
Report from Dagstuhl Seminar 12461

Games and Decisions for Rigorous Systems Engineering
Edited by
Nikolaj Bjørner1, Krishnendu Chatterjee2, Laura Kovacs3, and
Rupak M. Majumdar4

1 Microsoft Research – Redmond, US, nbjorner@microsoft.com
2 IST Austria – Klosterneuburg, AT, Krishnendu.Chatterjee@ist.ac.at
3 TU Wien, AT, lkovacs@complang.tuwien.ac.at
4 MPI for Software Systems – Kaiserslautern, DE, rupak@mpi-sws.org

Abstract
This report documents the program and the outcomes of the Dagstuhl Seminar 12461 “Games and
Decisions for Rigorous Systems Engineering”. The seminar brought together researchers working
in rigorous software engineering, with a special focus on the interaction between synthesis and
automated deduction. This event was the first seminar of this kind and a kickoff of a series
of seminars organised on rigorous systems engineering. The theme of the seminar was close in
spirit to many events that have been held over the last decades. The talks scheduled during the
seminar naturally reflected fundamental research themes of the involved communities.

Seminar 11.–16. November, 2012 – www.dagstuhl.de/12461
1998 ACM Subject Classification C.1.4 Parallel Architectures, D.2.4 Software/Program Verific-

ation, D.2.5 Testing and Debugging, D.3.1 Formal Definitions and Theory, D.3.2 Language
Classifications, F.1.1 Models of Computation, F.4.1 Mathematical Logic, I.2.2 Automatic
Programming, I.2.3 Deduction and Theorem Proving

Keywords and phrases Systems Engineering, Software Verification, Reactive Synthesis, Auto-
mated Deduction

Digital Object Identifier 10.4230/DagRep.2.11.45

1 Executive Summary

Nikolaj Bjørner
Krishnendu Chatterjee
Laura Kovacs
Rupak M. Majumdar

License Creative Commons BY-NC-ND 3.0 Unported license
© Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar

Principled approaches to systems design offer several advantages, including developing safety-
critical systems and scaling technological advances with multi-core processes and cloud
computing. Rigorous mathematical techniques, such as model checking, decision procedures,
and abstract interpretation, are dominantly used a posteriori in systems engineering: a
program is formally analyzed after it has been developed. In the context of rigorous systems
engineering, post-hoc verification is however very costly and error-prone. The explosion of
concurrent computation in the new generation of embedded systems has therefore motivated
the integration of established methods with novel techniques in the design process from day
one.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY-NC-ND 3.0 Unported license

Games and Decisions for Rigorous Systems Engineering, Dagstuhl Reports, Vol. 2, Issue 11, pp. 45–65
Editors: Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12461
http://dx.doi.org/10.4230/DagRep.2.11.45
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

46 12461 – Games and Decisions for Rigorous Systems Engineering

Such an integration has been materialized in using game theoretic synthesis of reactive
systems from higher level design requirements. In many synthesis algorithms, it is better to
work with symbolic representations, where the state space is modeled using logical formulas.
This enables techniques to scale to potentially infinite models, but requires decision procedures
for checking the validity of sentences in the pertinent logical theories. The increasingly
complex integration of model checking with complementary techniques such as software
testing has imposed new requirements on decision procedures, such as proof generation,
unsatisfiable core extraction, and interpolation.

The main goal of the Dagstuhl Seminar 12461 “Games and Decisions for Rigorous
Systems Engineering” was to bring together researchers working in the field of rigorous
systems engineering, the tool-supported application of mathematical reasoning principles to
the design and verification of complex software and hardware systems. The seminar had a
special focus on developing systems (reactive, concurrent, distributed) using recent advances
in game theoretic synthesis and in decision procedures and automated deduction techniques.

The seminar covered the following three main areas:
software verification (reactive, concurrent, distributed);
game theory and reactive synthesis;
decision procedures (SAT, SMT, QBF) and theorem proving (first and higher order).

Within the scope of these areas, the seminar addressed tooling around software testing,
model checking, interpolation, decision procedures, and model finding methods in automated
theorem proving.

In the spirit of advancing tools and theory in related areas of theorem proving and model
checking, the seminar schedule included tutorials on games, synthesis, theorem proving;
research talks on recent results; and discussion sessions on applications and exchange formats
for benchmarking tools.

The seminar fell on 5 days in the week of November 12–16, 2012. All together, 43
researchers participated (11 women and 32 men).

Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar 47

2 Table of Contents

Executive Summary
Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar . 45

Overview of Talks
Lazy Abstraction with Interpolants for Arrays
Francesco Alberti . 49

Conditional Model Checking: A Technique to Pass Information between Verifiers
Dirk Beyer . 49

Efficient Controller Synthesis for Consumption Games with Multiple Resource
Types
Tomas Brazdil . 50

Stochastic Program Synthesis with Smoothed Numerical Search
Swarat Chaudhuri . 50

Games in System Design: Tutorial and Survey
Laurent Doyen . 51

A new learning scheme for QDPLL solvers
Uwe Egly . 51

Inductive Data Flow Graphs
Azadeh Farzan . 51

Synthesis of reactive systems
Bernd Finkbeiner . 52

Deciding Floating-Point Logic with Systematic Abstraction
Alberto Griggio . 52

Concurrent Test Generation using Concolic Multi-Trace Analysis
Aarti Gupta . 53

VINTA: Verification with Interpolation and Abstract Interpretation
Arie Gurfinkel . 53

Proof Tree Preserving Interpolation
Jochen Hoenicke . 54

Underapproximation of Procedure Summaries for Integer Programs
Radu Iosif . 54

Proving Properties about Functional Programs
Moa Johansson . 54

Preprocessing for first-order logic with applications to hardware verification
Konstantin Korovin . 55

Asynchronous Games over Tree Architectures
Anca Muscholl . 55

A Tutorial on SAT and SMT
Albert Oliveras . 56

Decision Problems for Linear Recurrence Sequences
Joel Ouaknine . 56

12461

48 12461 – Games and Decisions for Rigorous Systems Engineering

Automated Game-theoretic Verification for Probabilistic Systems
David Parker . 56

Beluga: Programming proofs in context
Brigitte Pientka . 57

Proving termination of C-like programs using MAX-SMT
Albert Rubio . 57

Program verification as constraint solving (also for CTL* properties)
Andrey Rybalchenko . 58

QBFs and Certificates
Martina Seidl . 58

Incremental Upgrade Checking by Means of Interpolation-based Function Summaries
Natasha Sharygina . 58

Quantitatively Relaxed Concurrent Data Structures
Ana Sokolova . 59

Introduction to the Sketch Synthesis System
Armando Solar-Lezama . 59

A Semantic Account for Modularity in Multi-language Modelling of Search Problems
Eugenia Ternovska . 59

Secure Two-Party Computation in ANSI C
Helmut Veith . 60

Verification of Low Level List Manipulation
Tomas Vojnar . 60

First-order theorem proving and Vampire
Andrei Voronkov . 61

Labelled Interpolation Systems
Georg Weissenbacher . 61

Parameterized Model Checking of Fault-tolerant Distributed Algorithms
Josef Widder . 62

Complete Instantiation-Based Interpolation
Thomas Wies . 62

Working Groups . 63

Discussions . 63

Collaborations and Interaction . 64

Participants . 65

Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar 49

3 Overview of Talks

3.1 Lazy Abstraction with Interpolants for Arrays
Francesco Alberti (University of Lugano, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
© Francesco Alberti

Joint work of Alberti, Francesco; Bruttomesso, Roberto; Ghilardi, Silvio; Ranise, Silvio; Sharygina, Natasha
Main reference F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, N. Sharygina, “Lazy Abstraction with

Interpolants for Arrays,” in Proc. of 18th Int’l Conf. on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’12), LNCS, Vol. 7180, pp. 46–61, 2012.

URL http://dx.doi.org/10.1007/978-3-642-28717-6_7

Efficient and automatic model checking of software with unbounded data structure is a long
standing scientific challenge. Abstraction/refinement techniques need to be carefully adapted
when unbounded data structures come into play because of the need of quantified predic-
ates. In this talk we will describe a recently proposed framework, “Lazy Abstraction with
Interpolants for Arrays”, suited for reasoning about programs with unbounded arrays. The
framework integrates a symbolic backward reachability analysis with an interpolation-based
refinement procedure. It allows for an efficient handling of quantified formulas representing
backward reachables states and exploiting of quantifier-free interpolation algorithms for
refining predicates along spurious counterexamples. The talk will also describe SAFARI
(SMT-based Abstraction For Arrays with Interpolants), a tool implementing this framework,
and present “term abstraction”, a heuristic used to tune interpolation algorithms.

3.2 Conditional Model Checking: A Technique to Pass Information
between Verifiers

Dirk Beyer (Universität Passau, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Dirk Beyer

Joint work of Beyer, Dirk; Henzinger, Thomas A.; Keremoglu, M. Erkan; Wendler, Philipp
Main reference D. Beyer, T.A. Henzinger, M.E. Keremoglu, P. Wendler, “Conditional Model Checking: A

Technique to Pass Information between Verifiers,” in Proc. of the 20th ACM SIGSOFT Int’l Symp.
on the Foundations of Software Engineering (FSE’12), ACM, 2012.

URL http://dx.doi.org/10.1145/2393596.2393664
URL http://www.sosy-lab.org/ dbeyer/Publications/2012-FSE.Conditional_Model_Checking.pdf

Software model checking, as an undecidable problem, has three possible outcomes: (1)
the program satisfies the specification, (2) the program does not satisfy the specification,
and (3) the model checker fails. The third outcome usually manifests itself in a space-out,
time-out, or one component of the verification tool giving up; in all of these failing cases,
significant computation is performed by the verification tool before the failure, but no result
is reported. We propose to reformulate the model-checking problem as follows, in order to
have the verification tool report a summary of the performed work even in case of failure:
given a program and a specification, the model checker returns a condition P —usually a
state predicate— such that the program satisfies the specification under the condition P
—that is, as long as the program does not leave the states in which P is satisfied. In our
experiments, we investigated as one major application of conditional model checking the
sequential combination of model checkers with information passing. We give the condition
that one model checker produces, as input to a second conditional model checker, such that
the verification problem for the second is restricted to the part of the state space that is

12461

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-28717-6_7
http://dx.doi.org/10.1007/978-3-642-28717-6_7
http://dx.doi.org/10.1007/978-3-642-28717-6_7
http://dx.doi.org/10.1007/978-3-642-28717-6_7
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1145/2393596.2393664
http://www.sosy-lab.org/~dbeyer/Publications/2012-FSE.Conditional_Model_Checking.pdf

50 12461 – Games and Decisions for Rigorous Systems Engineering

not covered by the condition, i.e., the second model checker works on the problems that the
first model checker could not solve. Our experiments demonstrate that repeated application
of conditional model checkers, passing information from one model checker to the next,
can significantly improve the verification results and performance, i.e., we can now verify
programs that we could not verify before.

3.3 Efficient Controller Synthesis for Consumption Games with
Multiple Resource Types

Tomas Brazdil (Masaryk University, CZ)

License Creative Commons BY-NC-ND 3.0 Unported license
© Tomas Brazdil

Joint work of Brazdil, Tomas; Chatterjee, Krishnendu; Kucera, Antonin: Novotny, Petr

We introduce consumption games, a model for discrete interactive system with multiple
resources that are consumed or reloaded independently. More precisely, a consumption game
is a finite-state graph where each transition is labeled by a vector of resource updates, where
every update is a non-positive number or omega. The omega updates model the reloading
of a given resource. Each vertex belongs either to player Box or player Diamond, where
the aim of player Box is to play so that the resources are never exhausted. We consider
several natural algorithmic problems about consumption games, and show that although
these problems are computationally hard in general, they are solvable in polynomial time for
every fixed number of resource types (i.e., the dimension of the update vectors) and bounded
resource updates.

3.4 Stochastic Program Synthesis with Smoothed Numerical Search
Swarat Chaudhuri (Rice University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Swarat Chaudhuri

Writing programs that behave optimally on probabilistic inputs is a highly challenging task. In
this talk, I will describe a program synthesis procedure targeted to such tasks. The procedure
takes an input an infinite-state program sketch annotated with a set of boolean assertions and
a set of quantitative objectives. The procedure’s goal is to find an implementation that (a)
satisfies the boolean assertions with probability above a certain bound; (b) in the expected
behavior of the program, the quantitative objectives are minimized. We solve this problem
using a combination of local numerical optimization and probabilistic abstract interpretation,
called “smoothed numerical search”. The core idea of the algorithm is to approximate a
program using a series of smooth mathematical functions. Each of these approximations is
“unsound”; however, at the limit they converge to a sound abstraction.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar 51

3.5 Games in System Design: Tutorial and Survey
Laurent Doyen (CNRS, ENS – Cachan, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Laurent Doyen

We present a tutorial introduction on two-player games played on graphs, we discuss their
fundamental properties, and basic ingredients for algorithmic solutions and complexity
analysis. Along with applications in the design and formal verification of reactive systems,
we survey recent results about games with quantitative objectives, combination of multiple
objectives, and partial-observation games.

3.6 A new learning scheme for QDPLL solvers
Uwe Egly (TU Wien, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Uwe Egly

Joint work of Egly, Uwe; Lonsing, Florian; Van Gelder, Allen

Most of todays DPLL-based QBF solvers employ Q-resolution to learn clauses or cubes.
The classical learning scheme from conflicts starts with the clause falsified by the current
assignment and resolve upon existential variables in reverse assignment order using antecedent
clauses stored in the implication graph during BCP.

We identify a class of formulas F1, F2, ... for which (i) learning a single clause with the
above scheme in an evaluation of Fk is exponential in k and (ii) Fk has a resolution proof
of linear length. We propose a new learning scheme which avoids such efficency problems.
The new scheme employs resolution “from the decisions towards the conflict”, i.e., in the
direction in which decisions have been propagated during QBCP. We discuss experimental
results obtained with a very first implementation into depQBF.

This is joint work with Florian Lonsing (Vienna University of Technology) and Allen Van
Gelder (University of California at Santa Cruz).

3.7 Inductive Data Flow Graphs
Azadeh Farzan (University of Toronto, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Azadeh Farzan

Joint work of Farzan, Azadeh; Kincaid, Zachary; Podelski, Andreas;
Main reference To appear in POPL 2013 (proceedings information not available yet).

The correctness of a sequential program can be shown by the annotation of its control flow
graph with inductive assertions. We propose inductive data flow graphs, data flow graphs
with incorporated inductive assertions, as the basis of an approach to verifying concurrent
programs. An inductive data flow graph accounts for a set of dependencies between program
actions in interleaved thread executions, and therefore stands as a representation for the
set of concurrent program traces which give rise to these dependencies. The approach first
constructs an inductive data flow graph and then checks whether all program traces are
represented. The size of the inductive data flow graph is polynomial in the number of data

12461

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
To appear in POPL 2013 (proceedings information not available yet).

52 12461 – Games and Decisions for Rigorous Systems Engineering

dependencies (in a sense that can be made formal); it does not grow exponentially in the
number of threads unless the data dependencies do. The approach shifts the burden of the
exponential explosion towards the check whether all program traces are represented, i.e., to
a combinatorial problem (over finite graphs).

3.8 Synthesis of reactive systems
Bernd Finkbeiner (Universität des Saarlandes, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Bernd Finkbeiner

Joint work of Finkbeiner, Bernd; Schewe, Sven; Jacobs, Swen

More than fifty years after its introduction by Alonzo Church, the synthesis problem is still one
of the most intriguing challenges in the theory of reactive systems. Synthesis is particularly
difficult in the setting of distributed systems, where we try to find a combination of process
implementations that jointly guarantee that a given specification is satisfied. A reduction
from multi-player games shows that the problem is in general undecidable. Despite this
negative result, there is a line of discoveries where the decidability of the synthesis problem
was established for distributed systems with specific architectures, such as pipelines and
rings, or other restrictions on the problem, such as local specifications. Encouraged by these
findings, new specification languages like Coordination Logic aim for a comprehensive logical
representation and a uniform algorithmic treatment of the decidable synthesis problems.
In this talk, I will trace the progress from isolated decidability results towards universal
synthesis logics and algorithms. I will demonstrate how the logical representation of the
synthesis problem simplifies the identification of decidable cases and give an overview on the
state of the art in decision procedures and strategy construction algorithms for the synthesis
of reactive systems.

3.9 Deciding Floating-Point Logic with Systematic Abstraction
Alberto Griggio (Fondazione Bruno Kessler – Trento, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alberto Griggio

Joint work of Haller, Leopold; Griggio, Alberto; Brain, Martin; Kroening, Daniel;
Main reference L. Haller, A. Griggio, M. Brain, D. Kroening, “Deciding Floating-Point Logic with Systematic

Abstraction,” in Proc. of the 12th Conf. on Formal Methods in Computer-Aided Design
(FMCAD’12), 2012.

URL
URL http://www.cs.utexas.edu/ hunt/FMCAD/FMCAD12/fmcad2012.pdf

We present a bit-precise decision procedure for the theory of binary floating-point arithmetic.
The core of our approach is a non-trivial generalisation of the conflict analysis algorithm
used in modern SAT solvers to lattice-based abstractions. Existing complete solvers for
floating-point arithmetic employ bit-vector encodings. Propositional solvers based on the
Conflict Driven Clause Learning (CDCL) algorithm are then used as a back-end. We present
a natural-domain SMT approach that lifts the CDCL framework to operate directly over
abstractions of floating-point values. We have instantiated our method inside MathSAT with
the floating-point interval abstraction. The result is a sound and complete procedure for
floating-point arithmetic that outperforms the state-of-the-art significantly on problems that

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.cs.utexas.edu/~hunt/FMCAD/FMCAD12/fmcad2012.pdf
http://www.cs.utexas.edu/~hunt/FMCAD/FMCAD12/fmcad2012.pdf
http://www.cs.utexas.edu/~hunt/FMCAD/FMCAD12/fmcad2012.pdf
http://www.cs.utexas.edu/~hunt/FMCAD/FMCAD12/fmcad2012.pdf

Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar 53

check ranges on numerical variables. Our technique is independent of the specific abstraction
and can be applied to problems beyond floating-point satisfiability checking.

3.10 Concurrent Test Generation using Concolic Multi-Trace Analysis
Aarti Gupta (NEC Laboratories America, Inc. – Princeton, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Aarti Gupta

Joint work of Gupta, Aarti; Razavi, Noloofar; Kahlon, Vineet

Discovering concurrency bugs is inherently hard due to nondeterminism in multi-thread
scheduling. Predictive analysis techniques have been used to find such bugs by observing
given test runs, and then searching for other interesting thread interleavings. For sequential
code, SMT-based concolic execution techniques have been used successfully to generate
interesting test inputs to increase structural code coverage such as branch or statement
coverage. In this talk, I will describe our recent work that targets increasing code coverage
in multi-thread programs by using a concolic multi-trace analysis (CMTA) that combines
elements of prediction with generation of new test inputs. We have implemented CMTA and
show encouraging results on benchmark programs.

This is joint work with Niloofar Razavi, Franjo Ivancic, and Vineet Kahlon; to appear
soon at the Asian Symposium on Programming Languages and Systems (APLAS 2012).

3.11 VINTA: Verification with Interpolation and Abstract
Interpretation

Arie Gurfinkel (CMU – Pittsburgh, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Arie Gurfinkel

Joint work of Gurfinkel, Arie; Albarghouthi, Aws; Chechik, Marsha
Main reference A. Gurfinkel, A. Albarghouthi, M. Chechik, “Craig Interpretation,” in Proc. of 19th Int’l Symp. on

Static Analysis (SAS’12), LNCS, Vol. 7460, pp. 300–316, Springer, 2012.
URL http://dx.doi.org/10.1007/978-3-642-33125-1_21

Abstract interpretation (AI) is one of the most scalable automated program verification
techniques. The scalability is achieved through aggressive abstraction in basic analysis steps
(i.e., joins and widening). This leads to loss of precision. As such, AI is plagued by false
alarms. In this talk, I will present VINTA, an algorithm that enriches AI with Abstraction
Refinement techniques from Model Checking to alleviate the false alarms. VINTA is an
iterative algorithm that uses Craig interpolants to refine and guide AI away from false alarms.
VINTA is based on a novel refinement strategy that capitalizes on recent advances in SMT
and interpolation-based Model Checking. On one hand, it can find concrete counterexamples
to justify alarms produced by AI. On the other, it can strengthen invariants to exclude
alarms that cannot be justified. The refinement process continues until either a safe inductive
invariant is computed, a counterexample is found, or resources are exhausted. This strategy
allows VINTA to recover precision lost in many AI steps. VINTA has been implemented as
part of the UFO verification framework. It is a big contributor to the success of UFO in the
2nd International Software Verification Competition.

12461

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-33125-1_21
http://dx.doi.org/10.1007/978-3-642-33125-1_21
http://dx.doi.org/10.1007/978-3-642-33125-1_21

54 12461 – Games and Decisions for Rigorous Systems Engineering

3.12 Proof Tree Preserving Interpolation
Jochen Hoenicke (Universität Freiburg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jochen Hoenicke

Craig interpolants are widely used in model checking and state space abstraction. Interpolants
typically are extracted from proofs produced by theorem provers. While this extraction
procedure is easy and well understood in the context of propositional logic, extracting
interpolants from a proof generated by an SMT solver is more complex. In contrast to SAT
solvers, SMT solvers create new literals, e.g., to combine multiple theories in a Nelson-Oppen
style or to split the solution space using cuts. These literals might contain symbols local to
different parts of the interpolation problem. Such literals are called mixed, or, sometimes,
uncolorable. Resolution steps on mixed literals are the major difficulty when extracting
interpolants from proofs from SMT solvers.

We present a technique to compute Craig interpolants in the theory of uninterpreted
functions combined with the theory of linear arithmetic either over the reals or the integers.
The interpolation scheme is based on a syntactical restriction of the partial interpolants
and specialized rules to interpolate resolution steps on mixed literals. Contrary to existing
approaches, this scheme neither limits the inferences done by the SMT solver, nor does it
transform the proof tree before extracting interpolants. The interpolation scheme is used in
the interpolating SMT solver SMTInterpol.

3.13 Underapproximation of Procedure Summaries for Integer
Programs

Radu Iosif (VERIMAG – Gières, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Radu Iosif

We show how to underapproximate the procedure summaries of recursive programs over the
integers using off-the-shelf analyzers for non-recursive programs. The novelty of our approach
is that the non-recursive program we compute may capture unboundedly many behaviors
of the original recursive program for which stack usage cannot be bounded. Moreover, we
identify a class of recursive programs on which our method terminates and returns the precise
summary relations without underapproximation. Doing so, we generalize a similar result for
non-recursive programs to the recursive case. Finally, we present experimental results of an
implementation of our method applied on a number of examples.

3.14 Proving Properties about Functional Programs
Moa Johansson (Chalmers UT – Göteborg, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Moa Johansson

Joint work of Claessen, Koen; Johansson, Moa; Rosen, Dan; Smallbone, Nicholas

HipSpec is an automatic inductive theorem prover for proving properties about Haskell
programs. It implements a novel bottom-up approach to lemma discovery: potentially

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar 55

interesting lemmas about available functions and datatypes are first synthesised creating a
richer background theory for the prover.

HipSpec consists of several sub-systems: Hip is an inductive theorem prover. It translates
Haskell function definitions to first order logic and applies induction to given conjectures.
Resulting proof obligations are passed to an off the shelf prover (for instance E or Z3).

QuickSpec is responsible for generating candidate lemmas about available functions
and datatypes. It generates terms which are divided up into equivalence classes using
counterexample testing. From these equivalence classes, equations can be derived. These are
passed to Hip for proof. Those that are proved are added to the background theory and may
be used in subsequent proofs.

HipSpec is available for download from https://github.com/danr/hipspec

3.15 Preprocessing for first-order logic with applications to hardware
verification

Konstantin Korovin (University of Manchester, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Konstantin Korovin

Joint work of Krystof Hoder, Zurab Khasidashvili, Konstantin Korovin and Andrei Voronkov
Main reference K. Hoder, Z. Khasidashvili, K. Korovin, A. Voronkov, “Preprocessing Techniques for First-Order

Clausification,” in Proc. of the 12th Conf. on Formal Methods in Computer-Aided Design
(FMCAD’12), pp. 44–51, 2012.

URL http://www.cs.man.ac.uk/ korovink/my_pub/fmcad_2012.pdf

We discuss several preprocessing techniques for simplifying first-order formulas aimed at
improving clausification. These include definition inlining and merging, simplifications
based on new data structure called quantified AIG, and its combination with OBDDs.
These techniques were inspired by applications of first-order theorem proving to hardware
verification.

3.16 Asynchronous Games over Tree Architectures
Anca Muscholl (Université Bordeaux, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Anca Muscholl

The control problem starts with a plant and asks to restrict its controllable actions in such
a way that a given specification is met. Synthesis can be seen as a special case of control.
We consider a distributed version of the control problem where both plant and controller
are parallel compositions of finite-state processes communicating via shared variables (also
known as Zielonka asynchronous automata). The most important aspect of this model is
that the processes participating in a synchronization can exchange the complete information
about their causal past. Thus, it is an intriguing open problem whether this control setting is
decidable. We show decidability when the communication architecture is acyclic. In this case,
if there is a solution then controllers exchange only bounded information. The complexity
of our algorithm is l-fold exponential with l being the height of the tree representing the
architecture. We show that this complexity is tight.

12461

https://github.com/danr/hipspec
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.cs.man.ac.uk/~korovink/my_pub/fmcad_2012.pdf
http://www.cs.man.ac.uk/~korovink/my_pub/fmcad_2012.pdf
http://www.cs.man.ac.uk/~korovink/my_pub/fmcad_2012.pdf
http://www.cs.man.ac.uk/~korovink/my_pub/fmcad_2012.pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

56 12461 – Games and Decisions for Rigorous Systems Engineering

3.17 A Tutorial on SAT and SMT
Albert Oliveras (TU of Catalonia – Barcelona, ES)

License Creative Commons BY-NC-ND 3.0 Unported license
© Albert Oliveras

In this tutorial, an overview of SAT and SMT will be given.
In the first part, we will introduce the problem of SAT and its state-of-the-art techniques.

Starting from an abstract presentation of the DPLL procedure, we then explain how several
conceptual enhancements can be added to it giving the so-called CDCL algorithm for SAT
solving.

After that, we will focus on the problem of SMT. We first overview the most common
theories that SMT solvers deal with. Then, we focus on the two main approaches to SMT:
the eager and the lazy approach, making special emphasis on the last one. In particular, we
make clear which are the requirements that a theory solver needs to have to be used in a
DPLL(T) system.

3.18 Decision Problems for Linear Recurrence Sequences
Joel Ouaknine (University of Oxford, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Joel Ouaknine

Joint work of Ouaknine, Joel; Worrel, James; Daws, Matt

Linear recurrence sequences (such as the Fibonacci numbers) permeate a vast number of
areas of mathematics and computer science, and also have many applications in other fields
such as economics and theoretical biology. In the context of synthesis and verification,
linear recurrence sequences arise in connection with linear programs, probabilistic systems,
stochastic logics, and linear dynamical systems, among others.

In this talk, I will focus on three fundamental decision problems for linear recurrence
sequences, namely the Skolem Problem (does the sequence have a zero?), the Positivity
Problem (is the sequence always positive?), and the Ultimate Positivity Problem (is the
sequence ultimately always positive?).

3.19 Automated Game-theoretic Verification for Probabilistic Systems
David Parker (University of Birmingham, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© David Parker

Joint work of Chen, Taolue; Forejt, Vojtěch; Kwiatkowska, Marta; Parker, David; Simaitis, Aistis
Main reference T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, A. Simaitis, “Automatic Verification of

Competitive Stochastic Systems,” in Proc. of the 18th Int’l Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’12), LNCS, Vol. 7214, pp. 315–330, Springer, 2012

URL http://dx.doi.org/10.1007/978-3-642-28756-5_22

We present automatic verification techniques for turn-based stochastic multi-player games,
which model probabilistic systems containing components that can either collaborate or
compete in order to achieve particular goals. We give model checking algorithms for a
temporal logic called rPATL, which allows us to reason about the collective ability of a set of

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-28756-5_22
http://dx.doi.org/10.1007/978-3-642-28756-5_22
http://dx.doi.org/10.1007/978-3-642-28756-5_22
http://dx.doi.org/10.1007/978-3-642-28756-5_22

Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar 57

players to achieve a goal relating to the probability of an event’s occurrence or the expected
amount of cost/reward accumulated. We implement our techniques in an extension of the
PRISM model checker and use them to analyse and detect potential weaknesses in systems
such as algorithms for energy management and collective decision making for autonomous
systems.

3.20 Beluga: Programming proofs in context
Brigitte Pientka (McGill University – Montreal, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Brigitte Pientka

We routinely reason about the runtime behavior of software using formal systems such as
type systems or logics for access control or information flow to establish safety and liveness
properties. In this talk, I will give an overview of Beluga, a dependently typed programming
and proof environment. It supports specifying formal systems in the logical framework LF and
directly supports common and tricky routines dealing with variables, such as capture-avoiding
substitution and renaming. Moreover, Beluga allows embedding LF objects together with
their context in programs and types supporting inductive and coinductive definitions and we
can manipulate contextual LF objects via pattern matching. Taken together these features
lead to a powerful language which supports writing compact and elegant proofs.

3.21 Proving termination of C-like programs using MAX-SMT
Albert Rubio (UPC – Barcelona, ES)

License Creative Commons BY-NC-ND 3.0 Unported license
© Albert Rubio

We show how MAX-SMT can be used for proving and disproving termination of C-like
programs. MAX-SMT allow us to characterize our termination problem giving different
weights to the needed conditions, providing a better notion of progress. This also makes it
easier to combine the process of building the termination argument with the usually necessary
process of generating invariants.

Our technique focuses on proving termination, but sometimes from the already generated
invariants and partial termination arguments, we can prove non-termination or warn about
potential cases of non-termination.

The method has been implemented in a prototype that has successfully been tested on a
wide sample of examples.

12461

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

58 12461 – Games and Decisions for Rigorous Systems Engineering

3.22 Program verification as constraint solving (also for CTL*
properties)

Andrey Rybalchenko (TU München, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andrey Rybalchenko

Joint work of Beyene, Tewodros; Popeea, Corneliu; Rybalchenko, Andrey;

First, we review how proving reachability and termination properties of transition systems,
procedural programs, multi-threaded programs, and higher- order functional programs can
be reduced to constraint solving. Second, we show how CTL* properties can be proved using
contraint-based setting. Finally, we discuss adequate solving algorithms and tools.

3.23 QBFs and Certificates
Martina Seidl (University of Linz, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Martina Seidl

Joint work of Seidl, Martina; Niemetz, Aina; Preiner, Mathias; Lonsing, Florian; Biere, Armin
Main reference A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, A. Biere, “Resolution-Based Certificate Extraction

for QBF,” in Proc. of the 15th Int’l Conf. on Theory and Applications of Satisfiability Testing
(SAT’12), LNCS, Vol. 7317, pp. 430–435, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-31612-8_33

A certificate of (un)satisfiability for a quantified Boolean formula (QBF) represents concrete
assignments to the variables of the formula. Certificates are not only witnesses for the truth
value returned by a QBF solver, but also represent the solutions for practical applications of
QBF like formal verification and model checking. Recently, an approach has been presented,
which can be directly built on top of DPLL based QBF solvers. Starting from resolution
proofs produced by the solver during clause and cube learning, the certificates are constructed
by certain syntactic properties of the proof tree. Based on our integrated set of tools realizing
resolution-based certificate extraction for QBFs in prenex conjunctive normal form, in this
talk, we discuss the state-of-the-art of QBF certification and point out future challenges.

3.24 Incremental Upgrade Checking by Means of Interpolation-based
Function Summaries

Natasha Sharygina (University of Lugano, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
© Natasha Sharygina

Joint work of Ondrej, Sery; Fedyukovich, Grigory; Sharygina, Natasha
Main reference S. Ondrej, G. Fedyukovich, N. Sharygina, “Incremental Upgrade Checking by Means of

Interpolation-based Function Summaries,” in Proc. of the 12th Conf. on Formal Methods in
Computer-Aided Design (FMCAD’12), 2012.

URL http://www.verify.inf.unisi.ch/files/fmcad2012.pdf

During its evolution, a typical software/hardware design undergoes a myriad of small changes.
However, it is extremely costly to verify each new version from scratch. As a remedy to this
problem, we propose to use function summaries to enable incremental verification of the
evolving systems. During the evolution, our approach maintains function summaries derived
using Craig’s interpolation. For each new version, these summaries are used to perform a

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-31612-8_33
http://dx.doi.org/10.1007/978-3-642-31612-8_33
http://dx.doi.org/10.1007/978-3-642-31612-8_33
http://dx.doi.org/10.1007/978-3-642-31612-8_33
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.verify.inf.unisi.ch/files/fmcad2012.pdf
http://www.verify.inf.unisi.ch/files/fmcad2012.pdf
http://www.verify.inf.unisi.ch/files/fmcad2012.pdf
http://www.verify.inf.unisi.ch/files/fmcad2012.pdf

Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar 59

local incremental check. Benefit of this approach is that the cost of the check depends on the
extent of the change between the two versions and can be performed cheaply for incremental
changes without resorting to re-verification of the entire system. Our implementation and
experimentation in the context of the bounded model checking for C confirms that incremental
changes can be verified efficiently for different classes of industrial programs.

3.25 Quantitatively Relaxed Concurrent Data Structures
Ana Sokolova (Universität Salzburg, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ana Sokolova

Joint work of Henzinger, Thomas A.; Kirsch, Christoph M.; Payer, Hannes; Sezgin, Ali; Sokolova, Ana
Main reference T.A. Henzinger, C.M. Kirsch, H. Payer, A. Sezgin, A. Sokolova, “Quantitative Relaxations of

Concurrent Data Structures,” in Proc. POPL 2013, to appear.

This talk is about our recent work on relaxing the semantics of concurrent data structures, in
a quantitative way, so that they allow better-performing implementations. By their nature,
data structures are bottlenecks in the presence of concurrency, e.g. the top pointer of a stack
is a point of contention for which all threads compete. As a consequence, implementations
of concurrent data structures often show negative scalability. Recent trends in concurrency
show that relaxing the semantics may be the way to better performance. In this work we
provide a framework for quantitative relaxations of concurrent data structures, where the
allowed “error” from the perfect semantics is quantified by a distance. During the talk, we
will use a stack as a running example. We also present a new concurrent implementation of
a quantitatively relaxed stack that performs well and shows positive scalability.

3.26 Introduction to the Sketch Synthesis System
Armando Solar-Lezama (MIT – Cambridge, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Armando Solar-Lezama

I will provide a brief introduction to the Sketch language and highlight some of the recent
applications and open problems both in terms of language design and decision procedures.

3.27 A Semantic Account for Modularity in Multi-language Modelling
of Search Problems

Eugenia Ternovska (Simon Fraser University – Burnaby, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Eugenia Ternovska

Joint work of Ternovska, Eugenia; Tasharrofi, Shahab; Wu, Xiongnan

With the increased applications of distributed communicating systems, there is a strong need
in formalisms that support modularity. In such systems, the representation language of a
module may not even be known outside of that module. I will describe a semantic approach
to formal modelling of such systems, and analyze the expressive power of adding a loop

12461

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
T.A. Henzinger, C.M. Kirsch, H. Payer, A. Sezgin, A. Sokolova, ``Quantitative Relaxations of Concurrent Data Structures,'' in Proc. POPL 2013, to appear.
T.A. Henzinger, C.M. Kirsch, H. Payer, A. Sezgin, A. Sokolova, ``Quantitative Relaxations of Concurrent Data Structures,'' in Proc. POPL 2013, to appear.
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

60 12461 – Games and Decisions for Rigorous Systems Engineering

operator. I will then describe an algorithmic schema for synthesizing solutions of modular
systems. The solutions agree with each of the interacting, collaborating, mutually dependent
modules. The algorithmic schema is instantiated with oracle procedures specific to each
module. It generalizes ideas underlying “combined” solving such as the DPLL(T) procedure,
branch-and-cut ILP solvers and state-of-the-art combination of ASP and CP. Joint work
with Shahab Tasharrofi and Xiongnan Wu.

3.28 Secure Two-Party Computation in ANSI C
Helmut Veith (TU Wien, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Helmut Veith

Joint work of Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith
Main reference A. Holzer, M. Franz, S. Katzenbeisser, H. Veith, “Secure two-party computations in ANSI C,” in

Proc. of the 2012 ACM Conf. on Computer and Communications Security (CCS’12), pp. 772–783,
ACM, 2012.

URL http://dx.doi.org/10.1145/2382196.2382278
URL http://www.sosy-lab.org/~dbeyer/Publications/2012-FSE.Conditional_Model_Checking.pdf

The practical application of Secure Two-Party Computation is hindered by the difficulty
to implement secure computation protocols. While recent work has proposed very simple
programming languages which can be used to specify secure computations, it is still difficult
for practitioners to use them, and cumbersome to translate existing source code into this
format. Similarly, the manual construction of two-party computation protocols, in particular
ones based on the approach of garbled circuits, is labor intensive and error-prone.

The central contribution of the current paper is a tool which achieves Secure Two-Party
Computation for ANSI C. Our work is based on a combination of model checking techniques
and two-party computation based on garbled circuits. Our key insight is a nonstandard
use of the bit-precise model checker CBMC which enables us to translate C programs into
equivalent Boolean circuits. To this end, we modify the standard CBMC translation from
programs into Boolean formulas whose variables correspond to the memory bits manipulated
by the program. As CBMC attempts to minimize the size of the formulas, the circuits
obtained by our tool chain are also size efficient; to improve the efficiency of the garbled
circuit evaluation, we perform optimizations on the circuits. Experimental results with the
new tool CBMC-GC demonstrate the practical usefulness of our approach.

3.29 Verification of Low Level List Manipulation
Tomas Vojnar (Brno University of Technology, CZ)

License Creative Commons BY-NC-ND 3.0 Unported license
© Tomas Vojnar

In the talk, we present an ongoing work related to the tool called Predator for verification of
programs containing low level list manipulation. We first present some typical problems that
arise in low-level list manipulating programs used in system software. Then, we briefly explain
how these issues are tackled in Predator using a graph-based representation of sets of heaps
(partially inspired by works on separation logic with higher order list predicates, but purely
graph-based and significantly extended to cope with the low-level memory manipulation
features).

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1145/2382196.2382278
http://dx.doi.org/10.1145/2382196.2382278
http://dx.doi.org/10.1145/2382196.2382278
http://dx.doi.org/10.1145/2382196.2382278
http://www.sosy-lab.org/~dbeyer/Publications/2012-FSE.Conditional_Model_Checking.pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar 61

3.30 First-order theorem proving and Vampire
Andrei Voronkov (University of Manchester, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andrei Voronkov

Joint work of Krystof Hoder, Laura Kovács and Andrei Voronkov

In this tutorial we give a short introduction in first-order theorem proving and the use of the
theorem prover Vampire.

I will discuss the the resolution and superposition calculus, introduce the saturation
principle, present various algorithms implementing redundancy elimination, preprocessing
and clause form transformation and demonstrate how these concepts are implemented in
Vampire.

I will next also cover more advanced topics and features. Some of these features are
implemented only in Vampire. This includes reasoning with theories, such as arithmetic,
answering queries to very large knowledge bases, interpolation, and an original technique of
symbol elimination, which allows one to automatically discover invariants in programs with
loops.

3.31 Labelled Interpolation Systems
Georg Weissenbacher (TU Wien, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Georg Weissenbacher

Main reference G. Weissenbacher, “Interpolant Strength Revisited,” in Proc. of the 15th Conf. on Theory and
Applications of Satisfiability Testing (SAT’12), LNCS, Vol. 7317, pp. 312–326, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-31612-8_24

Craig’s interpolation theorem has numerous applications in model checking, automated
reasoning, and synthesis. The intrinsic properties of interpolants enable concise abstractions
in verification and smaller circuit designs in synthesis. There is a variety of interpolation
systems which derive interpolants from refutation proofs; these systems are ad-hoc and rigid
in the sense that they provide exactly one interpolant for a given proof. In this talk, I will
discuss how refutation-based interpolation techniques can be parametrised to remove this
limitation. Labelled interpolation systems allow for the systematic variation of the logical
strength and the size of Craig interpolants. In addition, they generalise a number of existing
interpolation techniques for propositional and first-order logic. It is still an open question
how applications can exploit the additional flexibility provided by this novel interpolation
system.

12461

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-31612-8_24
http://dx.doi.org/10.1007/978-3-642-31612-8_24
http://dx.doi.org/10.1007/978-3-642-31612-8_24

62 12461 – Games and Decisions for Rigorous Systems Engineering

3.32 Parameterized Model Checking of Fault-tolerant Distributed
Algorithms

Josef Widder (TU Wien, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Josef Widder

Joint work of John, Annu; Konnov, Igor; Schmid, Ulrich; Veith, Helmut; Widder, Josef
Main reference A. John, I. Konnov, U. Schmid, H. Veith, J. Widder, “Counter Attack on Byzantine Generals:

Parameterized Model Checking of Fault-tolerant Distributed Algorithms,” arXiv:1210.3846v2
[cs.LO].

URL http://arxiv.org/abs/1210.3846

We introduce a method for automated parameterized verification of fault-tolerant distributed
algorithms. The distributed algorithms we consider are parameterized by both the number
of processes and the assumed maximum number of Byzantine faulty processes. At the center
of our technique is a parametric interval abstraction (PIA) where the interval boundaries are
arithmetic expressions over parameters. Using PIA for both data abstraction and a new form
of counter abstraction, we reduce the parameterized problem to finite-state model checking.
We demonstrate the practical feasibility of our method by verifying several variants of the
well-known distributed algorithm by Srikanth and Toueg. To the best of our knowledge, this
is the first paper to achieve parameterized automated verification of Byzantine fault-tolerant
distributed algorithms.

3.33 Complete Instantiation-Based Interpolation
Thomas Wies (New York University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Thomas Wies

Joint work of Wies, Thomas; Totla, Nishant

Craig interpolation has been a valuable tool for formal methods with interesting applications
in program analysis and verification. Modern SMT solvers implement interpolation proced-
ures for the theories that are most commonly used in these applications. However, many
application-specific theories remain unsupported, which limits the class of problems to which
interpolation-based techniques apply. In this talk, I present a generic framework to build new
interpolation procedures via reduction to existing interpolation procedures. We consider the
case where an application-specific theory can be formalized as an extension of a base theory
with additional symbols and axioms. Our technique uses finite instantiation of the extension
axioms to reduce an interpolation problem in the theory extension to one in the base theory.
We identify a model-theoretic criterion that allows us to detect the cases where our technique
is complete. We discuss specific theories that are relevant in program verification and that
satisfy this criterion. In particular, we obtain complete interpolation procedures for theories
of arrays and linked lists. The latter is the first complete interpolation procedure for a theory
that supports reasoning about complex shape properties of heap-allocated data structures.
We have implemented this procedure in a prototype on top of existing SMT solvers and used
it to automatically infer loop invariants of list-manipulating programs. This is joined work
with Nishant Totla.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://arxiv.org/abs/1210.3846
http://arxiv.org/abs/1210.3846
http://arxiv.org/abs/1210.3846
http://arxiv.org/abs/1210.3846
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar 63

4 Working Groups

The goal of the seminar was to explore synergies between game theoretic synthesis algorithms
and decision procedures. To make the potential for collaboration clear and concrete, we
identified a number of research questions to be addressed during our seminar:

Tools for Systems Design Which tools and techniques developed for software/hardware
verification can be used to engineer next generation industrial-strength synthesis systems?

Solvers for Concurrency What further theory extensions are needed to design efficient
analysis and synthesis procedures for concurrent programs? For example, what reasoning
capabilities are required for the synthesis of concurrent data structures? For synthesis of
parameterized systems? For reasoning in the presence of weak memory models?

Games Modulo Theories How to solve games over rich domains, for example, over infinite
alphabets subject to a background theory? Do decision procedures provide practical
abstraction mechanisms for synthesis problems? What of more expressive properties,
such as those studied in stochastic and quantitative games?

Synthesis and New Capabilities for Decision Procedures What new capabilities must de-
cision procedures expose to help in synthesis? For example, can interpolants be used in
generating certificates for synthesis problems? Which fixed-point logic is best solved with
which search method and/or deductive techniques?

Games and Systems Composition How can we decompose large specifications into smaller
specifications that can be synthesized automatically? What is the best way to use
game-theoretic solutions for composable language design?

This Dagstuhl Seminar 12461 “Games and Decisions for Rigorous Systems Engineering”
brought together renowned as well as young aspiring researchers from three groups.

The first group was formed by researchers developing new paradigms of concurrent
software, such as multi-core, distributed computing, and software testing.
The second group comprised researchers working on reactive synthesis, such as decom-
positions of large specifications, parameterised synthesis, game theoretic models and
partial-information game models.
The third group consisted of researchers who design and combine decision procedures for
various logical formalisms, such as propositional satisfiability (SAT), satisfiability modulo
theory (SMT), quantified boolean formulas, and first-order logic.

5 Discussions

Our seminar initiated discussions between experts and young researchers of exceptional talent
from reactive synthesis and automated deduction. Moreover, the presence of academia and
industry enabled to discuss problems that are challenging both from the theoretical and
practical point of view. These problems included the use of decision procedures and automated
deduction in automata-based synthesis; generalizations of model checking algorithms within
game-theoretic frameworks; integration of model checking with complementary techniques
such as software testing; and extending SMT solvers and theorem provers with proof
generation, unsatisfiable core extraction, and Craig interpolation.

12461

64 12461 – Games and Decisions for Rigorous Systems Engineering

6 Collaborations and Interaction

An outcome of the seminar and interaction is a collection of software model checking bench-
marks in Horn format. These benchmarks have now been added to the Software Verification
Competition – SVCOMP repository and are available from https://svn.sosy-lab.org/software/
sv-benchmarks/trunk/clauses/. The benchmarks include checking safety assertions and are
coming from the following sources:

Boolean programs extracted from the SDV/SLAM research distribution;
C programs from SVCOMP 2013, provided by Arie Gurfinkel;
numeric programs from the ARMC model checker, provided by Andrey Rybalchenko;
heap manipulating programs from the SLAyer tool, provided by Jael Kriener;
driver programs, provided by Ken McMillan;
Geometry design problems, provided by Zachary Kincaid;
Liquid type checking problems from OCaml and Haskell, provided by Ranjit Jhala;
Benchmarks from the Eldarica tool, provided by Hossein Hojjat, Philipp Rümmer, and
Viktor Kuncak.

All together we collected around 10000 benchmarks published in the Horn format. The
examples use domains ranging from Booleans, linear real arithmetic, linear integer arithmetic,
and linear integer arithmetic combined with arrays. The benchmarks come from many
different sources and problem domains, but share the characteristics that the queries amount
to checking satisfiability of Horn clauses modulo theories. They are in the SMT-LIB
interchange format, which is standardized on http://smtlib.org.

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/
http://smtlib.org

Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar 65

Participants

Francesco Alberti
University of Lugano, CH

Dirk Beyer
Universität Passau, DE

Nikolaj Bjørner
Microsoft Res. – Redmond, US

Tomas Brazdil
Masaryk University, CZ

Krishnendu Chatterjee
IST Austria –
Klosterneuburg, AT

Swarat Chaudhuri
Rice University, US

Laurent Doyen
CNRS, ENS – Cachan, FR

Uwe Egly
TU Wien, AT

Azadeh Farzan
University of Toronto, CA

Bernd Finkbeiner
Universität des Saarlandes, DE

Alberto Griggio
Fondazione Bruno Kessler –
Trento, IT

Aarti Gupta
NEC Laboratories America, Inc.
– Princeton, US

Ashutosh Kumar Gupta
IST Austria –
Klosterneuburg, AT

Arie Gurfinkel
CMU – Pittsburgh, US

Jochen Hoenicke
Universität Freiburg, DE

Radu Iosif
VERIMAG – Gières, FR

Moa Johansson
Chalmers UT – Göteborg, SE

Igor Konnov
TU Wien, AT

Konstantin Korovin
University of Manchester, GB

Laura Kovacs
TU Wien, AT

Axel Legay
INRIA – Rennes, FR

Rupak Majumdar
MPI for Software Systems –
Kaiserslautern, DE

Anca Muscholl
Université Bordeaux, FR

Albert Oliveras
TU of Catalonia – Barcelona, ES

Joel Ouaknine
University of Oxford, GB

David Parker
University of Birmingham, GB

Brigitte Pientka
McGill Univ. – Montreal, CA

Ruzica Piskac
MPI für Softwaresysteme –
Saarbrücken, DE

Albert Rubio
UPC – Barcelona, ES

Andrey Rybalchenko
TU München, DE

Helmut Seidl
TU München, DE

Martina Seidl
University of Linz, AT

Natasha Sharygina
University of Lugano, CH

Ana Sokolova
Universität Salzburg, AT

Armando Solar-Lezama
MIT – Cambridge, US

Eugenia Ternovska
Simon Fraser University –
Burnaby, CA

Helmut Veith
TU Wien, AT

Tomas Vojnar
Brno Univ. of Technology, CZ

Andrei Voronkov
University of Manchester, GB

Georg Weissenbacher
TU Wien, AT

Josef Widder
TU Wien, AT

Thomas Wies
New York University, US

Florian Zuleger
TU Wien, AT

12461

	Executive Summary Nikolaj Bjørner, Krishnendu Chatterjee, Laura Kovacs, and Rupak M. Majumdar
	Table of Contents
	Overview of Talks
	Lazy Abstraction with Interpolants for Arrays Francesco Alberti
	Conditional Model Checking: A Technique to Pass Information between Verifiers Dirk Beyer
	Efficient Controller Synthesis for Consumption Games with Multiple Resource Types Tomas Brazdil
	Stochastic Program Synthesis with Smoothed Numerical Search Swarat Chaudhuri
	Games in System Design: Tutorial and Survey Laurent Doyen
	A new learning scheme for QDPLL solvers Uwe Egly
	Inductive Data Flow Graphs Azadeh Farzan
	Synthesis of reactive systems Bernd Finkbeiner
	Deciding Floating-Point Logic with Systematic Abstraction Alberto Griggio
	Concurrent Test Generation using Concolic Multi-Trace Analysis Aarti Gupta
	VINTA: Verification with Interpolation and Abstract Interpretation Arie Gurfinkel
	Proof Tree Preserving Interpolation Jochen Hoenicke
	Underapproximation of Procedure Summaries for Integer Programs Radu Iosif
	Proving Properties about Functional Programs Moa Johansson
	Preprocessing for first-order logic with applications to hardware verification Konstantin Korovin
	Asynchronous Games over Tree Architectures Anca Muscholl
	A Tutorial on SAT and SMT Albert Oliveras
	Decision Problems for Linear Recurrence Sequences Joel Ouaknine
	Automated Game-theoretic Verification for Probabilistic Systems David Parker
	Beluga: Programming proofs in context Brigitte Pientka
	Proving termination of C-like programs using MAX-SMT Albert Rubio
	Program verification as constraint solving (also for CTL* properties) Andrey Rybalchenko
	QBFs and Certificates Martina Seidl
	Incremental Upgrade Checking by Means of Interpolation-based Function Summaries Natasha Sharygina
	Quantitatively Relaxed Concurrent Data Structures Ana Sokolova
	Introduction to the Sketch Synthesis System Armando Solar-Lezama
	A Semantic Account for Modularity in Multi-language Modelling of Search Problems Eugenia Ternovska
	Secure Two-Party Computation in ANSI C Helmut Veith
	Verification of Low Level List Manipulation Tomas Vojnar
	First-order theorem proving and Vampire Andrei Voronkov
	Labelled Interpolation Systems Georg Weissenbacher
	Parameterized Model Checking of Fault-tolerant Distributed Algorithms Josef Widder
	Complete Instantiation-Based Interpolation Thomas Wies

	Working Groups
	Discussions
	Collaborations and Interaction
	Participants

