
Report from Dagstuhl Seminar 12511

Divide and Conquer: the Quest for Compositional Design
and Analysis
Edited by
Marieke Huisman1, Barbara Jobstmann2, Ina Schaefer3, and
Marielle Stoelinga4

1 University of Twente, NL, Marieke.Huisman@ewi.utwente.nl
2 VERIMAG – Gières, FR, Barbara.Jobstmann@imag.fr
3 TU Braunschweig, DE, i.schaefer@tu-braunschweig.de
4 University of Twente, NL, Marielle.Stoelinga@ewi.utwente.nl

Abstract
On December 16 to 21, the Dagstuhl seminar Divide and Conquer: the Quest for Compositional
Design and Analysis was organized. Topic was the compositionality, a central theme in computer
science, but its applications, methods, techniques are scattered around many different discip-
lines. Therefore, this workshop brought together scientists from different disciplines, including
deductive verification, model checking, software product lines, component interfaces.

Seminar 16.–21. December, 2012 – www.dagstuhl.de/12511
1998 ACM Subject Classification D.2.4 Software/Program Verification, D.2.5 Testing and De-

bugging, F.3 Logics and Meanings of Programs, F.3.1 Specifying and Verifying and Reasoning
about Programs

Keywords and phrases Algorithms, Design, Languages, Theory, Verification
Digital Object Identifier 10.4230/DagRep.2.12.64

1 Executive Summary

Marieke Huisman
Barbara Jobstmann
Ina Schaefer
Marielle Stoelinga

License Creative Commons BY-NC-ND 3.0 Unported license
© Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga

Compositionality is a key concept in computer science: only by breaking down a large system
into smaller pieces, we can build today’s complex software and hardware systems. The same
holds true for verification and analysis: realistic systems can only be analyzed by chopping
them up into smaller parts. Thus, compositionality has been widely studied in various
different settings, and by different communities: people in programming languages, software
verification, and model checking have all come up with their own techniques and solutions.

Thus, the goal of this workshop has been to bring together these fields and communities,
so that they can learn from and cross-fertilize each other. We have succeeded in doing so:
through three extensive tutorials, longer and shorter presentations, and working sessions,
researchers from different areas have learned about each others problems, techniques, and
approaches.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY-NC-ND 3.0 Unported license

Divide and Conquer: the Quest for Compositional Design and Analysis, Dagstuhl Reports, Vol. 2, Issue 12, pp.
64–88
Editors: Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12511
http://dx.doi.org/10.4230/DagRep.2.12.64
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 65

The scientific programme was built around four corners stones
1. Personal introductions.
2. Three well-received tutorials:

Compositional programming by Oscar Nierstrasz
Compositional verification by Arnd Poetzsch-Heffter
Compositional modelling by Arend Rensink

3. Regular presentations, presenting in-depth technical knowlegde on:
Verification of programming languages
Automatic synthesis
Interface theories
Model checking
Contract-based design
Software product lines

4. Working group sessions:
Working group on software product lines
Working group on Benchmark for Industrial Verification/Synthesis Problems
Working group on Modular Full Functional Specification and Verification of C and
Java programs that Perform I/O
Model checking vd deducutive verification
Compositional Synthesis of Reactive Systems

12511

66 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

2 Table of Contents

Executive Summary
Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga . . . 64

Detailed programme
Personal introductions . 69

Tutorials . 69

Overview of Talks
Compositional verification and semantics of concurrent/distributed objects
Wolfgang Ahrendt . 70

A Coinductive Big-step Semantics for Distributed Concurrent Objects
Wolfgang Ahrendt . 70

Glue synthesis in BIP
Simon Bliudze . 70

Defining a general abstract notion of component
Simon Bliudze . 71

Compositional Reasoning about Object-Oriented Software Evolution
Einar Broch Johnsen . 71

Three cases of composition and a question
Ferruccio Damiani . 72

Synthesis and Control for Infinite-State Systems with Partial Observability
Rayna Dimitrova . 72

Compositional Synthesis of Distributed Systems
Bernd Finkbeiner . 73

How Decomposition Enhances Security Analysis
Kathi Fisler . 73

Compositional Verification of Procedural Programs
Dilian Gurov . 73

Abstract Symbolic Execution
Reiner Haehnle . 74

GCM/ProActive: a distributed component model, its implementation, and its
formalisation
Ludovic Henrio . 74

VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java
Bart Jacobs . 74

A Variability-Aware Module System
Christian Kaestner . 75

Compositionality for Complex Event Processing and Aspects
Shmuel Katz . 75

Composition on the Web
Shriram Krishnamurthi . 76

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 67

Compositional Programming
Oscar M. Nierstrasz . 76

Synthesis of Control for Component-based systems using Knowledge
Doron A. Peled . 76

Compositional verification: A tutorial
Arnd Poetzsch-Heffter . 77

Typical Worst-Case Analysis of Real-Time Systems
Sophie Quinton . 77

Component signatures of networking process components require protocol and role
declarations
Johannes Reich . 77

A logical perspective on (finite) software systems and their composition
Johannes Reich . 78

Compositionality, huh?
Arend Rensink . 78

Comparing Verification Condition Generation with Symbolic Execution
Malte Schwerhoff . 79

Compositional Verification of Actors
Marjan Sirjani . 79

Risk Management meets model checking: compositional analysis of DFTs
Marielle Stoelinga . 79

Modularity and compositionality in embedded system design: interface synthesis
and interface theories
Stavros Tripakis . 80

Interface Theories: Design Choices
Stavros Tripakis . 80

Compositional Behavioral Modeling with Real Time Games
Andrzej Wasowski . 81

Working Groups
Working Group: How can model checking and deductive verification benefit from
each other/verification of very large systems
Huisman, Marieke; Sirjani, Marjan . 81

Working Group: Compositional Synthesis of Reactive Systems
Barbara Jobstmann . 82

Working Group: Modular Full Functional Specification and Verification of C and
Java programs that Perform I/O
Bart Jacobs . 83

Working Group: Benchmark for Industrial Verification/Synthesis Problem
Johannes Reich . 84

Working Group: Compositional Verification of Software Product Lines
Ina Schaefer . 84

12511

68 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

Programme day-by-day . 85

Participants . 88

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 69

3 Detailed programme

3.1 Personal introductions
We started out by a three rounds of personal introductions of the participants. Each
participant was asked to introduced him or herself in two minutes, focussing on scientific
interests. Also, we asked participants to classify themselves according to three basic scientific
disciplines, being modeling, verification and/or programming languages. In our opinion,
these introductions really helped to get to know each other, to easy communication and
discussion, and “break the ice.”

3.2 Tutorials
In order to set a common ground between the various fields, we asked three renown experts
to give a tutorial, explaining the basic concepts, methods, and techniques in their field. In
our opinion, these tutorials were a success, since their quality was excellent, and they were
very well received by the participants.

3.2.1 Tutorial on compositional programming by Oscar Nierstrasz

Oscar Nierstrasz started out by a historical overview of compositional techniques in pro-
gramming languages — that we all know, but were not aware of their historic origins. Then
moved to current techniques in compositional programming, and challenges for the future.

3.2.2 Tutorial on compositional verification by Arnd Poetzsch-Heffter

Poetzsch-Heffter started with the presentation of basic principles of compositional verification
and suggested to categorize techniques for compositional verification according to four
dimensions: (A) What are the components? How are they represented? (B) What are the
composition mechanisms? (C) What properties are addressed? How are they specified? (D)
What kinds of verification techniques are used? In the main part, the tutorial took a closer
look at four different settings to discuss important aspects in the huge space of compositional
verification: (1.) Maximal models for model checking step-synchronous Moore machines
(2.) Model checking control-flow properties of sequential procedural programs (3.) Modular
state-based verification of object-oriented programs (4.) Assume-guarantee reasoning for
communicating processes

3.2.3 Tutorial on compositional modelling by Arend Rensink

This presentation formulated a simple formal framework in which some of the essential
aspects of compositionality come together. The most important lesson is that the composition
operator should be compatible with a notion of abstraction, or semantics, encapsulating
the conceptual understanding of the objects under construction. If this compatibility fails,
the common solution is to augment the abstraction by putting more information into it.
This kind of augmentation is, in fact, the same kind of step as strengthening the induction
hypothesis in an inductive proof.

The framework is tested, with varying degrees of success, against a number of cases
of composition from different domains, ranging from bisimilarity minimisation to testing
and subclassing (seen as a composition operator). Some of these cases nicely illustrate the
principle of augmentation; others provide examples where compositionality simply fails to
hold.

12511

70 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

4 Overview of Talks

4.1 Compositional verification and semantics of concurrent/distributed
objects

Wolfgang Ahrendt (Chalmers UT – Göteborg, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Wolfgang Ahrendt

We present a semantics, calculus, and system for compositional verification of an object-
oriented modelling language for concurrent distributed applications. The system is an instance
of KeY, a framework for object-oriented software verification, which has so far been applied
foremost to sequential Java. The presented system addresses functional correctness of models
featuring local cooperative thread parallelism and global communication via asynchronous
method calls. The calculus heavily operates on communication histories specified by interfaces.
We also present adenotational semantics and an assumption-commitment style semantics of
the logic.

4.2 A Coinductive Big-step Semantics for Distributed Concurrent
Objects

Wolfgang Ahrendt (Chalmers UT – Göteborg, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Wolfgang Ahrendt

We present a fully compositional big-step operational semantics for globally distributed and
locally concurrent objects. The semantics captures both, terminating and non-terminating
behaviour. We construct thread histories independently, non-deterministically guessing
effects of other threads/objects. Then thread histories are merged to object history, which
then are merged to system histories.

4.3 Glue synthesis in BIP
Simon Bliudze (EPFL – Lausanne, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
© Simon Bliudze

BIP (Behaviour, Interaction, Priority) is a framework for the component-based design and
analysis of real-time embedded systems. It has been successfully used for modelling and
analysis of a variety of case studies and applications, such as performance evaluation, model-
ling and analysis of Tiny OS-based wireless sensor network applications, construction and
verification of a robotic system. The main characteristic feature of BIP is the clear separation
of component behaviour (sequential computation) and coordination. The latter is realised
through memory less "glue" consisting of an interaction model defining synchronisations
among components and a priority model used for conflict resolution and defining scheduling
policies. In this talk, I will briefly discuss automatic synthesis of glue from boolean constraints
representing a certain type of safety properties made possible due to the above-mentioned
separation of concerns principle.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 71

4.4 Defining a general abstract notion of component
Simon Bliudze (EPFL – Lausanne, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
© Simon Bliudze

Component-based design generally relies on a clear separation between the mechanisms used
to design atomic components and those used to define the "glue" assembling these into higher-
level compound components. Different component-based design approaches have different
models for components and different – often ad-hoc – glue operators. Defining the appropriate
glue for agiven component model and studying glue properties such as composition and
interference, requires a formal and generic definition of the notion of glue. The necessity of such
definition becomes even clearer when one tries to compare different component frameworks.
However, defining a formal generic notion of glue requires first a formal generic notion of
component. In a recent paper (http://rvg.web.cse.unsw.edu.au/eptcs/paper.cgi?ICE2012.6),
we have proposed one such generic definition. Expected outcome: For this discussion group,
I propose to confront this definition with the critique based on other participants’ experience
and either validate it through examples or give a more appropriate one.

4.5 Compositional Reasoning about Object-Oriented Software
Evolution

Einar Broch Johnsen (University of Oslo, NO)

License Creative Commons BY-NC-ND 3.0 Unported license
© Einar Broch Johnsen

An intrinsic property of real world software is that it needs to evolve. The software is
continuously changed during the initial development phase, and existing software may need
modifications to meet new requirements. To facilitate the development and maintenance of
programs, it is an advantage to have programming environments which allow the developer to
alternate between programming and verification tasks in a flexible manner and which ensures
correctness of the final program with respect to specified behavioral properties. We propose
a formal framework for the flexible development of object-oriented programs, which supports
an interleaving of programming and verification steps. The motivation for this framework is
to avoid imposing restrictions on the programming steps to facilitate the verification steps,
but rather to track unresolved proof obligations and specified properties of a program which
evolves. Drawing inspiration from type systems, we use an explicit proof context (or cache)
to connect unresolved proof obligations and specified properties, and formulate a soundness
in variant for proof contexts which is maintained by both programming and verification steps.
The proof context allows a fine-grained analysis of changes to the class hierarchy. Once
the set of unresolved obligations in the proof context is empty, the invariant ensures the
soundness of the overall program verification.

12511

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

72 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

4.6 Three cases of composition and a question
Ferruccio Damiani (University of Torino, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ferruccio Damiani

Three examples of compositional type systems are briefly illustrated. The question is whether
people working on programming languages and people workingon formal verification feel the
need to identify a suite of code reuse/modularization mechanisms for synergically addressing-
fine-grained code reuse- coarse-grained code reuse- spatial/temporal code evolution while
being suitable for compositional analysis. Perhaps, being suitable for compositional typing
could be a preliminary requisite for such a suite of mechanisms. A reformulation of the
question: is it feasible for this research community to agree on a list of recommendations /
guidelines / principles to be taken into account when designing a new language (or evolving
an existing one) in order to facilitate formal verification?

4.7 Synthesis and Control for Infinite-State Systems with Partial
Observability

Rayna Dimitrova (Universität des Saarlandes, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Rayna Dimitrova

Joint work of Dimitrova, Rayna; Finkbeiner, Bernd

The information available to a component in a distributed system is limited by its interface.
Thus, in order to deliver realistic implementations, controller synthesis methods must take
into account the fact that the controller has incomplete information about the global state
of the system. Incomplete information is a major challenge already for finite-state systems
where it makes the synthesis problem exponentially harder. For infinite-state systems the
problem is in general undecidable. In particular, for real-time systems the controller synthesis
problem becomes undecidable in the presence of incomplete information. We will present
a novel approach to timed controller synthesis with safety requirements under incomplete
information. We developed the first counterexample-guided abstraction refinement scheme
that addresses the two dimensions of complexity – incomplete information and the infinite-
statespace. The key innovation of our approach is the automatic synthesis of the observation
predicates that are tracked by the controller. Previous methods required these predicates to
be given manually. Our procedure relies on abstract counterexamples to guide the search for
observations that suffice for controllability. We will outline the techniques for refining the set
of observation predicates based on symbolic characterization of spurious counterexamples.
We will present experimental results demonstrating better performance than approaches
based on brute-force enumeration of observation sets in cases when fine granularity of the
observations is necessary.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 73

4.8 Compositional Synthesis of Distributed Systems
Bernd Finkbeiner (Universität des Saarlandes, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Bernd Finkbeiner

In this talk I will illustrate how a logical representation of the synthesis problem for distributed
systems facilitates a compositional synthesis approach. I will present a compositional proof
rule for Extended Coordination Logic (ECL), a new temporal logic that reasons about the
interplay between behavior and informedness in distributed systems. ECL extends linear-
time temporal logic with quantification over strategies under incomplete information. ECL
subsumes thegame-based temporal logics, including the alternating-time temporal logics,
strategy logic, and game logic, and can express the synthesis problem for distributed systems
with arbitrary architectures. While ECL is undecidable in general, the compositional proof
rule can be used to reduce a general ECL formula to a set of formulas in the decidable
fragment of ECL.

4.9 How Decomposition Enhances Security Analysis
Kathi Fisler (Worcester Polytechnic Institute, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Kathi Fisler

Joint work of Fisler, Kathi; Krishnamurthi, Shriram

Factoring security policies out into separate program components enables interesting forms
of compositional reasoning about security properties. Policies are expressive yet declarative.
Both property-based verification and exhaustive semantic differencing (a property-free formal
analysis) are tractable on policies. Moreover, running these analyses on policies can leave
simpler residues to verify about the programs that use policies. The lesson for this seminar
is that decomposition into modules in different languages can open some interesting avenues
for making verification feasible and tractable.

4.10 Compositional Verification of Procedural Programs
Dilian Gurov (KTH – Stockholm, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Dilian Gurov

The talk gives a high-level overview of a line of work that Marieke Huisman and I started
in early 2001. We develop a verification method for control-flow based temporal safety
properties that uses relativization on local component properties as a means of handling
variability in code: not yet available component code, evolving components, as well as
components that exist in multiple variants as resulting from software product lines. We
develop the theory based on flow graphs, simulation and maximal models, and explain the
various difficulties in practically implementing the approach. These include a suitable choice
of specification formalisms, plus algorithmic support for flow graph extraction, maximal
flow graph construction, and model checking. As an example application area we show how
hierarchical variability models of software product lines can be used to drive verification
in a devide-and-conquer style, allowing for scalable analysis of large numbers of software
products.

12511

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

74 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

4.11 Abstract Symbolic Execution
Reiner Haehnle (TU Darmstadt, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Reiner Haehnle

Modern software tends to undergo frequent requirement changes and typically is deployed in
many different scenarios. This poses significant challenges to formal software verification,
because it is not feasible to verify a software product from scratch after each change. It is
essential to perform verificationin a modular fashion instead. The goal must be to reuse
not merely software artifacts, but also specification and verification effort. In our setting
code reuse is realized by delta-oriented programming, an approach where a core program
is gradually transformed by code "deltas" each of which corresponds to a product feature.
The delta-oriented paradigm is then extended to contract-based formal specifications and
to verification proofs. As a next step towards modular verification we transpose Liskov’s
behavioural subtyping principle to the delta world. Finally, based on the resulting theory, we
perform a syntactic analysis of contract deltas that permits to automatically factor out those
parts of a verification proof that stays valid after applying a code delta. This is achieved by
a novel verification paradigma called "abstract symbolic execution".

4.12 GCM/ProActive: a distributed component model, its
implementation, and its formalisation

Ludovic Henrio (INRIA Sophia Antipolis – Méditerranée, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ludovic Henrio

The main claim of this talk is to show that software components and active objects provide
an efficient programming model and verification setting. I present a component model that
aims at large scale distributed systems, and is implemented as part of the ProActive library.
the component model is named GCM, which stands for Grid Component Model. I present
several works using formal methods to prove properties on the component model, or on some
applications composed with it. I conclude with a few perspectives including verification of
adaptive components, and better adaptation to multicore architectures.

4.13 VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and
Java

Bart Jacobs (KU Leuven, BE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Bart Jacobs

VeriFast is a verifier for single-threaded and multithreaded C and Java programs annotated
with preconditions and postconditions written in separation logic. To enable rich specifications,
the programmer may define inductive datatypes, primitive recursive pure functions over
these datatypes, and abstract separation logic predicates. To enable verification of these rich
specifications, the programmer may write lemma functions, i.e., functions that serve only as

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 75

proofs that their precondition implies their postcondition. The verifier checks that lemma
functions terminate and do not have side-effects. Verification proceeds bysymbolic execution,
where the heap is represented as a separation logic formula. Since neither VeriFast itself nor
the underlying SMT solver do any significant search, verification time is predictable and low.
We have used VeriFast to verify fine-grained concurrent data structures, unloadable kernel
modules, JavaCard programs, and a network routing program embedded in a home gateway.
In this talk, we demonstrate the features of VeriFast for C and Java in a 60-minute tutorial.

4.14 A Variability-Aware Module System
Christian Kaestner (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Christian Kaestner

Module systems enable a divide and conquer strategy to software development. To implement
compile-time variability in software product lines, modules can be composed in different
combinations. However, this way, variability dictates a dominant decomposition. As an
alternative, we introduce a variability-aware module system that supports compile-time
variability inside a module and its interface. So, each module can be considered a product
line that can be type checked in isolation. Variability can crosscut multiple modules. The
module system breaks with the antimodular tradition of a global variability model in product-
line development and provides a path toward software ecosystems and product lines of
product lines developed in an open fashion. We discuss the design and implementation
of such a module system on a core calculus and provide an implementation for C as part
of the TypeChef project. Our implementation supports variability inside modules from
#ifdef preprocessor directives and variable linking at the composition level. With our
implementation, we type check all configurations of all modules of the open source product
line Busybox with 811 compile-time options, perform linker check of all configurations, and
report found type and linker errors- without resorting to a brute-force strategy.

4.15 Compositionality for Complex Event Processing and Aspects
Shmuel Katz (Technion – Haifa, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Shmuel Katz

Main reference M. Goldman, E. Katz, S. Katz, “MAVEN: modular aspect verification and interference analysis,”
Formal Methods in System Design, vol. 37, no. 1, pp. 61–92, 2010.

URL http://dx.doi.org/10.1007/s10703-010-0101-1

Aspects can be viewed as system transformers, and then specified by assume guarantee pairs,
where the assumption relates to the system to which the aspect is to be woven, and the
guarantee to the resultant system after weaving. The correctness of the aspect relative to
this assumption can then be shown by creating a model of the assumption’s tableau with
the aspect state machine model woven in, and checking whether the gurarantee holds for
that model. Interference among aspects can also be defined as whether one aspect disturbs
the assumption or the guarantee of another. Similar ideas can be used to specify and verify
event detectors and responses for complex event processing.

12511

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1007/s10703-010-0101-1
http://dx.doi.org/10.1007/s10703-010-0101-1
http://dx.doi.org/10.1007/s10703-010-0101-1

76 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

4.16 Composition on the Web
Shriram Krishnamurthi (Brown University – Providence, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Shriram Krishnamurthi

The modern Web is full of composition. Some of the most interesting (andterrifying) instances
are in the browser itself. Broadly, there are two kinds of composition: between the browser
and extensions, and within the page itself. My presentation briefly outlines some of these
scenarios, to provide challenging examples of composition scenarios on which people can try
out their theoretical ideas.

4.17 Compositional Programming
Oscar M. Nierstrasz (Universität Bern, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
© Oscar M. Nierstrasz

This talk surveys the evolution of compositional paradigms in programming fromthe 1950s
through to the present day. In particular, we explore the innovations introduced by procedural
programming, object-oriented langauges, component-based development, and model-driven
engineering.

4.18 Synthesis of Control for Component-based systems using
Knowledge

Doron A. Peled (Bar-Ilan University – Ramat-Gan, IL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Doron A. Peled

In distributed systems, local controllers often need to impose global guarantees. A solution
that will not impose additional synchronization may not be feasible due to the lack of
ability of one process to know the current situation at another. On the other hand, a
completely centralized solution will eliminate all concurrency. A good solution is usually
a compromise between these extremes, where synchronization is allowed for in principle,
but avoided whenever possible. In a quest for practicable solutions to the distributed
control problem, one can constrain the executions of a system based on the pre-calculation
of knowledge properties and allow for temporary interprocess synchronization in order to
combine the knowledge needed to control the system. This type of control, however, may
incur a heavy communication overhead. We introduce the use of simple supervisor processes
that accumulate information about processes until sufficient knowledge is collected to allow
for safe progression. We combine the knowledge approach with a game theoretic search
that prevents progressing to states from which there is no way to guarantee the imposed
constraints.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 77

4.19 Compositional verification: A tutorial
Arnd Poetzsch-Heffter (TU Kaiserslautern, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Arnd Poetzsch-Heffter

The tutorial starts with the presentation of basic principles of compositional verification and
suggest to categorize techniques for compositional verification according to four dimensions:

What are the components? How are they represented?
What are the composition mechanisms?
What properties are addressed? How are they specified?
What kinds of verification techniques are used?

In the main part, the tutorial takes a closer look at four different settings to discuss important
aspects in the huge space of compositional verification:
1. Maximal models for model checking step-synchronous Moore machines
2. Model checking control-flow properties of sequential procedural programs
3. Modular state-based verification of object-oriented programs
4. Assume-guarantee reasoning for communicating processes
(The selection of the four settings was partly done to foster the communication of the seminar
participants, and partly reflects my restricted knowledge. It does not provide a fair and
balanced representation of the space.)

4.20 Typical Worst-Case Analysis of Real-Time Systems
Sophie Quinton (TU Braunschweig, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Sophie Quinton

We present a new compositional approach providing safe quantitative information about
real-time systems. Our method is based on a model to describe sporadic overload and bursts
at the input of a system. We show how to derive from such a model safe quantitative
information about the response time of each task. Experiments demonstrate the efficiency of
this approach on a real-life example.

4.21 Component signatures of networking process components require
protocol and role declarations

Johannes Reich (SAP AG – Walldorf, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Johannes Reich

Although from an implementation perspective executable process components are character-
ized by their computational function, this is not the way they present themselves from their
partners’ perspective in their network like interactions. From their partners’ perspective, only
a projection of the interacting process components becomes visible, which is best described
as their role in a protocol. Thus, to support component based design of processes, these
process components require the declaration of their role and protocol in their component
signature.

12511

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

78 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

4.22 A logical perspective on (finite) software systems and their
composition

Johannes Reich (SAP AG – Walldorf, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Johannes Reich

A system notion is proposed that rests on the mathematical function notion, transforming
in one time step some input and internal state values onto some output and internal state
values. The question whether a certain computational entity represents a system thereby
becomes the question to identify the internal and i/o states together with the system function
and the corresponding time step. The effect of system interaction on system composition
can be classified as:
1. Parallel processing or strict sequential interaction results in strictly hierarchical super

system formation
2. Deterministic bidirectional interactions together with certain consistency conditions result

in (recursive) super system formation
3. Nondeterministic bidirectional interactions together with certain consistency conditions

results in provably no super system formation
4. further, non-classified relations.

4.23 Compositionality, huh?
Arend Rensink (University of Twente, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Arend Rensink

In this presentation I have formulated a simple formal framework in which some of the essential
aspects of compositionality come together. The most important lesson is that the composition
operator should be compatible with a notion of abstraction, or semantics, encapsulating the
conceptual understanding of the objects under construction. If this compatibility fails, the
common solution is to augment the abstraction by putting more information into it. This kind
of augmentation is, in fact, the same kind of step as strengthening the induction hypothesis
in an inductive proof. The framework is tested, with varying degrees of success, against a
number of cases of composition from different domains, ranging from bisimilarity minimisation
to testing and subclassing (seen as a composition operator). Some of these cases nicely
illustrate the principle of augmentation; others provide examples where compositionality
simply fails to hold.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 79

4.24 Comparing Verification Condition Generation with Symbolic
Execution

Malte Schwerhoff (ETH Zürich, CH)

License Creative Commons BY-NC-ND 3.0 Unported license
© Malte Schwerhoff

Joint work of Schwerhoff, Malte; Kassios, Ioannis T.; Müller, Peter

There are two dominant approaches for the construction of automatic program verifiers,
Verification Condition Generation (VCG) and Symbolic Execution (SE). Both techniques
have been used to develop powerful program verifiers. However, to the best of our knowledge,
no systematic experiment has been conducted to compare them – until now. We have
used the specification and programming language Chalice and compared the performance
of its standard VCG verifier with a newer SE engine called Syxc, using the Chalice test
suite as a benchmark. We have focused on comparing the efficiency of the two approaches,
choosing suitable metrics for that purpose. Our metrics also suggest conclusions about the
predictability of the performance. Our results show that verification via SE is roughly twice
as fast as via VCG. It requires only a small fraction of the quantifier instantiations that are
performed in the VCG-based verification.

4.25 Compositional Verification of Actors
Marjan Sirjani (Reykjavik University, IS)

License Creative Commons BY-NC-ND 3.0 Unported license
© Marjan Sirjani

Rebeca is designed as an imperative actor-based language with the goal of providing an easy
to use language for modeling concurrent and distributed systems, with formal verification
support. I will explain the language Rebeca and the supporting model checking tools.
Abstraction and compositional verification, and state-based reduction techniques including
symmetry reduction of Rebeca will be discussed. As an example of a domain specific example,
I will show how we used Rebeca for model checking SystemC codes.

4.26 Risk Management meets model checking: compositional analysis
of DFTs

Marielle Stoelinga (University of Twente, NL)

License Creative Commons BY-NC-ND 3.0 Unported license
© Marielle Stoelinga

Dynamic fault trees (DFTs) are a versatile and common formalism to model and analyze
the reliability of computer-based systems. This talk presents a formal semantics of DFTs in
terms of input/output interactive Markov chains (I/O-IMCs), which extend continuous-time
Markov chains with discrete input, output and internal actions. This semantics provides a
rigorous basis for the analysis of DFTs. Our semantics is fully compositional, that is, the
semantics of a DFT is expressed in terms of the semantics of its elements (i.e. basic events and
gates). This enables an efficient analysis of DFTs through compositional aggregation, which

12511

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

80 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

helps to alleviate the state-space explosion problem, and yields a very flexible modeling and
analysis framework by incrementally building the DFT state space. We have implemented
our methodology by developing a tool, and showed, through a number of case studies, the
feasibility of our approach and its effectiveness in reducing the state space.

4.27 Modularity and compositionality in embedded system design:
interface synthesis and interface theories

Stavros Tripakis (University of California – Berkeley, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stavros Tripakis

Compositional methods, that allow to assemble smaller components into larger systems
both efficiently and correctly, are not simply a desirable feature in system design: they are
a must for designing large and complex systems. In this talk I will present some recent
work on this general theme, motivated by embedded system applications. A key notion
is that of "interface" which allows to abstract a component, hiding details while exposing
relevant information. I will present methods for automatic bottom-up synthesis of interfaces
for hierarchical synchronous and dataflow models, motivated by the need for modular code
generation from such models. I will also present two interface theories for the same models.
Interface theories can be seen as behavioral type theories. They include the key notion of
refinement, which captures substitutability: when can a component be replaced by another
one without compromising the properties of the entire system. I will present two interface
theories: – synchronous relational interfaces, targeted at synchronous systems and functional
properties; – actor interfaces, targeted at dataflow models and performance properties such
as throughput or latency.

4.28 Interface Theories: Design Choices
Stavros Tripakis (University of California – Berkeley, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Stavros Tripakis

Interface theories such as interface automata were introduced by Alfaro and Henzinger in the
early 2000s. A key characteristic of these theories is the "asymmetry" of inputs and outputs,
and the fact that interfaces are not "input-enabled": they may declare some inputs as illegal.
This results in a "demonic" notion of composition and an "alternating" notion of refinement.
This talk discusses the design choices that naturally lead to these definitions.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 81

4.29 Compositional Behavioral Modeling with Real Time Games
Andrzej Wasowski (IT University of Copenhagen, DK)

License Creative Commons BY-NC-ND 3.0 Unported license
© Andrzej Wasowski

Joint work of Wasowski, Andrzej; Larsen, Kim; Legay, Axel; Nyman, Ulrik; David, Alexandre

The presentation introduces the concept of specification theory (or interface)theory for
automata-like models, including the main motivation and ingredient operators. I show
how we instantiated this paradigm in the tool ECDAR, which aims at stepwise design and
verification of real-time embedded controllers. The tool is based on the semantic model
of Timed Games, and its associated symbolic solving algorithms. I will present the main
objects of ECDAR’s specification theory (implementations, specifications, properties), its
transformation operators (conjunction, parallel composition, quotient) and its verification
operator (satisfaction, refinement). I focus mostly on examples of structuring models and
correctness proofs. Time permitting, I will show patterns that allow Assume/Guarantee
style of verification, and combine them to obtain (finite) inductive proofs of correctness using
refinements in ECDAR.

5 Working Groups

5.1 Working Group: How can model checking and deductive
verification benefit from each other/verification of very large
systems

Huisman, Marieke; Sirjani, Marjan

License Creative Commons BY-NC-ND 3.0 Unported license
© Huisman, Marieke; Sirjani, Marjan

A group of about 15 people with very different backgrounds attended this working group.
Initially, the discussion went in many different directions, and the point was raised that
work on this had been attempted already 20 years ago. However, it some point it was
realised that much of this unclearity was caused by the term deductive verification, which
can have many different meanings. Thus it was necessary to clarify the difference between
theorem proving and program verification. Theorem proving means that one writes some
logical properties in a formal language and uses the theorem prover to verify the properties.
Two kinds of theorem provers exist: interactive theorem provers, typically used for proving
properties in higher-order logic, where the user has to guide the verification process, and
automated theorem provers, typically used for first-order logic, where an algorithm tries
to construct a proof. Some well-known examples of interactive theorem provers are: HOL,
PVS, Isabelle and Coq. Some well-known examples of automated theorem provers are all
STMLib-compliants tools, such as Vampire and Z3. Program verification is really focused on
the verification of annotated software. Their formal foundations are for example Hoare logic,
weakest precondition calculus or separation logic. Typically, they use verification condition
generation or symbolic execution to generate proof obligations in first-order logic. To verify
these proof obligations, automated theorem proving is used. Then the discussion continued
about how program verification and model checking could benefit from each other. It was
observed that model checking is currently moving from concurrent models to concurrent

12511

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

82 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

software, whereas program verification is moving from sequential software to concurrent
software. Thus, the verification targets seem to meet. However, program verification typically
focuses on data-oriented properties, whereas model checking focuses on control-flow-oriented
properties. Finally, we identified several interesting examples. Program verification could
benefit from model checking in the following examples:

a distributed computation: a server sends a task to a worker. If the task is too big, the
worker spawns a new thread to perform part of the task (and this is repeat until the
task is small enough). Eventually all the results from the task are merged. This control
pattern is difficult to capture with classical program verification techniques;
verification of e-voting software: typically security properties such as absence of informa-
tion leakage depend on control and data;
counter example generation. Model checking could also benefit from program verification,
for example in the following case: – control flow properties of code with complicated data
structures: suppose we have a device driver that uses a balanced search tree as internal
data structure.

The tree would have a method to compute its size. Program verification can be used to prove
that the size does not change when for example rebalancing the tree, and the information
that the size of the tree is not changed between two consecutive calls can then be used by
the model checker to reduce the state space. A next step to continue the results from this
workgroup would be to concretely start working on these examples.

5.2 Working Group: Compositional Synthesis of Reactive Systems
Barbara Jobstmann

License Creative Commons BY-NC-ND 3.0 Unported license
© Barbara Jobstmann

The working group consisted of four people, all with a similar background in reactive
synthesis and automata-based game theory. Therefore, there was no need to discuss the
precise meaning of the problem and we could dive right into the technical details about
the subject. We brainstormed on the different approaches we knew and explained to each
other their key aspects. More precisely, Marielle mentioned recent work on "Compositional
Synthesis of Safety Controllers" by her student Wouter Kuijper. We discuss the benefits
of using safety specifications and the difficulties arising with more general specifications.
Barbara mentioned that similar issues also arise in a problem of aiming to synthesis missing
environment assumptions. Here the idea is the given an unrealizable specification we aim for
a minimal assumption that makes the specification realizable. Finally, Ufuk discussed his
recent work on semi-compositional version of the generalized reactivity-1 approach. Barbara
and Rayna provided feedback and suggested extensions. Over all the discussion was very
pleased, focused, and technical and more than worth the short amount of time we spent on
it.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 83

5.3 Working Group: Modular Full Functional Specification and
Verification of C and Java programs that Perform I/O

Bart Jacobs

License Creative Commons BY-NC-ND 3.0 Unported license
© Bart Jacobs

We discussed preliminary ideas on how to verify I/O properties of C and Java programs. For
concreteness, we used the VeriFast program verification tool to illustrate the ideas through
simple example programs. We started with a simple C program that prints "Hi" using two
calls of the ’putchar’ function. Our first specification for this program used an abstract
separation logic predicate ’world’ with an single parameter of type ’list of character’ that
represents the characters that have been printed. The precondition stated ’world([])’ and
the postcondition stated ’world([’H’, ’i’])’. This specification approach works fine if we also
check termination. Otherwise, the program can circumvent it by first printing e.g. "Bye"
and then going into an infinite loop, so that the postcondition is never checked. The second
specification used the same ’world’ predicate, but now the parameter denotes the characters
that are yet to be printed by the program. The precondition states ’world([’H’, ’i’])’ and
the postcondition states ’world([])’. This specification properly enforces the safety property
that the program only ever prints a prefix of "Hi", even if it does not terminate. However,
this specification approach cannot accommodate nondeterministic behavior. Therefore, we
next came up with a predicate ’world’ with two parameters: one of type ’list of character’,
denoting the characters that have been printed, and one of type ’set of lists of characters’,
denoting the set of allowed values of the first argument. The precondition of ’putchar’
requires that the old value of the list, with the new character appended to the end, is in the
set. An alternative approach is to have a single argument of type ’iospec’, where ’iospec’ is
coinductively defined as ’function from I/O actions to I/O results’ and ’I/O result’ is defined
as either ’Not Allowed’ or ’Allowed (iospec)’ which specifies the new I/O specification that
holds after the action is performed. We also discussed if it would be possible (and a good
idea) to build on this approach to also check liveness properties, by adding ’tau’ actions
(a.k.a.stutter steps or silent actions). We remarked that it would not in general be easy to
modularly prove conformance of a program against such a specification. We noted that it
was important to record all actions in a single stream; otherwise, it would not be possible to
specify an ordering between the various types of actions. Conclusions: We have some ideas
on how to specify and verify I/O properties of Cand Java programs. However, we need to
check their feasibility by trying them out on larger examples. We anticipate that additional
mechanisms will be necessary to achieve a truly modular approach.
Participants: Erik Poll, Dilian Gurov (first half), Einar Broch Jonsen, Malte Schwerhoff,
Wolfgang Ahrendt, Bart Jacobs .

12511

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

84 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

5.4 Working Group: Benchmark for Industrial Verification/Synthesis
Problem

Johannes Reich

License Creative Commons BY-NC-ND 3.0 Unported license
© Johannes Reich

The interest in the working group o was pretty high. Johannes Reich gave a short introduction
(see slides) about potentially interesting problems from an industry perspective. Then we
discussed the matter along the following lines: There was general agreement that a benchmark
would be an appropriate tool to gain attraction and attention for the advanced engineering
methods commonly termed "formal methods" The main issue is to find a showcase that is
immediately relevant for the industry like SAP and which provides provides a scalable and
significant problem. One example would be the RSA-challenge of prime number factorization,
with its immediate relevance for asymmetric encryption techniques. The examples of the
introduction were seen as too unspecific. In general, the area of formal methods does not
come with _the_ problem but instead shows quite some heterogeneity. In some sense there
seems to be a henn-and-egg problem to bring together the more technical view of the formal
methods experts and the business view of the industry. An other approach could be that
a company like SAP provides an example application where the power of several formal
methods like verification, synthesis, etc. could be demonstrated – possibly to arrive at a show
case for a benchmark. Interesting candidates for SAP could be the tax engine or the pricing
engine, where correctness is top priority and errors might get a high visibility. Another area
could be product security or areas where high testing efforts could be ameliorated by formal
verification. Thanks for the feedback and best regards to all participants!

Further sources and competitions

Several other competitions and one article was mentioned by the participants:

References
1 M Huisman, V Klebanov and R Monahan (2011) On the Organisation of Program Verific-

ation Competitions, http://ceur-ws.org/Vol-873/papers/paper_2.pdf
2 Transformation Tool Competition: http://planet-sl.org/ttc2011 for the last edition, there

is a next one coming up for 2013
3 Knowledge Engineering for Planning and Scheduling: http://icaps12.poli.usp.br/icaps12/

ickeps
4 Microsoft Research: 2012 Verified Software Milestone Award, http://dream.inf.ed.ac.uk/

vsi/

5.5 Working Group: Compositional Verification of Software Product
Lines

Ina Schaefer

License Creative Commons BY-NC-ND 3.0 Unported license
© Ina Schaefer

A software product line is a set of software systems developed from a common set of core
assets. There exist several implementation techniques for product lines, such as annotative,

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://ceur-ws.org/Vol-873/papers/paper_2.pdf
http://planet-sl.org/ttc2011
http://icaps12.poli.usp.br/icaps12/ickeps
http://icaps12.poli.usp.br/icaps12/ickeps
http://dream.inf.ed.ac.uk/vsi/
http://dream.inf.ed.ac.uk/vsi/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 85

compositional or transformational approach, and different analysis strategies which apply
to all possible verification approaches. The product-based analysis strategy generates
each possible product and verifies it in isolation. The advantage of this strategy is that
single-product analyses can be applied without any change, but for large product lines this
approach is inefficient or even infeasible. The family-based approach generates a meta-
representation of all products which can be analyzed at once in order to derive properties
of all products. While this is more efficient than the product-based approach, it uses a
closed-world assumption making it fragile to product line evolution. The feature-based
analysis strategy takes acompositional approach by analyzing the building blocks of the
productsseparately. However, in most cases, this analysis step is not sufficient because it does
not take the dependencies and interactions between the building blocks into account. Hence,
in addition to the feature-based analysis step another product-based or family-based analysis
step is required. In the working group, we discussed the potential of the feature-based
compositional analysis strategy for product lines and its limitations. In general, we came
to the conclusion that the applicability of this strategy depends on the considered use case.
In particular, to assess the above question one needs to fix the implementation approach
for the products, the properties that should be verified, the specification technique for the
product line, and the analysis technique. It seems that feature-based analysis is in particular
well suited to model-checking where traditional assume-guarantee reasoning is adapted as
follows: If a feature satisfies its specification under the assumption that it is added to a
product with a particular required property, then the resulting composed product guarantees
the specification of the feature if there are no interactions between the already contained
features and the newly composed one.

6 Programme day-by-day

Monday December 17
9:00 Welcome from the organisers
9:05 Tutorial on compositional programming

Oscar Nierstrasz
10:35 Coffee
11:00 Personal introductions
12:15 Lunch
13:45 Tutorial on compositional verification

Arnd Poetzsch-Heffter
15:15 Personal introductions
15:30 Coffee
16:00 Tutorial on compositional modelling

Arend Rensink
17:30 Remaining personal introductions

12511

86 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

Tuesday December 18
9:00 Einar Broch Johnsen

Shriram Krishnamurthi
Compositionality for web services

10:30 Coffee
11:00 Doron Peled

Christian Kaestner
A Variability-Aware Module System
Wolfgang Ahrendt
Compositional semantics and of concurrent/distributed objects

12:15 Lunch
13:45 Sophie Quinton

Typical worst-case analysis of real-time systems
14:45 Working groups
17:00 Shmuel Katz

Compositionality for Complex Event Processing and Aspects
Bernd Finkbeiner
Compositional synthesis of distributed systems

Wednesday December 19
9:00 Stavros Tripakis

Compositionality and modularity: interfaces everywhere!
Wolfgang Ahrendt
Compositional verification of concurrent/distributed objects
Johannes Reich
A logical perspective on software systems and their composition

10:30 coffee
11:00 Ferruccio Damiani

Dynamic delta-oriented software product lines
Dilian Gurov
Compositional Verification of Programs with Procedures
Stavros Tripakis
design choices for interface theories

12:15 lunch
14:00 photo
14:30 excursion

Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga 87

Thursday December 20
9:00 Bart Jacobs

VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C
and Java

10:00 Reiner Haehnle
Abstract Symbolic Execution

10:30 coffee
11:00 Rayna Dimitrova

Synthesis and Control for Infinite-State Systems with Partial
Observability
Malte Schwerhoff
Comparing Verification Condition Generation with Symbolic
Execution
Johannes Reich
Component signatures of networking process components
require protocol and role declarations

12:15 Lunch
13:45 Marjan Sirjani

Compositional Verification of Actors (30 min)
Simon Bliudze
Glue Synthesis in BIP (30 min.)

14:45 working groups
17:00 Ludovic Henrio

GCM/ProActive: a distributed component model, its implement-
ation,
and its formalisation

Friday December 21
9:15 Mariëlle Stoelinga
9:30 Andrzej Wasowski

Compositional design with stepwise refinement using real time
games

10:00 Christian Kaestner
10:30 Coffee
11:00 Reports from working groups and plenary discussion
12:00 Closing of the seminar
12:15 Lunch

12511

88 12511 – Divide and Conquer: the Quest for Compositional Design and Analysis

Participants

Wolfgang Ahrendt
Chalmers UT – Göteborg, SE

Simon Bliudze
EPFL – Lausanne, CH

Einar Broch Johnsen
University of Oslo, NO

Ferruccio Damiani
University of Torino, IT

Rayna Dimitrova
Universität des Saarlandes, DE

Christian Eisentraut
Universität des Saarlandes, DE

Bernd Finkbeiner
Universität des Saarlandes, DE

Kathi Fisler
Worcester Polytechnic Inst., US

Susanne Graf
VERIMAG – Gières, FR

Dilian Gurov
KTH – Stockholm, SE

Reiner Hähnle
TU Darmstadt, DE

Ludovic Henrio
INRIA Sophia Antipolis –
Méditerranée, FR

Marieke Huisman
University of Twente, NL

Bart Jacobs
KU Leuven, BE

Barbara Jobstmann
VERIMAG – Gières, FR

Christian Kästner
Carnegie Mellon University –
Pittsburgh, US

Shmuel Katz
Technion – Haifa, IL

Shriram Krishnamurthi
Brown Univ. – Providence, US

Malte Lochau
TU Darmstadt, DE

Oscar M. Nierstrasz
Universität Bern, CH

Doron A. Peled
Bar-Ilan University –
Ramat-Gan, IL

Arnd Poetzsch-Heffter
TU Kaiserslautern, DE

Erik Poll
Radboud Univ. Nijmegen, NL

Sophie Quinton
TU Braunschweig, DE

Johannes Reich
SAP AG – Walldorf, DE

Arend Rensink
University of Twente, NL

Ina Schaefer
TU Braunschweig, DE

Malte Schwerhoff
ETH Zürich, CH

Vasiliki Sfyrla
VISEO – Lyon, FR

Marjan Sirjani
Reykjavik University, IS

Lei Song
Universität des Saarlandes, DE

Martin Steffen
University of Oslo, NO

Marielle Stoelinga
University of Twente, NL

Ufuk Topcu
University of Pennsylvania, US

Stavros Tripakis
University of California –
Berkeley, US

Andrzej Wasowski
IT Univ. of Copenhagen, DK

	Executive Summary Marieke Huisman, Barbara Jobstmann, Ina Schaefer, and Marielle Stoelinga
	Table of Contents
	Detailed programme
	Personal introductions
	Tutorials

	Overview of Talks
	Compositional verification and semantics of concurrent/distributed objects Wolfgang Ahrendt
	A Coinductive Big-step Semantics for Distributed Concurrent Objects Wolfgang Ahrendt
	Glue synthesis in BIP Simon Bliudze
	Defining a general abstract notion of component Simon Bliudze
	Compositional Reasoning about Object-Oriented Software Evolution Einar Broch Johnsen
	Three cases of composition and a question Ferruccio Damiani
	Synthesis and Control for Infinite-State Systems with Partial Observability Rayna Dimitrova
	Compositional Synthesis of Distributed Systems Bernd Finkbeiner
	How Decomposition Enhances Security Analysis Kathi Fisler
	Compositional Verification of Procedural Programs Dilian Gurov
	Abstract Symbolic Execution Reiner Haehnle
	GCM/ProActive: a distributed component model, its implementation, and its formalisation Ludovic Henrio
	VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java Bart Jacobs
	A Variability-Aware Module System Christian Kaestner
	Compositionality for Complex Event Processing and Aspects Shmuel Katz
	Composition on the Web Shriram Krishnamurthi
	Compositional Programming Oscar M. Nierstrasz
	Synthesis of Control for Component-based systems using Knowledge Doron A. Peled
	Compositional verification: A tutorial Arnd Poetzsch-Heffter
	Typical Worst-Case Analysis of Real-Time Systems Sophie Quinton
	Component signatures of networking process components require protocol and role declarations Johannes Reich
	A logical perspective on (finite) software systems and their composition Johannes Reich
	Compositionality, huh? Arend Rensink
	Comparing Verification Condition Generation with Symbolic Execution Malte Schwerhoff
	Compositional Verification of Actors Marjan Sirjani
	Risk Management meets model checking: compositional analysis of DFTs Marielle Stoelinga
	Modularity and compositionality in embedded system design: interface synthesis and interface theories Stavros Tripakis
	Interface Theories: Design Choices Stavros Tripakis
	Compositional Behavioral Modeling with Real Time Games Andrzej Wasowski

	Working Groups
	Working Group: How can model checking and deductive verification benefit from each other/verification of very large systems Huisman, Marieke; Sirjani, Marjan
	Working Group: Compositional Synthesis of Reactive Systems Barbara Jobstmann
	Working Group: Modular Full Functional Specification and Verification of C and Java programs that Perform I/O Bart Jacobs
	Working Group: Benchmark for Industrial Verification/Synthesis Problem Johannes Reich
	Working Group: Compositional Verification of Software Product Lines Ina Schaefer

	Programme day-by-day
	Participants

