics in the service consumer and in the service
provider. Since consumer and provider each evolves at its own pace, driven by different
forces and varying degrees of uncertainty, misalignment can be expected between what is
wanted by the consumer and what is offered by the provider. Perfect alignment, or perfect
achievement of requirements despite ongoing change, is unrealistic in the brave new world.
Instead, requirements complexity should be addressed by architecting the enterprise (or
society, or relevant ecosystems) so as to minimize misalignment at the boundaries between
the various social units, taking into account the abilities (and limits) that each unit has in
adapting to its environment.

This perspective on requirements derives from a project on "BI-enabled Adaptive Enter-
prise Architecture", a project within the Business Intelligence Network (BIN), a Canadian
academic-industry collaborative research network. The project aims to position BI and data
analytics within a conception of the adaptive enterprise [2].

References
1 M. Jarke, P. Loucopoulos, K. Lyytinen, J. Mylopoulos, and W. Robinson (2011). The

brave new world of design requirements. Inf. Syst. 36, 7 (November 2011), 992-1008. http:
//dx.doi.org/10.1016/j.is.2011.04.003

2 E. Yu, S. Deng and D. Sasmal (2012). Enterprise Architecture for the Adaptive Enterprise.
Proc. 7th Workshop on Trends in enterprise architecture research (TEAR). at The Open
Group Conference 2012, Barcelona, Spain, October 23–24, 2012. http://dx.doi.org/10.1007/
978-3-642-34163-2_9

12442

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.is.2011.04.003
http://dx.doi.org/10.1016/j.is.2011.04.003
http://dx.doi.org/10.1007/978-3-642-34163-2_9
http://dx.doi.org/10.1007/978-3-642-34163-2_9

142 12442 – Requirements Management – Novel Perspectives and Challenges

3.29 A Feature Model Centric Approach to Requirements
Management and Reuse

Haiyan Zhao (Peking University, CN)

License Creative Commons BY-NC-ND 3.0 Unported license
© Haiyan Zhao

As a critical component of software reuse, requirements reuse provides organizations with
the ability to share requirements across projects without absorbing unnecessary duplication
of artifacts. The key issue in requirements reuse is how to make the requirements reusable.
Requirements are reusable only if they can be easily configurable with respect to the needs and
preference of users in the sense that the requirements should be highly customizable following
the principles of loose-coupling and high-cohesion. To this end, this talk proposes and discusses
an integrated framework for managing and reusing requirements, which adopts feature models
as the centric representations to organize and manage the reusable requirements. It encompass
1) the structures of feature models and the mechanism for requirements family evolution; 2)
the construction of traceability between feature models and other artifacts, such as use cases
and software architecture; 3) the reuse of requirements through feature model customization.

3.30 Requirements Issues in SoC and SoS
Andrea Zisman (City University – London, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andrea Zisman

Main reference A. Zisman, “Requirements Issues in SoC and SoS,” arXiv:1301.5470v1 [cs.SE], 2013.
URL http://arxiv.org/abs/1301.5470

This position paper “Requirements Issues in SoC and SoS” outlines some of the existing
issues and challenges concerned with the complexity of the requirements for service-oriented
computing and systems-of-systems applications.

3.31 A quest for building theories of requirements evolution
Didar Zowghi (Univ. of Technology – Sydney, AU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Didar Zowghi

Main reference V. Gervasi, D. Zowghi, “On the Role of Ambiguity in RE,” in Proc. of the 16th Int’l Working Conf.
on Requirements Engineering, Foundations for Software Quality (REFSQ’10), LNCS, Vol. 6182,
pp. 248–254, 2010.

URL http://dx.doi.org/10.1007/978-3-642-14192-8_22

The primary productive force in information capitalism is the human mind and its cognitive,
linguistic, and creative capacities. New systems of production and exchange, and new orders
of power and control are built to harness, enclose, and exploit what humans can do naturally:
think, communicate, problem-solve, and create etc. Software systems are unique artefacts
both produced by, and helping to produce, informational capitalism. Similar to the larger
systems of power in which software is situated and embedded, it can often be unstable,
uncertain, unpredictable, and prone to disruption and failure. Yet paradoxically, each new
software application developed carries the hopes of human users for order and certainty,

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://arxiv.org/abs/1301.5470
http://arxiv.org/abs/1301.5470
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-14192-8_22
http://dx.doi.org/10.1007/978-3-642-14192-8_22
http://dx.doi.org/10.1007/978-3-642-14192-8_22
http://dx.doi.org/10.1007/978-3-642-14192-8_22

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 143

offering a technological solution that will effectively solve a specific problem or support a
specialized activity or process. No matter how often software systems might under-perform
or fail given the weight of collective and sometimes unrealistic expectations, software users
remain optimistic that ‘this time it will be different!’

What role should requirements engineering research and practice play in increasing the
confidence of users of future systems that their voices will be heard and their needs will
be met better than it has been over 6 decades of software systems development? More
importantly, how could effective RE practices decrease the likelihood of future system failures,
disruptions, and disorder in everyday life? What we as a community have achieved in RE
research thus far that has produced a quantum leap in that direction? These are some of the
questions that many of us would like answered.

I have been exploring some old and recent research questions and issues (summarized
below) that I hope may contribute to responding to some of the above questions.

User involvement in RE and software development
On the one hand, software development processes often focus on a small number of represent-
ative users to give input and feedback in requirements related activities and later during user
acceptance testing. On the other hand, user feedback mechanisms in software systems are
not standardized and remain rather ad hoc. Typically base line features of software approved
by management are perceived to be more important than those requested or needed by less
frequent or less powerful users. Communication channels that allow for effective collaboration
among users or between users and developers are usually decoupled from software systems
and their development infrastructure. Research involves conducting field studies of software
development and software usage, so that we can collect valuable data through observation
of software development tasks and interactions through interviews with as many relevant
stakeholders as possible within the entire software development lifecycle.

The aim is to employ Grounded Theory throughout this longitudinal research project in
order to increase our understanding of the evolution of requirement knowledge generated
by users involvement. We are specifically interested in building theories of generation,
negotiation, validation and sustainability of requirements knowledge through the lens of
users participation. From a management perspective, we wish to develop a sufficiently deep
analysis of the evolution of the role of users involvement in software development and how
this is managed by development teams.

Properties of Requirements Specifications (RS) are attributes that can be associated with
the documented requirements. Properties are important because they enable us to assess
whether an RS is in some way “good” or “better” than another RS. Knowing this, one can
decide when to declare the requirements process complete, how to estimate the cost of a
development effort, and so on. I have studied factors such as inconsistency, incompleteness,
and ambiguity and investigated their evolution and management within the RE process. An
individual cannot inspect or examine a requirements specification and determine its level of
ambiguity, consistency, completeness, etc., without referring to external bodies of knowledge
such as other related documents, business processes, organizational strategy, other systems,
and so on. Many external bodies are highly volatile while others are slow to change while
others are completely static. There is a need to develop sound theories that describe the
dependencies between RS properties, requirements and external bodies of knowledge, and
show how a number of common phenomena (and related properties) can be expressed and
modeled by that theory. In particular, modeling the interdependencies and interrelationships
between these attributes that determine the overall quality of the RS. Here I mention three
of such properties:

12442

144 12442 – Requirements Management – Novel Perspectives and Challenges

Consistency
Every phenomenon that has its ultimate roots in human subjectivity is liable to possible
change in the future. In practice it often happens that revision of requirements comes
either from strikingly new and different needs which demand that the conceptual model
be revised in order to account for them, or from some unexpected conclusions which are
deduced from the conceptual model itself and which may contradict some of the already
known requirements [2]. The problem of managing changing requirements and maintaining
the consistency of evolving requirements throughout software development life cycle is one of
the most significant issues in requirements engineering.

Completeness
The boundary between the real world and the application domain is necessarily a leaky
interface because the individuals and predicates continue to be discovered and captured
during requirements evolution and hence this boundary is volatile. Therefore, at any point
in the evolution of a system, one cannot claim with absolute certainty that all the items
of interest and their relationships have been captured completely, because the application
domain itself (where the requirements are situated), is indeed an evolving entity. This
argument suggests that absolute completeness of requirements specifications can never be
established and completeness remains only as a relative measure [2], [3].

Ambiguity
Ambiguity has long been considered as one of the worst defects in requirements specifications
whose identification and removal should be given higher priority. More recently the nature of
ambiguity has been subject of research that advocates that the simplistic view of ambiguity
as merely a “defect” that has to be avoided at all costs does not do justice to the complexity
of this phenomenon [1].

References
1 Gervasi, V. and Zowghi D., (2010), On the Role of Ambiguity in RE, Proceedings of the 16th

International Working Conference on Requirements Engineering, Foundations for Software
Quality (REFSQ’10), Essen, Germany.

2 Zowghi D. and Gervasi V., (2002), The Three Cs of Requirements: Consistency, Com-
pleteness and Correctness, proceedings of 8th International Workshop on Requirements
Engineering: Foundation for Software Quality, (REFSQ’02), Essen, Germany.

3 Zowghi D., and Gervasi V., (2004), On the Interplay Between Consistency, Completeness,
and Correctness in Requirements Evolution, Journal of Information and Software Techno-
logy, 46(11):763-779.

4 Working Groups

4.1 Managing Complexity within Requirements
Andrea Zisman (City University – London, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andrea Zisman

Joint work of Zisman, Andrea; Maeder, Patrick; Hayes, Jane; King, John; Lauenroth, Kim; Mylopoulos, John;
Ramesh, Bala

In this working group we discussed the main topic of how to manage complexity within
requirements. We started with some initial presentations from the members of the group

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 145

about (i) cognition effects of the human mind and how these effects can influence require-
ments engineering activities; (ii) industrial experience with requirements; (iii) difference
between complicated and complex; (iii) use of traceability queries and visualization; and
(iv) requirements issues when developing SoC and SoS. We also discussed what could be the
causes of complexity, and how to manage complexity within requirements. Some of the ideas
that have been proposed to manage complexity within requirements are: (a) identification of
dependencies and opportunities in requirements, (b) use of test-driven development, (c) use
structural levels of constructions, (d) use of specific terminology, and (e) keep the project
out of the complex space and contain its scope.

4.2 Requirements Discovery and Negotiation in Complex
Environments: Work Group Discussion

Gilbert Fridgen (Universität Augsburg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gilbert Fridgen

Joint work of Fridgen, Gilbert; Hansen, Sean W.; Reymen, Isabelle M.M.J.; Rosenkranz, Christoph; Svensson,
Richard Berntsson; Yu, Eric S.; Zowghi, Didar

During the discussion we structured the topic in four areas that have to be considered
for requirements discovery and negotiation in complex environments: The role of humans,
the design attitude, the difficulties that come with complexity, and the challenges through
evolution.As for human beings, we first have to distinguish between software engineers who
have to deal with complexity during development and end-users who have to cope with a
possible insufficient system. Both stakeholders can be parts of complex systems of power and
politics that can hinder any project, especially if it comes to negotiation. While users are
today by far more involved through participatory design (e.g. with agile methods), observed
use, misuse, or non-use can be an important indicator for the quality of requirements. To
improve communication between software developers and users we have to develop their
skill set to enable boundary spanning between disciplinary knowledge. User observation
is also an important interlink between to role of human beings and the design attitude.
It can be one means of creativity to foster the exploration of user needs that have not
been addressed by a requirements specification before. Especially the focus on processes
instead of products is important here: Users do not need a certain product for itself; they
rather need support in fulfilling their respective processes. To identify and support these
processes, software engineers require a design thinking in contrast to a decision oriented
thinking, iteratively improving their solutions. This can be reached through multiple cycles
of divergence/convergence, effectuation/causation, freezing/unfreezing, and exploration/
exploitation.For complexity itself, it is important to consider that it is only a perception by
humans and that different individuals can perceive it differently, especially if you differentiate
between software engineers and end-users. Modularity seems still to be a powerful means
to break down and manage complexity. Successful strategies to overcome this issue are
furthermore “markets” for innovative ideas like e.g. implemented by Google who reserve only
70% of the time for work that generates direct revenue, 20% for any project they want and
10% for own idea. It is consequently a means to manage the complexity of many employees
having various ideas. Therefore, complexity can be crucial, it can be the source of innovation
that needs to be leveraged.Regarding the evolution of systems and their surroundings we
have to be aware that we are only partially able to drive evolution and that much evolution

12442

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

146 12442 – Requirements Management – Novel Perspectives and Challenges

will just happen by itself requiring systems to react. We therefore need to identify areas
in which we can control evolution and areas in which we have to be prepared e.g. by
implementing a certain amount flexibility. The architectural concept of solid cores and
flexible boundaries seems to be a promising strategy to prepare systems for a controlled
evolution.Out of these challenges we identified to following four research topics to be the
most pressing but currently neglected:First, we need to do more shift our research from a
product to a process focus. Second, we need to explore the dynamics of power and politics in
software development projects to implement corresponding governance structures. Third, we
need to improve human-centered discovery techniques, especially including (fourth) improved
feedback mechanisms.

4.3 Managing complexity through requirements
Anna Hannemann (RWTH Aachen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Anna Hannemann

Joint work of Xavier Franch (chair); Hannemann, Anna (scribe); Cleland-Huang, Jane; Doerr, Joerg; Heidemann,
Julia; Leite, Julio; Rossi, Matti

The discussion addressed questions along different dimensions: requirements nature (require-
ments for RE, Jackson’s problem frames), techniques (social network analysis), domains
(services for citizens, OSS communities) and architectural issues (constraints on mobile
technologies, agile vs. traditional architectural model).

In terms of RE organization (e.g., generic vs. OSS projects, services for systems), different
iteration cycles can be observed. Different frequency of change requires different approaches
to handle the resulting complexity. For example, the complexity of services for mobile
systems consists of: too different users, too different context, too different applications, too
many sensors. The complexity arising during development and evolution of services can
be approached by tailoring the requirement specifications to the development roles and
even individuals. First, define the whole picture of the process, roles and tasks. Second,
provide every participating engineer with a personalized view of his/her role within the
development process. We argue, that the increase of general awareness is one way to
improve the understanding of complexity and, thus, to handle it. Social network analysis
can be applied in order to make not only technical but also social complexity transparent
to the process participants. Socio-technical representation should not only be based on RE
related data, but also incorporate communication and interaction aspects within the whole
development process.

In terms of reducing the complexity of requirements, prioritizing appears to be an
appropriate strategy. The essential (cannot avoid it) complexity can be distinguished from
accidental (this comes from the method). The existence of complex requirements may help
tackling more complex problems (e.g., constraints to model platform variability) on the
one hand. On the other hand, complex requirements are more complex to handle, e.g. to
trace. Prioritizing presents a challenging process and can eventually lead to information loss.
Especially, considering community-driven systems the open questions to answer are: “Where
is the boundary of the system?” and “How to handle the requirements form the long-tail of
community”.

In terms of RE environments, more prescriptive and modular systems can reduce the
complexity of requirements negotiation among multiple stakeholders, different in their views,

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 147

knowledge and needs. However, knowledge innovation is believed to be a result of a creative,
non-restricted process of idea finding. When and why more traditional RE or a generative
model is more suitable – an open question.

In terms of complexity of interactions between architectures and requirements, we need
to understand what the information needs of our architects are. Then we can elicit and
transfer the information to architects. A subset of requirements known as architecturally
significant requirements (ASR) drive architectural design, while at the same time existing
architectural design constrains new functions (requirements) that the system can implement.
This is a cost issue. Almost any new requirements can be accepted, but they will cost more
or less according to the necessary refactoring.

4.4 Managing Complex Systems Evolution with Requirements Models
Matthias Jarke (RWTH Aachen and Fraunhofer FIT, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Matthias Jarke

Joint work of Matthias Jarke (scribe), Xin Peng, Barbara Pernici, Alistair Sutcliffe, Hayian Zhao (chair)

The workgroup addressed three major questions from different perspectives:
Alignment of model types with complex systems and their evolution: models should be
aligned to the required and available depth of knowledge; to support evolution, they
should be simulatable, but also enable ex-post change through traceability
Careful management of model incompleteness: requirements scenarios should be modeled
at different levels of granularity and timescales, with or without consideration of aspects
such as causality or feedback loops; they not only at design time but also at runtime
because of constant change; but all these submodels cannot necessarily be fully connected
to each other. Especially phenomena models beyond the actual system design are of
necessity incomplete, but purpose-focussed traceability patterns may help not to forget
critical aspects that someone has thought about before.
Modeling requirements variation and evolutionary branches: clutter in variation modeling
should be avoided using recent solution approaches such as product families even at the
RE level; similarly, empirical research should identify process patterns of requirements
evolution that can perhaps be standardized.

Alistair Sutcliffe presented Extreme Requirements as the challenge of ultra-large socio-
technical systems to illustrate their typical problems: overambition by desire to improve
existing systems when transferring them to new settings; the tendency of political lobbying
to complicate regulations with endless exceptions; the unpredictability of human users,
developers, and especially decision makers; the evolution of technology combined with
multiple layers of connectivity and thus sources of additional complexity. He stressed the
importance of simulations as well as of not just deterministic but also stochastic goal and
obstacle analysis, and the helpful nature of requirements patterns. Hayian Zhao advocated a
feature-centric approach to RE as a possible answer to many of these challenges. Features
abstract away complexity and evolution in a manner that is relatively easy to communicate
among stakeholders. He, as also Matthias Jarke in his brief talk, stressed the role of
standard platforms and standard software in combining complexity reduction with richness
of innovation. Features are also claimed to provide patterns for traceability, such that Zhao
even proposed to replace domain models altogether by feature models. Barbara Pernici

12442

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

148 12442 – Requirements Management – Novel Perspectives and Challenges

focused her talk on the rarely discussed but practically eminently important aspects of
evolving systems operation requirements, using the example of high-performance systems in
scientific computing. For example, how to make an expensive ocean-simulation environment
more energy-efficient, how to re-balance workload between mobile devices and static servers
in different phases of battery life. New parameters must be introduced into requirements
models to capture these aspects, e.g. frequency of use, data and usage stability, etc.

Finally, Xin Peng focused on the evolution and complexity aspect of socio-technical
systems, claiming that traditional systems that separate human and technical components
to much are neither social nor technical. In the future, we shall face a deeper integration
of human, software, and technical world, but it is unclear how to represent and manage
requirements on such ambient and deeply integrated systems. The group concluded that RE
must become a bit more quantitative, dynamic, and adaptive in its analyses, in many cases
get much more deeply into the modeling of domains which were traditionally outside the IT
world. When attacking complex projects in the sense of John King, requirements engineers,
developers, and also management stakeholders moreover must be prepared to get into deep
research and very major, time-consuming and expensive conceptual and systems revisions as
unexpected phenomena are bound to arise during such projects, unless they are very lucky.
A stepwise approach to taking on and evaluating such systems in relatively simple steps is
therefore strongly recommended, but unfortunately often prevented by the nature of the
political debate.

4.5 Understanding Evolution: Biological, Cultural and Technological
Perspectives

Lin Liu (Tsinghua University Beijing, CN)

License Creative Commons BY-NC-ND 3.0 Unported license
© Lin Liu

Joint work of Liu, Lin; Myloupolous, John; Li, FengLin; Wang, Jun
Main reference L. Gabora, “The Origin and Evolution of Culture and Creativity,”Journal of Memetics –

Evolutionary Models of Information Transmission, 1. 1997.

More and more software systems are required to cope with an ever- changing and evolving
environment. These changes and evolutions could take place in the users needs and demands,
in the capacity and availability of software assets, in the emergence of new technologies, and
in the dimension of time and location, in the physical, systematical and social context of
the operational environments. It has imposed great challenges for requirements engineering
researchers to develop useful techniques to bridge the gap between intuitive user objective
statements to concrete design constraints that is understandable and implementable by
designers. In order to understand the evolution of systems and discuss requirements engin-
eering strategies and techniques in response to the needs of evolution, we need to answer
questions such as: what are the key challenges in requirements engineering for adaptation and
evolution? What are the appropriate models for capturing changes? What are the levels of
abstraction that should be used in light of adaptation and evolution? What are the possible
types of adaptation and evolution? What are the appropriate strategies and mechanisms
supporting requirements and systems co-evolution? I would set out from example evolution
models in biological systems and cultural systems to give my observation on the general
model of requirements and systems co-evolution.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
L. Gabora, ``The Origin and Evolution of Culture and Creativity,''Journal of Memetics -- Evolutionary Models of Information Transmission, 1. 1997.
L. Gabora, ``The Origin and Evolution of Culture and Creativity,''Journal of Memetics -- Evolutionary Models of Information Transmission, 1. 1997.

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 149

5 Joint Panel with the Dagstuhl Seminar on “Foundations and
Challenges of Change and Evolution in ontologies”

5.1 “When worlds collide: Requirements evolution and ontologies”
Matthias Jarke (RWTH Aachen and Fraunhofer FIT, DE) and Ulrike Sattler (University of
Manchester, UK)

When we found out that in parallel to our seminar, another one with a very similar theme
“Foundations and Challenges of Change and Evolution of Ontologies” would be organized
by the knowledge representation/description logic community, we were excited to propose a
joint session of both seminars to investigate how complexity, change, and evolution had been
studied in these usually almost disjoint communities. We also hoped that some people from
both seminars might identify joint topics they could collaborate on.

The joint session took the form of an open discussion with two introductory talks by
Matthias Jarke and Ulrike Sattler. Matthias Jarke tried to establish the link from the RE side
by pointing out the well-known formalization of RE by Jackson and Zave (1995) which was
obviously inspired by the then very active AI community on model-based diagnosis : Given a
set of domain assumptions D and a set of requirements R, find a suitable specification S such
that S, D ⇒ R. In RE research, the R have often been interpreted as goals, to be refined and
satisfied in some extended AND-OR graph structure. Matthias pointed out that reasoning in
goal graphs is now well understood, and can in simple cases be reduced to SAT propositional
reasoning. The fashionable research topic of provable compliance to regulations adds to
the relevance of such approaches. As an even more direct bridge between RE and ontology,
domain assumptions D are nowadays often described as more or less formal ontologies, at
least in their static part. Thus, there seems to be a significant share of formalisms that seem
relevant to both sides. However, since 1995, the problems in RE have shifted significantly,
because the complexity and dynamics of systems has enormously increased. The dynamics
especially in the business sector leads to frequent radical changes in the way domains are
seen and modeled; witness the fashion industry as an extreme and obvious example, but also
the new business models in the Internet, and the blurring of boundaries between hitherto
separate industries e.g. in the Telekom sector. The RE seminar has identified three key
challenges resulting from this growing complexity and change rate, which it would also like
to pose to the ontology colleagues: At least the following key challenges to research and
practice were identified in the seminar, together with counter-strategies where promising first
steps for solutions:

In large-scale projects, continuous changes in D and R lead to a shockingly high share of
“black swan” projects that exceed budget by more than 70% and schedule more than 200%.
A central cause are often politically motivated over-ambitious goals, with systematic
under-estimation of requirements and resource needs, as well as poor change tracking.
As a consequence, we strongly recommend not just to model the domain but also model
and continuously monitor stakeholder goals, social structures and strategic dependencies
during the development process, and even beyond. Monitoring and decision tracing should
be supported by formal patterns (a kind of change ontologies?) to ensure compliance and
effectively assess the impact of proposed changes.
In the seminar, John King pointed out the difference between “complicated” and “complex”
problems. Complicated problems can be solved by experienced, highly competent engineers
with foreseeable effort. In contrast, complex problems can only be explored with uncertain
results; thus, taking on a project that tries to solve a complex problem in one shot is bound

12442

150 12442 – Requirements Management – Novel Perspectives and Challenges

to lead to disaster. Platform strategies offer architectural mechanisms that constrain,
but also leverage complexity. They constrain complexity because they offer a very large
number of users and developers a uniform base understanding at a level of technology
which is already well understood. They leverage complexity in that they allow end
user-driven innovation on their top, witness e.g. the development of a huge app ecosystem
on the iPhone platform. It could be interesting to see how ontologies might help to
capture what the platforms offer, but one could also imagine data mining methods that
would generalize an ontology of what is (successfully or not successfully) innovated by
the huge chaos of apps.

After the social software revolution, few people would doubt that information systems need to
be seen, and modeled, as socio-technical systems. But many traditional software systems are
anything but social, and in the future, the upcoming cyberphysical systems reaching out to
the real world with billions of sensors/actuators will teach us that our systems understanding
so far is not sufficiently technical, either. The challenges mentioned above are therefore likely
to increase in the near future, rather than being reduced. Perhaps a bit too immodestly,
we claim that RE is the marketplace where responsibility is traded, and we need all the
formalisms and tools we can get to help that task. Communication and mutual understanding
is also the stated key goal of ontologies, so ontology evolution could of great interest of RE
as well if a common language of interaction between the communities could be found.

Ulrike Sattler introduced the goals of the Ontology seminar. The knowledge represent-
ation/description logic community has focused on precise semantics for shared ontologies,
supported by automated reasoning mechanisms with guaranteed time and space complexity,
and a model theory that can operate purely at the schema level (possible worlds), or including
instance-level real-world facts. One important specific objective has been to characterize
precisely what kind of knowledge about the real world can or cannot be expressed by a
specific ontology formalism. Research on change and evolution of ontologies has for a long
time been a rather marginal part of the field, but is growing in importance in the last years.
Four different formal approaches are being pursued:

Calculating the difference between two ontologies (not just their syntactic structure, but
also the derivable properties)
Modeling timelines how concepts change over multiple versions of an ontology; as an
example: In the fishery domain, the definition of what a salmon is has changed many
times over the past 50 years; is it still possible to make, and formally justify a statistical
statement whether the population of salmon has been growing or shrinking in this period?
Belief revision within an ontology after new facts become known: numerous methods
from databases (view maintenance, view updates) and knowledge representation (non-
monotonic and paraconsistent reasoning) have been explored for cases where consistent
repair of the overall beliefs is possible, or even where unrepairable inconsistencies remain.
Reasoning about actions: Explicit modeling of actions and their effects aims at integrating
the modeling of dynamic aspects into ontologies, thus supporting also tasks like planning
and prediction from observed or modeled history.

In the subsequent discussion, many possible overlaps of interest were discussed. One example
of shared interest is the law domain which has been a very interesting subject for ontology
modelers for quite a while, and has become of great interest to requirements engineers due
to the growing importance of all kinds of compliance in current systems. A second example
is the question of dealing with paradigm change in fields such as biology, medicine, or even
fashion, where the same data (biological specimen, medical observations, clothing colors
and designs) need to be re-interpreted under new world views or ontologies – a problem

Jane Cleland-Huang, Matthias Jarke, Lin Liu, and Kalle Lyytinen 151

also known in the field of databases as consistent query processing under schema evolution).
A third interesting question is the comparison of virtual vs. materialized dependencies
among domain and system concepts. Ontologies based on description logics that allow to
represent also some aspects of incomplete or negative knowledge, might on the one hand
help with automated reasoning about the relationships between requirements, or between
requirements and designs, especially where the impact analysis of proposed requirements
changes is concerned. On the other hand, traceability research in RE seems very advanced
in materializing effectively the dependency knowledge where virtual reasoning would not be
helpful because of human design decisions, or experience-based dependency structures for
which no general logical description is available. One possible joint follow-up project which
was envisioned in the seminar, could therefore be to find a new solution that combines the
strengths of the KR and RE approaches in this field.

12442

152 12442 – Requirements Management – Novel Perspectives and Challenges

Participants

Nicholas Berente
University of Georgia, US

Richard Berntsson Svensson
Lund University, SE

Jörg Dörr
Fraunhofer IESE –
Kaiserslautern, DE

Xavier Franch
UPC – Barcelona Tech –
Barcelona, ES

Gilbert Fridgen
Universität Augsburg, DE

Anna Hannemann
RWTH Aachen, DE

Sean Hansen
Rochester Institute of
Technology, US

Julia Heidemann
McKinsey & Company –
München / Universiät
Regensburg

Jane Cleland-Huang
DePaul University – Chicago, US

Jane Huffmann Hayes
University of Kentucky, US

Matthias Jarke
RWTH Aachen, DE

John Leslie King
University of Michigan – Ann
Arbor, US

Kim Lauenroth
adesso AG – Dortmund, DE

Julio Cesar Leite
PUC-Rio de Janeiro, BR

Lin Liu
Tsinghua University Beijing, CN

Kalle Lyytinen
Case Western Reserve University
– Cleveland, US

Patrick Mäder
TU Ilmenau, DE

John Mylopoulos
University of Toronto, CA

Andreas Oberweis
KIT – Karlsruhe Institute of
Technology, DE

Barbara Paech
Universität Heidelberg, DE

Xin Peng
Fudan University – Shanghai, CN

Barbara Pernici
Politecnico di Milano, IT

Balasubramaniam Ramesh
Georgia State University, US

Isabelle Reymen
TU Eindhoven, NL

William N. Robinson
Georgia State University, US

Christoph Rosenkranz
Goethe-Universität Frankfurt am
Main, DE

Matti Rossi
Aalto University, FI

Alistair G. Sutcliffe
Univ. of Manchester, GB

Fan Yang-Turner
University of Leeds, GB

Eric S. Yu
University of Toronto, CA

Haiyan Zhao
Peking University, CN

Andrea Zisman
City University – London, GB

Didar Zowghi
Univ. of Technology –
Sydney, AU

	Executive Summary Matthias Jarke
	Table of Contents
	Overview of Talks
	Requirements for Digital Infrastructure Innovation: Three Broad Strategies for Organizations Nicholas Berente
	Models of Institutional Evolution for Requirements Engineering Nicholas Berente
	Has Time Stood Still in Requirements Engineering? Richard Berntsson Svensson
	Requirements Engineering for Requirements Engineering Joerg Doerr
	Requirements Management for Service Providers: the Case of Services for Citizens Xavier Franch
	The Importance of Continuous Value Based Project Management in the Context of Requirements Engineering Gilbert Fridgen and Julia Heidemann
	Requirements Engineering Discovery in Open Source Software Projects Anna Hannemann
	Requirements Engineering as a Distributed Cognitive Process Sean Hansen
	Orthogonal Perspectives on Taming Complexity Jane Cleland-Huang
	Walk Before You Run: A Dialogue with Three US Developers on ``Within'' Complexity of Requirements Jane Huffmann Hayes
	Complexity Explained John Leslie King
	Where is the human mind in requirements engineering (research) and what do we think and know of it? Kim Lauenroth
	Software Requirements Are Soft Julio Cesar Leite
	The evolution of requirements: towards an ecological theory Kalle Lyytinen
	Interactive Traceability Querying and Visualization for Coping With Development Complexity Patrick Maeder
	Requirements Complexity and Evolution: A Computational Perspective John Mylopoulos
	Large Scale Business System Evolution Andreas Oberweis
	Requirements Engineering Intelligence: Dealing with Complexity and Change Barbara Paech
	Managing Requirements Evolution in Software Product Lines Xin Peng
	Software evolution in complex environments Barbara Pernici
	Boundary Spanning in RE Balasubramaniam Ramesh
	Dealing with uncertainty and iterations in design processes: An entrepreneurial perspective Isabelle Reymen
	Understanding Software System Evolution through Requirements Monitoring William N. Robinson
	Getting to the Shalls: Facilitating Sense-Making in Requirements Engineering Christoph Rosenkranz
	Platforms wars as a source of complexity Matti Rossi
	 Extreme Requirements: The Challenge of Ultra Large Scale Systems Alistair G. Sutcliffe
	A general-to-specific architectural design for managing requirements evolution Fan Yang-Turner
	Modeling and (social) complexity – a perspective from conceptualizing the BI-enabled adaptive enterprise Eric S. Yu
	A Feature Model Centric Approach to Requirements Management and Reuse Haiyan Zhao
	Requirements Issues in SoC and SoS Andrea Zisman
	A quest for building theories of requirements evolution Didar Zowghi

	Working Groups
	Managing Complexity within Requirements Andrea Zisman
	Requirements Discovery and Negotiation in Complex Environments: Work Group Discussion Gilbert Fridgen
	Managing complexity through requirements Anna Hannemann
	Managing Complex Systems Evolution with Requirements Models Matthias Jarke
	Understanding Evolution: Biological, Cultural and Technological Perspectives Lin Liu

	Joint Panel with the Dagstuhl Seminar on ``Foundations and Challenges of Change and Evolution in ontologies''
	``When worlds collide: Requirements evolution and ontologies'' Matthias Jarke and Ulrike Sattler

	Participants

