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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 12491 “Interpreting
Observed Action”. The aim of the seminar was to get a coherent picture, which transcends
the borders of applications and disciplines, of existing approaches and problems in interpreting
observed action in semantic terms – primarily action by humans, but action by artificial agents
may play some role, too. The seminar brought together, on the one hand, researchers from the
different camps of AI, robotics, and knowledge-based systems who are working on the various
aspects and purposes of interpreting observed action by humans, or occasionally, other agents;
on the other hand, it added some researchers from cognitive science (psychology, neurosciences)
working on human perception of behaviour and action. The main outcome of the seminar were
a set of guidelines for setting up a workbench, which can be used to explore and test methods
and techniques related to interpreting observed action.
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For many applications of smart embedded software systems, the system should sense the
footprint of a human or humans acting in the system’s environment, interpret the sensor data
in terms of some semantic model about what the human is doing, and respond appropriately
in real time. Examples of such applications include smart homes, human-machine or human-
robot interaction, assistance, surveillance, and tutoring systems; given the current trend
towards ambient intelligence, ubiquitous computing, and sensor networks, the number of
systems in these categories can certainly by expected to rise in the next ten years or so.
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The problem shares many features with classical object recognition and scene recon-
struction from sensor data in terms of a static scene model. Interpreting in semantic terms
sensor data from the environment has a long tradition in AI – arguably, it has been one
of the original core problems put forth by AI’s founding fathers. However, the problem of
interpreting observed action in the sense of this seminar differs in some aspects from what
state-of-the-art AI or engineering approaches would allow to be tackled by routine:

Events in space-time rather than static objects need to be characterized. This neces-
sarily involves some representation and model of temporal and spatial data (e.g., the
human put a saucepan on the cooker and then turned the cooker on).
Real-time processing of the sensor data or percepts is required to keep track of what
is happening. In fact, “real time” here is the pace of human action, i.e., relatively slow
compared to CPU clock ticks. However, given a potentially rich stream of sensor data
and a potentially large body of background knowledge, even this pace is demanding for
the respective knowledge processing methods.
Willed human action, be it planned, intended, or customary, is the domain of inter-
pretation. In knowledge representation, this appears to be a relatively unexplored area,
compared to, say, upper ontologies of household items, red wine, or pizza varieties.

Contemplating the three words that make up the title of this seminar (“interpret”,
“observe”, and “act”), it becomes clear that there are a number of issues that need to be
addressed in this context. Firstly, any interpretation is to some degree subjective and uses
a particular repertoire of basic actions in its language. Secondly, an observation uses a
particular type of sensor data and often is not possible without interpretation at the same
time. Thirdly, there are issues around what actions are to be considered:

Are only willed and physical action to be considered?
Is avoidance an action?
What constitutes an action in the first place?
When does a particular action end?
Is an unsuccessful action an action?

In summary, what precisely is observed action interpretation and what would be benchmark
data for it?

To find an answer to this question, the participants of the seminar emerged themselves in
a variety of activities: technical talks, working groups, plenary discussions, and a number of
informal discussions. In the rest of this report, some of these activities and their results are
discussed in more detail.
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3 Overview of Talks

3.1 Recognizing Users’ Intentions – A Key Competence of
Companion-Systems

Susanne Biundo-Stephan (Universität Ulm, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Susanne Biundo-Stephan

Development of a Companion-Technology aims at enabling the realization of technical
systems that provide their functionality in a completely individualized way. They adapt to a
user’s expertise, background, capabilities, and needs; furthermore, they take into account
the current situation as well as the user’s emotional state. The features that distinguish
Companion-systems, namely individuality, adaptiveness, availability, cooperativeness, and
trustworthiness, are realized by (the interplay of) cognitive processes. These include planning
and decision making, interaction and dialog, and perception and recognition.

Intention recognition is crucial for Companion-systems. It serves three purposes: (1)
monitor whether the user acts as expected; (2) detect and explain / interpret deviations from
expected behavior; (3) initiate appropriate measures to avoid the break of communication.
As Companion-systems are knowledge-based systems, intention recognition can rely upon
various sources including background domain knowledge, interaction history, situation and
action context. Intention recognition involves various cognitive levels. Elementary activities
and emotional state of a user are recognized on the sensor data processing level. Having
“perceived” basic actions of the planning level this way, higher-level plans of action can
be identified to serve as hypotheses for the recognition of action strategies and goals that
represent the user’s intentions. Finally, predictions generated on the planning level are fed
back into the sensor data processing to guide activity recognition.

3.2 How Do We Interact With the World? Objects, Spaces and
Interactions

Martin V. Butz (Universität Tübingen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Martin V. Butz

Joint work of Butz, Martin V.; Ehrenfeld, S.; Herbort, O.
Main reference S. Ehrenfeld, M.V. Butz, “The modular modality frame model: Continuous body state estimation

and plausibility-weighted information fusion,” Biological Cybernetics, Vol. 107, Issue 1, pp. 61–82,
Springer, 2012.

URL http://dx.doi.org/10.1007/s00422-012-0526-2

Various results are put forward that we do not really interact optimally with our environment
– and particularly with objects. Other factors can rather easily influence our interaction
kinematics and dynamics. Moreover, a model is presented in which such interactions can
unfold and which integrates in a highly modularized manner body state estimations, sensory
information, and sensorimotor predictions. Finally, by means of results from an eye-tracking
experiment, it is shown how anticipations about object interactions guide our information
search task-dependently. I conclude that we interact with the world in a highly anticipatory
fashion, continuously integrating interaction knowledge and other biases as well as incoming
sources of information in a weighted, integrative manner.
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3.3 Learning Relational Event Models From Video
Krishna Sandeep Reddy Dubba (University of Leeds, GB)

License Creative Commons BY-NC-ND 3.0 Unported license
© Krishna Sandeep Reddy Dubba

Main reference K.S.R. Dubba, A.G. Cohn, D.C. Hogg, “Learning Event Models From Complex Videos Using ILP,”
in Proc. of the 19th European Conf. on Articial Intelligence (ECAI’10), Frontiers in AI, Vol. 215,
pp. 93–98, IOS Press, 2010.

Learning event models from videos has applications ranging from abnormal event detection
to content based video retrieval. When multiple agents are involved in the events, character-
izing events naturally suggests encoding interactions as relations. This can be realized by
tracking the objects using computer vision algorithms and encoding the interactions using
qualitative spatial and temporal relations. Learning event models from this kind of relational
spatio-temporal data is particularly challenging because of the presence of multiple objects,
uncertainty from the tracking and especially the time component as this increases the size of
the relational data (the number of temporal relational facts is quadratically proportional to
the number of intervals present).

Relational learning techniques such as Inductive Logic Programming (ILP) hold promise
for building models from this kind of data, but have not been successfully applied to the very
large datasets which result from video data. In this thesis, we present a novel supervised
learning framework to learn relational event models from large video datasets (several million
frames) using ILP. Efficiency is achieved via the learning from interpretations setting and
using a typing system that exploits the type hierarchy of objects in a domain.

Positive and negative examples are extracted using domain experts’ minimal event
annotations (termed deictic supervision) which are used for learning relational event models.
These models can be used for recognizing events from unseen videos. If the input data is
from sensors, it is prone to noise and to handle this, we present extensions to the original
framework by integrating abduction as well as extending the framework based on Markov
Logic Networks to obtain robust probabilistic models that improve the event recognition
performance.

The experimental results on video data from two challenging real world domains (an
airport domain which has events such as loading, unloading, passengerbridge parking etc.
and a verbs domain which has verbs like exchange, pick-up etc.) suggest that the techniques
are suitable to real world scenarios.

3.4 STRANDS: Spatial-Temporal Representations and Activities for
Cognitive Control in Long-Term Scenarios

Tom Duckett (University of Lincoln, UA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Tom Duckett

Joint work of Hawes, Nick (STRANDS project Coordinator) and colleagues in the STRANDS consortium

“STRANDS” (Spatial-Temporal Representations and Activities for Cognitive Control in
Long-Term Scenarios) is a new FP7 IP Project, which will run from April 2013 to March
2017, involving six academic institutes and two industrial partners across four European
countries.
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The project aims to enable mobile service robots to achieve robust and intelligent
behaviour in human environments through adaptation to, and the exploitation of, long-term
experience. Our approach is based on understanding 3D space and how it changes over time,
from milliseconds to months. We will develop novel approaches to extract quantitative and
qualitative spatio-temporal structure from sensor data gathered during months of autonomous
operation. Extracted structure will include recurring geometric primitives, objects, people,
and models of activity. We will also develop control mechanisms which exploit these structures
to yield adaptive behaviour in highly demanding, real-world security and care scenarios.

3.5 Visual Attention for Mobile Systems
Simone Frintrop (Universität Bonn, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Simone Frintrop

Visual attention is one of the concepts of human perception that focuses the processing
capabilities on the regions of a scene that are most promising. Such a mechanism is not
only valuable for humans, but also for computer vision and robotic systems. Especially
robots that act in an unknown, complex environment, have to prioritize which aspect of the
sensory input to process first. Here in Dagstuhl, I presented an overview of our research on
computationally modeling visual attention as well as some applications for intelligent vision
system. For example, I introduced our work on saliency detection based on multivariate
probability distributions and our current approach for detecting unknown objects in 3D
scenes.

3.6 Internal Simulations for Behaviour Recognition
Verena V. Hafner (HU Berlin, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Verena V. Hafner

Joint work of Schillaci, G.; Lara, B.; Hafner, Verena V.
Main reference G. Schillaci,B. Lara, V.V. Hafner, “Internal Simulations for Behaviour Selection and Recognition,”

in Proc. of the 3rd Int’l Workshop on Human Behaviour Understanding (HBU’12), LNCs,
Vol. 7559, pp. 148–160, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-34014-7_13

Humans are experts at recognising and identifying the behaviour of others. It is believed that
they run internal simulations in order to simulate certain (sensorimotor) actions internally
when the (visual) signal is noisy or delayed which is the case most of the times. In this study,
we provide a computational model consisting of pairs of learned inverse and forward models
on a humanoid robot. This allows the robot to chose its actions and recognise the reaching
actions of a human.
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3.7 Mutual Understanding of Humans and Robots
Alexandra Kirsch (Universität Tübingen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alexandra Kirsch

Joint work of Kirsch, Alexandra; Michael Karg; Christina Lichtenthäler; Thibault Kruse

When two partners interact, they have to understand the actions of the other. For a robot
interacting with a human this means that it has to

understand the situation and in particular the actions of the human partner,
select appropriate actions and execute them in a legible way, and
interpret the user’s reaction towards the robot actions as feedback.

I present examples from our work on all three aspects. In the area of plan recognition we
try to identify everyday activities based on locations, durations of standing at the locations,
and objects. These observations are relatively easy to obtain and can already lead to decent
plan recognition and useful predictions, even without accurately recognizing single user
actions. When choosing actions the robot must take into account the user’s needs and social
conventions. In the area of robot navigation we have seen that typical robot navigation
approaches can lead to illegible behavior. When explicitly taking into account the human
approach direction and distance, a more natural robot behavior can be generated. There are
currently no generally accepted metrics and test procedures for human-aware behavior. We
attempt to develop objective measures that can be used to evaluate robot behavior, and have
additionally the potential to be observed by the robot itself, so that the robot can improve
its behavior based on implicit user feedback.

3.8 Interpreting Observed Action in Dynamic Human-Robot Teams
under Asymmetric Agency and Social Sentience

Geert-Jan M. Kruijff (DFKI – Saarbrücken, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Geert-Jan M. Kruijff

Main reference H. Zender, M. Janicek, G.-J. Kruijff, “Situated Communication for Joint Activity in Human-Robot
Teams,” in IEEE Intelligent Systems, Vol. 27, Issue 2, IEEE CS, 2012.

URL http://dx.doi.org/10.1109/MIS.2012.8

The talk considers human-robot teaming, particularly the aspect of how a robot can recognize,
and decide how to act, when things go wrong. As they inevitably will. The talk introduces
the notions of asymmetric agency and social sentience, to discuss how we could model robots
as team members.
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3.9 Model-free Behaviour Recognition
Stephen R. Marsland (Massey University, NZ)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stephen R. Marsland

Joint work of Marsland, Stephen; Guesgen, Hans W.; the MUSE group
Main reference H.W. Guesgen, S. Marsland, (Eds.) “Human Behavior Recognition Technologies: Intelligent

Applications for Monitoring and Security,” ISBN 9781466636828, IGI Global, 2013.
URL http://dx.doi.org/10.4018/978-1-4666-3682-8
URL http://www.igi-global.com/book/human-behavior-recognition-technologies/72160

An overview of our approach to behaviour recognition in smart homes, including our un-
supervised approach, which is based on the concept that behaviours are activities that are
repeated, probably with minor variations.

3.10 Activity Recognition with SCENIOR
Bernd Neumann (Universität Hamburg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Bernd Neumann

Joint work of Bohlken, Wilfried; Hotz, Lothar; Koopmann, Patrick; Neumann, Bernd;
Main reference W. Bohlken, B. Neumann, L. Hotz, P. Koopmann, “Ontology-Based Realtime Activity Monitoring

Using Beam Search,” in Proc. of the 8th Int’l Conf. on Computer Vision Systems, LNCS,
Vol. 6962, pp. 112-121, Springer, 2011.

URL http://dx.doi.org/10.1007/978-3-642-23968-7_12

SCENIOR (SCENe Interpretation by Ontology-based Rules) is an implemented system for
realtime recognition of multi-object activities in real-world scenarios. SCENIOR has been
developed for monitoring aircraft turnarounds at Blagnac Airport in Toulouse, for example
aircraft arrival preparation, unloading, loading, refuelling and other service operations.
SCENIOR expects time-marked information about individual object locations as input and
delivers activity descriptions as output.

Activity recognition is based on declarative models specified in the standardised ontology
language OWL and the Semantic Web Rule Language SWRL. The recognition system is
compiled automatically from this model base. Thus models can be modified, or new models
can be added, without reprogramming the recognition process.

Input data can be obtained by several means, for example by object-centered GPS location
transmission, or by visual tracking using cameras. In the prototypical implementation at
Blagnac Airport, objects have been tracked by 6 cameras firmly installed at the border of
the apron. The tracked object locations were used to generate elementary events relating the
objects to fixed zones, such as “Loader-Positioned-In-Right-FWD-Loader-Zone” or “Tanker-
Leaves-Left-Tanker-Zone”. These were transmitted as input to SCENIOR and interpreted in
realtime as meaningful activities (or unrelated events).

Activity models are structured in a compositional hierarchy. This way, it is possible to
recognise sub-activities contributing to a higher-level activity and generate predictions about
the completion of a turnaround.

The system also comprises uncertainty management based on probability distributions
for the temporal properties of all parts of a turnaround. This way, the system can cope with
imperfect or partial data, and possible alternative interpretations can be given a preference
rating.

Viewed as a support system for aircraft servicing, the following benefits can be expected:

12491

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.igi-global.com/book/human-behavior-recognition-technologies/72160
http://www.igi-global.com/book/human-behavior-recognition-technologies/72160
http://dx.doi.org/10.4018/978-1-4666-3682-8
http://www.igi-global.com/book/human-behavior-recognition-technologies/72160
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/978-3-642-23968-7_12
http://dx.doi.org/10.1007/978-3-642-23968-7_12
http://dx.doi.org/10.1007/978-3-642-23968-7_12
http://dx.doi.org/10.1007/978-3-642-23968-7_12


10 12491 – Interpreting Observed Action

1. The system gives a realtime account of completed service activities, thus providing
progress control.

2. The system allows estimates about the completion of remaining activities, thus facilitating
further scheduling.

3. The system also recognises unscheduled or unusual activities, and may thus provide
security information.

Viewed as a technological framework, SCENIOR permits scene interpretation for diverse
domains. When adapting SCENIOR to another domain, the main tasks are: (i) Developing
sensor analysis up to primitive event recognition, and (ii) modelling higher-level concepts in
an OWL ontology.

3.11 Neural Mechanisms for the Analysis of Articulated Motion
Sequences

Heiko Neumann (Universität Ulm, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Heiko Neumann

Joint work of Neumann, Heiko; Layher, Georg; Giese, Martin A.
Main reference G. Layher, M.A. Giese, H. Neumann, “Learning representations for animated motion sequence and

implied motion recognition,” in Proc. of the 22nd Int’l Conf. on Artificial Neural Networks – Part
I (ICANN’12), LNCS, Vol. 7552, pp. 288–295, Springer, 2012.

The detection and categorization of articulated, or biological, motion is a crucial task
underlying action recognition. Neural representations of perceived animate objects are built
in STS (superior temporal sulcus) which is a region of convergent input from intermediate
level form and motion representations in primate cortex. STS cell sub-populations are
selectively responsive to specific action sequences. It is still largely unknown how and to
which extent form and motion information contribute to the generation of representations
specific to biological motion and what kind of mechanisms are involved in the learning
processes.

A model architecture is proposed for the unsupervised learning of task specific articulated
motion sequence representations. The processing builds upon two mainly separated pathways
akin of the dorsal and the ventral streams in the visual cortex of primates. Along the model
dorsal pathway image motion is processed and patterns of motion are represented [1, 4].
Respectively, contour and form information is processed and represented along the model
ventral stream [2, 5]. Distinctive global level motion and form category representations
are learned in independent pathways. Unsupervised Hebbian learning is employed to build
such categorical representations which serve at input stage to the feedforward convergent
processing at the level of model STS. How does the model automatically select significant
motion patterns as well as meaningful static snapshot categories (keyposes) from video inputs?
Such keyposes correspond to articulated postures which are particularly characteristic for
a given motion sequence and thus decrease the ambiguity of a temporal prediction. It is
shown how sequence selective representations are learned in STS by fusing form and motion
input from the segregated bottom-up driving input streams [3]. We also emphasize the role
of feedback signals propagated backwards along descending processing channels to make
predictions about future input as anticipations generated by sequence-selective neurons.
Network simulations demonstrate the computational capacity of the proposed model by
reproducing several experimental findings from neurosciences and recent behavioral data.

http://creativecommons.org/licenses/by-nc-nd/3.0/
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3.12 Observing and Modeling the Embodiment of Attention
Lucas Paletta (Joanneum Research – Graz, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Lucas Paletta

Joint work of Paletta, Lucas; Santner, Katrin; Fritz, gerald; Mayer, Heinz
Main reference Visual recovery of saliency maps from human attention in 3D environments. Proc. IEEE

International Conference on Robotics and Automation, ICRA 2013, Karlsruhe, Germany, May,
2013, in print.

Computational modeling of visual attention has recently been emerging as an important field
of computer science and Artificial Intelligence. From human attention we know that many
brain areas, including those processing motor signals, are involved in the computation of
saliency as an indicator for which information a next action should consider. The concept
of embodied attention understands attention processing as a meaningful system component
within a perception-action cycle of autonomous systems where saliency computation should be
operated according to the task at hand. Previous work (Paletta et al., 2005) developed a model
for eye movements and belief aggregation for the task of object recognition where sequential
attention strategies are adjusted in the frame of reinforcement learning. Furthermore,
contextual rules (Perko et al., 2009) may prime the location of attention processing in the
visual information. Current work targets at including physical actions such as body posture
and position dynamics into the framework. In a first step, we extract ground truth data from
human studies using eye tracking glasses and a tuned framework of SLAM (simultaneous
localisation and mapping) that allows to map human gaze and integrated saliency measures
directly onto the acquired three dimensional model of the environment, with high precision,
with wearable interfaces that enable natural behaviours and without the use artificial markers
(Paletta et al., 2013). Future work will use human ground truth to learn extended models of
embodied attention from human behaviour.
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3.13 Hybrid planning and plan recognition
Bernd Schattenberg (Universität Ulm, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Bernd Schattenberg

This presentation introduces plan recognition in the context of hybrid planning. The hybrid
planning approach integrates the notion of action abstraction from hierarchical task network
planning with the notion of means-end reasoning from partial-order causal-link planning into
a common framework. We introduce the formal framework and show how search in the space
of plan refinements generates solutions.

The talk also motivates central issues in recognizing plans from the point of view of
hybrid planning for human users: plans provide context to the observed actions and hence
any deviation of a user from a committed plan raises questions of whether the deviation
compromises the overall causal structure wrt. the goals, whether the deviation can be
interpreted as an ad-hoc (or: improvised) alternative task implementation, and the like.

3.14 Can spatial partitioning help with interpreting observed action?
Sabine Timpf (Universität Augsburg, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sabine Timpf

In this talk I explore the notion of spatial partitioning for subdividing an activity such as
navigating from a perron to another perron in a train station into several actions. Actions,
essential actions and operations as subdivisions of an activity are introduced. The strategy
for partitioning space is taken from earlier work on schematic geometry especially discussing
the notion of a gateway as a place where one scene is left and another scene is entered.
Wayfinding works by walking along a sequence of scenes through gateways. In order to
implement this notion in an agent-based system, a change of perspective to an immersive,
bottom-up one is necessary. The problem of implementing how a human agent would walk
around an obstacle and the necessary parameters for this operation are discussed. The
agent’s movements can be interpreted as operations in the activity, subdividing the actions,
but not exactly as a hierarchical subdivision.

3.15 Towards Learning Activities From Kinect Data
Thomas Wiemann (Universität Osnabrück, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Thomas Wiemann

In this talk we present an approach to recognize activities from Kinect data based on
clustering in polygonal reconstructions of the sensed scene. The idea behind this research is
to identify changes in a reference scene. If an activity is going on new objects will appear or
disappear and a person’s movement will cause shadows. The sequences of added clusters and
detected shadows are logged over time. Our aim is to use machine learning techniques to
identify activities in the logged data.
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3.16 Qualitative Spatial Reasoning for Interpreting Action
Diedrich Wolter (Universität Bremen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Diedrich Wolter

The claim of this work can be summarized as follows: qualitative representation and reasoning
techniques provide good means to represent knowledge about actions and qualitative reasoning
supports recognition and interpretation of observed actions.

Qualitative representations of space and time are acknowledged for their ability to capture
cognitive concepts that underly spatial and temporal knowledge. With their according
reasoning techniques, qualitative approaches provide a symbolic approach to representation
and reasoning with spatial and temporal knowledge. Their primary feature is to bridge
the gap between low-level data and conceptual knowledge. A drawback of qualitative
approaches is that they are domain-dependent. Different applications require different
representations and different reasoning algorithms. This can be a severe burden for ap-
plication developers. To overcome this problem, we develop a versatile reasoning toolbox
SparQ (http://www.sfbtr8.uni-bremen.de/project/r3/sparq/) that aims at making the various
reasoning algorithms easily accessible to application developers.

More recently, qualitative approaches have been combined with expressive general logics.
In case of combining a spatial representation with a logic, the term spatial logic has been coined.
We use the term qualitative spatial logic to stress that a qualitative spatial representation
is used. Our work revealed that the combination of a modal logics with a qualitative
spatial representation is particularly attractive. Modal logics offer the expressivity to express
temporal knowledge (linear temporal logic (LTL), for example) which allows purely spatial
representation to be extended to represent spatio-temporal knowledge as required to represent
actions. Good reasoning characteristics of the modal logic can be conveyed to the extended
logic. Developing qualitative spatial logics has several interesting implications. Firstly, action
representations based on qualitative spatial logics are comprehensible. Since the formulas
are based on the qualitative concepts that relate to cognitive concepts, such formalism is
well-suited for knowledge engineering. Secondly, suppose we are given a formula representing
an action. Given observation data, one can approach action recognition as a model checking
task. Sophisticated software tools are available that can easily cope with large data sets,
making the overall approach efficient. Thirdly, this process can be generalized to reason
about unknowns. For example, reasoning tools can be used to sensibly supplement missing
information. Reasoning can be used to infer which pieces of information, if adjoined to the
observations made, would allow an action to be identified. For example, by reasoning one
can yield an interpretation stating that the observed actions suit the pattern of ’laying the
dining table’, given that an unidentified object X is plate. The ability to supplement missing
pieces of information sensibly shows that qualitative spatial logics provide adequate means
to tackle interpreting actions.

4 Working Groups

Most of Tuesday was dedicated to working groups, which were supposed to develop sets of
criteria for benchmarks that can be used for research in formalisms, methods, techniques and
systems related to interpreting observed action. The working groups took into consideration
that there might be a need for different benchmarks for different sensor setups and that
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the benchmarks should allow for different scenarios (or classes of scenarios), should include
humans, robots, and animals, should be suitable for academic exercises as well as real-world
applications, and should allow for comparing different approaches against each other.

The three working groups looked at three classes of benchmark scenarios: a plan recogni-
tion scenario (like helping users of technical systems or recognising that someone is having
breakfast), a state monitoring scenario (like a robot waiter monitoring coarse-grained states
of its customers or an electronic caretaker looking after an elderly person) and a scenario
for activity recognition in dynamic environments (like road traffic or crowd dynamics as in
airports, open-air concerts, and soccer stadiums).

The working group focussing on plan recognition first looked at what plan recognition
means and came to the conclusion that this is an active rather than a passive process. The
group then looked at characteristics of plans, which include causal structure, execution of
plans, multiple plans, hierarchical structure, and the number of agents involved. Potential
tasks in this context are identifying and anticipating activities, rating the normality of
an activity, annotating video data streams, and generalisiation and conceptualisation of
activities.

The discussion in the working group on state monitoring focussed on getting a better
understanding of what exactly a state is in the context of interpreting observed action. In
this context, a state is predefined and specific, and often defined through a collection of cases.
State monitoring might involve multiple indicators, and benchmarking might need to use
artificial data.

The working group dealing with activity recognition in dynamic environments started with
enumerating various relevant scenarios, which include road traffic and accident surveillance,
autonomous vehicles and observation of the environment, soccer game observations, sea
vessel observations, recognising abnormal behaviour, pedestrian/crowd behaviour recognition,
collaborative activities (garbage collectors, rescue teams), and potentially gesture recognition.
They emphasised that there is a difference between interpretation and recognition, where the
latter (in contrast to the first) uses fixed sets of interpretations and learned concepts.

5 Plenary Discussion

The plenary discussion on the last day of the seminar focussed on two overarching questions
that resulted from the working groups:
1. What are the structural dimensions of a benchmark scenario?
2. What should a benchmark website include?

One of the most important dimension of a benchmark scenario turned out to be the
quality of the data. Are the data noisy and/or do they contain errors (e.g. produced by noisy
channels)? Are data coming from different sources, and what are these sources (e.g. sensors,
cameras, etc.)? Are the data complete or do they represent only partial information? Under
which circumstances was the data obtained (e.g. night vs. day in the case of video data).

A second dimension revolves around issues related to the observed activities. Are the
activities single activities or repetitive activities? Are we dealing with hierarchies of activities?
Are multiple actors involved in the activity? Are actions performed in parallel? Is there
diversity in the actions? Are there multiple scenes or just a single scene, and if the first is
the case, is there diversity in the scenes?

Issues around time and space form another dimension of the benchmark scenarios. Are
we dealing with a small or large scale space (in respect to the scene). Are there multiple
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timescales, and what is the length of a typical episode? Are the data continuous or do they
represent snapshots?

Last but not least we need to consider the complexity of the data as well as its availability.
Does the benchmark provide various levels of complexity? Are the data real-world data
(indoor or outdoor) or artificially generated data? Are data available for different domains?

As far as a potential benchmark website is concerned, there is a need for tools that
enable users to upload new data, reports on results achieved with the data and experiences
gained with them, software used to achieve the results and experiences, sets of use cases, and
collections of success stories. It is also desirable to have a toolbox for manipulating data sets
so that they can be inspected easily, transformed into different formats, etc.

In respect to the data sets, they should be available at different levels of granularity and
abstraction, and potentially in different representations. The data sets should be provided
with evaluation guidelines, annotations, and clear explanations of their aims. Metadata and
ground truths should be available at least for some of the data sets.

Other aspects of the website include:
Wiki and forum for discussing technical issues and results
Tutorials for the material available
Links to relevant conferences
Repository with papers using the benchmarks

Overall, the value of a benchmark website for interpreting observed action seems to be
without question. However, it is yet to be determined who is in charge of the website and
what the timeframe is for setting it up.
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