
Report from Dagstuhl Seminar 12482

Analysis of Security APIs
Edited by
Mike Bond1, Riccardo Focardi2, Sibylle Fröschle3, and
Graham Steel4

1 University of Cambridge, GB, mike.bond@cl.cam.ac.uk
2 Università Ca’ Foscari di Venezia, IT, focardi@dsi.unive.it
3 Universität Oldenburg, DE
4 INRIA, FR, graham.steel@inria.fr

Abstract
This report documents the programme and the outcomes of Dagstuhl Seminar 12482 “Analysis
of Security APIs”. Abstracts from the talks give a snapshot of current research in the field, while
reports on the discussions give a roadmap for future research in the area.

Seminar 26.–28. November, 2012 – www.dagstuhl.de/12482
1998 ACM Subject Classification K.6.m Miscellaneous, Security
Keywords and phrases Security APIs, cryptography, key management, formal methods, security

protocols
Digital Object Identifier 10.4230/DagRep.2.11.155

1 Executive Summary

Mike Bond
Riccardo Focardi
Sibylle Fröschle
Graham Steel

License Creative Commons BY-NC-ND 3.0 Unported license
© Mike Bond, Riccardo Focardi, Sibylle Fröschle, Graham Steel

This report documents the programme and outcomes of Dagstuhl Seminar 12482 “Analysis of
Security APIs”. The seminar brought together 32 participants from academia and industry in
Europe and the USA. It featured a joint session with the concurrent seminar on quantitative
security analysis (which included the keynote talk), a breakout session with demonstrations
of software and practical classes, a discussion of the most important open problems in the
field and a collection of talks spanning the breadth of the field from theoretical models to
applications.

Research Context and Goals of the Seminar
A security API is an Application Program Interface that allows untrusted code to access
sensitive resources in a secure way. It is the interface between processes running with different
levels of trust. Examples of security APIs include the interface between the tamper-resistant
chip on a smartcard (trusted) and the code running on the client application (untrusted),
the interface between a cryptographic Hardware Security Module (or HSM, trusted) and the
host machine (untrusted), and web service APIs (an interface between a server, trusted by
the service provides, and the rest of the Internet).

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY-NC-ND 3.0 Unported license

Analysis of Security APIs, Dagstuhl Reports, Vol. 2, Issue 11, pp. 155–168
Editors: Mike Bond, Riccardo Focardi, Sibylle Fröschle, and Graham Steel

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12482
http://dx.doi.org/10.4230/DagRep.2.11.155
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

156 12482 – Analysis of Security APIs

The crucial aspect of a security API is that it is designed to enforce a policy, i.e. no
matter what sequence of commands in the interface are called, and no matter what the
parameters, certain security properties should continue to hold. This means that if the less
trusted code turns out to be malicious (or just faulty), the carefully designed API should
prevent compromise of critical data. Designing such an interface is extremely tricky and error
prone, and over the last ten years, serious vulnerabilities in the security APIs deployed in
HSMs in the ATM (cash machine) network and in commodity security devices like smartcards
and USB keys have come to light.

A number of formal methods researchers have turned their attention to security APIs over
the last five years. While significant advances have been made and notable results achieved,
such as the discovery of several new attacks, the process of specifying and verifying the
security policy for such APIs still lacks both satisfactory foundations and efficient algorithms.
At the same time, the security API paradigm is being proposed as a solution for more and
more applications, from social networks to smartphones, with more complicated and less
well understood security goals.

The objective of the seminar was to bring together researchers in academia and industry
around the topic of security APIs and their analysis. There were three main aims:

1. To address the shortcomings of current API analysis techniques as applied to the relatively
well explored domains of cryptographic key management and HSMs, in particular in their
ability to deal with global mutable state and their models of cryptography.

2. To identify the security API requirements arising from the new generation of applications,
in mobile device applications and web services, and map out the research problems that
need to be solved in order that formal API analysis can be applied here.

3. To find ways to include the process and results of formal API analysis into the standards
and certification procedures.

Some progress was made on all these points in the talks and the discussions late into the
evening that followed in the conducive environment of Schloss Dagstuhl. On the first point,
several talks presented models specifically aimed at modelling state in a more satisfactory
way, and we had a tutorial on the verification methods used in program analysis. Several
new application areas for API analysis were presented, including car to car communication
and password protection. Some highly enlightening talks on the standards process helped
to improve understanding of the problem, if not providing steps to an easy solution. The
variety of open problems identified (see summary below) shows that this is a vibrant area of
computer security research with much promise for the future.

Mike Bond, Riccardo Focardi, Sibylle Fröschle, and Graham Steel 157

2 Table of Contents

Executive Summary
Mike Bond, Riccardo Focardi, Sibylle Fröschle, Graham Steel 155

Keynote: Ross Anderson – Security evolution: interaction of economics and
APIs . 159

Overview of Talks . 159

Security in Car2X Communication
Daniel Angermeier . 159

Demo of Tookan: Tool for Cryptoki Analysis
Romain Bardou . 160

Tokenisation – pseudo-security and compliance engineering
Mike Bond . 160

Revoke and Let Live: A Secure Key Revocation API for Cryptographic Devices
Veronique Cortier . 161

Hands-on tutorial on Padding Oracle Attacks
Riccardo Focardi . 161

Challenges in Security API Verification
Sibylle Froeschle . 162

Universally Composable Key-Management
Steve Kremer . 162

Formal Security Analysis Results for the Yubikey and YubiHSM
Robert Kuennemann . 162

A Framework for the Cryptographic Verification of Java-like Programs
Ralf Kuesters . 163

Lazy Mobile Intruders
Sebastian Moedersheim . 164

Temporal Information Flow
Markus N. Rabe . 164

APIs and Cryptography
Phillip Rogaway . 165

Automated Reasoning on Data Structures
Viorica Sofronie-Stokkermans . 165

MAC in the Box
Graham Steel . 165

Verification of a Trusted Virtual Security Module
Ronald Toegl . 166

Discussion . 166

What I learned . 166

Future research topics . 166

12482

158 12482 – Analysis of Security APIs

Conclusion . 167

Participants . 168

Mike Bond, Riccardo Focardi, Sibylle Fröschle, and Graham Steel 159

3 Keynote: Ross Anderson – Security evolution: interaction of
economics and APIs

Ross Anderson opened the second day of the seminar in a joint session with the quantitative
security analysis workshop1. The talk was an exciting journey through the evolution of IT
security from both technical and socio-economic perspectives. Economics matters: failures
are inversely proportional to how much is invested into guarding and fixing a system; lack of
security is often considered an external, independent factor we might need to address, just
like environmental pollution. Moreover, security is often an obstacle: to win the market a
new platform has little security so that development is easier; once the market is captured
security can be faced. Ross finally illustrated a few impressive “non-success stories” on
payment and banking systems and pointed out how the APIs often are the places of interest,
i.e. “where the rubber hits the road”.

4 Overview of Talks

The technical programme included demos, hand-on sessions, perspectives, work in progress
and new ideas as well as conventional research talks.

4.1 Security in Car2X Communication
Daniel Angermeier (Fraunhofer AISEC – München, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Daniel Angermeier

Joint work of Angermeier, Daniel; C2C Communication Consortium

Car2X communication promises improvements in modern traffic, as cooperative driving
might help avoid dangerous situations. Furthermore, C2X communication aims to achieve
improved traffic efficiency. However, these potential advantages are opposed by risks caused
especially by attacks on Intelligent Transport Systems (ITS) trying to abuse these new
features. Therefore, security plays a major role in ITSs to reach the afore mentioned goals
and to avert threats caused by attackers. In my talk, I will highlight a few aspects of
security in C2X communication, which focus on fulfilling the special requirements in C2X
communication, like e.g., privacy of ITS users or proof of trustworthiness of received messages.

1 http://www.dagstuhl.de/12481

12482

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/12481

160 12482 – Analysis of Security APIs

4.2 Demo of Tookan: Tool for Cryptoki Analysis
Romain Bardou (INRIA – Paris, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Romain Bardou

Joint work of Bardou, Romain; Focardi, Riccardo; Steel, Graham
Main reference M. Bortolozzo, M. Centenaro, R. Focardi, G. Steel, “Attacking and Fixing PKCS#11 Security

Tokens,” in Proc. of the 17th ACM Conf. on Computer and Communications Security (CCS’10),
pp. 260–269, ACM, 2010.

URL http://dx.doi.org/10.1145/1866307.1866337
URL http://tookan.gforge.inria.fr/

This is a demonstration of Tookan, a tool which automatically finds attacks on cryptographic
devices. Tookan reverse engineers the behavior of PKCS#11 tokens. It learns the precondi-
tions of each command to build a model of the token. It then runs a model-checking analysis
on the model to try and find a sequence of commands leading to an invalid state. Tookan
can be used for penetration testing, but it can also be used to compare device configurations,
or to help develop a safe cryptographic device.

4.3 Tokenisation – pseudo-security and compliance engineering
Mike Bond (University of Cambridge, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Mike Bond

This talk describes the challenges in designing a security solution whose main goal is to satisfy
compliance requirements for international financial standards such as the PCI Data Security
Standard (PCI DSS). Together with highly prescriptive internal security standards there is
often very little room to design an elegant or efficient solution and this proves very costly for
organisations that must be compliant. Sometimes the compliance rules even fly in the face
of security concerns, or are contradictory/ill-defined. For instance, tokenisation is defined by
some to be a deterministic substitution mechanism which is not an algorithmic function, yet
a look-up table is indeed a function. Sometimes the challenge becomes to modify a solution
design to avoid falling foul of compliance rules without introducing significant vulnerability,
and sometimes the challenge is to actively frustrate trivial data flow analysis of a solution
such as is used by many auditors who simply follow the flows of keys and data and then make
broad prescriptions about the wisdom or otherwise of a scheme. The talk proposes some
schemes for ’audit-resistant cryptography’, and shows their application to practical problem
solving in an environment tainted by conflicting security and compliance requirements.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1145/1866307.1866337
http://dx.doi.org/10.1145/1866307.1866337
http://dx.doi.org/10.1145/1866307.1866337
http://dx.doi.org/10.1145/1866307.1866337
http://tookan.gforge.inria.fr/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Mike Bond, Riccardo Focardi, Sibylle Fröschle, and Graham Steel 161

4.4 Revoke and Let Live: A Secure Key Revocation API for
Cryptographic Devices

Veronique Cortier (CNRS – Nancy, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Veronique Cortier

Main reference V. Cortier, G. Steel, C. Wiedling, “Revoke and Let Live: A Secure Key Revocation API for
Cryptographic Devices,” in Proc. of the 19th ACM Conf. on Computer and Communications
Security (CCS’12), pp. 918–928, ACM, 2012.

URL http://dx.doi.org/10.1145/2382196.2382293

While extensive research addresses the problem of establishing session keys through crypto-
graphic protocols, relatively little work has appeared addressing the problem of revocation
and update of long term keys. We present an API for symmetric key management on embed-
ded devices that supports revocation and prove security properties design in the symbolic
model of cryptography. Our API supports two modes of revocation: a passive mode where
keys have an expiration time, and an active mode where revocation messages are sent to
devices. For the first we show that once enough time has elapsed after the compromise of
a key, the system returns to a secure state, i.e. the API is robust against attempts by the
attacker to use a compromised key to compromise other keys or keep the compromised key
alive past its validity time. For the second we show that once revocation messages have been
received the system is immediately in a secure state. Notable features of our designs are
that all secret values on the device are revocable, and the device returns to a functionally
equivalent state after revocation is complete.

4.5 Hands-on tutorial on Padding Oracle Attacks
Riccardo Focardi (Università Ca’ Foscari di Venezia, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Riccardo Focardi

Joint work of Bardou, Romain; Focardi, Riccardo; Kawamoto, Yusuke; Simionato, Lorenzo; Steel, Graham; Tsay,
Joe-Kai

Main reference R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, J. Tsay, “Efficient Padding Oracle
Attacks on Cryptographic Hardware,” in Proc. of 32nd Annual Conf. on Advances in Cryptology
(CRYPTO’12), LNCS, Vol. 7417, pp. 608–625, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-32009-5_36
URL http://secgroup.ext.dsi.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-

on-RSA.html

We revise attacks on the RSA cipher based on side-channels that leak partial information
about the plaintext. We show how to compute a plaintext when only its parity is leaked. We
then describe PKCS#1 v1.5 padding for RSA and we show that the simple leakage of padding
errors is enough to recover the whole plaintext, even when it is unpadded or padded under
another scheme. This vulnerability is well-known since 1998 but the flawed PKCS#1 v1.5
padding is still broadly in use. We discuss recent optimizations of this padding oracle attack
that make it effective on commercially available cryptographic devices. We illustrate through
many examples and fragments of code. This tutorial is based on the paper appeared in Hakin9
– Defend Yourself! Hands-on Cryptography, September 2012, available at http://secgroup.ext.
dsi.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html

12482

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1145/2382196.2382293
http://dx.doi.org/10.1145/2382196.2382293
http://dx.doi.org/10.1145/2382196.2382293
http://dx.doi.org/10.1145/2382196.2382293
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-32009-5_36
http://dx.doi.org/10.1007/978-3-642-32009-5_36
http://dx.doi.org/10.1007/978-3-642-32009-5_36
http://dx.doi.org/10.1007/978-3-642-32009-5_36
http://secgroup.ext.dsi.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.ext.dsi.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.ext.dsi.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.ext.dsi.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html

162 12482 – Analysis of Security APIs

4.6 Challenges in Security API Verification
Sibylle Froeschle (OFFIS – Oldenburg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sibylle Froeschle

Main reference S. Froeschle, “Causality in security protocols and security APIs: foundations and practical
verification,” Habilitation Thesis, University of Oldenburg, 2012.

URL https://vhome.offis.de/sibyllef/habil.pdf

In this talk we pinpoint key challenges in security API verification and suggest possible
solutions and research directions. Among the challenges we discuss are the problem of scale
and several general aspects such as how to specify security APIs and what to verify about
them. A central theme will be how to deal with the key metadata that governs how a key
entity is managed by the API. The talk is based on a comparative study of PKCS#11 and
IBM’s CCA, two widely deployed key management APIs. A detailed discussion can be found
in Chapter I.4 of [1]

References
1 Sibylle Fröschle. Causality in security protocols and security APIs: foundations and prac-

tical verification.Habilitation thesis, University of Oldenburg, 2012.

4.7 Universally Composable Key-Management
Steve Kremer (INRIA Grand Est – Nancy, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Steve Kremer

Main reference St. Kremer, R. Künnemann, G. Steel, “Universally Composable Key-Management,” Cryptology
ePrint Archive: Report 2012/189, 2012.

URL http://eprint.iacr.org/2012/189

We present the first universally composable key management functionality, formalized in
the GNUC framework by Hofheinz and Shoup. It allows the enforcement of a wide range of
security policies and can be extended by diverse key usage operations with no need to repeat
the security proof. We illustrate its use by proving an implementation of a security token
secure with respect to arbitrary key-usage operations and explore a proof technique that
allows the storage of cryptographic keys externally, a novel development in simulation-based
security frameworks.

4.8 Formal Security Analysis Results for the Yubikey and YubiHSM
Robert Kuennemann (CNRS, INRIA, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Robert Kuennemann

The Yubikey is a small hardware device designed to authenticate a user against network-based
services. Despite its widespread adoption (over a million devices have been shipped by Yubico
to more than 20 000 customers including Google and Microsoft), the Yubikey protocols have
received relatively little security analysis in the academic literature. In the first part of this
paper, we give a formal model for the operation of the Yubikeyone-time password (OTP)
protocol. We prove security properties of the protocol for an unbounded number of fresh

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://vhome.offis.de/sibyllef/habil.pdf
https://vhome.offis.de/sibyllef/habil.pdf
https://vhome.offis.de/sibyllef/habil.pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://eprint.iacr.org/2012/189
http://eprint.iacr.org/2012/189
http://eprint.iacr.org/2012/189
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Mike Bond, Riccardo Focardi, Sibylle Fröschle, and Graham Steel 163

OTPs using a protocol analysis tool, tamarin. In the second part of the talk, we analyze
the security of the protocol with respect to an adversary that has temporary access to the
authentication server. To address this scenario, Yubico offers a small Hardware Security
Module (HSM) called the YubiHSM, intended to protect keys even in the event of server
compromise. We show if the same YubiHSM configuration is used both to set up Yubikeys
and run the authentication protocol, then there is inevitably an attack that leaks all of the
keys to the attacker. Our discovery of this attack lead to a Yubico security advisory in
February 2012. For the case where separate servers are used for the two tasks, we give a
configuration for which we can show using the same verification tool that if an adversary
that can compromise the server running the Yubikey-protocol, but not the server used to set
up new Yubikeys, then he cannot obtain the keys used to produce one-time passwords.

4.9 A Framework for the Cryptographic Verification of Java-like
Programs

Ralf Kuesters (Universität Trier, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ralf Kuesters

Joint work of Küsters, Ralf; Truderung, Tomasz; Graf, Jürgen
Main reference R. Küsters, T. Truderung, J. Graf, “A Framework for the Cryptographic Verification of Java-like

Programs,” in Proc. of the 25th IEEE Computer Security Foundations Symp. (CSF’12),
pp. 198–212, IEEE CS, 2012.

URL http://dx.doi.org/10.1109/CSF.2012.9

We consider the problem of establishing cryptographic guarantees—in particular, computa-
tional indistinguishability—for Java or Java-like programs that use cryptography. For this
purpose, we propose a general framework that enables existing program analysis tools that
can check (standard) non-interference properties of Java programs to establish cryptographic
security guarantees, even if the tools a priori cannot deal with cryptography. The approach
that we take is new and combines techniques from program analysis and simulation-based
security. Our framework is stated and proved for a Java-like language that comprises a
rich fragment of Java. The general idea of our approach should, however, be applicable
also to other practical programming languages. As a proof of concept, we use an automatic
program analysis tool for checking non-interference properties of Java programs, namely the
tool Joana, in order to establish computational indistinguishability for a Java program that
involves clients sending encrypted messages over a network, controlled by an active adversary,
to a server. The approach may also be applicable for checking security properties of Java
programs that use security APIs.

12482

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1109/CSF.2012.9
http://dx.doi.org/10.1109/CSF.2012.9
http://dx.doi.org/10.1109/CSF.2012.9
http://dx.doi.org/10.1109/CSF.2012.9

164 12482 – Analysis of Security APIs

4.10 Lazy Mobile Intruders
Sebastian Moedersheim (Technical University of Denmark, DK)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sebastian Moedersheim

Joint work of Moedersheim, Sebastian; Nielson, Hanne Riis; Nielson, Flemming
Main reference S. Moedersheim, F. Nielson, H.R. Nielson, “Lazy Mobile Intruders,” in Proc. of the 2nd Int’l Conf.

on Principles of Security and Trust (POST’13), LNCS, Vol. 7796, pp. 147–166, Springer, 2013.
URL http://dx.doi.org/10.1007/978-3-642-36830-1_8
URL http://www.imm.dtu.dk/ samo/mobile.pdf

We present a new technique for analyzing platforms that execute potentially malicious code,
such as web-browsers, mobile phones, or virtualized infrastructures. Rather than analyzing
given code, we ask what code an intruder could create to break a security goal of the platform.
To avoid searching the infinite space of programs that the intruder could come up with (given
some initial knowledge) we adapt the lazy intruder technique from protocol verification:
the code is initially just a process variable that is getting instantiated in a demand-driven
way during its execution. We also take into account that by communication, the malicious
code can learn new information that it can use in subsequent operations, or that we may
have several pieces of malicious code that can exchange information if they "meet". To
formalize both the platform and the malicious code we use the mobile ambient calculus, since
it provides a small, abstract formalism that models the essence of mobile code.

References
1 Sebastian Mödersheim, Flemming Nielson, Hanne Riis Nielson. Lazy Mobile Intruders. In

Proceedings of POST 2013, Springer LNCS, 2013. Extended version available as IMM-TR-
2012-13 at www.imm.dtu.dk/~samo.

4.11 Temporal Information Flow
Markus N. Rabe (Universität des Saarlandes, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Markus N. Rabe

Joint work of Dimitrova, Rayna; Finkbeiner, Bernd; Kovács, Máté; Rabe, Markus N.; Seidl, Helmut
Main reference R. Dimitrova, B. Finkbeiner, M. Kovács, M.N. Rabe, H. Seidl, “Model Checking Information Flow

in Reactive Systems,” in Proc. of the 13th Int’l Conf. on Verification, Model Checking, and
Abstract Interpretation (VMCAI’12), LNCS, Vol. 7148, pp. 169–185, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-27940-9_12
URL http://www.react.uni-saarland.de/publications/DFKRS12.html

There is a great number of different security properties that are discussed in the various
security communities, but they are defined on different semantic models and are thus difficult
to compare. Further, there is currently little interface to other specifications that concern the
safety and lifeness aspects of a system. I will present recent results on how to integrate secrecy
properties into temporal logics by introducing a new modal operator. Besides providing a
common framework for many security properties, this allows to precisely specify when and
under which conditions a variable has to be kept secret and also until when the secrecy needs
to be maintained. I also give an overview of the complexity results and an efficient fragment
that is suitable for checking large models.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-36830-1_8
http://dx.doi.org/10.1007/978-3-642-36830-1_8
http://dx.doi.org/10.1007/978-3-642-36830-1_8
http://www.imm.dtu.dk/~samo/mobile.pdf
www.imm.dtu.dk/~samo
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://www.react.uni-saarland.de/publications/DFKRS12.html

Mike Bond, Riccardo Focardi, Sibylle Fröschle, and Graham Steel 165

4.12 APIs and Cryptography
Phillip Rogaway (University of California – Davis, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Phillip Rogaway

In this talk I discussed, in turn: (1) how an API can inform a cryptographic definition
(example: the notion of online indistinguishability from [Rogaway, Wooding, Zhang 2012]);
(2) how an API can inform the design of a cryptographic algorithm (example: incremental
encryption and OCB3 [Krovetz, Rogaway 2011]); and (3) how cryptographic expertise can
(maybe poorly) inform the design of an API (example the GCS-API [Rogaway 1994] that I
developed at IBM).

4.13 Automated Reasoning on Data Structures
Viorica Sofronie-Stokkermans (Universität Koblenz-Landau, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Viorica Sofronie-Stokkermans

We present a class of theories for which the problem of checking satisfiability of ground
formulae is decidable. Examples are theories of data structures (fragments of theories of
arrays or pointers), as well as extensions of certain classes of base theories with functions
which satisfy certain recursion and homomorphism properties. We present the applications
of these ideas in verification and possibly also in cryptography.

4.14 MAC in the Box
Graham Steel (CNRS, INRIA, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Graham Steel

We propose to construct a formally verified open source security device for calculating
messages authentication codes (MACs). The application we have in mind is the storage of
user passwords on a web server. Typically, these are stored as salted hashes of the password
and some other diversifiers (such as username). Unfortunately, password files are often
leaked after server compromise, and computing power is sufficiently affordable to allow brute
force offline cracking of the passwords. To prevent this we propose to calculate a keyed
hash (HMAC) of passwords. All HMACs will be calculated in a separate hardware device
(the MAC in the Box, or MITB) where the key is stored. The API of the device will allow
calculation and verification of HMACs but no commands will give access to the key. In
the event of server compromise, the attacker’s ability to crack passwords is limited by the
throughput of the MITB. After the compromise is discovered and the attacker is ejected, the
password file is of no use to him, since he has no access to the HMAC key. We anticipate
that such a simple device could be formally verified to a low level. In combination with a low
cost and open source design the MITB will be an attractive best-practice option for website
administrators.

12482

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

166 12482 – Analysis of Security APIs

4.15 Verification of a Trusted Virtual Security Module
Ronald Toegl (TU Graz, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ronald Toegl

Joint work of Toegl, Ronald; Reimair, Florian; Pirker, Martin
Main reference R. Toegl, F. Reimair, M. Pirker, “Waltzing the Bear, or: A Trusted Virtual Security Module,” in

Proc. of the 9th European PKI Workshop: Research and Applications (EUROPKI 2012), LNCS,
Springer, in press.

URL https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=286273&pCurrPk=67562

Cryptographic key material needs to be protected. Currently, this is achieved by either pure
software based solutions or by more expensive dedicated hardware security modules. We
present a practical architecture to project the security provided by the Trusted Platform
Module and Intel Trusted eXecution Technology on a virtual security module. Our approach
uses commodity personal computer hardware to offer integrity protection and strong isolation
to a security module which implements a compact security API that has been fully verified.
Performance results suggest that our approach offers an attractive balance between speed,
security and cost.

5 Discussion

In the final session, participants were asked to describe one thing they had learnt during the
seminar and one important topic for future research (either to be conducted by themselves
or by others). Here we highlight some of the most interesting suggestions:

5.1 What I learned
The auditor as an adversary. Mike Bond’s talk on the socio-technical side of standards
and certification prompted several comments. It is clear that what formal researchers
analyse is not always relevant for practice – e.g. because of standards. Also one can see
that compliance is sometimes damaging usability and security. In particular, "certification
as compliance" is seen as eroding to the value of the certification process.
Even small APIs are useful and present interesting design and verification challenges
Formal researchers were frequently struck by the range of applications of HSMs, and the
practicalities of their use (e.g. in a mixed estate of heterogeneous configurations).
Being an area that attracts theoreticians but also practitioners, many researchers found
it interesting to consider the security economics angle of API analysis, as outlined by
Ross Anderson in his talk.
Practitioners were generally pleased to see that tools were on the way. In particular,
competition between approaches seems healthy. There is no need to work on just one
approach for the moment.
Many attendees found the tension between theory and practice interesting

5.2 Future research topics
Many new security APIs ripe for analysis were suggested, including:

Low level APIs of crypto devices
OS (e.g. SE linux security modules).

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=286273&pCurrPk=67562
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=286273&pCurrPk=67562
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=286273&pCurrPk=67562
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=286273&pCurrPk=67562

Mike Bond, Riccardo Focardi, Sibylle Fröschle, and Graham Steel 167

Geographic security APIs – e.g. vehicular.
Heterogeneous networks of APIs – e.g. different HSMs with different APIs in networks.

Other topics included:
Improved design of APIs around Crypto considerations
Languages for human interpretation of APIs and policy. Human behavioural studies that
could lead to comprehensible security policies.
"Better than Dolev Yao" models (i.e. more cryptographic detail)
A formally verified, open source HSM
Concurrency and its effects on security – inside devices/drivers/applications
Privacy properties of security APIs – e.g. in V2X
A simple common language for APIs.

6 Conclusion

The field of security API analysis is in rude health. The seminar was over subscribed and
the participation by attendees enthusiastic. As well as consolidating well known subjects in
the area, the seminar identified new research directions in foundations and applications. The
next few years should be an exciting time for research in this area.

12482

168 12482 – Analysis of Security APIs

Participants

Pedro Adao
IST – TU of Lisbon, PT

Ross Anderson
University of Cambridge, GB

Daniel Angermeier
Fraunhofer AISEC –
München, DE

David R. Aspinall
University of Edinburgh, GB

Romain Bardou
INRIA – Paris, FR

Mike Bond
University of Cambridge, GB

Veronique Cortier
CNRS – Nancy, FR

Marion Daubignard
Direction Générale de
l’Armement, FR

Stéphanie Delaune
CNRS, ENS – Cachan, FR

Riccardo Focardi
Univ. Ca’ Foscari di Venezia, IT

Sibylle Fröschle
OFFIS – Oldenburg, DE

Steve Kremer
INRIA Grand Est – Nancy, FR

Robert Künnemann
CNRS, ENS – Cachan, FR

Ralf Küsters
Universität Trier, DE

Flaminia L. Luccio
Univ. Ca’ Foscari Venezia, IT

Matteo Maffei
Universität des Saarlandes, DE

Sebastian Mödersheim
Technical Univ. of Denmark, DK

Benjamin Morin
ANSSI -Paris, FR

Andreas Philipp
Utimaco Safeware AG, DE

Markus N. Rabe
Universität des Saarlandes, DE

Phillip Rogaway
Univ. of California – Davis, US

Mark D. Ryan
University of Birmingham, GB

Stefanie Schlegel
OFFIS – Oldenburg, DE

Jörg-Cornelius Schneider
Deutsche Bank – Eschborn, DE

Laurent Simon
University of Cambridge, GB

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau;
MPI für Informatik, Saarbrücken

Marco Squarcina
Univ. Ca’ Foscari di Venezia, IT

Graham Steel
CNRS, ENS – Cachan, FR

Petr Svenda
Masaryk University, CZ

Susan Thompson
MasterCard Worldwide,
Warrington, GB

Frank Thunig
Utimaco Safeware AG, DE

Ronald Toegl
TU Graz, AT

	Executive Summary Mike Bond, Riccardo Focardi, Sibylle Fröschle, Graham Steel
	Table of Contents
	Keynote: Ross Anderson – Security evolution: interaction of economics and APIs
	Overview of Talks
	Security in Car2X Communication Daniel Angermeier
	Demo of Tookan: Tool for Cryptoki Analysis Romain Bardou
	Tokenisation – pseudo-security and compliance engineering Mike Bond
	Revoke and Let Live: A Secure Key Revocation API for Cryptographic Devices Veronique Cortier
	Hands-on tutorial on Padding Oracle Attacks Riccardo Focardi
	Challenges in Security API Verification Sibylle Froeschle
	Universally Composable Key-Management Steve Kremer
	Formal Security Analysis Results for the Yubikey and YubiHSM Robert Kuennemann
	A Framework for the Cryptographic Verification of Java-like Programs Ralf Kuesters
	Lazy Mobile Intruders Sebastian Moedersheim
	Temporal Information Flow Markus N. Rabe
	APIs and Cryptography Phillip Rogaway
	Automated Reasoning on Data Structures Viorica Sofronie-Stokkermans
	MAC in the Box Graham Steel
	Verification of a Trusted Virtual Security Module Ronald Toegl

	Discussion
	What I learned
	Future research topics

	Conclusion
	Participants

