
Report from Dagstuhl Seminar 13021

Symbolic Methods in Testing
Edited by
Thierry Jéron1, Margus Veanes2, and Burkhart Wolff3

1 INRIA – Rennes – Bretagne Atlantique, FR, Thierry.Jeron@inria.fr
2 Microsoft Research – Redmond, US, margus@microsoft.com
3 Université Paris Sud, FR, wolff@lri.fr

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13021 “Symbolic
Methods in Testing”. The aim of the seminar was to bring together leading researchers of this
field; the seminary ended up with 38 participants from 10 countries: France, The Netherlands,
The Unites States, Germany, Switzerland, United Kingdom, Brazil, Norway, Estonia and Italy.
Through a series of presentations, discussions, and working group meetings, the seminar at-
tempted to get a coherent picture of the field, which transcends the borders of applications and
disciplines, of existing approaches and problems in formal testing. The seminar brought together,
on the one hand, researchers from the different camps and various tools. The main outcome of
the seminar is the exchange of information between different groups and the discussion of new
trends (parallelization, cloud-computing).

Seminar 06.–11. January, 2013 – www.dagstuhl.de/13021
1998 ACM Subject Classification D.2.5 Testing and Debugging (Symbolic execution, Testing

tools (e.g., data generators, coverage testing), Tracing), D.2.4 Software/Program Verification
(Formal Methods, Assertion Checkers, Class invariants, Programming by Contract, Valida-
tion), B.2.3 Reliability, Testing, and Fault-Tolerance (Test generation)

Keywords and phrases Automated Deduction, White-box testing, Black-box Testing Fuzz-Testing
Unit-Testing Theorem prover-based Testing

Digital Object Identifier 10.4230/DagRep.3.1.1

1 Executive Summary

Thierry Jéron
Margus Veanes
Burkhart Wolff

License Creative Commons BY 3.0 Unported license
© Thierry Jéron, Margus Veanes, and Burkhart Wolff

Recent breakthroughs in deductive techniques such as satisfiability modulo theories (SMT),
abstract interpretation, model-checking, and interactive theorem proving, have paved the
way for new and practically effective techniques in the area of software testing and analysis.
It is common to these techniques that statespaces, model-elements, program-fragments or
automata are represented symbolically making systems amenable to analysis that have
formerly been out of reach. Several research communities apply similar techniques to attack
the classical problem of state space explosion by using symbolic representation and symbolic
execution: parametrized unit testing, fuzz testing, model-based testing, theoremprover based
test case generation techniques, and real-time system testing. Moreover, several areas where
symbolic methods are used in testing, are often considered more closely related to verification

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Symbolic Methods in Testing, Dagstuhl Reports, Vol. 3, Issue 1, pp. 1–29
Editors: Thierry Jéron, Margus Veanes, and Burkhart Wolff

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13021
http://dx.doi.org/10.4230/DagRep.3.1.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 13021 – Symbolic Methods in Testing

and end up in conferences specialized on those topics rather than at testing conferences.
There is little synergy between the different communities although many of them use similar
underlying symbolic techniques.

In the following areas, symbolic analysis techniques have recently had significant impact,
both industrially as well as in academia. The following areas capture some topics of interest
for the proposed seminar, assuming focus on the use of symbolic techniques in each area:
Unit Testing, Symbolic Automata Theory in Testing, Model Based Testing, Fuzz Testing,
Security Testing, Real-time System Testing, Theorem-Prover-based Test-Case Generation,
Hybrid System Testing, and Mutation Testing.

Thierry Jéron, Margus Veanes, and Burkhart Wolff 3

2 Table of Contents

Executive Summary
Thierry Jéron, Margus Veanes, and Burkhart Wolff 1

Overview of Talks
Symbolic methods for efficient mutation testing
Sébastien Bardin . 5

Towards symbolic and timed testing with JTorX
Axel Belinfante . 5

An update on Z3
Nikolaj Bjørner . 6

Counterexamples for Isabelle: Ground and Beyond
Jasmin Christian Blanchette . 7

Model-based Conformance Testing of Security Properties
Achim D. Brucker . 7

Symbolic Execution for Evolving Software
Cristian Cadar . 8

Collaborative Verification and Testing with Explicit Assumptions
Maria Christakis . 8

A Certified Constraint Solver over Finite Domains
Catherine Dubois . 9

Diagnosis Modulo Theories for Hybrid Systems
Juhan Ernits . 9

Theorem-Prover Based Test Generation for Circus
Abderrahmane Feliachi . 10

Off-Line Test Case Generation for Timed Symbolic Model-Based Conformance
Testing
Christophe Gaston . 11

Distributed and Asynchronous Model Based Testing
Robert M. Hierons . 11

Model based conformance testing with ioco/tioco and Symbolic techniques
Thierry Jéron . 12

Using State Infection Conditions to Detect Equivalent Mutants and Speed up
Mutation Analysis
René Just . 13

A Symbolic Approach to Model-based Online Testing
Marko Kaeaeramees . 14

Critical Systems Development Methodology using Formal Techniques
Dominique Méry . 15

Testing Real-time Systems under Uncertainty
Brian Nielsen . 16

13021

4 13021 – Symbolic Methods in Testing

Identifying suspicious values in programs with floating-point numbers
Michel Rueher . 16

Pex4Fun: Serious Gaming powered by Symbolic Execution
Nikolia Tillman . 17

Symbolic Automata
Margus Veanes . 17

Using Interpolation for Test-Case Generation for Security Protocols
Luca Vigano . 18

Paths to property violation: a structural approach for analyzing counter-examples
Hélène Waeselynck . 18

An Introduction to Model-based Testing with Isabelle/HOL-TestGen
Burkhart Wolff . 19

Dijkstra’s Verdict Considered Harmful
Burkhart Wolff . 20

Online Verification of Value-Passing Choreographies through Property-Oriented
Passive Testing
Fatiha Zaïdi . 20

Symbolic Model-Based Testing of Real-Time Systems using SYMBOLRT
Wilkerson de Lucena Andrade . 21

High-performance Analysis and Symbolic Online Test Generation
Jaco van de Pol . 21

A Conformance Testing Relation for Symbolic Timed Automata
Sabrina von Styp . 22

Working Groups
Working Group Report: Towards a Competition in Model-based testing
Burkhart Wolff . 23

Working Group Report: Proof and Test
Cathérine Dubois . 23

Working Group Report: Testing and the Cloud
Wolfgang Grieskamp . 24

Working Group Report: Machine Learning and Testing
Margus Veanes . 25

Programme . 27

Participants . 29

Thierry Jéron, Margus Veanes, and Burkhart Wolff 5

3 Overview of Talks

3.1 Symbolic methods for efficient mutation testing
Sébastien Bardin (CEA – Gif sur Yvette, FR)

License Creative Commons BY 3.0 Unported license
© Sébastien Bardin

Joint work of Bardin, Sébastien; Cheynier, François

Automatic white-box test data generation techniques have recently made huge progress,
especially through the Dynamic Symbolic Execution (DSE) paradigm. However, these
methods are limited to rather basic coverage criteria, typically instruction or decision
coverage. On the other hand, mutation is a powerful testing criterion, but it is poorly
supported by current automatic testing tools. We present in this talk some ongoing work
aiming both at efficiently automating mutation testing and at leveraging DSE to sophisticated
coverage criteria. We show that (a subset of) weak mutations can be reduced to predicate
reachability, allowing to reuse all the standard machinery developed for software verification
in the framework of weak mutations. Especially, we focus on the following issues: automatic
test generation – ATG – in order to achieve high mutation score (using DSE and smart
instrumentation), automatic mutant-equivalence checking (using static analysis and theorem
proving) and efficient computation of the mutation score (again through instrumentation).
Especially, for ATG, while a direct instrumentation yields an exponential blowup of the
search space, we present a tight instrumentation with only a linear growth of the search
space.

3.2 Towards symbolic and timed testing with JTorX
Axel Belinfante (University of Twente, NL)

License Creative Commons BY 3.0 Unported license
© Axel Belinfante

We describe our model-based testing tool JTorX and the current plans for extensions to
improve the support of symbolic and timed testing. JTorX [1, 3] is a tool for online (on-
the-fly) test derivation and execution, based on the ioco-theory and its extensions uioco
(underspecification), tioco (time) and sioco (data). Tests are derived from models given
in Graphml, Aldebaran (.aut), GraphViz, mCRL2, STS-as-XML (.sax) or as a network of
timed automata. Alternatively, JTorX interfaces to all models accessible via the LTSmin or
CADP tool sets. JTorX accesses models on-the-fly (on demand), which allows it to deal with
infinite models, as long as they are finitely branching. It can be used in 2 modes: manual
(interactive), or automatic (random). In either mode, an optional test purpose (model to
guide test derivation) can be specified. It has built-in adapter support to connect to a model
used as system-under-test, and to connect to implementations that interact using labels of
the model, over standard input/output, or via TCP. The latter adapter also comes in a
time-aware variant. JTorX can be used (in automatic mode) from the command line, or
via a GUI. During a test run, the GUI offers visualization of the testing progress in the
model, and in a message sequence chart. In addition, the GUI contains a built-in interactive
simulator, and a checker (by Lars Frantzen) that checks whether two non-symbolic models are
(u)ioco-related. JTorX is used for teaching and for case studies; recent ones include testing of
a software bus at Neopost [5], of an X-ray detector at PANalytical, and of railway interlocking

13021

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

6 13021 – Symbolic Methods in Testing

software. For most of above-mentioned formalisms, the model is accessed through a uniform
model-access interface, via separate, formalism-specific, exploration components (for a few
automaton-based formalisms, support is built-in in JTorX). The model-access interface gives
access, not to an LTS, QTS or STS, but to a PTS: a parameterized transition system. A
PTS has two kinds of transitions: those labeled with a parameterized label, and those labeled
with an instantiation. A parameterized label is like an LTS label, but with parameters (like
an open term) and a constraint over the parameters (and possibly, over parameters that have
been introduced in an earlier transition on the path from the initial state, and that have not
yet been instantiated). An instantiation is a list of parameter-value bindings. The interface
allows JTorX to request(1) the (id of the) initial state, and (2) the outgoing transitions of a
given a state id, where for each transition a parameterized label and the destination state id
are given. Moreover, it allows JTorX to propose an instantiation, to feed back to the model,
the concrete parameter values that were used during an interaction with the system under
test. When the instantiation succeeds, i.e. when the PTS contains a corresponding transition,
the (id of the) destination is given to JTorX. Semantic manipulation of parameterized labels
is not done in JTorX, but in the formalism-specific model explorers. When JTorX needs
concrete values for the parameters in a parameterized label that it wants to use as stimulus,
it obtains those from a formalism-specific instantiator (which can either be part of the
formalism-specific model explorer, or a separate tool component). JTorX uses this interface
to access models via Lars Frantzen’s STSimulator [4], and Henrik Bohnenkamp’s timed
automata explorer [2]. (An extension to STSimulator has been proposed and implemented
in a JTorX variant: lazy-on-the-fly, by David Farago). For timed testing, each label contains
a parameter (or, when instantiated, a value) that represents the time interval (or timestamp)
at which the corresponding interaction with the SUT has to take (or has taken) place. The
time-aware adapter variant takes care of applying stimuli in time, and of time-stamping
observations.

References
1 Axel Belinfante. JTorX: A Tool for On-Line Model-Driven Test Derivation and Execution.

In: Proceedings of TACAS 2010. LNCS, vol. 6015, pp. 266-270. Springer (2010)
2 Henrik Bohnenkamp, Axel Belinfante. Timed testing with TorX. In: FM 2005, Newcastle,

UK. LNCS, vol. 3582, pp. 173-188. Springer (2005)
3 JTorX Web page: http://fmt.ewi.utwente.nl/tools/jtorx/
4 STSimulator project page: https://stsimulator.dev.java.net/
5 Sijtema, M. and Stoelinga, M.I.A. and Belinfante, A.F.E. and Marinelli, L. Experiences

with Formal Engineering: Model-Based Specification, Implementation and Testing of a
Software Bus at Neopost. In: Proceedings of FMICS 2011. LNCS, vol. 6959, pp. 117-133.
Springer (2011)

3.3 An update on Z3
Nikolaj Bjørner (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Nikolaj Bjørner

The overview talk provides a high-level summary of current directions for the SMT solver Z3
from Microsoft Research and newer applications. These include efficient engines for solving
non-linear polynomial arithmetic, checking satisfiability of Horn clauses for symbolic model

http://fmt.ewi.utwente.nl/tools/jtorx/
https://stsimulator.dev.java.net/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Thierry Jéron, Margus Veanes, and Burkhart Wolff 7

checking of software. I will also summarize the main (newer) API features of Z3 and illustrate
some of the ways they can be used by applications. Z3 was recently made available as shared
source on z3.codeplex.com.

3.4 Counterexamples for Isabelle: Ground and Beyond
Jasmin Christian Blanchette (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Jasmin Christian Blanchette

Joint work of Berghofer, Stefan; Bulwahn, Lukas; Nipkow, Tobias;
Main reference J.C. Blanchette, L. Bulwahn, T. Nipkow, “Automatic proof and disproof in Isabelle/HOL,” in

FroCoS 2011, pp. 12–27, LNAI 6989, Springer, 2011.
URL http://dx.doi.org/10.1007/978-3-642-24364-6_2

Users of the Isabelle/HOL proof assistant can rely on two counterexample generators to test
their conjectures: Nitpick and Quickcheck. Nitpick grounds problems to SAT, but some of its
optimizations are symbolic. Quickcheck combines three ground strategies and one symbolic
strategy under one roof: random testing, bounded exhaustive testing, mode-based predicate
compilation, and narrowing. For future work, we would like to expand the supported HOL
fragment of both tools through more symbolic methods.

3.5 Model-based Conformance Testing of Security Properties
Achim D. Brucker (SAP Research – Karlsruhe, DE)

License Creative Commons BY 3.0 Unported license
© Achim D. Brucker

Joint work of Brucker, Achim D.; Brügger, Lukas; Wolff, Burkhart
Main reference A.D. Brucker, L. Brügger, P. Kearney, B. Wolff, “Verified Firewall Policy Transformations for

Test-Case Generation,” in Third Int’l Conf. on Software Testing, Verification, and Validation
(ICST), pp. 345–354, IEEE CS, 2010.

URL http://www.brucker.ch/projects/hol-testgen

Modern systems need to comply with large and complex security policies (e. g., based on
company rules, privacy laws, or regulations such as HIPAA or SOX) that need to be enforced
at runtime. These policies are often expressed in declarative languages such as XACML (in
case of high-level access control policies) or iptables (in case of firewall policies) and enforced
by highly-efficient (and, thus, difficult to implement) enforcement engines. The correct
configuration of such systems is highly error-prone, mainly due to their complexity. However,
for the overall security both the correct implementation of the enforcement engines as well as
their correct configuration is crucial. We are addressing these issues by presenting an approach
for the model-based conformance testing of security policies. It is using HOL-TestGen [5, 4],
a mode-based testing tool based on an interactive theorem proving environment. In more
detail, we present a model-based testing approach encompassing the complete testing process
using modular specifications of security policies (e.g., access control policies [2] or firewall
policies [1, 3]). The generated test cases can be used for both testing the correctness of the
security infrastructure as well as the conformance of its configuration to a high-level security
policy. A particular emphasis is put on a partial solution to the scalability problem inherent
in model-based policy testing.

13021

z3.codeplex.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.brucker.ch/projects/hol-testgen
http://www.brucker.ch/projects/hol-testgen
http://www.brucker.ch/projects/hol-testgen
http://www.brucker.ch/projects/hol-testgen

8 13021 – Symbolic Methods in Testing

References
1 Achim D. Brucker, Lukas Brügger, Paul Kearney, and Burkhart Wolff. Verified firewall

policy transformations for test-case generation. In Third International Conference on Soft-
ware Testing, Verification, and Validation (ICST), pages 345–354. IEEE Computer Society,
2010.

2 Achim D. Brucker, Lukas Brügger, Paul Kearney, and Burkhart Wolff. An approach to mod-
ular and testable security models of real-world health-care applications. In ACM SACMAT,
pages 133–142. ACM Press, 2011.

3 Achim D. Brucker, Lukas Brügger, and Burkhart Wolff. Model-based firewall conformance
testing. In Kenji Suzuki and Teruo Higashino, editors, Testcom/FATES 2008, number 5047
in LNCS, pages 103–118. Springer, 2008.

4 Achim D. Brucker and Burkhart Wolff. HOL-TestGen: An interactive test-case generation
framework. In Marsha Chechik and Martin Wirsing, editors, Fundamental Approaches to
Software Engineering (FASE), number 5503 in LNCS, pages 417–420. Springer, 2009.

5 Achim D. Brucker and Burkhart Wolff. On theorem prover-based testing. Formal Aspects
of Computing, 2012.

3.6 Symbolic Execution for Evolving Software
Cristian Cadar (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Cristian Cadar

Joint work of Cadar, Cristian; Marinescu, Paul; Collingbourne, Peter; Kelly, Paul

One of the distinguishing characteristics of software systems is that they evolve: new
patches are committed to software repositories and new versions are released to users on a
continuous basis. Unfortunately, many of these changes bring unexpected bugs that break the
stability of the system or affect its security. In this talk, I describe two techniques based on
symbolic execution for testing and verifying evolving software: a technique for automatic and
comprehensive testing of code patches, which combines symbolic execution with several novel
heuristics based on static and dynamic program analysis; and a technique that combines
symbolic execution and crosschecking to test and verify the correctness of optimizations such
as SIMD and GPGPU optimizations.

3.7 Collaborative Verification and Testing with Explicit Assumptions
Maria Christakis (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Maria Christakis

Joint work of Christakis, Maria; Müller, Peter; Wüstholz, Valentin;
Main reference M. Christakis, P. Müller, V. Wüstholz, “Collaborative Verification and Testing with Explicit

Assumptions,” in FM 2012: Formal Methods, pp. 132–146, LNCS, 7436, Springer, 2012.
URL http://dx.doi.org/10.1007/978-3-642-32759-9_13

Most mainstream static program checkers make a number of compromises to increase
automation, improve performance, and reduce both the number of false alarms and the
annotation overhead for the programmer. These compromises include not checking certain
program properties, and making implicit, unsound assumptions. As a result, static checkers
that make such compromises cannot provide definite guarantees about program correctness,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-32759-9_13
http://dx.doi.org/10.1007/978-3-642-32759-9_13
http://dx.doi.org/10.1007/978-3-642-32759-9_13

Thierry Jéron, Margus Veanes, and Burkhart Wolff 9

thus rendering unclear which properties remain to be tested. To address this problem,
we have proposed a tool architecture that: 1) makes the compromises of static checkers
explicit and their verification results precise with a simple language extension that facilitates
collaborative verification, i.e., the integration of multiple, complementary static checkers,
and 2) reinforces static checking with automated, specification-based testing to make up for
any soundness limitations of the upstream checkers. In this context, we have also discussed
an approach for testing object invariants.

3.8 A Certified Constraint Solver over Finite Domains
Catherine Dubois (ENSIIE – Evry, FR)

License Creative Commons BY 3.0 Unported license
© Catherine Dubois

Joint work of Carlier, Matthieu;Dubois, Catherine; Gotlieb, Arnaud;
Main reference M. Carlier, C. Dubois, A. Gotlieb, “A Certified Constraint Solver over Finite Domains,” in Formal

Methods – 18th International Symposium (FM 2012) , Vol. 7436 of LNCS: 116–131, 2012, Paris,
France.

URL http://dx.doi.org/10.1007/978-3-642-32759-9_12

Constraint solvers are often used within verification or testing tools. These tools are complex,
implement clever heuristics and thus may contain bugs. When these tools are used for critical
software, a skeptical regard on the implementation of constraint solvers especially when the
result is that a constraint problem has no solution, i.e., unsatisfiability. We review some
state-of-the art solutions allowing more confidence. We present a Coq formalisation of a
constraint filtering algorithm and a simple labeling procedure, focing on arc-consistency and
bound-consistency. The proof of their soundness and completeness has been completed using
Coq. As a result, a formally certified constraint solver written in OCaml (the first one as
far as we know) has been automatically extracted from the Coq development. The solver,
yet not as efficient as specialized existing (unsafe) implementations, can be used to formally
certify that a constraint system is unsatisfiable.

3.9 Diagnosis Modulo Theories for Hybrid Systems
Juhan Ernits (Tallinn University of Technology, EE)

License Creative Commons BY 3.0 Unported license
© Juhan Ernits

Joint work of Ernits, Juhan; Dearden, Richard

Diagnosis of hybrid systems involves tracking the state of the system on the basis of
observations and control input to distinguish nominal behaviour from faulty. If faulty
behaviour is encountered the approach proceeds to identify the causes of faults. Consistency-
based diagnosis (CBD) is one of possible approaches designed to achieve such goals. In
CBD the nominal and faulty behaviour of the system are modelled in terms of constraints
present in each state and transitions between those states. To date the models used are
mostly discrete, so system variables must be discretised before diagnosis can be performed.
We introduce a new approach that uses a satisfiability modulo theories (SMT) solver in the
implementation of the conflict directed A* algorithm – the core of the consistency-based
diagnosis procedure. It is thus possible to use constraints from the theories supported by
the SMT solver in the model, which is novel in diagnosis and provides a new application for

13021

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-32759-9_12
http://dx.doi.org/10.1007/978-3-642-32759-9_12
http://dx.doi.org/10.1007/978-3-642-32759-9_12
http://dx.doi.org/10.1007/978-3-642-32759-9_12
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

10 13021 – Symbolic Methods in Testing

SMT solvers. The application has become practical only recently due to the integration of
efficient non linear arithmetic theory decision procedures into SMT solvers.

3.10 Theorem-Prover Based Test Generation for Circus
Abderrahmane Feliachi (Université Paris Sud, FR)

License Creative Commons BY 3.0 Unported license
© Abderrahmane Feliachi

Joint work of Feliachi, Abderrahmane; Gaudel, Marie-Claude; Wolff, Burkhart

HOL-TestGen [2] is a theorem-prover based environment for specification and test generation.
Starting from a data-oriented (HOL) specification of a system under test, HOL-TestGen
automatically derives test cases and test data for this system. Built on top of the Isabelle/HOL
theorem prover, it allow for combining test generation tactics with symbolic computations
and proof methods in a sound formal way. Since real complex systems combines complex data
and behavioral aspects. We introduce, in the basis of Isabelle/HOL, a formal environment [1]
for specifying and verifying complex systems. Specifications are written in Circus [3], a
combination of Z and CSP, with a well defined and unified semantics. The semantics
embedding of the Circus language in HOL is the basis of our environment. It makes it
possible to reason on Circus specifications using HOL standard rules and proof methods.
This environment is combined with HOL-TestGen, to provide a test generation environment
covering complex data and behavioral aspects. Different symbolic representations and
computations are used to define and generate tests from Circus specifications. This includes
the embedding of symbolic variables, constraints over them and the resolution of these
constraints for test data generation. A concrete application of this testing environment on a
real system is presented in this talk.

References
1 Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Isabelle/Circus: A pro-

cess specification and verification environment. In Rajeev Joshi, Peter Müller, and Andreas
Podelski, editors, Verified Software: Theories, Tools, Experiments, volume 7152 of Lecture
Notes in Computer Science, pages 243–260. Springer Berlin / Heidelberg, 2012.

2 Achim Brucker and Burkhart Wolff. On theorem prover-based testing. Formal Aspects of
Computing, pages 1–39, 2012. 10.1007/s00165-012-0222-y.

3 Jim Woodcock and Ana Cavalcanti. The semantics of Circus. In Proceedings of the 2nd
International Conference of B and Z Users on Formal Specification and Development in Z
and B, (ZB ’02), pages 184–203, London, UK, UK, 2002. Springer-Verlag.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Thierry Jéron, Margus Veanes, and Burkhart Wolff 11

3.11 Off-Line Test Case Generation for Timed Symbolic Model-Based
Conformance Testing

Christophe Gaston (CEA – Gif sur Yvette, FR)

License Creative Commons BY 3.0 Unported license
© Christophe Gaston

Joint work of Bannour, Boutheina; Escobedo, Jose Pablo; Gaston, Christophe; Le Gall, Pascale
Main reference B. Bannour, J. P. Escobedo, C. Gaston, P. Le Gall, “Off-Line Test Case Generation for Timed

Symbolic Model-Based Conformance Testing,” in Proc. of the 24th Int’l Conf. on Testing Software
and Systems, ICTSS 2012, pp. 119–135, LNCS, Volume 7641, Springer.

Model-based conformance testing of reactive systems consists in taking benefit from the
model for mechanizing both test data generation and verdicts computation. On-line test case
generation allows one to apply on- the-fly analysis techniques to generate the next inputs
to be sent and to decide whether or not observed outputs meet intended behaviors. On
the other hand, in off-line approaches, test suites are pre-computed from the model and
stored under a format that can be later performed on test benches. In this seminar, we
presented an off-line approach in two phases: (1) for the test generation part, a test suite
is a predefined timed sequence of input data; (2) For the verdict production part, a post
treatment is performed based on an analysis of the timed sequence of output data produced
by the system under test with respect to the model. Our models are Timed Input Output
Symbolic Transition Systems. Therefore, our off-line algorithm involves symbolic execution
and constraint solving techniques.

References
1 Boutheina Bannour, Jose Pablo Escobedo, Christophe Gaston and Pascale Le Gall. Off-

Line Test Case Generation for Timed Symbolic Model-Based Conformance Testing. In
Proceedings of the 24th IFIP WG 6.1 International Conference on Testing Software and
Systems, ICTSS 2012. Springer, LNCS, Volume 7641, pages 119–135. Aalborg, Denmark,
November 19–21, 2012.

3.12 Distributed and Asynchronous Model Based Testing
Robert M. Hierons (Brunel University, GB)

License Creative Commons BY 3.0 Unported license
© Robert M. Hierons

Some systems interact with their environment at several physically distributed interfaces,
called ports, and when testing such a system it is normal to place a local tester at each
port. If the local testers cannot interact with one another during testing and there is no
global clock, then each local tester observes only the sequence of inputs and outputs at its
interfaces (a local trace). This can make it impossible to reconstruct the global trace that
occurred. Similarly, we might not directly observe the input and output of the system under
test (SUT) if there is an asynchronous communications channel between the tester and the
SUT: the observation of output produced by the SUT is delayed, as is the SUT receiving
input from the tester. Both situations lead to some loss of information regarding the sequence
of events that the SUT performed and so they change the nature of testing and require
us to define new implementation relations [6, 1]. They also affect certain standard testing
problems. For example, in distributed testing it is undecidable whether there is a test case
that is guaranteed to take a model to a particular state or to distinguish two given states

13021

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
B. Bannour, J. P. Escobedo, C. Gaston, P. Le Gall, ``Off-Line Test Case Generation for Timed Symbolic Model-Based Conformance Testing,'' in Proc. of the 24th Int'l Conf. on Testing Software and Systems, ICTSS 2012, pp.~119--135, LNCS, Volume 7641, Springer.
B. Bannour, J. P. Escobedo, C. Gaston, P. Le Gall, ``Off-Line Test Case Generation for Timed Symbolic Model-Based Conformance Testing,'' in Proc. of the 24th Int'l Conf. on Testing Software and Systems, ICTSS 2012, pp.~119--135, LNCS, Volume 7641, Springer.
B. Bannour, J. P. Escobedo, C. Gaston, P. Le Gall, ``Off-Line Test Case Generation for Timed Symbolic Model-Based Conformance Testing,'' in Proc. of the 24th Int'l Conf. on Testing Software and Systems, ICTSS 2012, pp.~119--135, LNCS, Volume 7641, Springer.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

12 13021 – Symbolic Methods in Testing

and this result holds even if we are testing from a deterministic finite state machine [3]. It is
also undecidable whether there is a test case that is capable of distinguishing two states [2]
and the Oracle problem is NP-hard [5]. There are currently fewer results for asynchronous
testing but some problems, such as checking conformance, are known to be undecidable [1].
However, some test generation problems are decidable when there are FIFO channels and we
are testing from a finite state model that is not output-divergent (there are no states from
which one can take an infinite sequence of transitions without receiving an input) [4].

References
1 R. M. Hierons. Implementation relations for testing through asynchronous channels. The

Computer Journal, to appear.
2 R. M. Hierons. Verifying and comparing finite state machines for systems that have distrib-

uted interfaces. IEEE Transactions on Computers, to appear.
3 Robert M. Hierons. Reaching and distinguishing states of distributed systems. SIAM

Journal on Computing, 39(8):3480–3500, 2010.
4 Robert M. Hierons. The complexity of asynchronous model based testing. Theoretical Com-

puter Science, 451:70–82, 2012.
5 Robert M. Hierons. Oracles for distributed testing. IEEE Transactions on Software Engin-

eering, 38(3):629–641, 2012.
6 Robert M. Hierons, Mercedes G. Merayo, and Manuel Núñez. Implementation relations and

test generation for systems with distributed interfaces. Distributed Computing, 25(1):35–62,
2012.

3.13 Model based conformance testing with ioco/tioco and Symbolic
techniques

Thierry Jéron (INRIA Bretagne Atlantique – Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Thierry Jéron

Joint work of Jéron, Thierry; Jard, Claude; Jeannet, Bertrand; Rusu, Vlad; Zinovieva, Elena; Bertrand, Nathalie;
Stainer, Amélie; Krichen, Moez; Chédor, Sébastien; Morvan, Christophe

This talk reviews some of the works of our group related to automatic test generation for
reactive systems in the ioco/tioco testing framework. Starting with the finite state model
case, we review the main ingredients of the ioco testing theory. We also generalize ioco to
the io-refinement/abstraction pre-order relation. As the io-abstraction relation preserves
the soundness of test cases, we show that it is a key for test generation when undecidability
questions arise, due to infinity. We recall the principles of off-line test generation using
test purposes, in the finite state case. The generation process is based on suspension,
determinization and co-reachability analysis. We then extend test generation to infinite
state systems, trying to mimic the finite state case. In particular, we focus on symbolic
and approximation methods used to overcome problems due to infinite state as well as
undecidability problems. First for models with data (IOSTS), limited to the deterministic
case (determinization is an issue for this model), we show how abstract interpretation can
be used for approximate co-reachability analysis. The consequences for test generation are
examined: preservation of soundness and exhaustiveness, but loss of control to target. We
then consider the case of timed automata (TAIO) in the general case (with internal actions
and non-determinism, invariants for urgency). The principles of approximate determinization
using games and symbolic represenations by regions or zones, which produces an io-abstraction

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Thierry Jéron, Margus Veanes, and Burkhart Wolff 13

of a TAIO, is sketched. On the other side, co-reachability is exact, thanks to the abstract
symbolic representation by zones and regions. Overall the test generation process allows to
preserve the soundness of test cases, but may lead to a loss of exhaustiveness, stricness and
precision only when determinization is not exact. recursion or time (in the tioco extension
for real-time systems). Finally, the last (unpresented) part deals with recursive models in
the form of recursive tiles systems (RTS), a sort of graph grammars. Determinization of
RTSs being an issue, off-line test generation is restricted to a determinizable class, weighted
RTSs, while on-line test generation can be applied on the full model. On the other hand,
co-reachability is exact in the general case and can be decided on the RTS. Overall, the
properties of soundness, exhaustiveness, strictness and precision of test cases are preserved
in both cases.

References
1 C. Jard, T. Jéron. TGV: theory, principles and algorithms, A tool for the automatic syn-

thesis of conformance test cases for non-deterministic reactive systems. Software Tools for
Technology Transfer (STTT), 6, October 2004.

2 B. Jeannet, T. Jéron, V. Rusu, E. Zinovieva. Symbolic Test Selection based on Approximate
Analysis. In 11th Int. Conference on Tools and Algorithms for the Construction and Ana-
lysis of Systems (TACAS’05), LNCS, Volume 3440, pages 349–364, Edinburgh (Scottland),
April 2005.

3 N. Bertrand, T. Jéron, A. Stainer, M. Krichen. Off-line Test Selection with Test Purposes
for Non-Deterministic Timed Automata. In 17th International Conference on Tools and
Algorithms for the Construction And Analysis of Systems (TACAS’11), LNCS, Volume
6605, pages 96–111, Saarbrücken, Germany, April 2011.

4 S. Chédor, T. Jéron, C. Morvan. Test generation from recursive tiles systems. In 6th In-
ternational Conference on Tests & Proofs (TAP’12), LNCS, Volume 7305, pages 99–114,
Prague, May 2012.

3.14 Using State Infection Conditions to Detect Equivalent Mutants
and Speed up Mutation Analysis

René Just (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
© René Just

Joint work of Just, René; Ernst, Michael D.; Fraser, Gordon
Main reference R. Just, M.D. Ernst, G. Fraser, “Using State Infection Conditions to Detect Equivalent Mutants

and Speed up Mutation Analysis,” arXiv:1303.2784v1 [cs.SE].
URL http://arxiv.org/abs/1303.2784

Mutation analysis evaluates test suites and testing techniques by measuring how well they
detect seeded defects (mutants). Even though well established in research, mutation analysis
is rarely used in practice due to scalability problems — there are multiple mutations per code
statement leading to a large number of mutants, and hence executions of the test suite. In
addition, the use of mutation to improve test suites is futile for mutants that are equivalent,
which means that there exists no test case that distinguishes them from the original program.
This paper introduces two optimizations based on state infection conditions, i.e., conditions
that determine for a test execution whether the same execution on a mutant would lead
to a different state. First, redundant test execution can be avoided by monitoring state
infection conditions, leading to an overall performance improvement. Second, state infection

13021

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1303.2784
http://arxiv.org/abs/1303.2784
http://arxiv.org/abs/1303.2784

14 13021 – Symbolic Methods in Testing

conditions can aid in identifying equivalent mutants, thus guiding efforts to improve test
suites.

References
1 R. Just, G. M. Kapfhammer, and F. Schweiggert. Using non-redundant mutation operators

and test suite prioritization to achieve efficient and scalable mutation analysis. In Proc. of
the 23rd ISSRE. IEEE Computer Society, 2012.

2 R. Just, F. Schweiggert, and G. M. Kapfhammer. MAJOR: An efficient and extensible tool
for mutation analysis in a Java compiler. In Proc. of the 26th ASE, IEEE Computer Society,
2011.

3.15 A Symbolic Approach to Model-based Online Testing
Marko Kaeaeramees (Tallinn University of Technology, EE)

License Creative Commons BY 3.0 Unported license
© Marko Kaeaeramees

Joint work of Kääramees, Marko;
Main reference M. Kääramees, “A Symbolic Approach to Model-based Online Testing,” PhD thesis, 2012. Tallinn

University of Technology, Department of Computer Science, Estonia.
URL http://digi.lib.ttu.ee/i/?806

Non-deterministic control structures and data components provide a powerful means of
abstraction for high level modelling of complex systems, at the expense of making automated
test generation more challenging. Online model- based testing where test inputs are computed
from the model and outputs fed back to the tester at the time of testing provides an approach
where testing non-deterministic systems is possible. One of the restrictions to more widespread
use of online model-based testing is the relatively high omputational overhead at runtime.
We introduce an approach that addresses the computational overhead issue of online testing
by pre-computation of test strategies based on the model and a formally specified test
purpose. The proposed method allows the model of the IUT to be formalised as an Extended
Finite State Machine over different first- order background theories. Both reachability and
coverage oriented test purposes can be expressed using constraints attributed to edges of
the model, called traps. We show how a testing strategy can be represented symbolically by
a set of constraints and generated from the model and test purpose offline using symbolic
backwards reachability analysis. The strategy can be used in online testing for efficient test
input generation that guides the IUT towards fulfilment of the test purpose. The method
is supported by the latest achievements of Satisfiability Module Theories (SMT) solver
technology.

References
1 Marko Kääramees. A Symbolic Approach to Model-based Online Testing. PhD thesis, 2012.

Tallinn University of Technology, Department of Computer Science, Estonia.
2 Danel Ahman and Marko Kääramees. Constraint-based heuristic on-line test generation

from non-deterministic I/O EFSMs. In Alexander K. Petrenko and Holger Schlingloff, ed-
itors, MBT, volume 80 of EPTCS, pages 115–129, 2012.

3 Marko Kääramees, Jüri Vain, and Kullo Raiend. Synthesis of on-line planning tester for
non-deterministic EFSM models. In Leonardo Bottaci and Gordon Fraser, editors, Testing
– Practice and Research Techniques, volume 6303 of LNCS, pages 147- -154. Springer Berlin
/ Heidelberg, 2010.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://digi.lib.ttu.ee/i/?806
http://digi.lib.ttu.ee/i/?806
http://digi.lib.ttu.ee/i/?806

Thierry Jéron, Margus Veanes, and Burkhart Wolff 15

4 Jüri Vain, Marko Kääramees, and Maili Markvardt. Dependability and Computer Engineer-
ing : Concepts for Software-Intensive Systems, chapter Online testing of nondeterministic
systems with reactive planning tester, pages 113–150. IGI Global, Hershey, PA, 2011.

3.16 Critical Systems Development Methodology using Formal
Techniques

Dominique Méry (LORIA – Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Dominique Méry

Joint work of Méry, Dominique; Singh, Neeraj, Kumar;
Main reference D. Méry, N.K. Singh, “Critical systems development methodology using formal techniques,” in

Proc. of the 3rd Symp. on Information and Communication Technology (SoICT’12), pp. 3–12,
ACM, 2012.

URL http://hal.inria.fr/hal-00747305/
URL http://dx.doi.org/10.1145/2350716.2350720

Formal methods have emerged as an alternative approach to ensuring the quality and
correctness of the high confidence critical systems, overcoming limitations of the traditional
validation techniques such as simulation and testing. We present a methodology for developing
critical systems from requirement analysis to automatic code generation with standard safety
assessment approach. This methodology combines the refinement approach with various
tools including verification tool, model checker tool, real-time animator and finally, produces
the source code into many languages using automatic code generation tools. This approach is
intended to contribute to further the use of formal techniques for developing critical systems
with high integrity and to verify complex properties, which help to discover potential problems.
Assessment of the proposed methodology is given through developing a standard case study:
the cardiac pacemaker. Further work remain to start for improving the development cycle
by integrating testing phase for validating elements of the medical domain on the resulting
system, namely the pacemaker.

References
1 D. Méry, N. K. Singh. Functional Behavior of a Cardiac Pacing System. International

Journal of Discrete Event Control Systems (IJDECS), 2010.
2 D. Méry, N. K. Singh. A generic framework: from modeling to code In Innovations in

Systems and Software Engineering (ISSE), pp. 1–9, 2011.
3 D. Méry, N. K. Singh. Real-Time Animation for Formal Specification. In Complex Systems

Design & Management 2010, M. Aiguier, F. Bretaudeau, D. Krob (ed.), Springer, pp. 49–60.
Paris, France, 2010.

4 D. Méry, N. K. Singh. Trustable Formal Specification for Software Certification. In 4th
International Symposium On Leveraging Applications of Formal Methods – ISOLA 2010,
T. Margaria, B. Ste (ed.), LNCS, 6416, Springer, pp. 312–326. Heraklion, Crete, Greece,
2010.

5 D. Méry, N. K. Sinhg. Critical systems development methodology using formal techniques.In
3rd International Symposium on Information and Communication Technology – SoICT
2012, ACM, pp. 3–12. Ha Long, Viet Nam, 2012.

6 D. Méry, N. K. Singh. Formalization of Heart Models Based on the Conduction of Electrical
Impulses and Cellular Automata In Foundations of Health Informatics Engineering and
Systems, Z. Liu, A. Wassyng (ed.), LNCS 7151, Springer Berlin Heidelberg, pp. 140–159.
2012.

13021

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2350716.2350720
http://dx.doi.org/10.1145/2350716.2350720
http://dx.doi.org/10.1145/2350716.2350720
http://hal.inria.fr/hal-00747305/
http://dx.doi.org/10.1145/2350716.2350720

16 13021 – Symbolic Methods in Testing

3.17 Testing Real-time Systems under Uncertainty
Brian Nielsen (Aalborg University, DK)

License Creative Commons BY 3.0 Unported license
© Brian Nielsen

Joint work of Nielsen, Brian; David, Alexandre; Larsen, Kim Guldstrand; Li, Shuhao; Mikucionis, Marius
Main reference A. David, K.G. Larsen, S. Li, M. Mikucionis, B. Nielsen , “Testing Real-Time Systems under

Uncertainty,” in Proc. of 9th Int’l Symp. on Formal Methods for Components and Objects
(FMCO’10), pp. 352–371, LNCS, Vol. 6957, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-25271-6_19

Model-based testing is a promising technique for improving the quality of testing by automat-
ically generating an efficient set of provably valid test cases from a system model. Testing
embedded real-time systems is challenging because it must deal with timing, concurrency,
processing and computation of complex mixed discrete and continuous signals, and limited
observation and control. Whilst several techniques and tools have been proposed, few deals
systematically with models capturing the indeterminacy resulting from concurrency, timing
and limited observability and controllability. This paper proposes a number of model-based
test generation principles and techniques that aim at efficient testing of timed systems under
uncertainty.

3.18 Identifying suspicious values in programs with floating-point
numbers

Michel Rueher (Université de Nice, FR)

License Creative Commons BY 3.0 Unported license
© Michel Rueher

Joint work of Rueher, Michel; Ponsini, Olivier; Michel, Claude
Main reference O. Ponsini, C. Michel, M. Rueher, “Refining abstract interpretation based value analysis with

constraint programming techniques,” in Proc. of CP 2012, LNCS, Vol. 7514, pp. 593–607, Springer,
2012.

URL http://dx.doi.org/10.1007/978-3-642-33558-7_43

Programs with floating-point computations control complex and critical physical systems
in various domains such as transportation, nuclear energy, or medicine. Floating-point
computations are an additional source of errors and famous computer bugs are due to errors
in floating-point computations. Value analysis is often used to check the absence of run-time
errors, such as invalid integer or floating-point operations, as well as simple user assertions.
Value analysis can also help with estimating the accuracy of floating-point computations with
respect to the same sequence of operations in an idealized semantics of real numbers. Existing
automatic tools are mainly based on abstract interpretation techniques. For instance, a
state-of-the-art static analyser like FLUCTUAT computes an over-approximation of the
domains of the variables for a C program considered with semantics on real numbers. It also
computes an over- approximation of the error due to floating-point operations at each program
point. However, these over-approximations may be very coarse even for usual programming
constructs and expressions. As a consequence, numerous false alarms may be generated.
We introduce here a hybrid technique -called RAiCP- for value analysis of floating- point
programs that combines abstract interpretation and constraint programming techniques. We
show that constraint solvers over floating-point and real numbers can significantly refine the
over-approximations computed by abstract interpretation. Experiments show that RAiCP
is substantially more precise than FLUCTUAT, especially on C programs that are difficult
to handle with abstract interpretation techniques. This is mainly due to the refutation

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-25271-6_19
http://dx.doi.org/10.1007/978-3-642-25271-6_19
http://dx.doi.org/10.1007/978-3-642-25271-6_19
http://dx.doi.org/10.1007/978-3-642-25271-6_19
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33558-7_43
http://dx.doi.org/10.1007/978-3-642-33558-7_43
http://dx.doi.org/10.1007/978-3-642-33558-7_43
http://dx.doi.org/10.1007/978-3-642-33558-7_43

Thierry Jéron, Margus Veanes, and Burkhart Wolff 17

capabilities of filtering algorithms over the real numbers and the floating-point numbers used
in RAiCP. Reducing these two over-approximations is a critical issue for program testing
since it shrinks the set of suspicious values that have to be tested. RAiCP could also eliminate
13 false alarms generated by FLUCTUAT on a set of 57 standard benchmarks proposed by
D’Silva et al to evaluate CDFL, a program analysis tool that embeds an abstract domain
in the conflict driven clause- learning algorithm of a SAT solver. Moreover, RAiCP is on
average at least 5 times faster than CDFL on this set of benchmarks.

References
1 Olivier Ponsini, Claude Michel and Michel Rueher. Refining abstract interpretation based

value analysis with constraint programming techniques. Proc of CP 2012 , Springer Verlag,
LNCS 7514, pp. 593-607, 2012

3.19 Pex4Fun: Serious Gaming powered by Symbolic Execution
Nikolai Tillman (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Nikolia Tillman

Pex4Fun (http://www.pex4fun.com/) is a web-based serious gaming environment for learning
and teaching programming. With Pex4Fun, a student edits code in any browser, supported
by auto-completion. Pex4Fun then executes the code and analyzes it in the cloud. The
analysis is based on the automated test generator Pex which uses symbolic execution and the
SMT solver Z3 to generate high coverage test suites and find counterexamples to assertions.
In particular, Pex4Fun finds interesting and unexpected input values that help students
understand what their code is actually doing. The real fun starts with Coding Duels where
students write code to implement a teacher’s specification. Pex4Fun finds discrepancies in
behavior between the student’s code and the specification. The student wins when Pex4Fun
cannot find any behavioral differences. This tutorial will discuss the technologies that lie
beneath the Pex4Fun platform, show how to use Pex4Fun in teaching and learning, explore
existing course materials and illustrate how to create new puzzles.

3.20 Symbolic Automata
Margus Veanes (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Margus Veanes

The symbolic automata toolkit lifts classical automata analysis to work modulo rich alphabet
theories. It uses the power of state-of-the-art constraint solvers for automata analysis that
is both expressive and efficient, even for automata over large finite alphabets. The toolkit
supports analysis of finite symbolic automata and transducers over strings. It also handles
transducers with registers. Constraint solving is used when composing and minimizing
automata, and a much deeper and powerful integration is also obtained by internalizing
automata as theories.

13021

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.pex4fun.com/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

18 13021 – Symbolic Methods in Testing

3.21 Using Interpolation for Test-Case Generation for Security
Protocols

Luca Vigano (Università di Verona, IT)

License Creative Commons BY 3.0 Unported license
© Luca Vigano

Joint work of Dalle Vedove, Giacomo; Rocchetto, Marco; Vigano, Luca; Volpe, Marco

Interpolation has been successfully applied in formal methods for model checking and test-case
generation for sequential programs. Security protocols, however, exhibit such idiosyncrasies
that make them unsuitable to the direct application of such methods. In this paper, we
address this problem and present an interpolation-based method for test-case generation for
security protocols. Our method starts from a formal protocol specification and combines
Craig interpolation, symbolic execution and the standard Dolev-Yao intruder model to search
for goals (i.e., test cases representing possible attacks on the protocol). Interpolants are
generated as a response to search failure in order to prune possible useless traces and speed
up the exploration. We illustrate our method by means of two concrete examples.

3.22 Paths to property violation: a structural approach for analyzing
counter-examples

Hélène Waeselynck (LAAS – Toulouse, FR)

License Creative Commons BY 3.0 Unported license
© Hélène Waeselynck

Joint work of Bochot, Thomas; Virelizier, Pierre; Waeselynck, Hélène; Wiels, Virginie;
Main reference T. Bochot, P. Virelizier, H. Waeselynck, V. Wiels, “Paths to Property Violation: A Structural

Approach for Analyzing Counter-Examples,” in Proc. of IEEE 12th Int’l Symp. onHigh-Assurance
Systems Engineering (HASE’10), pp. 74–83, IEEE, 2010.

URL http://dx.doi.org/10.1109/HASE.2010.15

At Airbus, flight control software is developed using SCADE formal models, from which
90% of the code can be generated. Having a formal design leaves open the possibility of
introducing model checking techniques. But, from our analysis of cases extracted from real
software, a key issue concerns the exploitation of counterexamples showing property violation.
To address this issue, we propose an automated structural analysis that identifies paths of the
model that are activated by a counterexample over time. This analysis allows us to extract
minimal information to explain the observed violation. It is also used to guide the model
checker toward the search for different counterexamples, exhibiting new path activation
patterns. The approach is closely related to path-based analysis techniques developed for
testing purposes.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/HASE.2010.15
http://dx.doi.org/10.1109/HASE.2010.15
http://dx.doi.org/10.1109/HASE.2010.15
http://dx.doi.org/10.1109/HASE.2010.15

Thierry Jéron, Margus Veanes, and Burkhart Wolff 19

3.23 An Introduction to Model-based Testing with
Isabelle/HOL-TestGen

Burkhart Wolff (Université Paris Sud, FR)

License Creative Commons BY 3.0 Unported license
© Burkhart Wolff

Main reference A.D. Brucker, B. Wolff, “On Theorem Prover-based Testing,” Accepted the 07-08-2011. In Formal
Aspects of Computing.

URL http://dx.doi.org/10.1007/s00165-012-0222-y

Techniques for the automated generation of test-cases – be it from specifications in form
of pre- and postconditions, from transition systems or from annotated programs – suffer
from state-space explosion similarly to model-checking techniques. One possible anwer to
the challenge is to use symbolic representations of models, their normal forms, symbolic
states, the resulting test-cases (partitions of test-data) and constraint-solving techniques for
test-data selection. HOL-TestGen is a model-based test-generation environment based on the
Theorem-proving based approach. In this talk, we will give an introduction into architecture,
accommodation scenarios for a wide range of testing problems ranging from unit, sequence,
reactive testing scenarios, and present an overview over major case-studies done with the
system. This introduction was accompanied by a tutorial available from the material website.

References
1 Achim D. Brucker, Burkhart Wolff: On Theorem Prover-based Testing.. In: Formal Aspects

of Computing (FAOC). DOI: 10.1007/s00165-012-0222-y. Springer, 2012.
2 Achim D. Brucker, L. Brügger and Burkhart Wolff: Model-Based Firewall Con-

formance Testing. ICTSS 08, LNCS 5047, pp. 103-118, http://dx.doi.org/10.1007/
978-3-540-68524-1_9, Springer, 2008.

3 Achim D. Brucker, Abderrahmane Feliachi, Yakoub Nemouchi, and Burkhart Wolff. Test
Program Generation for a Microprocessor: A Case-Study. In TAP 2013: Tests And Proofs.
To appear in LNCS, Springer-Verlag, 2013.

4 Lukas Brügger. A Framework for Modelling and Testing of Security Policies. ETH Disser-
tation No. 20513. ETH Zurich,2012.

5 Achim D. Brucker, Lukas Brügger, Paul Kearney, and Burkhart Wolff. An Approach to
Modular and Testable Security Models of Real-world Health-care Applications. In ACM
symposium on access control models and technologies (SACMAT)., pages 133-142, ACM
Press, 2011.

6 Achim D. Brucker, Lukas Brügger, Paul Kearney, and Burkhart Wolff. Verified Firewall
Policy Transformations for Test-Case Generation. In Third International Conference on
Software Testing, Verification, and Validation (ICST), pages 345-354, IEEE Computer
Society , 2010.

7 Matthias P. Krieger. Test Generation and Animation Based on Object-Oriented Specifica-
tions. University Paris-Sud XI,2011.

8 Achim D. Brucker, Matthias P. Krieger, Delphine Longuet, and Burkhart Wolff. A
Specification-based Test Case Generation Method for UML/OCL. In MoDELS Workshops.
LNCS 6627, pages 334-348, Springer-Verlag , 2010.

9 Achim D. Brucker and Burkhart Wolff. HOL-TestGen: An Interactive Test-case Generation
Framework. In Fundamental Approaches to Software Engineering (FASE09). LNCS 5503,
pages 417-420, Springer-Verlag , 2009.

10 Achim D. Brucker, Lukas Brügger, and Burkhart Wolff. Verifying Test-Hypotheses: An
Experiment in Test and Proof. Fourth Workshop on Model Based Testing (MBT 2008). In
ENTCS, 220 (1), pages 15-27, 2008.

13021

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s00165-012-0222-y
http://dx.doi.org/10.1007/s00165-012-0222-y
http://dx.doi.org/10.1007/s00165-012-0222-y
http://dx.doi.org/10.1007/978-3-540-68524-1_9
http://dx.doi.org/10.1007/978-3-540-68524-1_9

20 13021 – Symbolic Methods in Testing

3.24 Dijkstra’s Verdict Considered Harmful
Burkhart Wolff (Université Paris Sud, FR)

License Creative Commons BY 3.0 Unported license
© Burkhart Wolff

Dijkstra’s Verdict "Testing can only show the absence of errors, not the presence" has been
very influential and even more misleading in the scientifico-political debate between model-
checking, testing and deductive verification communities. Having seen too many Phds using
Dijkstra’s Verdict in the introduction to motivate their model-checking and proof-based
verification tool in a hopelessly exaggerating way, denying the importance of testing and
experimentation, I recall that no approach can guarantee the absence of bugs. In contrast,
the danger of uncritical application of verification tools (based on complex memory models,
implicit methodological assumptions, etc) is very real. In particular, deductive methods can
in practice NOT guarantee the absence of errors in programs, as far as they are written in
real programming languages and run on real machines. Strictly speaking, it can not even
be safely argued that deductive methods are BETTER than testing methods, since the
underlying assumptions are incomparable.

3.25 Online Verification of Value-Passing Choreographies through
Property-Oriented Passive Testing

Fatiha Zaïdi (Université Paris Sud, FR)

License Creative Commons BY 3.0 Unported license
© Fatiha Zaïdi

Joint work of Huu-Nghia, Nguyen; Pascal, Poizat; Fatiha, Zaïdi
Main reference Huu Nghia Nguyen, P. Poizat, F. Zaïdi, “Online Verification of Value-Passing Choreographies

through Property-Oriented Passive Testing,” in Proc. of the 14th IEEE Int’l High Assurance
Systems Engineering Symposium (HASE 12), pp. 106–113, IEEE, 2012.

URL http://dx.doi.org/10.1109/HASE.2012.15

Choreography supports the specification, with a global perspective, of the interactions between
roles played by peers in a collaboration. Choreography conformance testing aims at verifying
whether a set of distributed peers collaborates wrt. choreography. Such collaborations are
usually achieved through information exchange, thus taking data into account during the
testing process is necessary. We address this issue by using a non-intrusive passive testing
approach based on functional properties. A property can express a critical (positive or
negative) behaviour to be tested on an isolated peer (locally) or on a set of peers (globally).
We support online verification of these kind of properties against local running traces of each
peer in a distributed system where no global clock is needed. Our framework is fully tool
supported.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/HASE.2012.15
http://dx.doi.org/10.1109/HASE.2012.15
http://dx.doi.org/10.1109/HASE.2012.15
http://dx.doi.org/10.1109/HASE.2012.15

Thierry Jéron, Margus Veanes, and Burkhart Wolff 21

3.26 Symbolic Model-Based Testing of Real-Time Systems using
SYMBOLRT

Wilkerson de Lucena Andrade (Federal University of Campina Grande, BR)

License Creative Commons BY 3.0 Unported license
© Wilkerson de Lucena Andrade

The state space explosion problem is one of the challenges to be faced by test case generation
techniques, particularly when data values need to be enumerated. This problem gets even
worse for Real-Time Systems that also have time requirements. The usual solution consists
in enumerating data values (restricted to finite domains) while treating time symbolically,
thus leading to the classical state explosion problem. We propose a symbolic model for
conformance testing of real-time systems software named TIOSTS that addresses both data
and time symbolically [1, 3]. Moreover, a test case generation process was defined to generate
tests through TIOSTS models based on a combination of symbolic execution and constraint
solving for the data part and symbolic analysis for timed aspects. All the process is supported
by the SYMBOLRT tool [2]. SYMBOLRT is a model-based test generation tool developed to
automatically generate test cases from symbolic models in the context of real-time systems.
SYMBOLRT handles both data and time requirements symbolically, avoiding the state
explosion problem during the test case generation.

References
1 W. L. Andrade, P. D. L. Machado, T. Jéron, H. Marchand. Abstracting time and data

for conformance testing of real-time systems. In 7th Workshop on Advances in Model
Based Testing (A-MOST 2011) / 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), Pages 9-17, IEEE Computer
Society, March 2011.

2 W. L. Andrade, D. R. Almeida, J. B. Cândido, P. D. L. Machado. SYMBOLRT: A Tool for
Symbolic Model-Based Test Case Generation for Real-Time Systems. In 19th Tools Session
of the 3rd Brazilian Conference on Software: Theory and Practice (CBSoft 2012), Pages
31-37, Natal, Brazil, September 2012.

3 W. L. Andrade, P. D. L. Machado. Generating Test Cases for Real-Time Systems Based
on Symbolic Models. In IEEE Transactions on Software Engineering, to appear.

3.27 High-performance Analysis and Symbolic Online Test Generation
Jaco van de Pol (University of Twente, NL)

License Creative Commons BY 3.0 Unported license
© Jaco van de Pol

This overview talk consists of three parts: (1) A description of the LTSmin toolset for
high-performance analysis, based on symbolic and multi-core model checking. The basis for
the multi-core algorithms is a concurrent hashtable, with a very nice measured speedup on
multi-core machines. Selecting one particular algorithm, I explain a parallel NDFS algorithm
for LTL model checking. The initial variant had a small error, which was really hard to
find. This work could be connected to research in symbolic testing in two directions: (a)
a challenge for testing: could the error above be found by (symbolic) testing? (b) LTSmin
could be used for high-performance test algorithms, e.g. determinisation, strategy synthesis,
etc. (2) I shortly review my previous work in testing. First, we implemented simulated time

13021

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

22 13021 – Symbolic Methods in Testing

in TTCN-3 and applied it to model based testing of Railway Interlocking systems. Next, we
proposed a symbolic online test generation algorithm, along the following lines:
– compute a data abstraction of the system (e.g. by homomorphism)
– generate an abstract test case towards some test purpose goal
– infer data parameters by constraint solving
– follow the test path for a while; re-plan when you cannot continue.
(3) Finally, I believe that the following themes are both challenging and promising as future
work:
– developing robust black-box coverage criteria for symbolic testing
– optimal test case generation as strategy synthesis from a test game
As a closing remark: An important methodological issue concerning all research on testing is:
What is a common yardstick to evaluate progress in testing research?

References
1 S.C.C. Blom, N. Ioustinova, J.C. van de Pol, A. Rennoch, and N. Sidorova, Simulated

Time for Testing Railway Interlockings with TTCN-3. Proc. Formal Approaches to Software
Testing (FATES’05, Edinburgh), LNCS 3997, Springer, pp. 1-15, 2006.

2 S.C.C. Blom, T. Deiß, N. Ioustinova, A. Kontio, J.C. van de Pol, A. Rennoch, and N.
Sidorova, Simulated Time for Host-Based Testing with TTCN-3. Software Testing, Verific-
ation and Reliability, 18(1):29-49, 2008.

3 J.R. Calamé, N. Ioustinova, J.C. van de Pol, and N. Sidorova, Data Abstraction and
Constraint Solving for Conformance Testing. Proc. Asia-Pacific Software Engineering Con-
ference (APSEC’05, Taipei, Taiwan), IEEE, pp. 541-548, 2005.

4 Stefan Blom, Jaco van de Pol, and Michael Weber, LTSmin: Distributed and Sym-
bolic Reachability. Proc. Computer Aided Verifciation (CAV’10, Edinburgh), LNCS 6174,
Springer, pp. 354-359, 2010.

5 Alfons Laarman, Jaco van de Pol, and Michael Weber, Multi-Core LTSmin: Marrying
Modularity and Scalability. Proc. Nasa Formal Methods (NFM’11, Pasadena, USA), LNCS
6617, Springer, pp. 506-511, 2011.

6 Alfons Laarman, Jaco van de Pol and Michael Weber, Boosting Multi-Core Reachability
Performance with Shared Hash Tables. Proc. Formal Methods in Computer Aided Design
(FMCAD’10, Lugano, Switzerland), IEEE, pp. 247-256, 2010.

7 Alfons Laarman, Rom Langerak, Jaco van de Pol, Michael Weber, and Anton Wijs, Multi-
Core Nested Depth-First Search. Proc. Automated Technology for Verification and Analysis
(ATVA’11, Tapei, Taiwan), LNCS 6996, Springer, pp. 321-335, 2011.

8 Tom van Dijk, Alfons Laarman and Jaco van de Pol, Multi-core and/or Symbolic Model
Checking, Proc. Automated Verification of Critical Systems (AVOCS’12, Bamberg, Ger-
many), ECEASST 53, 2012.

3.28 A Conformance Testing Relation for Symbolic Timed Automata
Sabrina von Styp (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
© Sabrina von Styp

Main reference Sabrina von Styp, Henrik Bohnenkamp, and Julien Schmaltz. A Conformance Testing Relation for
Symbolic Timed Automata. In Proc. FORMATS 2010. pages 243-255. Volume 6246 of LNCS.
Springer-Verlag, 2010.

We introduce Symbolic Timed Automata, an amalgamation of symbolic transition systems
and timed automata, which allows to express nondeterministic data- dependent control

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Sabrina von Styp, Henrik Bohnenkamp, and Julien Schmaltz. A Conformance Testing Relation for Symbolic Timed Automata. In Proc. FORMATS 2010. pages 243-255. Volume 6246 of LNCS. Springer-Verlag, 2010.
Sabrina von Styp, Henrik Bohnenkamp, and Julien Schmaltz. A Conformance Testing Relation for Symbolic Timed Automata. In Proc. FORMATS 2010. pages 243-255. Volume 6246 of LNCS. Springer-Verlag, 2010.
Sabrina von Styp, Henrik Bohnenkamp, and Julien Schmaltz. A Conformance Testing Relation for Symbolic Timed Automata. In Proc. FORMATS 2010. pages 243-255. Volume 6246 of LNCS. Springer-Verlag, 2010.

Thierry Jéron, Margus Veanes, and Burkhart Wolff 23

flow with inputs, outputs and real-time behaviour. In particular, input data can influence
the timing behaviour. We define two semantics for STA, a concrete one as timed labelled
transition systems and another one on a symbolic level. We show that the symbolic semantics
is complete and correct w.r.t. the concrete one. Finally, we introduce symbolic conformance
relation stioco, which is an extension of the well-known ioco conformance relation. Relation
stioco is defined using FO-logic on a purely symbolic level. We show that stioco corresponds
on the concrete semantic level to Krichen and Tripakis’ implementation relation tioco for
timed labelled transition systems.

4 Working Groups

4.1 Working Group Report: Towards a Competition in Model-based
testing

Burkhart Wolff (Université Paris-Sud, FR)

License Creative Commons BY 3.0 Unported license
© Burkhart Wolff

The relative success of Tool- or Modeling competitions à la VSTTE or SMT- Competitions
raises the question if the MBT community should develop a similar institution for its field.
Competitions tend to reward otherwise neglected tool development, give indications on the
technical state-of-the-art, and produce a strong feedback for choices in the foundational
theories. We discuss certain scenarios and present a strategy that seems most appropriate
to our field, which has the problem that modeling is a key issue and therefore a plethora
of different modeling-languages make a simple comparison of solutions difficult. First, we
identified a number of scenarios:

1. The “Archive Scenario” (Woodcock’s FM Archive) ...
2. The “Grand Challenge Scenario” (The production cell scenario, MONDEX case study,

etc.)
3. Open Format Competition à la VSTTE (open format, co-loc, Jury, fixed time)
4. Fixed Format Competition à la SMT and Casc (fixed format, co-location with a Conf.)
In principle, these scenarios sketch already a progression, and a strategy towards a competition.
The latter should pave the path to a Modeling Competition a la VSTTE, where informal
specifications of small problems were given, and hard time constraints for solutions were
required by participating teams. Evaluation of solutions and tools by were performed by a
Jury. The challenge for really setting this up consists essentially finding in a notable jury
that sets up a call-for-paper, a prestigious prize and a reasonable conference to co-locate
with ...

4.2 Working Group Report: Proof and Test
Cathérine Dubois (Université Évry, FR), Burkhart Wolff (Université Paris-Sud, FR)

License Creative Commons BY 3.0 Unported license
© Cathérine Dubois

Test and proofs seem to have complementary properties: while (formal) proofs are based on
formal manipulation / computation, prove properties over models “once and for all”, relate

13021

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

24 13021 – Symbolic Methods in Testing

models by logically complete arguments, testing is traditionally seen as experimentation with
the goal to finding bugs, which can relate models with concrete systems, but are inherently
incomplete.

The complementary characteristic is sometimes expressed as: Beware of bugs in the above
code; I have only proved it correct, not tried it. Given that modern deductive verification
tools make a lot of assumptions over memory model, machine-model, and methodology, the
risk that a formally proven program is still buggily executed on a concrete machine is very
real (see the nice example on Maria Christakis Slides presented here). The validation of
models and system assumptions is therefore a necessary complement to deductive verification.

Over the tombstones of this old debate, there is in research communities the growing
consensus that there is a lot of common ground between these two and that they complement
each other. Testing can help Proof by:

MBT for model validation,
counter example finding and checking,
using testing techniques on executable models,
testing for verifying assumptions for proof tools,
...

Proof can contribute to testing :
use prover for test-case generation,
proof to pruning test objectives,
basic technology: constraint solving, SMT’s,
mature interactive formal development environments (such as Isabelle),
...

Quality in software development (and, by the way, high-level certifications such as
Common Criteria) require a clever combination of static analysis, proving, testing, model
checking, constraint solving, reviewing ...

References
1 B. Wolff. Using Theorem Provers for Testing. https://www.lri.fr/~wolff/talks/

UsingTheoremProversforTesting.pdf Invited Talk at the Seminary of the Digiteo
Foundation http://www.digiteo.fr/-seminaires-digiteo-, Paris, 20 march 2013.

4.3 Working Group Report: Testing and the Cloud
Wolfgang Grieskamp (Google, Seattle, US), Burkhart Wolff (Université Paris-Sud, FR)

Cloud computing is a major trend in computing, both as a technological development as
well as a scientific endeavor. With respect to testing, this trend generates to directions or
research:
1. Testing the Cloud: How to adapt testing techniques to the new hybrid, highly distributed,

highly virtualized infra-structures that become part of our world-wide IT infra-structure?
2. Testing with the Cloud: How can the massive computing power inherent in these new

infra-structures be effectively used for old and new testing techniques?

With respect to the former question, we agreed that old problems are coming back big:
the problems of scalability of techniques, the problem of isolation of components under test
from the environment, the security and privacy problems as well as the problems of test
configuration and deployment. However, some new aspects also pop up: the monitoring makes

https://www.lri.fr/~wolff/talks/UsingTheoremProversforTesting.pdf
https://www.lri.fr/~wolff/talks/UsingTheoremProversforTesting.pdf
http://www.digiteo.fr/-seminaires-digiteo-

Thierry Jéron, Margus Veanes, and Burkhart Wolff 25

runtime verification (“live” testing) easier and opens new ways on the virtualization level.
The dynamics makes clusters of discrete systems increasingly continuous, which increases
the need for symbolic methods. On the other hand, cloud computing makes the billing,
concretely: the cost of testing, more explicit. In the cloud, cost a factor of availability, and
production typically needs 99% availability. Here testing has an advantage over production:
test departments can get away with perhaps 75% availability (which can be substantially
cheaper).

Wrt. the latter question, we observe the phenomenon that more than two orders of
magnitude or more of affordable computing power becomes available to testing — which can
have an impact to methodology (less brain-power, more brute force ?). The other concern is,
that the new infra-structures will not necessarily be accessible to everyone, it is a new era of
company-owned computing centers, possibly a post-PC era. Further interest attracted the
question, what type of testing techniques are, generally speaking, “cloudifiable”. This is the
case if they follow the map-reduce pattern, i.e.

inexpensive pre-computation splitting the problem in a fixed number of independent
sub-problems
sub-problems executed on different machines, where communication via remote procedure
calls is possible occurring rare in practice, and
results can be collected easily and a potential start over to re-computation is possible.

This is the case for online model-based testing (symbolic or not), model-checking (some
approaches already exist), concolic execution, and load testing.

4.4 Working Group Report: Machine Learning and Testing
Margus Veanes (Microsoft Research, Redmond, USA), Juhan Ernits (Tallinn University of
Technology, Estonia)

License Creative Commons BY 3.0 Unported license
© Margus Veanes

Testing of complex systems, such as the behavior of a quad copter that is a real-time system
controlled by hand gestures recognized through Kinect, can be very challenging. The 20
second youtube video clip1 illustrates some aspects of what may go wrong and clearly raises
questions as to how to best test such systems. There are several reasons for why testing of
robotics and augmented reality applications is difficult in general and raises the difficulty bar
compared to traditional approaches to testing:

How do we define the test oracle for the system?
How do we generate tests for the system?
How do we measure coverage, i.e., when have we tested enough?

One observation we can make about the concrete scenario in the video is that, at some point,
the intended gesture that was supposed to lower the copter was misinterpreted, and instead,
the copter flew up. We know that the Kinect sensor uses decision trees2 to detect body parts
and to recognize gestures. Hypothetically, the flaw that caused the wrong behavior was in
the logic of the decison tree. The decision tree has been constructed after machine learning

1 https://www.youtube.com/watch?v=OQnRA6wZM-A
2 http://dx.doi.org/10.1109/FPL.2012.6339226

13021

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.youtube.com/watch?v=OQnRA6wZM-A
http://dx.doi.org/10.1109/FPL.2012.6339226

26 13021 – Symbolic Methods in Testing

of intended gestures for the given task. The question that is central to the theme of this
seminar is:

Could symbolic testing techniques be applied to decision tree classifiers in order to improve
their accuracy?

This question is very interdisciplinary. The relation between the three fields of research:
testing, symbolic methods, and machine learning is quite interesting and is illustrated in the
following figure:

Machine Learning and Testing

Testing

Symbolic Methods Machine Learning

Disclaimer: not exhaustive

Gulwani

POPL2011

Dagstuhl seminar 13021 et al

Rajamani

Static Analysis 2011

Andreas Zeller, et al

Random and manual data

generation for learning

Learning automata

Symbolic methods?

Test data generation

...

...

Abtractly, a machine learning algorithm produces a classifier, e.g., in form of a decision tree,
that can be characterized as a function F : X1 × · · · ×Xn → Y where elements of Xi are
inputs to the classifier (e.g. 2D coordicates). The output value is the value depending on the
inputs, typically Y is finite and is for example the shape of the detected skeleton. There are
at least two different uses of classifiers in the context of testing.

Classifier itself is the system under test (SUT).
Classifiers are used as test data generators for the SUT (e.g. the SUT is the copter in the
above scenario).

There are several open research questions related to the above uses.
How could a white box approach be used, e.g., can a decision tree be treated as a white
box?
How could approximate distance based methods be used for data generation?
Can one make minimal modification to fail classifiers?3

There are many more open questions. For eaxmple, could mutation based testing be used
to improve classifiers? One can also apply other symbolic approaches such as: predicate
extraction for explaining class-boundary conditons, and precondition and postcondition
checking, or invariant checking such as: “In a similar domain every even input is classified as
class-1, is it true for this classifier?”.

3 See for example CV Dazzle: http://cvdazzle.com/.

http://cvdazzle.com/

Thierry Jéron, Margus Veanes, and Burkhart Wolff 27

5 Programme

Programme for Monday 7th of January:

09:00–09:30: Margus Veanes: Welcome Talk of the Organizers
09:30–10:30: Nikolaj Bjørner: An update on Z3: Features and Applications
10:30–11:00:Coffee Break
11:00–12:00:Elevator Pitch Sessions: Position Statements, Perspectives, New Ideas, Value
Propositions ...
12:00–14:00:Lunch
14:00–15:30 :Logic in Testing
– L.Viganó:Using Interpolation for Test-Case Generation for Security Protocols
– B. Wolff: An Introduction to Model-based Testing with Isabelle/HOL-TestGen
– J. v.d. Pol: Formal Methods and Tools: Testing U Twente
15:30–16:00:Coffee Break 16:00–17:30:Symbolic IOCO
– T. Jéron: Model based conformance testing with iocotioco and Symbolic techniques
– C. Gaston: Symbolic execution for Off-line Test Case Generation For Timed Model-Based
Testing

Programme for Tuesday 8th of January:

09:00–10:30:Symbolic Testing involving Time
– A. Belinfante: Towards symbolic and timed testing with JTorX
– S. v. Styp: A Conformance Testing Relation for Symbolic Timed Automata
– W. Andrade: Symbolic Model-Based Testing of Real-Time Systems using SYMBOLRT
10:30–11:00:Coffee Break
11:00–12:00: N. Tillmann: Pex4Fun: Serious Gaming powered by Symbolic Execution
12:00–14:00: Lunch
14:00–15:30: Combined Process & Data Testing
– F. Zaidi: Online Verification of Value-Passing Choreographies through Property-Oriented
Passive Testing
– A. Feliachi: Theorem-Prover Based Test Generation for Circus
– Discussion
15:30–16:00:Coffee Break
16:00–17:30: Counter-Example Generation
– J. Blanchette: Counterexamples for Isabelle: Ground and Beyond
– H. Waeselynck: Paths to property violation: a structural approach for analyzing counter-
examples
– Discussion

Programme for Wednesday 9th of January:

9:00–10:30: Alternative Approaches
– M. Christakis: Collaborative Verification and Testing with Explicit Assumptions
– J. Ernits: Diagnosis Modulo Theories
– M. Kaeaeramees: A Symbolic Approach to Model-based Online Testing
Coffee
11:00–12:00: A. Brucker, L. Brügger: Tutorial: Model-based Testing of Security-critical
Systems
12:00: Dagstuhl Foto

13021

28 13021 – Symbolic Methods in Testing

12:00–14:00 Lunch
14:00–14:30: D. Molnar: SAGE
15:00–21:00 Excursion to Saarburg Winery

Programme for Thursday 10th of January:

09:00–10:00: Mutation Testing
– S. Bardin: Symbolic methods for efficient mutation testing
– R. Just: Using State Infection Conditions to Detect Equivalent Mutants and Speed up
Mutation Analysis
10:00–10:30 2nd elevator pitch sessions
Coffee
11:00–12:00: Group session : 4 Groups
– Should there be Tool Competition or an Archive on MBT
– Proof and Test
– Machine Learning and Testing
– Testing in and of the Cloud
14:30–15:30:
– D. Mery: Critical Systems Development Methodology
– B. Nielsen: Testing real-time systems under uncertainty
Coffee
16:00–17:30
– C. Cadar: KATCH: High-Coverage Testing of Software Patches
– M. Veanes: Symbolic automata

Programme for Friday 11th of January:

09:00–10:00
– C. Dubois: A Certified Constraint Solver over Finite Domains.
– M. Rueher: Combining AI & CP to identify suspicious values
Coffee Break
10:30–12:00: Summary of groups (1h) 10mn/groups
– B. Wolff: Should there be Tool Competition or an Archive on MBT
– C. Dubois: Proof and Test
– J. Ernits: Machine Learning and Testing
– W. Grieskamp: Testing in and of the Cloud
Discussion

Thierry Jéron, Margus Veanes, and Burkhart Wolff 29

Participants

Sébastien Bardin
CEA – Gif sur Yvette, FR

Axel Belinfante
University of Twente, NL

Nikolaj Bjorner
Microsoft Res. – Redmond, US

Jasmin Christian Blanchette
TU München, DE

Achim D. Brucker
SAP Research – Karlsruhe, DE

Lukas A. Brügger
ETH Zürich, CH

Cristian Cadar
Imperial College London, GB

Maria Christakis
ETH Zürich, CH

Sylvain Conchon
Université Paris Sud, FR

Wilkerson de Lucena Andrade
Federal University of Campina
Grande, BR

Catherine Dubois
ENSIIE – Evry, FR

Juhan Ernits
Tallinn Univ. of Technology, EE

Abderrahmane Feliachi
Université Paris Sud, FR

Christophe Gaston
CEA – Gif sur Yvette, FR

Arnaud Gotlieb
Simula Reseach Laboratory –
Lysaker, NO

Wolfgang Grieskamp
Google – Sammamish, US

Robert M. Hierons
Brunel University, GB

Thierry Jéron
INRIA Rennes – Bretagne
Atlantique, FR

René Just
University of Washington –
Seattle, US

Marko Kääramees
Tallinn Univ. of Technology, EE

Pascale Le Gall
Ecole Centrale – Paris, FR

Martin Leucker
Universität Lübeck, DE

Delphine Longuet
Université Paris Sud, FR

Dominique Méry
LORIA – Nancy, FR

David Molnar
Microsoft Res. – Redmond, US

Brian Nielsen
Aalborg University, DK

Grgur Petric Maretic
ETH Zürich, CH

Frank Rogin
Biotronik SE&Co.KG –
Berlin, DE

Michel Rueher
Université de Nice, FR

Nikolai Tillmann
Microsoft Res. - Redmond, US

Jan Tretmans
Embedded Systems Institute –
Eindhoven, NL

Jaco van de Pol
University of Twente, NL

Margus Veanes
Microsoft Res. – Redmond, US

Luca Vigano
Università di Verona, IT

Sabrina von Styp
RWTH Aachen, DE

Hélène Waeselynck
LAAS – Toulouse, FR

Burkhart Wolff
Université Paris Sud, FR

Fatiha Zaïdi
Université Paris Sud, FR

13021

	Executive Summary Thierry Jéron, Margus Veanes, and Burkhart Wolff
	Table of Contents
	Overview of Talks
	Symbolic methods for efficient mutation testing Sébastien Bardin
	Towards symbolic and timed testing with JTorX Axel Belinfante
	An update on Z3 Nikolaj Bjørner
	Counterexamples for Isabelle: Ground and Beyond Jasmin Christian Blanchette
	Model-based Conformance Testing of Security Properties Achim D. Brucker
	Symbolic Execution for Evolving Software Cristian Cadar
	Collaborative Verification and Testing with Explicit Assumptions Maria Christakis
	A Certified Constraint Solver over Finite Domains Catherine Dubois
	Diagnosis Modulo Theories for Hybrid Systems Juhan Ernits
	Theorem-Prover Based Test Generation for Circus Abderrahmane Feliachi
	Off-Line Test Case Generation for Timed Symbolic Model-Based Conformance Testing Christophe Gaston
	Distributed and Asynchronous Model Based Testing Robert M. Hierons
	Model based conformance testing with ioco/tioco and Symbolic techniques Thierry Jéron
	Using State Infection Conditions to Detect Equivalent Mutants and Speed up Mutation Analysis René Just
	A Symbolic Approach to Model-based Online Testing Marko Kaeaeramees
	Critical Systems Development Methodology using Formal Techniques Dominique Méry
	Testing Real-time Systems under Uncertainty Brian Nielsen
	Identifying suspicious values in programs with floating-point numbers Michel Rueher
	Pex4Fun: Serious Gaming powered by Symbolic Execution Nikolia Tillman
	Symbolic Automata Margus Veanes
	Using Interpolation for Test-Case Generation for Security Protocols Luca Vigano
	Paths to property violation: a structural approach for analyzing counter-examples Hélène Waeselynck
	An Introduction to Model-based Testing with Isabelle/HOL-TestGen Burkhart Wolff
	Dijkstra's Verdict Considered Harmful Burkhart Wolff
	Online Verification of Value-Passing Choreographies through Property-Oriented Passive Testing Fatiha Zaïdi
	Symbolic Model-Based Testing of Real-Time Systems using SYMBOLRT Wilkerson de Lucena Andrade
	High-performance Analysis and Symbolic Online Test Generation Jaco van de Pol
	A Conformance Testing Relation for Symbolic Timed Automata Sabrina von Styp

	Working Groups
	Working Group Report: Towards a Competition in Model-based testing Burkhart Wolff
	Working Group Report: Proof and Test Cathérine Dubois
	Working Group Report: Testing and the Cloud Wolfgang Grieskamp
	Working Group Report: Machine Learning and Testing Margus Veanes

	Programme
	Participants

