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1 Executive Summary

LeRoy B. Beasley
Hartmut Klauck
Troy Lee
Dirk Oliver Theis

The nonnegative rank is a measure of the complexity of a matrix that has applications
ranging from Communication Complexity to Combinatorial Optimization. At the time
of the proposal of the seminar, known lower bounds for the nonnegative rank were either
trivial (rank lower bound) or known not to work in many important cases (bounding the
nondeterministic communication complexity of the support of the matrix).

Over the past couple of years in Combinatorial Optimization, there has been a surge of
interest in lower bounds on the sizes of Linear Programming formulations. A number of new
methods have been developed, for example characterizing nonnegative rank as a variant of
randomized communication complexity. The link between communication complexity and
nonnegative rank was also instrumental recently in proving exponential lower bounds on the
sizes of extended formulations of the Traveling Salesman polytope, answering a longstanding
open problem.

This seminar brought together researchers from Matrix Theory, Combinatorial Optimiza-
tion, and Communication Complexity to promote the transfer of tools and methods between
these fields. The focus of the seminar was on discussions, open problems and talks surveying
the basic tools and techniques from each area.

In the short time since the seminar, its participants have made progress on a number of
open problems.
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Program Overview
Background lectures on the connection between matrix factorizations to Communication
Complexity and to Combinatorial Optimization were given by the organizers. More import-
antly, a number of participants contributed their latest research on factorization ranks. In
this section, we summarize these talks.

Extended Formulations and Linear Optimization
Hamza Fawzi

Many lower bounds on the nonnegative rank only make use of the zero/nonzero pattern of the
matrix. For certain applications, in particular for the extended formulation size lower bounds
for approximation problems, nonnegative rank lower bounds need to be shown for matrices
that are strictly positive. Hamza discussed an interesting approach to nonnegative rank
lower bounds via conic programming that does not only rely on the zero/nonzero structure
of the matrix. The bound is in many ways analogous to the trace norm lower bound for
rank, but making use of the stronger fact that the factorization is nonnegative leads to a
copositive program rather than a semidefinite one. For computing the bound in practice,
Hamza discussed ways to approximate the bound by semidefinite programs, and examples of
using this in practice.

Sam Fiorini

There is a rich theory on the hardness of approximating NP-optimization problems up to
certain factors, given complexity assumptions like P 6= NP. Very recently a similar topic
has emerged in the study of polytopes. Sam talked about tradeoffs between the approxim-
ation ratio and the size of linear formulations. One notable result in Sam’s talk was that
approximating CLIQUE to within n1/2−ε requires extended formulations of exponential size.

Complexity
Nati Linial

On the first day, Nati Linial treated us to a survey of higher dimensional analogs of familiar
combinatorial objects. For example, we are very familiar with permutation matrices, those
matrices with entries from {0, 1} with exactly one 1 in every row and column, and know
that there are n! = ((1 + o(1))n/e)n many of them. What about 3-dimensional tensors
with entries from {0, 1} and exactly one 1 along every row, column and shaft? Such 2-
dimensional permutations turn out to coincide with latin squares and it is known that there
are ((1 + o(1))n/e2)n2 many of them. This relies on some beautiful work on the minimum
permanent of doubly stochastic matrices. Nati conjectures that the formula generalizes to
count the number of d-dimensional permutations, described by a d+1-tensor with one 1 along
every line. That is, that the number of d-dimensional permutations is ((1 + o(1))n/ed)nd .
He is able to show such an upper bound, but the lower bound remains open.
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Sebastian Pokutta

In order to prove that extended formulations for approximating optimization problems need
to be large, communication and information complexity are important tools. In his talk
Sebastian described a new approach on how to prove lower bounds on the nonnegative rank
of matrices corresponding to the unique disjointness problem when perturbed. He gave tight
lower bounds using a new information theoretic fooling set method.

Since the seminar, Sebastian and his co-author Gabór Braun have made available a
preprint containing these results [3].

Hans Raj Tiwary

There are entire books of NP-complete problems and explicit reductions between them. For
the extension complexity of the associated polytopes, however, this book is still slowly being
written—usually by arguing that P is a projection of Q or finding P as a face of Q. Hans
discussed the intriguing possibility of automatically turning an NP gadget reduction into a
polytope reduction. While still not a general theory, Hans can currently do this for many
NP-hard problems and their associated polytopes.

Nicolas Gillis

Nicolas spoke about the problem of actually computing a non-negative factorization of a
nonnegative matrix. This talk was important to seminar participants on small matrices,
allowing them to test the quality of their lower bounds against upper bounds. On small
matrices, these upper bounds can be found computationally. The problem also has applica-
tions to compression of images, to identifying topics in documents, even to identifying the
mineral composition of rocks from spectral data (hyper-spectral imaging). Nicolas discussed
specifically the case of separable matrices. An n-by-n matrix M is r-separable if it has a
factorization M = WH where W is n-by-r, H is r-by-N and moreover W is a subset of the
columns of M . Such types of factorization can be more useful in practice. Nicolas talked
about a linear programming approach to this problem that is polynomial time and moreover
outperforms previous approaches in practice.

Matrix Theory
Alexander Guterman

Alexander Guterman gave a survey talk on various matrix ranks over semirings. A big
focus was on tropical algebra over the real number with operations a ⊕ b = max a, b and
a ⊗ b = a + b. Tropical algebra provides a way of formulating many hard combinatorial
optimization problems (like scheduling problems) in terms of a very elegant linear algebraic
type language. In tropical linear algebra there are varying notions of linear independence,
for example Gondran-Minoux independence, weak linear independence, and strong linear
independence. Each of these gives rise to a different notion of rank of a matrix and a hierarchy
of these ranks is known.

Yaroslav Shitov

Yaroslav continued talking about tropical matrix rank, in particular the tropical factorization
rank. This is defined as the minimum k such that A = B

⊗
C for a n-by-k matrix B and k-by-
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n matrix C. Note that in tropical matrix multiplication (B
⊗

C)(i, j) = mint B(i, t)+C(t, j).
Yaroslav mentioned a very interesting application of the tropical factorization rank. Say that
we are given an instance of the traveling salesman problem, with distances specified by a
matrix A, and moreover we are given a tropical factorization A = B ⊗ C that witnesses that
A has constant factorization rank. Then the resulting traveling salesman instance can be
solved in polynomial time! This is a result of Barvinok, Johnson, Woeginger, and Woodroofe.
Yaroslav also showed that the problem of detecting if the tropical factorization rank of a
matrix is at most 8 is NP-hard.

Richard Robinson

In his talk, Richard Robinson gave a characterization, among all nonnegative matrices, of
the extreme-ray / facet slack matrices of polyhedral cones, and vertex/facet slack matrices of
polytopes. This characterization leads to an algorithm for deciding whether a given matrix is
a vertex/facet slack matrix. The underlying decision problem is equivalent to the polyhedral
verification problem whose complexity is unknown.
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3 Overview of Talks

3.1 New lower bounds on nonnegative rank using conic programming
Hamza Fawzi (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Hamza Fawzi

Joint work of Fawzi, Hamza; Parrilo, Pablo
Main reference H. Fawzi, P.A. Parrilo, “New lower bounds on nonnegative rank using conic programming,”

arXiv:1210.6970v1 [math.OC], 2012.
URL http://arxiv.org/abs/1210.6970v1

We propose a new lower bound on the nonnegative rank which, unlike most existing lower
bounds, does not explicitly rely on the matrix sparsity pattern and applies to nonnegative
matrices with arbitrary support. Our lower bound is expressed as the solution of a copositive
programming problem and can be relaxed to obtain polynomial-time computable lower
bounds using semidefinite programming. The idea involves computing a certain nuclear norm
with nonnegativity constraints which allows to lower bound the nonnegative rank, in the
same way the standard nuclear norm gives lower bounds on the standard rank. We compare
our lower bound with existing ones, and we show examples of matrices where our lower
bound performs better than currently known ones.

3.2 Approximation Limits of Linear Programs (Beyond Hierarchies)
Samuel Fiorini (University of Brussels, BE)

License Creative Commons BY 3.0 Unported license
© Samuel Fiorini

Joint work of Braun, Gabor; Fiorini, Samuel; Pokutta, Sebastian; Steurer, David
Main reference G. Braun, S. Fiorini, S. Pokutta, D. Steurer, “Approximation Limits of Linear Programs (Beyond

Hierarchies),” arXiv:1204.0957v2 [cs.CC], 2013.
URL http://arxiv.org/abs/1204.0957v2

We develop a framework for proving approximation limits of polynomial-size linear programs
from lower bounds on the nonnegative ranks of suitably defined matrices. This framework
yields unconditional impossibility results that are applicable to any linear program as opposed
to only programs generated by hierarchies. Using our framework, we prove that O(n1/2−ε)-
approximations for CLIQUE require linear programs of size 2nΩ(ε) . (This lower bound applies
to linear programs using a certain encoding of CLIQUE as a linear optimization problem.)
Moreover, we establish a similar result for approximations of semidefinite programs by linear
programs.

Our main technical ingredient is a quantitative improvement of Razborov’s rectangle
corruption lemma (1992) for the high error regime, which gives strong lower bounds on the
nonnegative rank of certain perturbations of the unique disjointness matrix.
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3.3 Robust Near-Separable Nonnegative Matrix Factorization Using
Linear Optimization

Nicolas Gillis (UC Louvain-la-Neuve, BE)

License Creative Commons BY 3.0 Unported license
© Nicolas Gillis

Main reference N. Gillis, R. Luce, “Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization,” arXiv:1302.4385v1 [stat.ML], 2013.

URL http://arxiv.org/abs/1302.4385v1

Nonnegative matrix factorization (NMF) has been shown recently to be tractable under the
separability assumption [1], which amounts for the columns of the input data matrix to belong
to the convex cone generated by a small number of columns. Since then, several algorithms
have been proposed to handle this subclass of NMF problems under any small perturbation
of the input matrix, see for example [2] and the references therein. In particular, [3]
proposed a linear programming (LP) model, referred to as HottTopixx; see also [4]. However,
HottTopixx has two important drawbacks: (i) the input matrix has to be normalized, and
(ii) the factorization rank has to be known in advance. In [5], we generalize HottTopixx in
order to resolve these two drawbacks, that is, we propose a new LP model which does not
require normalization and detects the factorization rank automatically. Moreover, the new
LP model is more flexible, significantly more tolerant to noise, and can easily be adapted to
handle outliers and other noise models. Finally, we show on several synthetic datasets that
it outperforms HottTopixx while competing favorably with two state-of-the-art methods.

References
1 S. Arora, R. Ge, R. Kannan, and A. Moitra, ‘Computing a Nonnegative Matrix Factoriza-

tion – Provably’, STOC 2012.
2 N. Gillis and S.A. Vavasis, ‘Fast and Robust Recursive Algorithms for Separable Nonneg-

ative Matrix Factorization’, arXiv:1208.1237.
3 V. Bittorf, B. Recht, C. Re, and J.A. Tropp, ‘Factoring Nonnegative Matrices with Linear

Programs’, NIPS 2012.
4 N. Gillis, ‘Robustness Analysis of HottTopixx, a Linear Programming Model for Factoring

Nonnegative Matrices’, arXiv:1211.6687.
5 N. Gillis and R. Luce, ‘Robust Near-Separable Nonnegative Matrix Factorization Using

Linear Optimization’, http://arxiv.org/abs/1302.4385.

3.4 On the Geometric Interpretation of the Nonnegative Rank
Francois Glineur (UC Louvain, BE)

License Creative Commons BY 3.0 Unported license
© Francois Glineur

Joint work of Gillis, Nicolas; Glineur, Francois
Main reference On the Geometric Interpretation of the Nonnegative Rank, Nicolas Gillis, François Glineur, Linear

Algebra and its Applications, Volume 437, Issue 11 (1 December 2012), Elsevier.

A geometric bound for the nonnegative rank Nicolas Gillis and François Glineur, UCLouvain
(Belgium)

We start with a brief introduction to the nonnegative rank and recall what is currently
known about its computational complexity. We then present a geometric view of the nonneg-
ative rank computation, which leads us to introduce the concept of restricted nonnegative
rank. This allows us to derive a new lower bound for the nonnegative rank. In particular, it

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1302.4385v1
http://arxiv.org/abs/1302.4385v1
http://arxiv.org/abs/1302.4385v1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
On the Geometric Interpretation of the Nonnegative Rank, Nicolas Gillis, Fran�ois Glineur, Linear Algebra and its Applications, Volume 437, Issue 11 (1 December 2012), Elsevier.
On the Geometric Interpretation of the Nonnegative Rank, Nicolas Gillis, Fran�ois Glineur, Linear Algebra and its Applications, Volume 437, Issue 11 (1 December 2012), Elsevier.
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is easily computable for slack matrices, and provides a lower bound on the size of extended
formulations for any d-polytope with a given number of facets and vertices. To conclude, we
report the results of recent computational experiments attempting to factorize numerically
slack matrices of low-dimensional polytopes.

Paper about the first half of the talk: On the Geometric Interpretation of the Nonnegative
Rank, Nicolas Gillis, François Glineur, Linear Algebra and its Applications, Volume 437,
Issue 11 (1 December 2012), Elsevier. 10.1016/j.laa.2012.06.038

Code to attempt factorisation of slack or other nonnegative matrices
http://sites.google.com/site/nicolasgillis/code (direct link http://bit.ly/13hvCA2)

3.5 Matrix ranks over semirings
Alexander Guterman (Moscow State University, RU)

License Creative Commons BY 3.0 Unported license
© Alexander Guterman

Tropical algebra (sometimes called max algebra) is a set of real numbers equipped with the
maximum operation instead of usual addition and addition instead of usual multiplication.
Under these operations this is an algebraic structure called a semiring. The other typical
examples of such structures are non-negative integers, non-negative reals, boolean algebras.
Semirings naturally appear in different problems of communication complexity, scheduling
theory, optimization, dynamical systems, etc. Semiring arithmetics allows to reduce non-
linear problems to the linear problems but over semirings. To investigate these problems it
is necessary to develop linear algebra over semirings. This subject is very actual nowdays.
Different rank functions over various classes of semirings are intensively investigated during
the last decades. We plan to introduce and investigate some of them, in particular, factor
rank, tropical rank, nonnegative rank, determinantal rank, Gondran-Minoux rank. We plan
to compare these functions and discuss their interrelations. Among the other topics we shall
discuss our recent joint research results with Marianne Akian, LeRoy Beasley, Stephane
Gaubert, and Yaroslav Shitov.

3.6 Constructing Extended Formulations for Stable Set Polytopes via
Decomposition Rules

Kanstantsin Pashkovich (University of Padova, IT)

License Creative Commons BY 3.0 Unported license
© Kanstantsin Pashkovich

Joint work of Conforti, Michele; Gerards, Bert

We develop decomposition/composition tools for describing stable set polytopes as polynomi-
ally sized linear programs. Some of these tools are well-known but need some extra work to
yield polynomial “decomposition schemes”. We apply the tools to graphs that contain no
even hole and no cap.
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3.7 On lower bounds for extended formulations
Sebastian Pokutta (Universität Erlangen-Nürnberg, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Pokutta

Joint work of Braun, Gabor; Pokutta, Sebastian
Main reference G. Braun, S. Pokutta, “Common information and unique disjointness,” ECCC TR13-056, 2013.

URL http://eccc.hpi-web.de/report/2013/056/

Communication complexity and information theoretic approaches have been at the core of
many recent lower bound proofs for the size of extended formulations of certain polytopes.
One of the most important problems in this context is the unique disjointness problem which
is closely related to the extension complexity of the correlation polytope and (a natural
encoding of) the clique problem. We will provide an overview of recent results by Braun,
Fiorini, Pokutta and Steurer as well as those of Braverman and Moitra. Based on the BM
approach we then present a generalized information theoretic framework which decouples
polyhedral/geometric aspects from the underlying combinatorics and opens up several routes
for establishing more general lower bounds.

3.8 Which nonnegative matrices are slack matrices?
Richard Robinson (University of Washington, US)

License Creative Commons BY 3.0 Unported license
© Richard Robinson

Joint work of Gouveia, João; Grappe, Roland; Kaibel, Volker; Pashkovich, Kanstantsin; Robinson, Richard Z.;
Thomas, Rekha R.

Main reference J. Gouveia, R. Grappe, V. Kaibel, K. Pashkovich, R.Z. Robinson, R.R. Thomas, “Which
Nonnegative Matrices Are Slack Matrices?,” arXiv:1303.5670v1 [math.OC], 2013.

URL http://arxiv.org/abs/1303.5670v1

In this note we characterize the slack matrices of cones and polytopes among all nonnegative
matrices. This leads to an algorithm for deciding whether a given matrix is a slack matrix.
The underlying decision problem is equivalent to the polyhedral verification problem whose
complexity is unknown.

3.9 Matrix factorization over semirings
Yaroslav Shitov (Moscow State University, RU)

License Creative Commons BY 3.0 Unported license
© Yaroslav Shitov

Joint work of Guterman, Alexander; Shitov, Yaroslav

My recent work in matrix theory has been devoted to studying matrix factorizations over
nonnegative numbers, and also over tropical and other semirings. The problem of factoring
tropical matrices is useful in tropical geometry as well as finds applications in optimization
and phylogenetics. Thus a question of describing the computational complexity of tropical
factorization arises. That question has been answered recently, and it has been shown
that tropical factorization is hard. I also studied different problems on nonnegative matrix
factorizations, and a number of techniques from semiring linear algebra allowed to make some
progress on those problems. The behavior and computational complexity of rank functions
on tropical matrices have been discussed also in our recent joint paper with Alexander
Guterman.
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3.10 On the extension complexity of combinatorial polytopes
Hans Raj Tiwary (University of Brussels, BE)

License Creative Commons BY 3.0 Unported license
© Hans Raj Tiwary

Joint work of Avis, David; Tiwary, Hans Raj
Main reference D. Avis, H.R. Tiwary, “On the extension complexity of combinatorial polytopes,”

arXiv:1302.2340v2 [math.CO], 2013.
URL http://arxiv.org/abs/1302.2340v2

In this talk I will describe a lifting argument to show exponential extension complexity for a
number of NP-complete problems including subset-sum and three dimensional matching. We
obtain a relationship between the extension complexity of the cut polytope of a graph and
that of its graph minors. Using this we are able to show exponential extension complexity for
the cut polytope of a large number of graphs, including those used in quantum information
and suspensions of cubic planar graphs.

4 Problem discussion sessions, and subsequent developments

Here we report on the status of questions which were presented during the Problem Sessions.
Near the end of this section, we discuss developments on problems, which were not presented
during the Problem Sessions, but discussed during the seminar.

4.1 Real vs. rational nonnegative rank
Presented by Dirk Oliver Theis; problem based on a problem by Cohen and Rothblum from
1991. Give a non-trivial bound for rkQ+(A)− rkR+(A)! For example, is it true that for every
rational nonnegative matrix A we have rkQ+(A) ≤ rkR+(A) + 1?

The original question asks for equality between the two ranks, but currently no non-trivial
bounds for rkQ+(A)− rkR+(A) or even rkQ+(A)

/
rkR+(A) are known.

In the discussion, Nati Linial pointed to Micha Perles discovery of non-rational polytopes,
and the studies by Richter-Gebert and others of the realization spaces of polytopes.

A related problem is the following.

Complex vs. real positive semidefinite rank. One can ask a similar question for the
positive semidefinite rank. The positive semidefinite rank over R of a matrix A ∈ Rm×n is
the minimal r such that there are Bi ∈ Rr×r for i = 1, . . . , m and Cj ∈ Rr×r for j = 1, . . . , n

such that A(i, j) = Tr(B∗
i Cj). The positive semidefinite rank over C is defined analogously

with Bi, Cj ∈ Cr×r. Is the positive semidefinite rank over R equal to positive semidefinite
rank over C? This is the simplest in a family of questions: The same needs to be asked
for rational vs. real positive semidefinite rank. In the discussion, Nicolas Gillis pointed out
that this question also must be settled for the copositive ranks. In this case one looks for
a factorization A(i, j) = Tr(B∗

i Cj) where each Bi is copositive and each Cj is completely
positive.
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4.2 Square-root rank
Proposed by Richard Robinson. Given nonnegative matrix M ∈ Rp×q

+ , we say that A ∈ Rp×q

is a Hadamard square-root if (A)2
ij = Mij . Define rk√·(M) as the minimum rank of A

such that A is Hadamard square-root of M . This is equivalent to a version of the positive
semidefinite rank where the matrices in the factorization are constrained to have rank 1. Hence,
rkPSD(M) ≤ rk√·(M) holds. For vertex-facet slack matrices of polytopes, rk(S) ≤ rk√·(S).
A large number of observaions have led Richard to conjecture the following.

If rk(S) = rk√·(S) holds for the slack matrix S of a polytope, then the entries in the
hadamard square-roots in rk√·(S) can be taken to be nonnegative.

In the discussion, Samuel Fiorini suggested to look specifically at the matrix Mab = (1−aT b)2.

4.3 Positive semidefinite rank of matrices defined by polynomials
Proposed by Troy Lee. What is the positive semidefinite rank of the matrix

M(x, y) = (xty − 1)(xty − 2),

where x, y range over all {0, 1}n?. The motivation is that such a matrix M is a submatrix of
the slack matrix of the correlation polytope. One can define a whole family of submatrices
of the slack matrix of the correlation polytope by taking a quadratic polynomial p which is
nonnegative on nonnegative integers, and letting M(x, y) = p(|x∩ y|). In the discussion, Sam
Fiorini pointed out that to show a strong lower bound on M one would have to focus on more
than just the entries of the matrix which take values in some small set. He also mentioned
that this matrix can be approximated by one that does have low positive semidefinite rank,
namely the matrix N(x, y) = (xty − 3/2)2.

A toy version of this problem asks about the positive semidefinite rank of the n-by-n
matrix Mn(i, j) = (i− j − 1)(i− j − 2). Seminar participant João Gouveia [8] answered a
question of Lee and Theis [11] by showing that the psd rank of Mn goes to infinity with n.

4.4 A query complexity problem
Proposed by Raghav Kulkarni. For f : {0, 1}n → {0, 1} and z ∈ {0, 1}n, we say that ith bit
of z is sensitive if f(z1, . . . , z̄i, . . . , zn) 6= f(z1, . . . , zi, . . . , zn). Let s(f, z) be the number of
sensitive bits of z and s(f) = maxz{s(f, z)} the maximum number of sensitive bits of any
argument. These concepts arise in the context of decision tree complexity. For x, y ∈ {0, 1}n
let f(x, y) be a 2-parameter function, and let Mf (x, y) = f(x, y) be the corresponding matrix.
Raghav conjectures that log rkR(Mf ) ≤ poly(s(f)).

In the following discussion, Hartmut Klauck asked about block sensitivity and Raghav
said the conjecture is true with sensitivity replaced by block sensitivity. Hartmut also
suggested easier versions of the conjecture where, for example, the rank is replaced by sign
rank which is the minimum rank of a matrix that entrywise agrees with the target matrix in
sign. Nati Linial then asked if assuming the log-rank conjecture is true implies anything for
this conjecture.
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4.5 A rigidity-type question
Proposed by Adi Shraibman. The famous matrix rigidity problem of Valiant asks to explicitly
construct matrices with high rank and such that if a constant fraction of the entries are
arbitrarily changed, the rank remains high. While probabilistic constructions exist, finding
explicit constructions remains a hard open problem.

Consider the following variant of the problem known as discrepancy games. Here you
start with an empty n× n matrix. Two players, Balancer (+1) and Unbalancer (−1), take
turns assigning entries of the matrix to their associated value. Balancer wants to make all
combinatorial rectangles balanced, while Unbalancer wants to make them unbalanced. In
this game it is known that Balancer can get ensure an upper bound of s3/4 on discrepancy
after s rounds.

Here is another variant that is open. In this case we begin with a {−1, +1} valued matrix
with discrepancy n3/2. Say a Hadamard matrix. Balancer picks certain +1’s. Unbalancer
picks certain −1’s. Over the course of the game, can Balancer maintain discrepancy to be
less than s3/4 after s moves? In this variation you cannot rely on strategy stealing.

4.6 Extension complexity of stable set polytopes of split-graph-free
perfect graphs

Proposed by Samuel Fiorini. A split graph is a graph in which the vertices can be partitioned
into a clique and an independent set. Let H be a split graph, and consider the class of all
graphs G not containing H as an induced subgraph. What is the extension complexity of the
stable set polytopes of this class of graphs? This problem is motivated by a recent result of
Bousquet, Lagoutte, and Thomassé [2]. They provide a certificate of size O(log(n)) proving
that a clique and an independent set do not intersect for H-free graphs.

4.7 Matrices with low non-negative rank are a low-dimensional subset
in the manifold of rank-bounded matrices

It is an easy fact that the nonnegative rank is semicontinuous: If Aj tends to A, then
rk+(A) ≤ lim inf rk+(A). Let n, k be nonnegative integers such that 3 ≤ k � n, and consider
the set of n× n matrices

{A ∈ Rn×n
+ | rk A = k, rk+ A ≤ n− 1}.

Does this set contain interior points within the manifold {A ∈ Rm×n
+ | rk A = k} of

nonnegative rank-k matrices? (The “n− 1” is somewhat arbitrary, and should be replaced
by an appropriate function of n.) This question asks for the dimension of the set of matrices
of “small” nonnegative rank as a semialgebraic subset of the variety of rank-k n× n matrices.
In the discussions, people expressed that the intuitively obvious answer to the question is
yes. But a recent result of Yaroslav Shitov proves that, for k = 3, every such matrix A has
nonnegative rank at most 6n/7 [14]. However, the question with “n− 1” may still be true
for large k.
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4.8 Fooling-sets and rank
Let A be an n × n matrix over a field K satisfying Akk = 1 for all k and Ak`A`k = 0
whenever k 6= `. Dietzfelbinger et al. (1996) proved that n ≤ rk(A)2. The question raised by
Diezfelbinger et al. is whether this bound is asymptotically (n→∞) tight.

This problem was fully settled by Friesen and Theis in the case of nonzero characteristic
shortly before the seminar [7]. In summary, the following is known.

characteristic of K
0 2 ≥ 3

A 0/1 entries open tight open
A arbitrary entries open tight tight

The major open question is when the characteristic is 0 and the entries are arbitrary. At
the time of the seminar, the best separation was by Klauck and de Wolf [10] who gave an
example where rk(A) ≤ n0.613... with integral entries of small modulus. After the seminar,
in the case of characteristic zero, Troy Lee was able to improve the best known bound to
rk(A) ≤ n0.594... with a method that warrants future investigation.

4.9 Polygons — or, more generally, rank-3 matrices
A problem which was discussed intensely during the seminar was the extension complexity
of polygons, where, at the time of the seminar, a lower bound of Ω(

√
n) was known, and the

trivial upper bound n.
The following problem by Beasley & Laffey [1] is both more general and more specific:

Given any sub-semiring S of R+ and n ≥ 6, is there a matrix A ∈ Mn×n(S) such that
rk A = 3 and rkS(A) = n? At the time of the seminar, this was open even for S = R+.
Following the seminar, participant Yaroslav Shitov [14] has settled this problem for the
semiring R+: every rank-3 nonnegative n× n matrix with n ≥ 7 has nonnegative rank at
most 6n/7.

4.10 Euclidean distance matrices
Do “generic”/“random” Euclidean distance matrices1 have full nonnegative rank?2

For d = 1, Shitov’s above mentioned result gives a negative answer to the question.

4.11 How does nonnegative rank behave under tensor products?
This question is interesting on its own, and also has application to communication complexity.
A very strong conjecture, discussed at the workshop, would be that the nonnegative rank is
multiplicative, as the rank is. That is, that rk+(A⊗B) = rk+(A) rk+(B).

Collaboration between two seminar participants, Nicolas Gillis and Hamza Fawzi showed
that this strong conjecture is false. Specifically, Nicolas wrote software for computing the

1 A d-dimensional, Euclidean distance matrix of size n is defined by points x1, . . . , xn in d-dimensional
Euclidean space. Its entries are

(
‖xk − x`‖)k,`.

2 An affirmative proof of this for d = 1 by Lin and Chu (2011) is fatally flawed.
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nonnegative rank of small-size matrices, and using this software Hamza was able to disprove
the conjecture.

4.12 Vertex/facet slack matrices vs. general nonnegative matrices
Some lower bounds can be proved for matrices which arise from vertex/facet slack matrices of
polytopes. It is an open question whether some of the bounds behave fundamentally different
in the case of vertex/facet slack matrices (cf. e.g., 4.2). As a first step towards resolving
this type of questions, a linear-algebraic characterization of these matrices was obtained by
João Gouveia, Richard Robinson, and Rekha Thomas, and presented during the seminar. It
turned out that Volker Kaibel, Roland Grappe, and Kanstantsin Pashkovich had a similar
approach. Their results were combined in the recent paper [9].

4.13 Extensions/factorizations over the positive semidefinite cone
In the year preceding the seminar, matrix factorizations over other cones than (R+)r
have gained importance, specifically the cone of positive semidefinite matrices. From the
combinatorial optimization point of view, a very basic question there is, whether there exist
polytopes whose extension complexity is exponential in the dimension — the same question
for (R+)r was settled by Rothvoß [13]. In a very recent paper, seminar participant Sebastian
Pokutta, together with two coauthors, Jop Briët and Daniel Dadush, have answered that
question in the affirmative [4].

In the context of factorizations over other cones, recently, the conference participants
Samuel Fiorini and Hans Raj Tiwary [6] have observed that a 2012 theorem by Alexander
Maksimenko [12] together with a result by Samuel Burer [5] implies that every 0/1 polytope
whose vertex set can be described by a polynomial predicate has a polynomial sized copositive
extension.

5 Conclusion

A natural approach to solving hard combinatorial optimization problem is to give a formulation
as a linear program and solve it using standard techniques. An important topic initiated by
Yannakakis is to investigate the size of extended formulations of optimization problems.

Recently the theory of representing hard optimization problems via extended formulations
has seen much progress. Techniques from communication complexity and matrix theory have
been essential to investigate how large extended formulations need to be, finally improving
on Yannakakis’ seminal results.

The seminar brought together researchers from the areas of optimization theory, complexity
theory, and matrix theory, to further collaboration on these and newly emerging topics.
Exciting progress was reported on proving lower bounds for the nonnegative rank, on the
hardness of approximation using extended formulations, and on new notions of matrix ranks.

For the future we hope that similar progress will soon be made on the topic of using
semidefinite programming to solve hard optimization problems. Intriguingly this problem is
connected to quantum communication complexity.

Dagstuhl provided a wonderful environment for many informal discussions as well as
talks, plus an exciting open problems session. The opportunity to have this seminar was well
appreciated by the participants, many of them who were new to the center.
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