
Report from Dagstuhl Seminar 13051

Software Certification: Methods and Tools
Edited by
Darren Cofer1, John Hatcliff2, Michaela Huhn3, and
Mark Lawford4

1 Rockwell Collins – Cedar Rapids, US, ddcofer@rockwellcollins.com
2 Kansas State University, US, hatcliff@cis.ksu.edu
3 TU Clausthal, DE, michaela.huhn@tu-clausthal.de
4 McMaster University – Hamilton, CA, lawford@McMaster.CA

Abstract
With the pervasive deployment of software in dependable systems used in everyday life, society
is increasingly demanding that software used in critical systems must meet minimum safety,
security and reliability standards. Certification is the procedure by which an authorized person or
agency assesses and verifies characteristics of a system or product in accordance with established
requirements, standards, or regulations. For software, it encompasses traditional notions of
verification, but also includes the evidence, tools, methods, and personnel qualifications that
are needed to convince the certification authority that the system or product conforms to the
relevant standard. Manufacturers of these systems need consistent and effective guidelines as to
what constitutes acceptable evidence of software quality, and how to achieve it.

Compared to process-oriented certification procedures, recent approaches provide evidence for
dependability by the thorough evaluation of the product itself and the adequacy, coverage and
maturity of design and quality assurance methods. Substantial progress has been made in areas
including safety and assurance cases, the conceptual foundation of evidence and formal methods,
and tooling for software design and verification. New approaches are necessary to develop holistic
and cost-effective methodologies and to provide integrated tool support for creating certifiable
software-intensive systems, as well as product-focused approaches to certifying these systems.

Experts from academia and industrial practitioners met in the Dagstuhl Seminar 13051 “Soft-
ware Certification: Methods and Tools” to discuss and software certification challenges, best prac-
tices, and the latest advances in certification technologies in several different software-intensive
domains (automotive, aircraft, medical, nuclear, and rail).

Seminar 27. January to 01. February, 2013 – www.dagstuhl.de/13051
1998 ACM Subject Classification D.2.0 Software Engineering / General, D.2.4 Software/Pro-

gram Verification, D.2.9 Management / Software Quality Assurance, I.6.4 Model Validation
and Analysis, K.4.1 Public Policy Issues / Human Safety, K.5.2 Governmental Issues / regu-
lation, K.6.3 Software Management / Software Process

Keywords and phrases dependable systems, safety, security, certification, formal methods, model-
driven development, validation & verification, tools

Digital Object Identifier 10.4230/DagRep.3.1.111
Edited in cooperation with Sara Bessling

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Software Certification: Methods and Tools, Dagstuhl Reports, Vol. 3, Issue 1, pp. 111–148
Editors: Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13051
http://dx.doi.org/10.4230/DagRep.3.1.111
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

112 13051 – Software Certification: Methods and Tools

1 Executive Summary

Darren Cofer
John Hatcliff
Michaela Huhn
Mark Lawford

License Creative Commons BY 3.0 Unported license
© Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford

Context
An increasingly important requirement for success in many domains is the ability to cost-
effectively develop and certify software for critical systems (e.g. pacemakers, health monitoring
equipment, core banking applications, financial reporting, nuclear reactors, rail automation
and active safety in vehicles etc.). Software errors in each of these domains continue to
lead to catastrophic system failures, sometimes resulting in loss of life. A recent report by
the U.S. National Academy of Sciences [1], concludes that “new techniques and methods
will be required in order to build future software systems to the level of dependability that
will be required...In the future, more pervasive deployment of software...could lead to more
catastrophic failures unless improvements are made.” Thus, society is increasingly demanding
that software used in critical systems must meet minimum safety, security and reliability
standards. Manufacturers of these systems are in the unenviable position of not having
consistent and effective guidelines as to what constitutes acceptable evidence of software
quality, and how to achieve it. This drives up the cost of producing these systems without
producing a commensurate improvement in dependability.

Multiple trends and activities (a) point to the changing nature of development of certified
systems and (b) indicate the need for community-wide efforts to assess and form a vision of
the future for development of certified systems.

New and Evolving Standards

To adapt to the significant changes in the role of software in dependable systems and to
improve current industrial practice in software engineering, international standards like the
IEC 61508 are currently under revision. DO-178C governing certification of software in
commercial aircraft has recently been revised to accomodate the use of software technologies
such as formal methods and model-based development processes. In several other software-
intensive domains new domain-specific standards are being developed.

Process- vs. Product-oriented Certification

In practice, current certification of software-intensive systems is primarily process based.
A reliance on process oriented standards has established a certification practice that is
dominated by assessing process-related documents and marking off checklists that are derived
from the recommendation annexes of the standards or so-called “approved practice in use”.
Thorough evaluation of the product itself or the adequacy, coverage and maturity of design and
quality assurance methods are sometimes neglected because there is currently no fundamental
agreement on software engineering principles and product qualities to achieve demonstrably
dependable software. An alternative to process-oriented certification regimes is “safety and
assurance cases” [7]. In Europe, and particularly in the UK, assurance cases have been
adopted as a product centric alternative approach to certification and are widely used in

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 113

practice already. Recently the U.S. FDA has issued guidance documents recommending
the use of assurance cases in submissions for approval of infusion pumps. However, while
assurance cases offer some product oriented focus to certification, the lack of standardization
of safety and assurance case arguments has its own pitfalls [8].

Advances in Formal Methods

In academia, research on formal methods has made substantial progress with respect to
scalability and coverage recently, e.g. in tool-supported model-based design and code
generation, but also in the area of software model checking or timing analysis [2]. Thus,
formally assuring safety requirements has become feasible at least on the level of components.
Nevertheless, research usually focuses on specific techniques, thereby often neglecting the
cross-cutting nature of dependability and the need of providing traceable evidence.

Software Development Trends

Two trends relevant in industrial software development for critical systems are the success
of model-based design environments that support automated code generation and the need
to integrate pre-developed or Commercial Off The Shelf (COTS) software components: (1)
Model based tools facilitate rapid prototyping and validation and verification in earlier design
phases than traditional processes, but with a price of higher effort in the design phases
performed by well-trained and experienced personnel. Software quality will only benefit from
these approaches, if certification procedures are adapted towards a cost-effective assessment
on the level of models wherever it is adequate. For instance, if model based tools are
supported by V & V tools that perform some verification at design time, how does this affect
certification standards that require independent design and V & V teams? (2) Evidence based
upon prior usage and operating history are typically key components in making decisions in
industry about the “fitness for use” of a pre-developed software application or component.
However, platform-specific and environmental constraints on the usage are sometimes not
specified in detail which has lead to catastrophic failures in the past.

Community-building Activities

Various community-building organizations are being formed drive research, education, and
cross-domain coordination in the area of software certification. For instance, the Software
Certification Consortium (SCC) was formed in 2007 as a North American initiative to promote
product based software certification. Its members are drawn from regulators, industry and
academia. SCC has been successful in highlighting shortcomings in current certification
regimes and in providing challenge problems and example certification artifacts to the broader
community.

Seminar Topics and Goals
The Dagstuhl Seminar 13051 Software Certification: Methods and Tools brought together
experts for the purpose of assessing the current state of practice, identifying challenges,
promising techniques/methods, and for creating a road map for future research, education,
and standards development in the area of certification of software and systems.

The seminar addressed the following topics:

13051

114 13051 – Software Certification: Methods and Tools

Identification of the challenges, regulatory bodies, primary certification standards, typical
development and certification processes in variety of safety-critical domains including
avionics, automotive, medical systems, and rail, as well as cross-cutting aspects of security
certification.
Developing a rational basis for the primary activities in certification. This included
work on the interrelation between i) how we develop software in a way that facilitates
certification; and, ii) how we collect and use evidence about software products to evaluate
whether they should or should not be certified for use, and iii) cost-benefits issues in
certification.
Pros and cons of assurance-cases in regulatory regimes, assessing the confidence given
by assurance cases, new techniques for presenting assurance case arguments, tools for
managing the collection of evidence and organization of arguments for assurance cases,
and the relationship between assurance cases and software certification standards such as
DO-178C.
The use of tools and open source infrastructure in certification, along with new approaches
and guidelines for qualifying tools for use in development of certified systems.
The latest advances in relevant formal methods for software verification, and integrating
formal method with other quality assurance techniques such as testing in the context of
certified system development.
The increasing use of “systems of systems” in safety-critical domains, and the need for
new approaches supporting compositional certification and reuse of components in the
context of certified systems.
The structure, nature, use, of current certification standards, current business models
and organizational principles for developing standards, and how these aspects might be
evolved to better address the needs of the community.
Strategies for managing the complexity of software intensive systems, including model
based development, refinement-based methodologies, and generative techniques.
Challenges problems, infrastructure, and pedagogical resources to support research and
education for both academia and industry in the area of certified system development.

Seminar Participants and Activities
41 researchers participated in the “Software Certification” Seminar, 21 academic researchers,
10 are affiliated to research institutes and 10 experts from industries proving the strategic
relevance of the subject to both, research and practice. With about 40% the portion of North
American participants was remarkable high.

The seminar started with an introductory session on Monday morning at which the
organizers recapitulated the outline, the objectives, and goals of the seminar. Each participant
shortly introduced him/herself, his/her scientific background and personal goals for the
seminar week. Then senior experts gave an overview on software certification in different
domains, namely the avionic, nuclear, medical devices, automotive, and the rail domain.
Monday afternoon ended with a discussion on the major differences and similarities between
software assessment in the domains and cross-domain challenges. From Tuesday to Thursday
experts presented their work. Panel discussions, challenge problem advertisements as well as
working group sessions took place in the afternoons and evenings. A wide range of topics
was covered including assurance cases and the fundamentals of how to achieve evidence,
tool support to software assessment in the certification process, experience reports and new

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 115

methodologies for the medical device domain, model based design methods appropriate to
certification, issues in cloud security and security certification, tools and methods for static
analysis, formal verification and testing. On Thursday evening we had a fruitful discussion
with the participants of the Dagstuhl seminar on “Multicore Enablement for Embedded and
Cyber-Physical Systems” organized by Andreas Herkersdorf, Michael Hinchey, and Michael
Paulitsch that was held in parallel. Among others the following questions were discussed:
What are the requests on predictability that have to be satisfied by multicore architectures to
be well suited for dependable systems? What are the compelling cyberphysical dependable
applications that need multicore architectures? What mechanisms known from dependable
software development may be transferred to multicore architecture design and vice versa?
Friday was dedicated to working groups as well as outlining and scheduling post seminar
proceedings in which we plan to summarize the state of the art in software certification and
the results of the seminar. The areas identified by the plenum to be most relevant for further
progress on software certification are:

Fundamentals on confidence and evidence
Compositional certification
Education on dependable systems and certification
Tool qualification
Security
Methods for the development of certifiable software and methods supporting certification

References
1 D. Jackson, M. Thomas, L. Millett. “Software for Dependable Systems: Sufficient Evid-

ence?” Committee on Certifiably Dependable Software Systems, National Research Coun-
cil, National Academies Press, 2007.

2 M. Huhn, H. Hungar. UML for software safety and certification – Model-based development
of safety-critical software-intensive systems. In H. Giese, G. Karsai, E. Lee, B. Rumpe,
and B. Schätz (Eds.): Model-Based Engineering of Embedded Real-Time Systems – Int’l
Dagstuhl Workshop, Dagstuhl Castle, Germany, November 4–9, 2007. Revised Selected
Papers, LNCS 6100, Springer, pp. 203–240. 2011. DOI: 10.1007/978-3-642-16277-0_8

3 M. Huhn, A. Zechner.Analysing Dependability Case Arguments Using Quality Models. In
B. Buth, G. Rabe, and T. Seyfarth (Eds.): 28th Int’l. Conf. on Computer Safety, Reliability,
and Security (SAFECOMP), LNCS 5775, Springer, pp. 118–131, 2009. DOI: 10.1007/978-
3-642-04468-7_11

4 A. Wassyng, T.S.E. Maibaum, M. Lawford, On Software Certification: We Need Product-
Focused Approaches. C. Choppy and O. Sokolsky (Eds.): Monterey Workshop 2008, LNCS
Vol. 6028, Springer, pp. 250–274, 2010. DOI: 10.1007/978-3-642-12566-9_13

5 J. Hatcliff, M.P.E. Heimdahl, M. Lawford, T.S.E. Maibaum, A. Wassyng, F.L. Wurden. A
Software Certification Consortium and its Top 9 Hurdles. In Proc.of the First Workshop
on Certification of Safety-Critical Software Controlled Systems (SafeCert 2008), ENTCS,
Vol. 238, No. 4, pp. 11–17, 2009. DOI: 10.1016/j.entcs.2009.09.002

6 FDA, “FDA Launches Initiative to Reduce Infusion Pump Risks,” News Release, April 23,
2010 (see: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm209042.
htm)

7 R. Bloomfield and P. Bishop. Safety and assurance cases: Past, present and possible future
– an Adelard perspective. In C. Dale, T. Anderson (Eds.): Making Systems Safer, Proc. of
the Eighteenth Safety-Critical Systems Symp., Bristol, UK (February 2010), pp. 51–67.

8 A. Wassyng, T.S.E. Maibaum, M. Lawford and H. Behr. Is there a case against safety
cases? Submitted to post-proceedings volume of Monterey 2010 Workshop, to be published
in LNCS.

13051

http://dx.doi.org/10.1007/978-3-642-16277-0_8
http://dx.doi.org/10.1007/978-3-642-04468-7_11
http://dx.doi.org/10.1007/978-3-642-04468-7_11
http://dx.doi.org/10.1007/978-3-642-12566-9_13
http://dx.doi.org/10.1016/j.entcs.2009.09.002
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm209042.htm
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm209042.htm

116 13051 – Software Certification: Methods and Tools

2 Table of Contents

Executive Summary
Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 112

Overview of Talks
Modeling Requirements for Embedded Systems with RDAL
Dominique Blouin . 119

Technology Infusion Study for DO-333
Darren Cofer . 119

Integrating Formal Program Verification with Testing
Cyrille Comar . 120

Functional Safety and Certification of Automotive E/E systems
Mirko Conrad . 120

Abstraction, Fidelity and (In-)Competence: modelling cyber-physical systems and
systems of systems
John S. Fitzgerald . 121

What is Mission-Assurance?
Kim R. Fowler . 121

A naive look at software certification practices – and proposals for enhancement
Hubert Garavel . 122

Bringing evidence-based arguments into practice
Janusz Gorski . 122

Static Analysis of Real-Time Embedded Systems with REK
Arie Gurfinkel . 123

Certification for Medical Devices and Systems: An Overview and Challenges
John Hatcliff . 124

Requirements Specification and Supporting Artifacts for an Open Source Patient-
Controlled Analgesic Pump
John Hatcliff . 124

Concerning the implicit DO-178C assurance case
Michael Holloway . 125

Software verification in the medical domain
Jozef Hooman . 125

Bridging the modeling/verification gap
Jerôme Hugues . 125

Opening up the Verification and Validation of Safety-Critical Software
Hardi Hungar . 126

Using Code Analysis Tools for Software Safety Certification
Daniel Kaestner . 126

Towards an Effective Safety Demonstration Framework
Peter Karpati . 127

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 117

Software Certification: Where is Confidence Won and Lost?
Tim Kelly . 127

User Assembled Medical System of Systems
Andrew King . 128

Three Challenges
John C. Knight . 128

Certification of Medical Device Composition
Brian Larson . 128

Bayesian Probabilistic Approaches to Confidence are Impossible: The Need for a
Baconian Approach (pace Jonathan Cohen)
Tom S. Maibaum . 129

Software Certification: The Return on Investment?
John McDermid . 129

Refinement may help for Certification
Dominique Mery . 130

Certification Challenges for Software With Uncertainty
Richard F. Paige . 131

Models and Certification
Andras Pataricza . 132

From Tool Qualification to Tool Chain Design
Jan Philipps . 132

Cloud Security: Information Segregation and Data Privacy
Julia Rubin . 133

Logic and Epistemology in Assurance Cases
John Rushby . 133

Model-Based Development and Functional Safety
Bernhard Schaetz . 134

Software Cerrtification Challenges in the Nuclear Power Domain
Alan Wassyng . 134

Certification of Medical Information Systems – A paradigm shift: from devices to
systems, from functions to data
Jens H. Weber . 134

Software certification in aeronautics
Virginie Wiels . 135

Some experience and remarks on security certification at industry
David von Oheimb . 135

Overview of Working Groups
Challenges: Compositional Certification . 135

Challenges: Education and Challenge Problems . 139

Challenges: Security . 141

Challenges: Tool Qualification . 142

13051

118 13051 – Software Certification: Methods and Tools

Intellectual Basis for Certification & Confidence . 144

Methods for Developing Certifiable Systems and Methods of Certifying Systems . . 146

Participants . 148

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 119

3 Overview of Talks

3.1 Modeling Requirements for Embedded Systems with RDAL
Dominique Blouin (Université de Bretagne Sud, FR)

License Creative Commons BY 3.0 Unported license
© Dominique Blouin

Joint work of Blouin, Dominique; Turki, Skander, Senn Eric
Main reference D. Blouin, E. Senn, S. Turki, “Defining an annex language to the architecture analysis and design

language for requirements engineering activities support,” in Proc. of Model-Driven Requirements
Engineering Workshop (MoDRE’11), pp. 11–20, IEEE, 2011.

URL http://dx.doi.org/10.1109/MoDRE.2011.6045362

In this talk, I will introduce the Requirements Definition and Analysis Language (RDAL)
that we are developing as an annex of the Architecture Analysis and Design Language
(AADL). I will present the needs for such language, its main features and show how it can
be used to formalize requirements specifications supporting requirements engineering best
practices such as those of the FAA Requirements Engineering Management Handbook. I
will also present the modeling of a concrete example from the FAA handbook with RDAL,
and discuss some modeling issues and inconsistencies of the natural language specification
revealed by the process of formalizing the specification. I would like to get inputs on the
potential impact of finding these inconsistencies on the system development process and the
benefits of the modeling activity taking into account the overhead it implies.

3.2 Technology Infusion Study for DO-333
Darren Cofer (Rockwell Collins – Minneapolis MN, US)

License Creative Commons BY 3.0 Unported license
© Darren Cofer

Joint work of Cofer, Darren; Miller, Steven

In 2012, RTCA published DO-178C, DO-278A, and DO-333, which together define a frame-
work for applying formal methods in the certification of airborne and air traffic management
systems. However, there remain significant challenges to the successful infusion of formal
methods into development and certification workflows in the aviation industry. Under NASA
funding, Boeing and Rockwell Collins are developing technical material that will help industry
to effectively apply formal methods in a DO-178C/DO-333 context. Our work includes a
survey of currently available formal methods and tools that are most relevant for verification
and certification of airborne software. We have also developed an integrated case study
to demonstrate the use of some of these tools to satisfy DO-178C certification objectives
using the augmented guidance in DO-333. The case study is based on a fault-tolerant
flight control system than includes requirements and design artifacts specified using PVS,
Simulink/Stateflow, and source code. We have verified different aspects of the system design
using theorem proving, model checking, and abstract interpretation, and show how various
certification objectives are satisfied using these formal techniques. The survey and the case
study will form the basis for a new formal methods guidebook, which will be publicly available
along with all of the models and verification artifacts. Both the technical descriptions and
the examples will be presented at varying levels of detail, suitable for system developers,
certifiers, and other stakeholders.

13051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/MoDRE.2011.6045362
http://dx.doi.org/10.1109/MoDRE.2011.6045362
http://dx.doi.org/10.1109/MoDRE.2011.6045362
http://dx.doi.org/10.1109/MoDRE.2011.6045362
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

120 13051 – Software Certification: Methods and Tools

3.3 Integrating Formal Program Verification with Testing
Cyrille Comar (AdaCore, Paris, FR)

License Creative Commons BY 3.0 Unported license
© Cyrille Comar

Joint work of Comar, Cyrille; Kanig, Johannes; Moy, Yannick

The Hilite project proposes a framework that offers the possibility of using formal and
non-formal verification of requirements expressed in the form of subprogram contracts in
a DO-178C context. In particular, we explore the conditions for validating an approach
mixing formal verification and testing whose goal is to reduce the costs of testing and ease
the adoption of formal verification in the industry.

3.4 Functional Safety and Certification of Automotive E/E systems
Mirko Conrad (The MathWorks GmbH – Ismaning, DE)

License Creative Commons BY 3.0 Unported license
© Mirko Conrad

ISO 26262 “Road vehicles – Functional safety” is a set of safety standards for electrical
and/or electronic (E/E) systems installed in series production passenger cars. ISO 26262
constitutes the adaptation of IEC 61508 to comply with needs specific to the application
sector of E/E systems within such road vehicles. ISO 26262 which was published in 2011
provides:

An automotive safety lifecycle incl. means for tailoring the necessary activities
An automotive-specific risk-based approach to determine integrity levels (Automotive
Safety Integrity Levels, ASILs) and uses ASILs to specify applicable requirements to
avoid unreasonable residual risk
Requirements for validation and confirmation measures to ensure a sufficient and accept-
able level of safety being achieved
Requirements for OEM-supplier relationship.

Functional safety as per the standard is defined as “absence of unreasonable risk due to hazards
caused by malfunctioning behaviour of E/E systems”. ISO 26262 does not have a notion of
certification, but it sets out three types of so called confirmation measures (confirmation
review, functional safety audit, and functional safety assessment). The standard also provides
a process to establish the required confidence in the correct functioning of software tools.
This process comprises two steps, tool classification and subsequent tool qualification (if
applicable). The talk provides an overview of key concepts of ISO 26262 that are related to
the topic area of the seminar.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 121

3.5 Abstraction, Fidelity and (In-)Competence: modelling
cyber-physical systems and systems of systems

John S. Fitzgerald (Newcastle University, GB)

License Creative Commons BY 3.0 Unported license
© John S. Fitzgerald

Joint work of Fitzgerald, John S.; Larsen, Peter G; Verhoef, Marcel HG; Pierce, K; Gamble, C

Formal model-based methods have been advocated as a means of gaining assurance in the
early stages of product development. Formal notations are said to promote careful abstraction,
the explicit recording of assumptions, and the elimination of infeasible designs. The range of
applications of formal methods, and the capability of analysis techniques, using proof and
model-checking for example, have grown in the last quarter century. However, the use of a
notation that happens to have formal semantics is not in itself a basis for making substantive
judgements about any product that may ultimately be derived from the model. What, then,
are the costs, benefits and risks of formal modelling and analysis?

My talk focuses on the new and challenging domains of cyber-physical systems in
which there is a close interaction between networked computing devices and the physical
environment, and in systems of systems, which are composed of independently owned and
managed constituents about which we have limited knowledge and over which we have limited
control. What can formal techniques contribute to the assurance of such systems?

I use examples drawn from recent work on the following projects in which formal model-
based techniques are developed with the aim of help to de-risk development by eliminating
inadequate or infeasible designs at early stages. In both cases, the quality of models depends
on balancing abstraction and fidelity while not compromising competence.

DESTECS (Design Support and Tooling for Embedded Control Software) www.destecs.org
defines methods and tools for collaborative modelling and co-simulation for embedded
systems, linking discrete-event models of software to continuous-time models of controlled
plant and environment. A reconciled operational semantics for simulators in both domains
enables systematic exploration of design spaces.
COMPASS (Comprehensive Modelling for Advanced Systems of Systems) www.compass-
research.eu is developing formal modelling techniques for Systems of Systems. This entails
providing common semantic bases for a range of aspects including data, functionality,
architectural structure, time and mobility.

3.6 What is Mission-Assurance?
Kim R. Fowler (Kansas State University, US)

License Creative Commons BY 3.0 Unported license
© Kim R. Fowler

I will present several case studies, from military, medical, and appliance industries, as
examples of dependable systems, which illustrate some aspects of mission-assurance. We, the
seminar participants, will discuss what “dependable” and “mission-assurance” really mean in
the context of each of these case studies.

I will present and discuss with you some components of development processes that lead
towards mission-assurance in systems. My primary conclusion is: Appropriate processes and
procedures in design and development lead to dependable systems and mission-assurance,
not blind application of all possible techniques.

13051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

122 13051 – Software Certification: Methods and Tools

3.7 A naive look at software certification practices – and proposals for
enhancement

Hubert Garavel (INRIA Rhône-Alpes, FR)

License Creative Commons BY 3.0 Unported license
© Hubert Garavel

In this talk I will provide the feedback of an academic computer scientist confronted to
the current multiplicity of software certification standards. The current situation seems far
from optimal because of the diversity of vocabulary and concepts, and because key ideas of
software engineering and formal methods seem to be missing from current standards. Based
on these remarks, some proposals for enhancing certification practices are formulated.

3.8 Bringing evidence-based arguments into practice
Janusz Gorski (Gdansk University of Technology, PL)

License Creative Commons BY 3.0 Unported license
© Janusz Gorski

Evidence-based arguments have a potential to strengthen trust relationships in different
contexts. To support their wider application, several problems have to be solved, including:
choosing an adequate argument model, integration of arguments and the supporting evid-
ence, diversity of evidence formats (e.g. text, graphics, video stream, audio), diversity of
the evidence repositories, user-friendly interface, argument assessment (including multiple
assessments and diverse assessment mechanisms), communication of the argument assessment
results, deployment models for supporting tools, information security (in particular, security
of an argument and security of the evidence supporting the argument), scalability, version
management and so on.

To address this and the related problems we are developing the TRUST-IT methodology
[2] and the related platform of software services, called NOR-STA [1]. TRUST-IT is focused
on representation and assessment of evidence based arguments and on their possible usage
scenarios [10, 8, 7, 5, 6]. The arguments are represented graphically, with the help of
NOR-STA software services which are deployed in accordance with the SaaS (Software-As-A-
Service) cloud computing model. The “strength” of an argument can be appraised by an
independent assessor using the appraisal mechanism based on Dempster-Shafer theory. The
use of other, application domain specific argument appraisal mechanisms is also supported.
The results of argument assessment are visualized by coloring the argumentation tree which
provides for effective and efficient communication and decision making support.

TRUST-IT and NOR-STA have been already used in different application scenarios,
including justification of safety, security and privacy properties of IT systems and services
developed in four different European research projects (DRIVE, PIPS, ANGEL and DECOS)
[4], justification of the trustworthiness of the assessment criteria of web-based sources of med-
ical information (applied by the Health-On-the Net foundation based in Switzerland) [3], and
are presently used to support the processes of achieving and assessing standards conformance
in different domains, including accreditation standards for hospitals [9], a standard for risk
management in outsourcing processes, CAF (Common Assessment Framework) – a set of
guidelines for self-assessment and self-improvement of public organizations, and presently
we begin to support HACCP (Hazard Analysis and Critical Control Points), a systematic

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 123

preventive approach to food safety and allergenic, chemical, and biological hazards. New
application scenarios, including parallel monitoring of critical requirements in different sites
and automatic assessment of selected claims are under investigation.

References
1 http://www.nor-sta.eu/en
2 http://iag.pg.gda.pl/iag/?s=research&p=trust_cases
3 http://www.hon.ch/Global/copyright.html
4 Górski J, Jarzêbowicz A, Miler J, Witkowicz M, Czyznikiewicz J, Jar P: Supporting As-

surance by Evidence-Based Argument Services, SAFECOMP Workshops 2012, Springer-
Verlag Berlin, Heidelberg, pp. 417–426

5 Cyra Ł., Górski J., Support for argument structures review and assessment, Reliability
Engineering and System Safety, Elsevier, Volume 96, 2011, pp. 26—37

6 Cyra Ł., Górski J., SCF – a Framework Supporting Achieving and Assessing Conformity
with Standards, Computer Standards & Interfaces, Elsevier, Volume 33 Issue 1, January,
2011,pp. 80–95

7 Górski J., Jarzebowicz A., Leszczyna R., Miler J., Olszewski M.: Trust case: justifying
trust in IT solution, Proc. Safecomp Conference, Reliability Engineering and System Safety,
Elsevier, vol. 89/1, 2005, pp. 33–47. 8

8 Górski J.: Trust-IT – a framework for trust cases, Workshop on Assurance Cases for
Security – The Metrics Challenge, Proc. of DSN 2007, June 25-28, Edinburgh, UK, 2007,
pp. 204–209.

9 Górski J., Jarzêbowicz A., Miler J.,Validation Of Services Supporting Healthcare Standards
Conformance, Journal on Metrology and Measurement Systems, vol. XIX, No. 2, 2012,
pp. 269–284

10 Górski J., Trust Case – a case for trustworthiness of IT infrastructures, in Cyberspace
Security and Defense: Research Issues, NATO Science Series II: Mathematics, Physics and
Chemistry, Vol. 196, Springer-Verlag, 2005, pp. 125–142

3.9 Static Analysis of Real-Time Embedded Systems with REK
Arie Gurfinkel (CMU – Pittsburgh PA, US)

License Creative Commons BY 3.0 Unported license
© Arie Gurfinkel

Joint work of Gurfinkel, Arie; Chaki, Sagar; Strichman, Ofer; Kong, Soonho
Main reference S. Chaki, A. Gurfinkel, S. Kong, O. Strichman, “Compositional Sequentialization of Periodic

Programs,” in Proc. of the 14 Int’l Conf. on Verification, Model Checking, and Abstract
Interpretation (VMCAI’13), LNCS, Vol. 7737, pp. 536–554, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-35873-9_31

Real-Time Embedded Software is an important class of safety-critical software systems. It
plays a crucial role in controlling systems ranging from airplanes and cars, to infusion pumps
and microwaves. Verifying the correct operation of RTES is an important open problem.

In this presentation, I will describe the START (Static Analysis of Real-Time Embedded
Systems) project that I am leading together with Sagar Chaki at the Software Engineering
Institute at Carnegie Mellon University. The focus of START is verification of safety
properties (e.g., race conditions, mutual exclusion, and deadlocks) of periodic programs
scheduled with Rate Monotonic Scheduling (RMS) policy. Such programs are common in
automotive and avionics domains. I will describe our experience in building a Bounded
Model Checker, called Rek, for programs written for OSEK/VDX operating system, and
our experience in using Rek to verify properties of a robotics controller.

13051

http://www.nor-sta.eu/en
http://iag.pg.gda.pl/iag/?s=research&p=trust_cases
http://www.hon.ch/Global/copyright.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-35873-9_31
http://dx.doi.org/10.1007/978-3-642-35873-9_31
http://dx.doi.org/10.1007/978-3-642-35873-9_31
http://dx.doi.org/10.1007/978-3-642-35873-9_31

124 13051 – Software Certification: Methods and Tools

3.10 Certification for Medical Devices and Systems: An Overview and
Challenges

John Hatcliff (Kansas State University – Manhattan KS, US)

License Creative Commons BY 3.0 Unported license
© John Hatcliff

Joint work of Hatcliff, John; Knight, John; Weber, Jens; Heimdahl, Mats

Medical devices and systems have long been an example of a safety-critical domain with
many challenges related to risk assessment, regulatory policy, and certification. However, an
aging population, innovations in mobile computing devices, increased reliance on integrated
systems, and increased importance of storing and leveraging patient data are introducing a
variety of strains and pressures on existing certification approaches.

In this talk, we give a summary of important certification-related issues in the medical
device domain including the types of products certified in the domain, the most common
regularatory processes and agencies, development and verification tools used in the medical
device domain, and relevant standards for medical device certification. We conclude with
a discussion of important trends and technologies within the medical device space that
are giving rise to challenges that need the attention of researchers working in the areas of
certification and verification.

3.11 Requirements Specification and Supporting Artifacts for an Open
Source Patient-Controlled Analgesic Pump

John Hatcliff (Kansas State University – Manhattan KS, US)

License Creative Commons BY 3.0 Unported license
© John Hatcliff

Joint work of Hatcliff, John; Larson, Brian
URL http://info.santoslab.org/research/pca

The dynamic nature of the medical domain is driving a need for continuous innovation
and improvement in techniques for developing and assuring medical devices. Unfortunately,
research in academia and communication between academics, industrial engineers, and
regulatory authorities is hampered by the lack of realistic non-proprietary development
artifacts for medical devices.

In this talk, we give an overview of a detailed requirements document for a Patient-
Controlled Analgesic (PCA) pump developed under the US NSF’s Food and Drug Adminis-
tration (FDA) Scholar-in-Residence (SIR) program. This 60+ page document follows the
methodology outlined in the US Federal Aviation Administrations (FAA) Requirements
Engineering Management Handbook (REMH) and includes a domain overview, use cases,
statements of safety & security requirements, and formal top-level system architectural
description. Based on previous experience with release of a requirements document for a
cardiac pacemaker that spawned a number of research and pedagogical activities, we believe
that the described PCA requirements document can be an important research enabler within
the formal methods and software engineering communities.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://info.santoslab.org/research/pca

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 125

3.12 Concerning the implicit DO-178C assurance case
Michael Holloway (NASA Langley ASDC – Hampton, US)

License Creative Commons BY 3.0 Unported license
© Michael Holloway

Main reference C.M. Holloway, “Towards Understanding the DO-178C / ED-12C Assurance Case,” in Proc. of the
IET 7th Int’l Conf. on System Safety, October 2012, Edinburgh, Scotland.

URL http://hdl.handle.net/2060/20120016708

This informal discussion without visual aids describes ongoing work towards identifying and
expressing explicitly the arguments contained in, or implied by, DO-178C, which implicitly
justify the assumption that the document meets its stated purpose of “providing guidelines
for the production of software for airborne systems and equipment that performs its intended
function with a level of confidence in safety that complies with airworthiness requirements.”

3.13 Software verification in the medical domain
Jozef Hooman (Radboud University Nijmegen, NL)

License Creative Commons BY 3.0 Unported license
© Jozef Hooman

Joint work of Hooman, Jozef; Mooij, Arjan; Keshishzadeh, Sarmen; Albers, Rob

We present an overview of research activities to improve the verification and validation
of medical systems at Philips Healthcare. In particular, we focus on the interventional
X-ray systems of Philips. To reduce the test and integration phase of these systems and
obtain a more efficient development process, the aim is to detect faults earlier by applying
various modeling and analysis techniques. This includes executable models, domain specific
languages, and formal methods.

3.14 Bridging the modeling/verification gap
Jerôme Hugues (ISAE – Toulouse, FR)

License Creative Commons BY 3.0 Unported license
© Jerôme Hugues

Model Driven Engineering (MDE) provides an appealing framework for supporting engineering
activities, from early design phases to acceptance tests; going through refinement, architectural
and functional design down to code generation and V&V efforts. Yet, certification activities
may interfere with such process: traceability must be demonstrated, specific verification or
validation activities must be performed, some of which are project or domain specific.

In this talk, I present current discussions on the part of the AADL standardization
committee to enrich Architecture Description Language with a Constraint language. The
objective is to increase the coupling between modeling and verification. By making the
verification part of extended semantics rules of an ADL, we control the patterns used to
describe the system, ensuring designers respect process requirements, but also integrate V&V
as part of the modeling effort. Thus, it provides a lean approach to certification through
MDE.

13051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://hdl.handle.net/2060/20120016708
http://hdl.handle.net/2060/20120016708
http://hdl.handle.net/2060/20120016708
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

126 13051 – Software Certification: Methods and Tools

3.15 Opening up the Verification and Validation of Safety-Critical
Software

Hardi Hungar (German Aerospace Center – Braunschweig, DE)

License Creative Commons BY 3.0 Unported license
© Hardi Hungar

Joint work of Hungar, Hardi; Behrens, Marc
Main reference In: M. Huhn, S. Gerken and C. Rudolph (eds.), Proc. ZeMoSS 2013, to appear

Smooth cross-border rail traffic is of important interest to commercial realizations of ETCS
(European Train Control System). Starting from the hypothesis that the traditional way
of developing software for safety-critical systems might be an obstacle to standardizing rail
traffic, the ITEA 2 project openETCS has set out to pursue the idea of transferring an
open-source development style to this domain, taking the EVC (European Vital Computer,
core of the on-board unit) as a target.

The goal is to formalize the requirements in a functional model, derive, via design models,
an implementation, and demonstrate how the verification and validation activities necessary
for certifying a resulting product could be performed. All of this is to be done as an
open-source project, employing only open-source tools. One of the main motives behind the
approach is to use the potential of an open community to detect design and implementation
flaws much earlier than the resource-limited inspection in a traditional development setting.

This talk discusses the challenges this new approach faces from the legal requirement of
adhering to the standards, mainly the EN 50128 in this case, particularly with respect to
verification and validation. This comprises the interpretation and application of the standard
throughout all lifecycle phases for a open-source model-based development and qualification
issues for personnel and tools.

3.16 Using Code Analysis Tools for Software Safety Certification
Daniel Kaestner (AbsInt – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Daniel Kaestner

Joint work of Kaestner, Daniel; Ferdinand, Christian
Main reference D. Kästner, C. Ferdinand, “Efficient Verification of Non-Functional Safety Properties by Abstract

Interpretation: Timing, Stack Consumption, and Absence of Runtime Errors,” in Proc. of the 29th
Int’l System Safety Conference (ISSC’11), ISBN 9781618399922. Las Vegas, 2011.

In automotive, railway, avionics and healthcare industries more and more functionality is
implemented by embedded software. A failure of safety-critical software may cause high costs
or even endanger human beings. Also for applications which are not highly safety-critical, a
software failure may necessitate expensive updates. Safety-critical software has to be certified
according to the pertinent safety standard to get approved for release.

Contemporary safety standards – including DO-178B, DO-178C, IEC-61508, ISO-26262,
and EN-50128 – require the identification of potential functional and non-functional hazards
and to demonstrate that the software does not violate the relevant safety goals. To ensure
functional program properties, automatic or model-based testing and formal techniques like
model checking are becoming more widely used.

For non-functional properties identifying a safe end-of-test criterion is a hard problem
since failures usually occur in corner cases and full test coverage cannot be achieved. For some
non-functional program properties this problem is solved by abstract interpretation-based

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
In: M. Huhn, S. Gerken and C. Rudolph (eds.), Proc. ZeMoSS 2013, to appear
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
D. K�stner, C. Ferdinand, ``Efficient Verification of Non-Functional Safety Properties by Abstract Interpretation: Timing, Stack Consumption, and Absence of Runtime Errors,'' in Proc. of the 29th Int'l System Safety Conference (ISSC'11), ISBN 9781618399922. Las Vegas, 2011.
D. K�stner, C. Ferdinand, ``Efficient Verification of Non-Functional Safety Properties by Abstract Interpretation: Timing, Stack Consumption, and Absence of Runtime Errors,'' in Proc. of the 29th Int'l System Safety Conference (ISSC'11), ISBN 9781618399922. Las Vegas, 2011.
D. K�stner, C. Ferdinand, ``Efficient Verification of Non-Functional Safety Properties by Abstract Interpretation: Timing, Stack Consumption, and Absence of Runtime Errors,'' in Proc. of the 29th Int'l System Safety Conference (ISSC'11), ISBN 9781618399922. Las Vegas, 2011.

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 127

static analysis techniques which provide full control and data coverage and yield provably
correct results. Like model checking and theorem proving, abstract interpretation belongs to
the formal software verification methods.

This talk focuses on static analyses of worst-case execution time, stack consumption, and
runtime errors, which are increasingly adopted by industry in the validation and certification
process for safety-critical software. First we will give an overview of the most important
safety standards with a focus on the requirements for non-functional software properties. We
then explain the methodology of abstract interpretation based analysis tools and discuss the
role of formal verification methods in current safety standards. Using tools for certification
requires an appropriate tool qualification. We will address each of these topics, report on
industrial experience, and address open issues.

3.17 Towards an Effective Safety Demonstration Framework
Peter Karpati (Institute for Energy Technology – Halden, NO)

License Creative Commons BY 3.0 Unported license
© Peter Karpati

This talk with introduce our project which aims at assembling evolutionarily adaptable
guidelines for an effective safety demonstration framework based on exploring state of the
art and state of practice in the field.

3.18 Software Certification: Where is Confidence Won and Lost?
Tim Kelly (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Tim Kelly

Given that we cannot prove the safety of software (in a system context) we are forced to
wrestle with the issue of confidence in software certification. Some draw confidence from
compliance with software assurance standards and believe this is sufficient, yet we don’t have
consensus in these standards. Some establish confidence through the process of constructing
and presenting a software assurance case, but ignore the experience and “body of knowledge”
provided by standards. Some (sensibly) use a combination of these approaches. Using our
framework of 4+1 principles of software safety, this talk will discuss where and how in current
safety-critical software development and assessment approaches confidence is typically won
and lost. Based on this assessment, we describe how the activity and structure of an assurance
case should best be targeted to explicitly address issues of confidence.

13051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

128 13051 – Software Certification: Methods and Tools

3.19 User Assembled Medical System of Systems
Andrew King (University of Pennsylvania, US)

License Creative Commons BY 3.0 Unported license
© Andrew King

Joint work of King, Andrew; Lee, Insup; John, Hatcliff
Main reference J. Hatcliff, A. King, I. Lee, A. Macdonald, A. Fernando, M. Robkin, E. Vasserman, S. Weininger,

J.M. Goldman, “Rationale and Architecture Principles for Medical Application Platforms,” in Proc.
of the 2012 IEEE/ACM Third Int’l Conf. on Cyber-Physical Systems (ICCPS’12), pp. 3–12,
IEEE/ACM, 2012.

URL http://dx.doi.org/10.1109/ICCPS.2012.9

In safety critical domains, there is a typically a prime contractor that is responsible for
integration and system-level verification and validation. In user assembled systems (such
as plug and play medical systems), system modules are sold to users directly. These non-
technical users then assemble these modules into (possible safety critical) systems of systems
towards some purpose. We describe plug and play medical systems and associated certification
challenges.

3.20 Three Challenges
John C. Knight (University of Virginia, US)

License Creative Commons BY 3.0 Unported license
© John C. Knight

In this talk, I will briefly summarize: (a) the concerns I have about the dependability of
medical systems and why I think medical system dependability is more difficult than other
domains, and (b) the concerns I have about standards together with some ideas about a
“standard for standards.”

3.21 Certification of Medical Device Composition
Brian Larson (Multitude Corp., US)

License Creative Commons BY 3.0 Unported license
© Brian Larson

The Software Certification Consortium seeks to host “mock” certification evaluations of
safety-critical systems dependent upon software. My presentation considers what artifacts
should be part of submissions for mock certification, particularly evidence from analysis of
architecture models of errors and behavior. Only formal proofs of safety and effectiveness of
apps and medical devices they control will likely obtain regulatory approval.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICCPS.2012.9
http://dx.doi.org/10.1109/ICCPS.2012.9
http://dx.doi.org/10.1109/ICCPS.2012.9
http://dx.doi.org/10.1109/ICCPS.2012.9
http://dx.doi.org/10.1109/ICCPS.2012.9
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 129

3.22 Bayesian Probabilistic Approaches to Confidence are Impossible:
The Need for a Baconian Approach (pace Jonathan Cohen)

Tom S. Maibaum (McMaster University – Hamilton, CA)

License Creative Commons BY 3.0 Unported license
© Tom S. Maibaum

Many have recognized the need for some notion of confidence in relation to safety and
assurance cases. After all, a regulator has to have enough confidence in the case to prover a
certification. After all, other domains also use such notions of confidence. These include the
legal domain, where (at least in English law) judgements have to be made “on the balance of
probabilities” (civil cases) and “beyond reasonable doubt” (criminal cases) are standards
of confidence required of judges and juries about the guilt of the accused. Similarly, there
is an implicit notion of confidence amongst scientists about the theories they use in their
subject. Corroborative experiments raise this level of confidence, whilst negative result
may lower the level of confidence (but not necessarily to 0, pace Popper). A number of
philosophers/logicians/scientists have attempted to characterize this notion of confidence,
including Bacon, and more recently, Carnap, Keynes, etc. More recently, Jonathan Cohen, in
The Probable and the Provable, has demonstrated that the concept of probability underlying
the concept of confidence, which he claims is Baconian, simply cannot be reduced to
conventional Pascalian, frequency of occurrence, notions of probability. The argumentation
basis for safety/assurance cases uses confidence as a tenet for the approach. Toulmin’s
argument schemes present a form of inductive/scientific reasoning with explicit reference to
confidence to justify the applications of a scheme. Interestingly enough, a scheme reduces to
a deductive rule of inference when there is no uncertainty about its application.

3.23 Software Certification: The Return on Investment?
John McDermid (University of York, GB)

License Creative Commons BY 3.0 Unported license
© John McDermid

Certification costs money; it also has benefits, perhaps most importantly reduction in risk to
system users and third parties, to which we give a value:

The costs will be in manpower and other resources for testing, code inspections, formal
verification, etc.;
The benefit will be in terms of security breaches avoided, hazardous failures avoided, etc.;
The value will be in terms of the assets protected (e.g. eMs), or lives saved (perhaps
monetised by multiplying by the VPF (value of preventing a fatality)), etc.

At its simplest, for there to be a positive return on investment (RoI) the value has to outweigh
the cost. In practice, there are difficulties in determining RoI, for example mapping benefit
to value due to uncertainties about how the software will be used. These difficulties are
exacerbated prior to undertaking a software certification activity, e.g.:

How do we predict costs?
How much will it cost to apply the technique to the software?
How much will it cost to rectify any flaws identified?

How do we predict benefit before carrying out the activity, e.g. by simulation?
What flaws will we find?

13051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

130 13051 – Software Certification: Methods and Tools

What flaws will we find that we would not find by other means?
How do we predict value, as the benefits are really contingent?

Which assets will now be protected, should the attack we know could have been
successful, but won’t be now, actually occur? How likely is the attack?
How many lives will be saved, should the operational scenario we know could have
been hazardous, but won’t be now, actually arise? How likely is that scenario?

Whilst expressed in theoretical, or economic, terms there is a real practical issue here;
when running a project, how much effort should be put into certification, and how do we
know when to stop? (It is always possible to do more work and spend more money.) The
talk will identify some of the inherent uncertainties in managing software certification and
give some sanitised metrics on certification costs (mainly from the safety domain) which
illustrate how much RoI can vary. It will also suggest some criteria by which we might judge
any scheme to manage software certification so as to deliver positive RoI, and use this to
stimulate a debate on how we evaluate the benefit of individual methods used in support of
software certification.

3.24 Refinement may help for Certification
Dominique Mery (LORIA – Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Dominique Mery

Joint work of Mery, Dominique; Singh, Neeraj Kumar

Formal methods have emerged as an alternative approach to ensuring the quality and
correctness of the high confidence critical systems, overcoming limitations of the traditional
validation techniques such as simulation and testing. Certification aims at assessing or
demonstrating that a system complies with a collection of rules, regulations and standards
defining the minimum requirements a system must have to be deployed, operated and
dismissed in a safe way. It appears that formal methods may help in the process of
certification... but with toil and with tools. We describe a methodology for developing
critical systems from requirement analysis to automatic code generation with standard safety
assessment approach. This methodology combines the refinement approach with various tools
including verification tool, model checker tool, real-time animator and finally, produces the
source code into languages using automatic code generation tools. This approach is intended
to contribute to further the use of formal techniques for developing critical systems with
high integrity and to verify complex properties, which help to discover potential problems.
Assessment of the proposed methodology is given through developing a standard case study:
the cardiac pacemaker. The pacemaker is a proposed case study of the grand challenge
and we analyse the role of the refinement in the methodology, which is to be improved and
experimented on other case studies. Finally, the refinement relationship provides a way to
play with abstractions of software system under design. The general methodology promotes
the use of refinement and the incremental development of models so called abstractions. As
in classical engineering approaches, abstractions play a central role and we have provided
additional tools for easing the communication between domain experts and method experts.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 131

References
1 D. Méry, N. K. Singh. Real-Time Animation for Formal Specification. In: Complex Systems

Design & Management 2010, M. Aiguier, F. Bretaudeau, D. Krob (réd.), Springer, pp. 49–
60. Paris, France, octobre 2010.

2 D. Méry, N. K. Singh. Critical systems development methodology using formal techniques.
In: 3rd International Symposium on Information and Communication Technology – SoICT
2012, ACM, pp. 3–12. Ha Long, Viet Nam, août 2012.

3 mery:inria-00638473 D. Méry, N. K. Singh. Formalisation of the Heart based on Conduction
of Electrical Impulses and Cellular-Automata. In: International Symposium on Foundations
of Health Information Engineering and Systems (FHIES, 2011), Z. Liu, A. Wassyng (réd.),
UMIST Macau. Johannesburg, South Africa, août 2011. conference 2011.

4 D. Méry, N. K. Singh. Technical Report on Formal Development of Two-Electrode Cardiac
Pacing System. Rapport, février 2010.

5 D. Méry, N. K. Singh. Technical Report on Formalisation of the Heart using Analysis of
Conduction Time and Velocity of the Electrocardiography and Cellular-Automata. Rapport,
août 2011.

6 D. Méry, N. K. Singh. Technical Report on Interpretation of the Electrocardiogram (ECG)
Signal using Formal Methods. Rapport, 2011.

7 D. Méry, N. Singh. EB2ALL- The Event-B to C, C++, Java and C# Code Generator. 2011,
http://eb2all.loria.fr.

3.25 Certification Challenges for Software With Uncertainty
Richard F. Paige (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Richard F. Paige

Joint work of Paige, Richard F.; Burton, Frank; Rose, Louis; Kolovos, Dimitrios; Poulding, Simon; Smith, Simon
Main reference F.R. Burton, R.F. Paige, L.M. Rose, D.S. Kolovos, S. Poulding, S. Smith, “Solving Acquisition

Problems Using Model-Driven Engineering,” in Proc. of the 8th European Conf. on Modelling
Foundations and Applications (ECMFA’12), LNCS, Vol. 7349, pp. 428–443, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-31491-9_32

This talk presented several different types of software applications – all considered safety-
critical or safety-related – that exhibited uncertainty in some sense. By uncertainty, we meant
“openness” or “unpredictability of behaviour”, wherein some behaviours were emergent at
run-time. One application, based on [?], made use of evolutionary algorithms to calculate
optimal solutions to decision making problems in the enterprise (e.g., acquisition of new
equipment, new training of personnel, development of new policies). The second application
exhibited two types of uncertainty: in terms of data sources (which could change at run-time,
e.g., switching from a batch or cached data source where data quality was guaranteed to a
real-time error-high data source) and in terms of user-programmability (where users could
encode new behaviours in the system by developing new execution patterns). The two
applications were illustrated and a set of certification challenges were identified. These
challenges included gathering of evidence, auditing evidence, assessing the quality of evidence,
and process issues (e.g., ensuring that sufficient assurance was obtained for specific types of
changes).

13051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-31491-9_32
http://dx.doi.org/10.1007/978-3-642-31491-9_32
http://dx.doi.org/10.1007/978-3-642-31491-9_32
http://dx.doi.org/10.1007/978-3-642-31491-9_32

132 13051 – Software Certification: Methods and Tools

3.26 Models and Certification
Andras Pataricza (Budapest Univ. of Technology & Economics, HU)

License Creative Commons BY 3.0 Unported license
© Andras Pataricza

Model Driven Engineering (MDE) becomes the main trend in critical embedded systems
design. The presentation focuses on the fundamental question: How the different models
and artifacts can be reused for supporting the certification process? A novel solution for
traceability support is presented. The use of ontologies for the formalization of text documents
like standards is proposed. Dependability analysis is addressed in the context of MDE. Finally,
an approach for the empirical validation of models and underlying assumptions is proposed.

3.27 From Tool Qualification to Tool Chain Design
Jan Philipps (Validas AG – München, DE)

License Creative Commons BY 3.0 Unported license
© Jan Philipps

As engineering disciplines become more mature, more emphasis is put not only on the way of
working, but also on the tools used. In safety standards, we can observe a similar development.
Earlier standards put only little emphasis on tool use, perhaps roughly demanding a separate
argument that each tool individually be “fit for use.” Recent standards, such as the ISO
26262, take a more holistic viewpoint. Not only tools themselves, but also their use in the
development process of the project must be analyzed, risks identified and only if necessary,
further tool qualification measures employed.

Qualification measures typically are a combination of extensive tool testing and an analysis
of the development process used for the tools. These approaches tend to be rather costly.
Some tool vendors give support in the form of so-called qualification kits, which, for instance,
include ready-to-run test cases. In practice, however, development tool chains consist not
only of commercial tools, but also of open source or bespoke tools. The cost of qualifying all
these tools would be prohibitive.

However, the holistic viewpoint taken in the ISO 26262 opens up new possibilities in
building trust for tools and tool chains. Instead of just looking at isolated tools, it is
possible to reduce qualification demand through tool diversity or through error avoidance
and detection mechanisms within the tool chain. This is not unlike systems design, where
safety is achieved by a combination of architectural choices and component reliability.

The talk presents this shift from tool qualification to tool chain design and gives some
examples from an industrial project.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 133

3.28 Cloud Security: Information Segregation and Data Privacy
Julia Rubin (IBM – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Julia Rubin

As cloud computing gains popularity both in private and enterprise sectors, it is only
reasonable that customers expect guarantees for secure care of their data. In this talk, we
focus on certification for cloud security, specifically information segregation and data privacy.
We motivate the need for such certification and discuss its main differential factors from the
more established certification procedures, e.g., those in the domains of safety-critical systems
and, recently targeted, sensitive data protection in the healthcare and financial industries.

One of the major challenges for security certification is to verify not only that the system
does what it is expected to do, but also that is does not do what it is not expected to.
To address this challenge, we propose a specification-based runtime verification approach
which relies on model checking, model-based testing, monitoring and run-time data analysis
techniques. We believe that this approach is significantly more powerful than conventional
testing and more practical than traditional formal verification for verifying security properties
of a system.

3.29 Logic and Epistemology in Assurance Cases
John Rushby (SRI – Menlo Park CA, US)

License Creative Commons BY 3.0 Unported license
© John Rushby

Any assurance case comes down to two kinds of questions: how complete and accurate is my
knowledge about aspects of the system (e.g., its requirements, environment, implementation,
hazards) and how accurate is my reasoning about the design of the system, given my
knowledge.

The first of these is a form of epistemology and requires human experience and insight,
but the second can, in principle, be reduced to logic and then checked and automated using
the methods of formal verification. (There are “inner” epistemic questions here, concerning
correctness of the verifier, but we’ll postpone those for the time being.)

The distinction between concerns that are epistemic or logical in origin is exactly that
underlying the traditional partitioning of assurance into Validation and Verification (V&V).
To some extent, it is possible to trade the two kinds of concerns (e.g., strong fault models
allow simple fault-tolerant implementations: this reduces logic doubt about correctness of
the implementation but increases epistemic doubt about verity of the model).

We propose that reducing epistemic doubt should be the main focus in assurance cases,
and discuss ways in which this might be achieved.

13051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

134 13051 – Software Certification: Methods and Tools

3.30 Model-Based Development and Functional Safety
Bernhard Schaetz (fortiss GmbH – München, DE)

License Creative Commons BY 3.0 Unported license
© Bernhard Schaetz

Model-based development has demonstrated its benefits in the automotive industry in
improving development time and costs. Being a de-facto standard in automotive software
development, it has found explicit acknowledgement as relevant technique by ISO 26262.

Its main advantages lie in front-loading of quality assurance techniques and automation of
implementation steps. We show how this can also contribute to functional safety by explicating
assumptions about platform and environment, by enabling high degree of precision as well
as a scalable degree of detail, by supporting in-depth understanding of assumption, by
supporting correctness of design and implementation, and by enabling automation of analysis
and synthesis.

3.31 Software Cerrtification Challenges in the Nuclear Power Domain
Alan Wassyng (McMaster University – Hamilton, CA)

License Creative Commons BY 3.0 Unported license
© Alan Wassyng

The current state of (software) certification in the nuclear power industry, its major challenges
and a brief comparison with other domains in which systems are safety critical. The primary
examples are drawn from a Canadian perspective.

3.32 Certification of Medical Information Systems – A paradigm shift:
from devices to systems, from functions to data

Jens H. Weber (University of Victoria, CA)

License Creative Commons BY 3.0 Unported license
© Jens H. Weber

Medical information systems (MIS) play a pivotal role in modern health care systems. They
perform increasingly critical functions with respect to human safety, privacy and security.
A significant number of adverse events has been associated with failures in MIS and this
has resulted in increasing calls for their certification and regulation. Unfortunately, there is
much confusion and little agreement on how to certify these systems. Existing paradigms as
for example used for certifying traditional forms of medical devices do not readily apply. My
presentation contrasts unique aspects of MIS from those found in other classes of critical
computer-based systems. I point out why current certification techniques are insufficient
with respect to achieving the overarching certification objectives. I then describe a paradigm
shift that is needed in order to arrive a more effective certification program for MIS. Finally,
I indicate research challenges and opportunities in this area.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 135

3.33 Software certification in aeronautics
Virginie Wiels (ONERA – Toulouse, FR)

License Creative Commons BY 3.0 Unported license
© Virginie Wiels

This talk presents an overview of avionics software certification, including the process, the
certification authorities, the different criticality levels. It describes the main principles of
DO-178, which is the certification standard in this domain. It briefly mention the recent
update of DO-178 and in particular the Formal Methods Technical Supplement. It also lists
future challenges for software certification.

References
1 Guidance for Using Formal Methods in a Certification Context. Duncan Brown, Hervé

Delseny, Kelly Hayhurst, Virginie Wiels. ERTSS 2010 May 2010, Toulouse, France

3.34 Some experience and remarks on security certification at industry
David von Oheimb (Siemens AG – München, DE)

License Creative Commons BY 3.0 Unported license
© David von Oheimb

In my overview talk I share my experience with IT security certification at Siemens Corporate
Technology. This type of activity is relatively rare in industry, for a number of reasons backed
up by several examples. I briefly introduce the Common Criteria (CC), list several types of
involvement of our group in their use, at examples like digital tachographs, an airplane SW
distribution system, smart card processors, and smart metering gateways.

4 Overview of Working Groups

4.1 Challenges: Compositional Certification
In virtually all domains of modern computing systems, software size and system complexity
are growing rapidly. Increased scale and complexity are straining current methods for system
development, and in particular, methods for ensuring safety and for certification. A general
engineering principle for managing complexity is to (a) decompose a system down into
multiple smaller components that can be worked with individually through multiple phases of
development, and (b) integrate components in later stages of development to form a complete
system. Decomposing systems into components can also lead to cost reductions and decreased
development time when components are reused across multiple systems. Unfortunately, the
effectiveness of these strategies is limited in the context of certified systems, because almost
all certification regimes for safety-critical domains certify complete systems – not system
components. This state of affairs does not result from a lack of insight or interest on the
part of industry or certification authorities. Rather, it is driven by the fact safety issues
often arise due to incorrect context assumptions or unanticipated interactions between
components, between software and associated hardware, and between a functioning system
and its environment. Therefore, reasoning about safety, using current practices, is most
easily carried when one has as much context information as possible. Of course, context

13051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

136 13051 – Software Certification: Methods and Tools

information is maximized when working with all system components in an integrated state,
i.e., when working with the system as it will actually be deployed.

A seminar working group considered the issues related to component-wise development
in the context of certified systems. In particular, the group was interested in the issue of
compositional certification: a process by which individual components could be certified so
that when components where assembled into complete systems, certification activities and
arguments would not require a full assessment of all components implementations but instead
could rely, to a large extent, the certification outcomes of the individual components. Such a
process would allow both component implementations and their certification artifacts/results
to be reused across different system implementations.

4.1.1 Current practices and trends motivating the need for compositional
approaches to certification

In addition to the general challenge of dealing with systems of increasing size and complexity,
the working group noted several important trends in system development that are motivating
the need for compositional approaches to certification.

The notion of an integrated “system of systems” (SoS) is a category of systems that
are increasingly prevalent and particularly challenging to certify. While definitions vary,
a SoS is generally understood to be a collection of systems that can each function as a
stand-alone system in some capacity but are integrated typically by some network-centric
architecture to achieve new mission capabilities not obtainable from the individual systems.
Small to mid-scale examples include modern automotive and avionics systems, where many
microcontrollers, sensors, and actuators interconnect via a communications infrastructure
that allows information from each set of sensors to calculate actions of actuators across the
entire system. In larger examples, military command and industrial control systems are
increasingly moving from stand-alone, monolithic designs to integrated platforms.

The concept of software product line engineering has proven to be very effective in a
number of large organizations. Product line engineering is applied when one has a family
of similar systems. An effort is made to (a) identify functionality that is common across
multiple systems within the family, (b) design and implement components that provide that
functionality, and (c) systematically design systems so that common components can be
reused across multiple systems within the family. The end result is that costs are saved
and development time is decreased by reusing components across multiple systems. While
the product line concept is most often applied within a single organization, component
reuse across organizations is facilitated when component interfaces are clearly defined or
standardized and when a commodity market develops for component implementations.

Architecting computational platforms is becoming a common approach for achieving reuse.
In this approach, a run-time environment, common services, and frequently used application
components are shared between many stakeholders. To develop an application, one need
not develop system functionality from the ground up; instead, one focuses on developing
application logic using the shared services and application building blocks to produce an
application that executes in the provided run-time environment. Smart phone platforms
such as the iPhone and Android one of the most prominent examples in the consumer space.
A platform approach can also encourage innovation since, by removing the need to build
many parts of the system, it allows more people with less capital to enter the market and
contribute ideas.

While integrated systems in general are not common in the medical device space as they
are in e.g., avionics, automotive, etc., several talks in this seminar have presented research

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 137

results related to the concept of a medical application platform (MAP) [4]. A MAP is a
safety- and security- critical real-time computing platform for (a) integrating heterogeneous
devices, medical IT systems, and information displays via a communication infrastructure
and (b) hosting application programs (i.e., apps) that provide medical utility via the ability
to both acquire information from and update/control integrated devices, IT systems, and
displays.

In summary, the compositional and/or component-wise development present in all of
these types of systems mentioned above cannot currently be adequately aligned with existing
certification regimes due to their lack of support for compositional certification arguments.

4.1.2 What would we like to be able to do that we can’t do now?

The group identified several specific capabilities, technologies, and products that it believed
would be important for moving toward more compositional approaches to building safety-
and security-critical systems.

(pre)-Certifiable high-assurance platforms that organizations can purchase and re-use.
Better technologies (or more widely applied technologies) for ensuring partitioning in
terms of space and time. This helps ensure that composition will not negatively impact
safety.
Approaches for making compositional safety arguments
Formal capture of functional and non-functional properties to enable mechanical reasoning
(e.g., checking interface compatibility, checking interface compliance) either a priori or at
run-time/composition time.

4.1.3 What are the barriers (technological, standards, regulatory policy, political,
social) that are hindering an advance toward a solution?

Regarding technology barriers, there is a need for better methods for dealing with emergent
behaviors – behaviors that are not present or at least cannot be understood well in individual
components but only arise when components are integrated. Specifically, better techniques
are needed for:

a priori recognition (or the possibility of) hazardous emergent behaviors – in essence, there
is a need to develop compositional approaches for hazard analysis and risk assessment,
engineering principles for minimizing unanticipated interactions and emergent behaviors,
better and more systematic post-deployment means of detecting harmful emergent beha-
viors (you don’t know what you don’t know, so at least try to check after the system is
deployed if something is going wrong).

Proposition compositional development relies on well-defined and precisely specified inter-
faces. There is need for better methods of (a) capturing interface properties that specify
non-functional “contracts” including quality of service (QoS) and real-time properties, (b)
capturing effects that a component can have with the environment (to detect possible inter-
actions through the environment). As an example of the later property, magnetic resonance
imaging (MRI) machines may impact the environment by causing interference with wireless
communication of other medical devices in close proximity. Better technology is also needed
for formally capturing modal/state behavior and security policies of components. In the
vision for medical application platforms introduced above, system composition/integration in
a health-care delivery organization – after system platforms and associated apps and devices
are certified and deployed. Therefore, there is a need for technology that would allow the

13051

138 13051 – Software Certification: Methods and Tools

run-time system of the medical platform itself to dynamically moderate composition so as to
only enable those compositions that will produce a safe system.

Regarding business barriers, it was noted that some companies prefer proprietary systems
so that they can lock small manufactures out of the market. Thus, while society as a
whole would benefit from more open, component-based approaches, many companies are not
interested in defining the interfacing standards necessary for achieving this vision. Moreover,
systems composed from heterogeneous components (components from different manufacturers)
often lead to questions about liability, i.e., which manufacturer is liable when a system fails.

Regarding regulatory barriers, allowance for compositional approaches in existing certi-
fication and regulatory guidelines is minimal. In the medical space for example, there are
currently no guidelines for how systems following the notion of “medical application platform”
should be regulated. To some degree this is justified because the community has not yet
arrived at a convincing approach for demonstrating safety in the compositional setting. In
the medical space, interoperability and compositional approaches are also hampered by the
lack of widely implemented interoperability standards. In avionics, Integrated Modular
Avionics (IMA) [2] provides some notion of reuse, but only supports static configuration;
that is, changing configurations requires new certification. Seminar attendees shared the
perspective that some in the broader community believe that IMA will reduce costs, but
others say that the use of IMA increases the difficult of making safety arguments – to the
extent that the cost reductions achieved are not as significant as they are “advertised” to be.

4.1.4 What evidence is there that success is possible?

Participants shared several notions of reuse or compositionality in certified systems.
In the security domain, one of the original motivations for the Multiple Independent
Levels of Security (MILS) architecture [1] was to promote a commodity market of reusable
components for security systems to be certified according to various protection profiles
within the Common Criteria [3].
In the avionics domain, guidance for Integrated Modular Avionics (DO-297) describes how
a particular architecture supports flexibility, modularity, reusability and interoperability.
ISO 26262, which addresses functional safety for road vehicles, includes the notion of
“safety element out of context” (SEooC) which allows the statement of assumptions and
guarantees for a particular element (informally, a sub-system) whose development is being
carried out by, e.g., a sub-contractor.
The FAA Advisory Circular on Reusable Software Components (AC 20-148) provides a
means for reusable software component (RSC) developers, integrators, and applicants
to gain: FAA “acceptance” of a software component that may be only a part of an
airborne system’s software applications and intended functions, and credit for the reuse
of a software component in follow-on systems and certification projects, including “full
credit” or “partial credit” for compliance to the objectives of RTCA/DO-178B, Software
Considerations in Airborne Systems and Equipment Certification.
UK Defense Standard 23-09, standardizes interfaces within the Generic Vehicle Architec-
ture, an open source architecture specification with well-defined interfaces that aims to
encourage reuse in military ground vehicles.
The cross-domain functional safety standard IEC 61508, allows the notion of a “pre-
certified” component that can be integrated to a 61508-certified system while reusing
some of the certification effort. For example, a Green Hills produces a a pre-certified
IEC 61508 Safety Integrity Level 3 real-time operating system kernel – the Platform for
Industrial Safety (PIS). IEC 61508 is an international standard for the functional safety

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 139

of electrical/electronic, programmable electronic systems (PES) and is well established
in the industrial process control and automation industry. Because IEC 61508 serves as
the meta-standard for a range of industries and published standards, the Platform for
Industrial Safety is directly applicable to railway (CENELEC EN 50128), medical (IEC
60601), nuclear (IEC 61513), process control (IEC 61511), and automotive (ISO 26262).
Such pre-certified components are documented in 61508 by a “Safety Manual”.

These existing approaches could be considered to be precursors to an eventual more
robust and rigorous approach to compositional certification. Techniques such as self-verifying
software, runtime verification, proof-carrying code, model composition focused on system
verification, modular assurance cases [5] may be key enabling technologies.

References
1 C. Boettcher, R. DeLong, J. Rushby, W. Sifre. The MILS Component Integration Approach

to Secure Information Sharing. Presented at the 27th IEEE/AIAA Digital Avionics Systems
Conference (DASC), St. Paul MN, October 2008.

2 P. Conmy, M. Nicholson, J. McDermid. Safety assurance contracts for integrated modu-
lar avionics. Proceedings of the 8th Australian workshop on Safety critical systems and
software, Volume 33, pp. 69–78, 2003.

3 R. DeLong, J. Rushby. A common criteria authoring environment supporting composition.
Proceedings of the 8th International Common Criteria Conference, 2007.

4 J. Hatcliff, A. King, I. Lee, A. Macdonald, A. Fernando, M. Robkin, E. Vasserman, S. Wein-
inger, J. Goldman. Rationale and Architecture Principles for Medical Application Plat-
forms, Proceedings of the 2012 International Conference on Cyber-Physical Systems, pp. 3–
12, April, 2012.

5 T. Kelly, S. Bates. The Costs, Benefits, and Risks Associated With Pattern-Based and Mod-
ular Safety Case Development. Proceedings of the UK MoD Equipment Safety Assurance
Symposium 2005, October 2005.

4.2 Challenges: Education and Challenge Problems
The seminar included significant discussions on education related to certification, and in
particular, on the use of challenge problems and realistic case studies in education.

In prepared remarks given at the Information Technology and Innovation Foundation,
April 12, 2012, Washington, DC, Thomas Kalil listed several properties/goals of Grand
Challenges: (1) they can potentially have a major impact in the domain, (2) they should be
ambitious but achievable, (3) they should be compelling and motivating, (4) they should be
focused – must know when they have been achieved, and (5) they should drive innovation
and advance technology. In addition, we note that challenge problems should be “research
intensive”. That is, if you look at the definition of a grand challenge it should be obvious
that the emphasis is on the research involved in the challenge.

The community associated with this Dagstuhl Seminar has created several challenge
problems in the medical domain (e.g., the Pacemaker, and Patient-Controlled Analgesic Pump
described in talk abstracts appearing earlier in this report). For example, Boston Scientific
(through Brian Larson) released into the public domain a sanitized requirements document for
a 10 year old pacemaker. Brian also worked with an Electrical and Computing Engineering
Capstone class at University of Minnesota to design a hardware reference platform. Mark
Lawford manufactured and sold 50 modded units. The specific challenge was to use the
natural language requirements document as the basis for a formal approach to building a

13051

140 13051 – Software Certification: Methods and Tools

pacemaker Currently more than ten different prominent institutions tackling the challenge in
coursework. Over twenty research papers have been published that use pacemaker artifacts.
A Dagstuhl Seminar on the Pacemaker Challenge has been approved for Feb 2–7, 2014.

Assessing the pacemaker challenge against Kalil’s criteria for research challenges, it has
all the attributes of a Grand Challenge but one: it is not focused enough. There was a lack
of specificity regarding the research objectives and expected artifacts to be produced. The
lack of focus has led to the effort being less of a driver for true innovations in verification
techniques. Teams tended to just take small bites or slices of the problem and address issues
that existing tools were already able to handle well. We must make sure not to repeat that
mistake in future challenges. Another issues is that the challenge does not run itself – there
are real resourcing issues. Experts really need to be available to provide background domain
knowledge, occasional support for the hardware, and evaluation of proposed solutions.

However, as a driver for innovative pedagogy, the Pacemaker Challenge has been unex-
pectedly successful. For example, the capstone undergraduate class at McMaster (run by
Mark Lawford), the third year class on software development for ECE and Mechatronics
Engineers (Alan Wassyng) at McMaster, courses at the University of Pennsylvania, etc. all
use the Pacemaker materials. In addition, the SCORE student competition activity at the
International Conference in Software Engineering in 2009, the Pacemaker artifacts were used
by four 4 groups, one of which won the prize for best use of formal methods.

There are major components of these grand challenges that are reflective of state of the
art and do not require the final research breakthrough that is being sought in the Grand
Challenge. They typically involve hot topics in their specific domains. Tremendous effort is
being expended in tackling these problems, and we can borrow from that effort to reinforce
our education components in these domains. We think we can bridge the gap between state
of the art/practice and general practice by disseminating these problems with guidance
material.

The audiences who might benefit from an increased emphasis on educational material
associated with challenges like Pacemaker are quite diverse: (a) students in safety/security-
critical systems, (b) industry engineers who we want to orient to “new/improved” techniques
that we are proposing regulatory / certification agencies, and certification community members
working on research topics to advance the state of the art in certification / regulatory science.

If one focuses on the pedagogical/education space with challenges problems, there slightly
different goals to consider. The problem should be complex enough to require sound techniques
for their solution, when supporting projects the problem should be complex enough to need
groups rather than individuals, to add realism it is ideal to have both hardware and software
components, the challenge should be “solvable” in a span of time related to semester length
or academic year length (e.g., 8 months for a year-long capstone project, and can be scaled
down so that a subset that can be solved in four months), and finally, there needs to be
appropriate domain background material, requirements, etc.

What are some specific things that should be offered:
Requirements specification – should this be natural language, formal, or both?
Dependable hardware platform at reasonable cost
Hardware manual(s)
Clear goals
Guidance for development of solutions
Mechanisms for evaluating solutions
Domain specific background material
Certification related background material

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 141

Details on a slice through the system
Wiki with FAQ and discussion groups
Competitions

This type of challenge problem activity has several benefits to students. They get to
tackle a project that is representative of “real” projects, they (hopefully) get excellent support
material, they get guidance “best practices” and on how to “do it right” for a realistic problem,
and they are typically excited to have it appear on their resumes. Pre-packaged educational
material for challenge problems also has numerous benefits for instructors. The details of a
“case study” is given to them with all supporting material including availability of a hardware
platform. They get support through a Wiki. They get the benefit of cross-fertilization
of a common problem tackled in many countries When the supplied pedagogical material
includes evaluation criteria and guides, they instructors do not need to work so hard on this
themselves. Finally, as a challenge problem’s use increases, “frequently asked questions” and
Wiki contents accumulate which provides more resources for future issues.

4.3 Challenges: Security
IT security is of increasing importance in various areas as electronic commerce and governance,
any kind of access control systems, privacy of personal and in particular medical data, and
information segregation in the cloud. IT-security is a cross-cutting concern in most systems.
Moreover, with the tighter integration of formerly stand-alone systems to systems of systems
and the enhancement of functionality, functional safety of systems relies on IT security.
Incidents emphasizing the vulnerability of safety-critical systems by security attacks have
been reported e.g. from the transportation domain and medical systems.

Whereas safety considerations on software have a tradition since decades as they were
required with the first usage of programmed functionality in safety-critical systems, the need
for specific and systematic IT-security analysis and design methods has been recognized
later. Initially a lot of methods have been transferred from safety, in particular approaches to
assure functional correctness apply for both areas. However, the requirement to specifically
identify potential loopholes usable by malicious attackers is a distinctive feature of security
analysis. Standards, in particular the Common Criteria, are widely accepted nowadays. Due
to practitioners, the standards have proven beneficial, but but need to be applied in a sensible
way.

The working group stated the following general challenges of software certification for
IT security: How can manufacturers actually prove that their products are secure, rather
than just declaring it? How can the proliferation of profound new security techniques into
industrial practice be accelerated? Due to short life cycles of many applications and and
missing compositionality, security is approved only for a short period of time. Thus approaches
to continuous (re)certification are needed. Many standards can be improved in order to be
to more prescriptive, more up to date, and document best practices. Security and safety
concerns shall be unified to support correct-by-design, safe-by-design, and secure-by-design.

As a particular issue, that shall be addressed in further research, compositionality in
security analysis and design was identified: Obviously assembling secure components is not
sufficient to produce a secure system since security – as safety – is an emergent system
property. Layering in the architectural design and considering security a first class issue
may help, but will not solve all issues. Further classification is needed in order to identify
architectural patterns that support particular security properties.

13051

142 13051 – Software Certification: Methods and Tools

Awareness and education is still an issue, because even software developers who graduated
recently are not aware of security and do not know about methods to design and implement
secure software. Even in large IT projects an (independent) security expert in the design
team is often missing.

Last but not least the perception of IT security in the public audience will be a key factor
not only for future research activities on IT security, but even more for the success or failure
of several sectors within IT industries like social media or the cloud that rely on commonly
accepted security policies.

4.4 Challenges: Tool Qualification
Tool qualification is the process by which certification credit may be claimed for the use of a
software tool. The purpose of tool qualification is to provide sufficient confidence in the tool
functionality so that its output may be trusted. Tool qualification is, therefore, a significant
aspect of any certification effort. The tool qualification working group attempted to identify
initial needs and challenges related to use of software tools in certification efforts.

One way that we may obtain confidence in the output of a software tool is to provide
some independent verification of the tool output. This may be accomplish by a manual
review (if feasible) or by using an independent tool of equivalent functionality and comparing
the outputs. Qualification is required whenever a software tool is used to eliminate, reduce,
or automate a software life cycle process without the tool’s output being verified.

Many different types of tools may be used in a software development process that could
impact the correctness of the software. For example:

Requirements engineering tools for eliciting, capturing, and specifying requirements
Traceability tools for managing the design rationale and connections between software
life cycle data
Design tools for transforming requirements and constraints into design models
Transformation tools such as code generators and compilers
Test generation tools for producing test cases from requirements specifications
Verification tools for analyzing design models or code to determine compliance with
requirements
Tools for generating and checking software configuration data

However, tools may be broadly categorized for qualification purposes (as in DO-178B)
according to how they may impact software correctness:

Tools that could introduce a fault into the software (development or transformation tools)
Tools that could fail to detect an error already present in the software (verification tools)

Tools may be further categorized according to the criticality of the product software that
they are generating or verifying.

In general, the qualification requirements for a development or transformation tool are
much more stringent than for a verification tool. A reasonable approach in some cases is to
qualify an independent verification tool to check the output of an unqualified development
tool. For example, a complex tool may be needed to generate a schedule; however, tool for
checking the correctness of a given schedule is relatively simple.

4.4.1 Needs

The working group identified a number of needs in the area of tool qualification.

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 143

Software tools are used in development processes to automate life cycle activities that are
complex and error-prone if performed by humans. The use of such tools should, in principle,
be encouraged from a certification perspective to provide confidence in the correctness of the
software product. Therefore, we should avoid unnecessary barriers to tool qualification which
may inadvertently reduce the use of tools that would otherwise enhance software quality and
confidence.

Most software tools are not used in isolation, but are used as part of a complex tool
chain requiring significant integration effort. In general, these tools have been produced by
different organizations. We need to develop better and more reliable methods for integrating
tools from different vendors (including university tools, open source tools, and commercial
tools).

A given software tool may be used in different application domains having very different
requirements for both certification and tool qualification. Furthermore, the methods and
standards for tool development varies across domains. Consistent qualification requirements
across different domains would simplify the process.

4.4.2 Barriers

The working group discussed several barriers that may inhibit tool qualification today.
Complexity is a barrier to tool qualification that may manifest itself in several ways.

The input/output space of the tool may be complex, as is the case for compilers and code
generators. For other tools, such as model checkers, the results produced are difficult
verify. Another source of complexity may be the algorithm used by tools, as in the case of
transformation tools that rely on artificial intelligence techniques, evolutionary methods, or
non-deterministic algorithms.

The platform on which a tool executes may present barriers to qualification. For example,
the use of a virtual machine (VM) may introduce uncertainties in how a tool executes that
may be hidden from view, or may vary when a different VM is used. Reliance on COTS
libraries outside the scope of the software tool itself is another source of uncertainty if these
libraries are not completely identified and specified.

Many valuable and effective software tools are developed using less than rigorous tool
development processes. This is true for many tools developed in the university environment
where the research agenda is a higher priority that qualification requirements. This can be
an impediment the subsequent qualification of the tool for use in a certification process.

4.4.3 Roadmap

A number of steps were discussed that could be part of a roadmap for improving the tool
qualification process.

Improved methods for tool analysis could be developed. For example, tool chain integration
has been identified as a significant issue. Perhaps a HAZOP-type approach could be used to
assess the potential errors introduced in integration. Another approach would be to identify
common patterns of tool errors and way to control or avoid this errors.

In the area of tool construction, new methods for providing evidence of correct tool
operation could be developed. For example, a tool could provide evidence as part of its
installation or at runtime or correct operation. Another approach is to focus efforts on tool
architectures based on the idea of a complex (but unqualified) transformation that is checked
by a simpler (qualified) verification tool.

13051

144 13051 – Software Certification: Methods and Tools

Another new and promising approach to tool qualification is found in the use of formal
methods to verify software tools. The CompCert compiler project (http://compcert.inria.fr/)
is an example of this approach.

A final need is a thorough comparison of the qualification viewpoints and demands of
the different domains. This should include an assessment of the point of view of different
regulatory bodies.

Several useful references for qualification in the avionics and nuclear domains were
identified:

DO-330/ED-215: Benefits of the New Tool Qualification Document
http://www.adacore.com/knowledge/technical-papers/do-330-ed-215-benefits-of-the-new-
tool-qualification-document/
Licensing of safety critical software for nuclear reactors: Common position of seven
European nuclear regulators and authorised technical support organisations
http://www.hse.gov.uk/nuclear/software.pdf

4.5 Intellectual Basis for Certification & Confidence
The current intellectual basis for certification of software intensive systems and how regulators
gain confidence in the safety and reliability of systems in largely based upon the application
of process oriented standards. Currently there is growing consensus that the current status
quo has to change. A working group at the seminar considered the related questions (i)
what should form the intellectual basis of certification? And (ii) How do we gain sufficient
confidence in software intensive systems?

4.5.1 What is happening in today’s world and into the future that is driving the
need for change?

There is a lack of repeatability of certification results. Currently the outcome of a
certification is overly dependent upon the evaluator(s), or, in some cases similar cases
before the same evaluator results in different outcomes.
Regulators and developers do not know how to evaluate different types of evidence and
understand how they may be combined to achieve a desired level of confidence in the
system. Further they do not know what evidence to collect or do not agree about relevant
values of particular types of evidence. There are strong disagreements even among
recognized experts on these points.
There is unnecessary variation across application domains in terms of both practice and
regulation. The goals are largely the same in all sectors – achieving tolerable risk in a
software intensive system – yet there is wide variation on what constitutes acceptable
evidence in different domains. This makes it more difficult to share expertise in both
development and evaluation as well as methods and tools.
Often developers and certifiers feel that there is wasted effort that does not add value
since they are unsure sure how things contribute to adding confidence. There is a desire
to eliminate busy work and focus efforts on those aspects of development and evaluation
that make a real contribution achieving tolerable risk. Currently it is unclear how to
determine whether effort is wasted or not.
There is a gross association between Dependability Assurance Levels (DALs) or Safety
Integrity Levels (SILs) to moderate confidence. It is not clear that such course grained
classification of systems and their respective appropriate evidence is the best method.

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 145

The types of systems we now want to build are different than they were in the past. They
are now continually evolving, adaptive systems that may be rapidly reconfigurable during
operations.
It is not always clear how much confidence is “enough”. There are sometimes technical
issues in making this determination, but there are others such as the societal acceptance
of the trade offs involved in the issues of risks vs. confidence vs. benefit vs. cost. It is
possible to be overly cautiousness because of fear of the unknown or on the other hand
be too quick to accept what may be a largely unknown risk.
The difference between normal engineering (e.g. development of a minor revision of a well
understood product) vs. radical design (development of a novel, first of a kind product)
is not always understood. In the current practice of the engineering of software intensive
systems, there is often no clear basis for distinguishing between them.
The amount of safety-critical software is increasing substantially. Functions for which
people were once responsible are being transferred to software systems. This may results
in an inadequate ability to control the rate of change in requirements.
In order to reduce costs there is trend towards the increased use of commercial software
and hardware in critical systems. The incorporation of Software Of Unknown Providence
(SOUP) into critical systems imposes further challenges for certification. This is but one
example of how systems may be evolving in ways that are antithetical to safety-critical
use.

To summarize, what would we like to be able to do that we cannot do now with the current
basis of certification is to solve the problems posed above in a systematic way.

4.5.2 The Barriers

What are the barriers (technological, standards, regulatory policy, political, social) that
are hindering an advance toward a solution? Commercial interests dictate that in order
to preserve intellectual property such as trade secrets, companies are reluctant to provide
full source code and system documentation, preferring “black box” certification. Further
entrenched cadres are invested in the current practice viewing their knowledge of how to
navigate current opaque certification regime as a competitive advantage and a barrier to entry
for start-up competitors. There is little historic data available on certification. Correlating
the data that does exist with causal factors of success/failure is very difficult.

There is a widely held idea in academia that verification is equal to certification. This
demonstrates a lack of understanding of industry practice by academics resulting in research
into and teaching of methods and tools that do not scale to industry problems. The view of
the working group was that currently there is inadequate education for a basis for certification.
Even what we know works well is not known widely enough and taught even less. The result
is that we are graduating engineers that are not recognizing that confidence is an issue that
needs to be addressed. When it is address there was concern in the working group that we
are often using the wrong mathematics for reasoning about confidence. A view was expressed
that quantitative arguments about the reliability of software intensive systems is misleading
since it is extremely difficult to get accurate failure rates for software.

4.5.3 Evidence that success is possible

What elements of potential solutions exist in research, existing standards, existing technology?
Some domains, such as aerospace, achieve good results although the reasons for the success
are not necessarily known and the costs are often high. There is growing recognition of

13051

146 13051 – Software Certification: Methods and Tools

the problems involved in the certification of software intensive systems and this is resulting
in improvements in the capabilities of tools to support aspects of certification. Domains
that previously have not had knowledge in the development and certification of software
intensive systems are gaining it and there are some signs of movement from the past process-
orientation certification regimes to product-orientation methods. There is a current trend
towards company standards including explicit confidence arguments and a number of case
studies are being performed. There is work being done of the development of reference
designs to normalize engineering in areas such as infusion pumps and there are efforts to
provide engineering cookbooks such as the FAA Requirements Engineering Management
Handbook.

4.6 Methods for Developing Certifiable Systems and Methods of
Certifying Systems

As part of the seminar a working group discussed methods of developing and certifying
systems. This section summarizes their findings.

4.6.1 Need

What is happening in today’s world or in the future that is driving the need for change?
We are wanting to build increasingly complex and interconnected systems (and systems-

of-systems) and are using them in contexts that previously would be considered untenable or
unsuitable for software. Our aspirations and reach, as engineers, is growing. The only real
tools that we as software engineers have to work with are abstraction and decomposition,
though it is questionable whether such reductionist approaches will apply to ultra-large-scale
and complex systems. We must fundamentally use models (whether formal or structured) to
manage growing complexity, and certification processes must reflect this reality, as well as
the new forms of analysis that are available and go beyond what testing can feasibly achieve.

What would we like to be able to do that we can’t do now?
We would like to front-load our analysis and not have to wait until we have a prototype
or completely build a system, which may be too late to realize that we are building a
system that cannot be certified.
Replace parts of testing with more rigorous formal analysis/exhaustive analysis and have
the results of exhaustive analysis be considered as valid evidence by certifiers.
Qualifying advanced model-based development tools (which include non-traditional
programming constructs – e.g., rule-based programming). Why do we need to develop
and use models (of any kind) to help develop certifiable systems? They are useful in
particular for evolution.

4.6.2 Barriers

What are the barriers (technological, standards, regulatory policy, political, social) that are
hindering an advance toward a solution?

Regulatory policy is conservative. Standards evolve slowly and do not necessarily reflect
what can be achieved with formal methods or model-based design. This may be a positive
thing, given that engineers may be concerned with safety, but having ways to evolve standards
that can take into account proven forms of analysis and tooling would be beneficial though
we can argue about what “proven” means.

Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford 147

A sociological problem associated with formal methods exists. They have been oversold,
misused and misunderstood. This has resulted in bad experiences in critical systems develop-
ment – typically leading to either hiding use of formal methods (“under the hood”) or not
using them at all. Certification is costly to begin with – what effect does formal methods
or model-based development have on this cost, especially taking into account the cost of
adopting formal methods or model-based development. This links back to John McDermid’s
talk on ROI. There has been failures in standardization. For example, UML is conceptually
a successful standard but implementation wise (e.g., in terms of XMI/export/input) it is a
failure. XMI evolved too slowly and tool vendors did not implement it correctly (or added
their own “flavour”).

4.6.3 Evidence that success is possible

What elements of potential solutions exist in research, existing standards, existing technology?
There are success stories in applying MBD and Formal methods in different application
domains such as nuclear, aerospace and medical devices. We hope to summarize these
experiences in the post seminar publication.

4.6.4 Envisioned solution

How would the world (or at least the context of certified systems) change if the challenge
could be overcome? What form would solution(s) to the challenge take? new technology?
new standards? new methodologies / principled approaches?

Best practice guides to using formal methods or model-based development for building
certified systems are critical. This clearly needs some success stories and pilot experiments,
of which there are many (at least in the academic literature), but these probably need to be
reformulated and expressed differently to get the value proposition to industry across more
clearly. Standard interfaces that connect current practice (e.g., modeling in CSV) to new
practices (e.g., modeling tools) are also needed.

4.6.5 Roadmap to a solution / research agenda

What concrete steps might the community take to move forward on this challenge?

Developing methods of analysis for model consistency and coverage
Clarifying the notions of abstraction used in different models and how to communicate
abstractions across domains
Gateways between methods and tools and improved traceability
Scale: Your method should scale and you need to provide indicators to decide when it
won’t
Education: Being aware of the notion of “logical proof” already at high school
Assessment examples (rather like Tim Kelly’s presentation comparing standards) that
show how specific MBD or formal methods can produce evidence that is “at least as
convincing as” what is indicated in various standards. For example, take DO178C MBD
annex and actually compare/assess a specific MBD approach against it to see what
constraints need to be applied to the approach, and whether the approach can produce
sufficiently compelling evidence.
If you are an academic with a specific MBD/formal technique, working well on large
problems, consider how far are you from something that can be certified.
A “how-to” guide for building a formal method/MBD technique that can be certified/qual-
ified.

13051

148 13051 – Software Certification: Methods and Tools

Participants

Dominique Blouin
Université de Bretagne Sud, FR

Darren Cofer
Rockwell Collins –
Cedar Rapids, US

Cyrille Comar
AdaCore, Paris, FR

Mirko Conrad
The MathWorks GmbH –
Ismaning, DE

John S. Fitzgerald
Newcastle University, GB

Kim R. Fowler
Kansas State University, US

Hubert Garavel
INRIA Rhône-Alpes, FR

Janusz Górski
Gdansk Univ. of Technology, PL

Arie Gurfinkel
CMU – Pittsburgh, US

John Hatcliff
Kansas State University, US

Mats P. E. Heimdahl
University of Minnesota, US

Constance L. Heitmeyer
Naval Res. – Washington, US

Michael Holloway
NASA Langley ASDC –
Hampton, US

Jozef Hooman
Radboud Univ. Nijmegen, NL

Jérôme Hugues
ISAE – Toulouse, FR

Michaela Huhn
TU Clausthal, DE

Hardi Hungar
German Aerospace Center –
Braunschweig, DE

Daniel Kästner
AbsInt – Saarbrücken, DE

Peter Karpati
Institute for Energy Technology –
Halden, NO

Vikash Katta
Institute for Energy Technology –
Halden, NO

Tim Kelly
University of York, GB

Andrew King
University of Pennsylvania, US

John C. Knight
University of Virginia, US

Brian Larson
Multitude Corp., US

Mark Lawford
McMaster Univ. – Hamilton, CA

Dominik Mader
Berner & Mattner Systemtechnik
– Berlin, DE

Tom S. Maibaum
McMaster Univ. – Hamilton, CA

John McDermid
University of York, GB

Dominique Méry
LORIA – Nancy, FR

Frank Ortmeier
Universität Magdeburg, DE

Richard F. Paige
University of York, GB

Andras Pataricza
Budapest Univ. of Technology &
Economics, HU

Jan Philipps
Validas AG – München, DE

Robby
Kansas State University, US

Julia Rubin
IBM – Haifa, IL

John Rushby
SRI – Menlo Park, US

Bernhard Schätz
fortiss GmbH – München, DE

David von Oheimb
Siemens AG – München, DE

Alan Wassyng
McMaster Univ. – Hamilton, CA

Jens H. Weber
University of Victoria, CA

Virginie Wiels
ONERA – Toulouse, FR

	Executive Summary Darren Cofer, John Hatcliff, Michaela Huhn, and Mark Lawford
	Table of Contents
	Overview of Talks
	Modeling Requirements for Embedded Systems with RDAL Dominique Blouin
	Technology Infusion Study for DO-333 Darren Cofer
	Integrating Formal Program Verification with Testing Cyrille Comar
	Functional Safety and Certification of Automotive E/E systems Mirko Conrad
	Abstraction, Fidelity and (In-)Competence: modelling cyber-physical systems and systems of systems John S. Fitzgerald
	What is Mission-Assurance? Kim R. Fowler
	A naive look at software certification practices – and proposals for enhancement Hubert Garavel
	Bringing evidence-based arguments into practice Janusz Gorski
	Static Analysis of Real-Time Embedded Systems with REK Arie Gurfinkel
	Certification for Medical Devices and Systems: An Overview and Challenges John Hatcliff
	Requirements Specification and Supporting Artifacts for an Open Source Patient-Controlled Analgesic Pump John Hatcliff
	Concerning the implicit DO-178C assurance case Michael Holloway
	Software verification in the medical domain Jozef Hooman
	Bridging the modeling/verification gap Jerôme Hugues
	Opening up the Verification and Validation of Safety-Critical Software Hardi Hungar
	Using Code Analysis Tools for Software Safety Certification Daniel Kaestner
	Towards an Effective Safety Demonstration Framework Peter Karpati
	Software Certification: Where is Confidence Won and Lost? Tim Kelly
	User Assembled Medical System of Systems Andrew King
	Three Challenges John C. Knight
	Certification of Medical Device Composition Brian Larson
	Bayesian Probabilistic Approaches to Confidence are Impossible: The Need for a Baconian Approach (pace Jonathan Cohen) Tom S. Maibaum
	 Software Certification: The Return on Investment? John McDermid
	Refinement may help for Certification Dominique Mery
	Certification Challenges for Software With Uncertainty Richard F. Paige
	Models and Certification Andras Pataricza
	From Tool Qualification to Tool Chain Design Jan Philipps
	Cloud Security: Information Segregation and Data Privacy Julia Rubin
	Logic and Epistemology in Assurance Cases John Rushby
	Model-Based Development and Functional Safety Bernhard Schaetz
	Software Cerrtification Challenges in the Nuclear Power Domain Alan Wassyng
	Certification of Medical Information Systems – A paradigm shift: from devices to systems, from functions to data Jens H. Weber
	Software certification in aeronautics Virginie Wiels
	Some experience and remarks on security certification at industry David von Oheimb

	Overview of Working Groups
	Challenges: Compositional Certification
	Challenges: Education and Challenge Problems
	Challenges: Security
	Challenges: Tool Qualification
	Intellectual Basis for Certification & Confidence
	Methods for Developing Certifiable Systems and Methods of Certifying Systems

	Participants

