
Report from Dagstuhl Seminar 13091

Analysis, Test and Verification in The Presence of
Variability
Edited by
Paulo Borba1, Myra B. Cohen2, Axel Legay3, and
Andrzej Wąsowski4

1 Federal University of Pernambuco – Recife, BR, phmb@cin.ufpe.br
2 University of Nebraska – Lincoln, US, myra@cse.unl.edu
3 University of Liège, BE, alegay@irisa.fr
4 IT University of Copenhagen, DK, wasowski@itu.dk

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13091 “Analysis,
Test and Verification in The Presence of Variability”. The seminar had the goal of consolidating
and stimulating research on analysis of software models with variability, enabling the design
of variability-aware tool chains. We brought together 46 key researchers from three continents,
working on quality assurance challenges that arise from introducing variability, and some who do
not work with variability, but that are experts in their respective areas in the broader domain of
software analysis or testing research. As a result of interactions triggered by sessions of different
formats, the participants were able to classify their approaches with respect to a number of
dimensions that helped to identify similarities and differences that have already been useful to
improve understanding and foster new collaborations among the participants.

Seminar 24. February to 1. March, 2013 – www.dagstuhl.de/13091
1998 ACM Subject Classification D.2.4 Software/Program Verification, D.2.5 Testing and De-

bugging, D.2.13 Reusable Software, D.3.1 Formal Definitions and Theory, F.3.1 Specifying
and Verifying and Reasoning about Programs, F.3.2 Semantics of Programming Languages

Keywords and phrases Verification, Program Analysis, Testing, Semantics of Programming Lan-
guages, Software Engineering

Digital Object Identifier 10.4230/DagRep.3.2.144
Edited in cooperation with Leopoldo Teixeira

1 Executive Summary

Paulo Borba
Myra B. Cohen
Axel Legay
Andrzej Wąsowski

License Creative Commons BY 3.0 Unported license
© Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski

The seminar “Analysis, Test and Verification in The Presence of Variability” that took place
at Schloss Dagstuhl from February 24 to March 1, 2013, had the goal of consolidating and
stimulating research on analysis of software models with variability, enabling the design of
variability-aware tool chains. We brought together 46 key researchers from three continents,
working on quality assurance challenges that arise from introducing variability, and some

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Analysis, Test and Verification in The Presence of Variability, Dagstuhl Reports, Vol. 3, Issue 2, pp. 144–170
Editors: Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13091
http://dx.doi.org/10.4230/DagRep.3.2.144
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 145

who do not work with variability, but that are experts in their respective areas in the broader
domain of software analysis or testing research. The participants ranged from those in senior
academic positions to successful graduate students. We also enjoyed the presence of several
relevant experts from the software development industry.

The seminar included:

1. Invited presentations on state of the art research in SPL testing and verification

The presentations were delivered by experts in variability research. The topics included
classifying and unifying product-line analyses, combinatorial interaction testing, model-based
testing, analysis of programs with variability and model checking with variability.

Material relevant to the topic of this Dagstuhl was organized in a recent classification
by Thüm and coauthors [4]. The Dagstuhl seminar opened with a presentation of this
classification, which created a common ontology for later presentations and discussions. This
was very helpful for participants who had different areas of expertise.

2. A keynote presentation on the Challenges and Science of Variability

We organized a special keynote shared with the German FOSD meeting, that took place
in parallel at the Schloss Dagstuhl facilities. The keynote speaker, Professor Don Batory,
called for creating a simple meta-theory identifying and relating the core concepts and
properties of variability science, i.e. the body of knowledge created by the community of
researchers studying engineering of highly configurable systems. During the workshop, several
candidates for the starting point of such theory were mentioned, such as using simple models
in constructive logic [2], choice calculus [3] or Clafer [1].

3. A series of presentations on recent results in Variability Analysis

The bulk of the programme was filled with a mixture of research presentations about recent
research advances in verification, analysis and test of software with variability. This function
of the seminar was particularly important, as the usual dissemination outlets for these
contributions are often disjoint – much of the work is normally presented in domain specific
publication channels devoted to only test, verification or programming languages. For many
participants the seminar created an opportunity to learn about advances at addressing similar
problems in the neighboring research communities – an experience that is rarely possible
outside of Dagstuhl.

4. A session of student presentations

In order to enrich the presentations by senior researchers with a stream of fresh ideas, we
organized a special session devoted to short student presentations. The presenters were
selected from the participants of the German FOSD meeting. For many of the students it was
a rare opportunity to share their ideas with international authorities in their work area. The
topics of these lightning presentations were closely related to the seminar goals and included
among others, discussions of experimental evaluation of product line analysis strategies,
static analysis, type checking for variability, and performance prediction for configurable
systems. The session enabled closer integration between the participants of the two events.
Many discussions between the two groups continued throughout the week.

13091

146 13091 – Analysis, Test and Verification in The Presence of Variability

5. Dynamically planned sessions on how to address the challenges, how to transfer
knowledge, tools, and benchmarks between research areas

The first session (run by Professor Krzysztof Czarnecki) was devoted to extracting chal-
lenges for variability analysis out of industrial requirements. Participants from industry
and participants from academia involved in industrial projects provided background on
requirements known from projects in avionics, automotive and risk assessment domains.
These were further discussed to identify research challenges for future work. The discussions
were continued in a breakout session on product lines of safety critical systems. Other
breakout sessions included dynamic product lines, generic representation of variability, and
testing and modeling variability.

Overall, a core set of techniques were discussed at this seminar which include program
analysis, model checking, type checking, and testing. We believe that the seminar fruitfully
mixed computer science and software engineering researchers from several research sub-
domains, allowing them to derive interesting basic research problems stemming from practical
needs all related to how variability impacts their respective domains, with the sub-goal of
inspiring the use of the latest research advances in software analysis technology to advance
variability management tools.

Results

The different kinds of interactions offered by the seminar helped the participants to relate
work covering different aspects in a number of dimensions such as:

1. An overall approach to thinking about variability, as defined by Thüm’s classification [4]
of analysis into product based, family based, feature based and hybrids;

2. Core techniques: testing, verification, refactoring, model checking, static analysis;
3. Mechanisms for representing variability: if-defs, deltas, generic representation, etc.;
4. Application domains;
5. The nature of variability: static product lines, dynamic product lines, configurable

systems.

The seminar also produced a bibliography of core readings on the topic, that can enable
new graduate students to engage more quickly in this area of research.

Trying to classify approaches with respect to these dimensions helped to identify simil-
arities and differences among different techniques (static analysis, model checking, testing,
and verification). This, in turn, might trigger new collaborations and research results. The
presentations and the ad-hoc discussion sessions helped people to clarify differences and
similarities among configurable systems and dynamic and static product lines, with similar
consequences to the ones described above. More generally, of course, the Dagstuhl provided
the benefit of mixing young and experienced researchers, from different countries and research
areas.

An informal survey among a handful of participants has shown that each of them have
started 2-3 new collaborations as a result of the seminar. These collaborations took the form
of initiated research papers, mutual research visits, or student exchanges. In one anecdotal
case, a researcher started a collaboration with a colleague sitting in the same corridor at his
home university— but apparently one had to meet in Dagstuhl to enable the exchange of
ideas. We can thus expect a new wave of research results in this area to flourish about a year
from the seminar time. Because of this success, we intend to organize a follow up event in

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 147

several years, be it under the Schloss Dagstuhl programme or under some other appropriate
venue.

References
1 Kacper Bąk, Krzysztof Czarnecki, and Andrzej Wąsowski. Feature and Meta-Models in

Clafer: Mixed, Specialized, and Coupled. In Proc. of the 3rd Int’l Conf. on Software
Language Engineering (SLE’10), LNCS, Vol. 6563, pp. 102–122, Springer, 2011. DOI:
10.1007/978-3-642-19440-5_7.

2 Benjamin Delaware, William R. Cook, and Don S. Batory. Product lines of theorems. In
Proc. of the 2011 ACM Int’l Conf. on Object-oriented Programming Systems, Languages,
and Applications (OOPSLA’11), pp. 595–608, ACM, 2011. DOI: 10.1145/2048066.2048113.

3 Martin Erwig and Eric Walkingshaw. The Choice Calculus: A Representation for Soft-
ware Variation. ACM Trans. Softw. Eng. Methodol., Vol. 21, Issue 1, pp. 6:1–6:27, 2011.
DOI: 10.1145/2063239.2063245.

4 Thomas Thüm, Sven Apel, Christian Kästner, Martin Kuhlemann, Ina Schae-
fer, and Gunter Saake. Analysis Strategies for Software Product Lines. Tech-
nical Report FIN-004-2012, School of Computer Science, University of Magdeburg,
April 2012. http://www.cs.uni-magdeburg.de/inf_media/downloads/forschung/technical_
reports_und_preprints/2012/04_2012.pdf.

13091

http://dx.doi.org/10.1007/978-3-642-19440-5_7
http://dx.doi.org/10.1007/978-3-642-19440-5_7
http://dx.doi.org/10.1145/2048066.2048113
http://dx.doi.org/10.1145/2063239.2063245
http://www.cs.uni-magdeburg.de/inf_media/downloads/forschung/technical_reports_und_preprints/2012/04_2012.pdf
http://www.cs.uni-magdeburg.de/inf_media/downloads/forschung/technical_reports_und_preprints/2012/04_2012.pdf

148 13091 – Analysis, Test and Verification in The Presence of Variability

2 Table of Contents

Executive Summary
Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 144

Overview of Talks
Family and Sampling-based Reliability Analysis in Dynamic Software Product Line:
the Body Area Network Case
Vander Alves . 150

Classifying and Unifying Product-Line Analyses
Sven Apel . 150

Software Product Lines in Clafer
Kacper Bąk . 151

Analyzing Software Product Lines in Minutes instead of Years
Eric Bodden . 151

State of The Art in Analysis of Programs with Variability
Eric Bodden . 152

Intraprocedural Dataflow Analysis for Software Product Lines
Claus Brabrand . 152

If not interfaces, then views
Dave Clarke . 153

On a Feature-Oriented Characterization of Exception Flows in Software Product
Lines
Roberta Coelho . 153

ProVeLines: a Product Line of Model Checkers for Software Product Lines and
some of the Theory behind it
Maxime Cordy . 154

Toward the Systematic Derivation of Variational Program Analyses
Martin Erwig . 154

Topologically configurable systems as product families
Alessandro Fantechi . 155

Patterns in Configuration Dependence
Brady J. Garvin . 155

Making Software Product Line Evolution Safer
Rohit Gheyi . 156

Reuse of Formal Verification Proofs By Abstract Method Calls
Reiner Hähnle . 156

Complete and Reproducible Applications of SPL Testing
Martin Fagereng Johansen . 157

Analyzing the #ifdef hell with TypeChef – Or the quest for realistic subjects in
product-line analysis
Christian Kästner . 157

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 149

Is medical underwriting knowledge a field for verification in the presence of variab-
ility?
Kim Lauenroth . 161

Scientific Workflows: Eternal Components, Changing Interfaces, Varying Composi-
tions
Tiziana Margaria . 161

Compositional Verification of Software Product Lines
Jean-Vivien Millo . 162

Feature Maintenance with Emergent Interfaces
Marcio Ribeiro . 162

Delta-oriented Regression-based Testing of Software Product Lines
Ina Schaefer . 163

Model-Based Testing of Software Product Lines
Holger Schlingloff . 163

Reuse of Test Cases for Model-Based Development of Software Product Lines
Holger Schlingloff . 164

Test Case Prioritization Criteria for Software Product Lines
Sergio Segura . 164

Composing Variable Components Considering Interaction Behavior – A Problem
Statement
Vanessa Stricker . 164

Safe Evolution of Software Product Lines and Communities
Leopoldo Teixeira . 165

Product-Line Verification with Contracts
Thomas Thüm . 166

Evaluating Dataflow Analysis for Software Product Lines
Tarsis Tolêdo . 167

Inferring Variational Types for Variational Programs
Eric Walkingshaw . 167

Combinatorial Interaction Testing
Cemal Yilmaz . 168

Effective Test Execution for Software Product Lines
Sabrina de Figueirêdo Souto . 168

Modelling, analysing and verifying variability by means of Modal Transition Systems
Maurice H. ter Beek . 169

Participants . 170

13091

150 13091 – Analysis, Test and Verification in The Presence of Variability

3 Overview of Talks

3.1 Family and Sampling-based Reliability Analysis in Dynamic
Software Product Line: the Body Area Network Case

Vander Alves (University of Brasilia, BR)

License Creative Commons BY 3.0 Unported license
© Vander Alves

Demographic and social changes have increased the number of elderly people living alone.
Many of these need continuous medical assistance, yet it is not sustainable to have dedicated
medical professional for each of them. As a result, automated support has been proposed, in
particular, Body Area Network, in which a person goes about his or her daily activities at
home or outdoors, but wears sensors monitoring vital signs and providing emergency detection
and prevention. Such systems often have to reconfigure themselves based on some context
change such as the persons’ medical situation to meet a new and more suitable quality goal for
that new situation. However, current approaches provide limited support for reliability-aware
dynamic adaptation. Accordingly, we explore how family- and sampling-based analysis in
Dynamic Software Product Line (DSPL) support reliability-aware dynamic adaptation. First,
we present a domain reliability model relying on a state machine whose transitions are medical
events (e.g., fall, stroke) and states are target reliability goals, prompting a reconfiguration
to meet them. Second, the reliability of any given configuration is measured by a single
function over the features of the DSPL. This function is derived from a family-based analysis
leveraging a parametric discrete time Markov chain model representing the reliability of the
DSPL. Lastly, the configuration space is searched in a bounded product analysis to find
suitable configurations meeting reliability goals.

3.2 Classifying and Unifying Product-Line Analyses
Sven Apel (Universität Passau, DE)

License Creative Commons BY 3.0 Unported license
© Sven Apel

Joint work of von Rhein, Alexander; Apel, Sven; Kästner, Christian; Thüm, Thomas; Schaefer, Ina
Main reference A. von Rhein, S. Apel, C. Kästner, Thomas Thüm, and Ina Schaefer, “The PLA Model: On the

Combination of Product-Line Analyses,” in Proc. of the 7th Int’l Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’13), pp. 73—80, ACM, 2013.

URL http://dx.doi.org/10.1145/2430502.2430522
URL http://www.infosun.fim.uni-passau.de/publications/docs/RAK+13vamos.pdf

Product-line analysis has received considerable attention in the last decade. As it is often
infeasible to analyze each product of a product line individually, researchers have developed
analyses, called variability-aware analyses, that consider and exploit variability manifested in
a code base. Variability-aware analyses are often significantly more efficient than traditional
analyses, but each of them has certain weaknesses regarding applicability or scalability. We
present the Product-Line-Analysis model, a model for the classification and comparison of
existing analyses, including traditional and variability-aware analyses, and lay a foundation
for formulating and exploring further, combined analyses. This talk is based on a number of
previous publications [1, 2, 3].

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2430502.2430522
http://dx.doi.org/10.1145/2430502.2430522
http://dx.doi.org/10.1145/2430502.2430522
http://dx.doi.org/10.1145/2430502.2430522
http://www.infosun.fim.uni-passau.de/publications/docs/RAK+13vamos.pdf

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 151

References
1 Alexander von Rhein, Sven Apel, Christian Kästner, Thomas Thüm, and Ina Schaefer.

The PLA Model: On the Combination of Product-Line Analyses. In Proceedings of the
International Workshop on Variability Modelling of Software-intensive Systems (VaMoS),
pages 73–80. ACM, January 2013.

2 Christian Kästner and Sven Apel. Feature-Oriented Software Development. In Generative
and Transformational Techniques in Software Engineering IV, volume 7680 of Lecture Notes
in Computer Science, pages 346–382. Springer-Verlag, January 2013.

3 Thomas Thüm, Sven Apel, Christian Kästner, Martin Kuhlemann, Ina Schaefer, and
Gunter Saake. Analysis Strategies for Software Product Lines. Technical Report FIN-
004-2012, School of Computer Science, University of Magdeburg, April 2012.

3.3 Software Product Lines in Clafer
Kacper Bąk (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Kacper Bąk

Joint work of Bąk, Kacper; Czarnecki, Krzysztof; Wąsowski, Andrzej; Antkiewicz, Michal; Diskin, Zinovy; Liang,
Jimmy; Olaechea, Rafael; Murashkin, Alexandr

Main reference K. Bąk, K. Czarnecki, A. Wąsowski, “Feature and Meta-Models in Clafer: Mixed, Specialized, and
Coupled”, in Proc. of the 3rd Int’l Conf. on Software Language Engineering (SLE’10), LNCS,
Vol. 6563, pp. 102–122, Springer, 2011.

URL http://dx.doi.org/10.1007/978-3-642-19440-5_7
URL http://clafer.org

Clafer is a lightweight modeling language for modeling and analysis of software product lines.
The talk presents Clafer and showcases its features, such as feature modeling, the constraint
language, staged configuration, partial instances, and multi-objective optimization. It also
discusses two controversial design choices: concept unification and type-instance unification.

3.4 Analyzing Software Product Lines in Minutes instead of Years
Eric Bodden (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Eric Bodden

Joint work of Bodden, Eric; Toledo, Tarsis; Ribeiro, Marcio; Brabrand, Claus; Borba, Paulo; Mezini, Mira
Main reference E.Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, M. Mezini, “SPLLIFT – Statically

Analyzing Software Product Lines in Minutes Instead of Years”, in Proc. of the ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI’13), ACM, 2013.

URL http://dx.doi.org/10.1145/2491956.2491976
URL http://www.bodden.de/pubs/bmb+13spllift.pdf
URL http://www.bodden.de/2013/02/18/pldi-spllift/

A software product line (SPL) encodes a potentially large variety of software products as
variants of some common code base. Up until now, re-using traditional static analyses
for SPLs was virtually intractable, as it required programmers to generate and analyze all
products individually. In this work, however, we show how an important class of existing
inter- procedural static analyses can be transparently lifted to SPLs. Without requiring
programmers to change a single line of code, our approach SPLLIFT automatically converts
any analysis formulated for traditional programs within the popular IFDS framework for
inter- procedural, finite, distributive, subset problems to an SPL- aware analysis formulated
in the IDE framework, a well-known extension to IFDS. Using a full implementation based on

13091

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-19440-5_7
http://dx.doi.org/10.1007/978-3-642-19440-5_7
http://dx.doi.org/10.1007/978-3-642-19440-5_7
http://dx.doi.org/10.1007/978-3-642-19440-5_7
http://clafer.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2491956.2491976
http://dx.doi.org/10.1145/2491956.2491976
http://dx.doi.org/10.1145/2491956.2491976
http://dx.doi.org/10.1145/2491956.2491976
http://www.bodden.de/pubs/bmb+13spllift.pdf
http://www.bodden.de/2013/02/18/pldi-spllift/

152 13091 – Analysis, Test and Verification in The Presence of Variability

Soot, CIDE and JavaBDD, we show that with SPLLIFT one can reuse IFDS-based analyses
without changing a single line of code. Through experiments using three static analyses
applied to four Java-based product lines, we were able to show that our approach produces
correct results and outperforms the traditional approach by several orders of magnitude.

3.5 State of The Art in Analysis of Programs with Variability
Eric Bodden (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Eric Bodden

In this talk I will explain general principles behind static data-flow analysis, how data-flow
analysis has been used to decide interesting properties about software product lines, and
recent efforts on trying to lift existing static program analysis to software-product-line
analyses.

3.6 Intraprocedural Dataflow Analysis for Software Product Lines
Claus Brabrand (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Claus Brabrand

Joint work of Brabrand, Claus; Ribeiro, Márcio; Tolêdo, Társis; Winther, Johnni; Borba, Paulo
Main reference C. Brabrand, M. Ribeiro, T. Tolêdo, J. Winther, P. Borba, “Intraprocedural Dataflow Analysis for

Software Product Lines”, Transactions on Aspect-Oriented Software Development X, Vol. 10,
pp. 73–108, LNCS, Vol. 7800, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-36964-3_3

Software product lines (SPLs) developed using annotative approaches such as conditional
compilation come with an inherent risk of constructing erroneous products. For this reason,
it is essential to be able to analyze such SPLs. However, as dataflow analysis techniques
are not able to deal with SPLs, developers must generate and analyze all valid products
individually, which is expensive for non-trivial SPLs.

In this talk, we demonstrate how to take any standard intraprocedural dataflow analysis
and automatically turn it into a feature-sensitive dataflow analysis in five different ways
where the last is a combination of the other four. All analyses are capable of analyzing all
valid products of an SPL without having to generate all of them explicitly.

We have implemented all analyses using SOOT’s intraprocedural dataflow analysis
framework and experimentally evaluated four of them according to their performance and
memory characteristics on five qualitatively different SPLs. On our benchmarks, the combined
analysis strategy is up to almost eight times faster than the brute-force approach.

References
1 Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, and Paulo Borba. Intraprocedural Dataflow

Analysis for Software Product Lines. In Proceedings of the 11th International Conference
on Aspect- oriented Software Development (AOSD 2012), pages 13–24. ACM, Potsdam,
Germany, 2012.

2 Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, Johnni Winther, and Paulo Borba. In-
traprocedural Dataflow Analysis for Software Product Lines. In Transactions on Aspect-
Oriented Software Development X, vol. 10, pages 73–108, Springer, 2013.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-36964-3_3
http://dx.doi.org/10.1007/978-3-642-36964-3_3
http://dx.doi.org/10.1007/978-3-642-36964-3_3
http://dx.doi.org/10.1007/978-3-642-36964-3_3

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 153

3.7 If not interfaces, then views
Dave Clarke (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Dave Clarke

Features tend to cross-cut a software product line’s code base, and thus providing an interface
for them is difficult, if not impossible. For many applications, such as design and modelling
of SPLs and some analysis tasks, an alternative is makes more sense. The idea is to provide a
view of a software product line by abstracting away irrelevant details. Numerous formalisms
for SPLs are based on so-called super-imposed variants, wherein all products of the SPL
are captured within the same semantic model. Notions of abstraction for these models
should be used to produce views of features or feature combinations. This talk advocated
a comprehensive study of views, where no sensible notion of interface exists, in order to
simplify reasoning about SPLs.

3.8 On a Feature-Oriented Characterization of Exception Flows in
Software Product Lines

Roberta Coelho (Federal University of Rio Grande do Norte, BR)

License Creative Commons BY 3.0 Unported license
© Roberta Coelho

Joint work of Coelho, Roberta; Melo, Hugo; Kulesza, Uira
Main reference H. Melo, R. Coelho, U. Kulesza, “On a Feature-Oriented Characterization of Exception Flows in

Software Product Lines,” in Proc. of the 26th Brazilian Symp. on Software Engineering (SBES’12),
IEEE, 2012.

URL http://dx.doi.org/10.1109/SBES.2012.15

The Exception Handling (EH) is a widely used mechanism for building robust systems. In
Software Product Line (SPL) context it is not different. As EH mechanisms are embedded
in most of mainstream programming languages, we can find exception signalers and handlers
spread over code assets associated to common and variable SPL features. When exception
signalers and handlers are added to an SPL in an unplanned way, one of the possible
consequences is the generation of faulty products (i.e., products on which common or variable
features signal exceptions that are mistakenly caught inside the system). This talk reports
a first systematic study, based on manual inspection and static code analysis, in order to
(i) categorize the possible ways exceptions flow in SPLs, and (ii) analyze its consequences.
Fault-prone exception flows were consistently detected during this study; such as flows on
which a variable feature signaled an exception a different and unrelated variable feature
handled it. The talk is based on some previous publications [1, 2, 3].

References
1 Hugo Melo, Roberta Coelho, Uirá Kulesza On a Feature-Oriented Characterization of

Exception Flows in Software Product Lines. 26th Brazilian Symposium on Software Engin-
eering (SBES), August 2012.

2 Roberta Coelho, Awais Rashid, Uirá Kulesza, Arndt and von Staa, Carlos Lucena Unveiling
and taming liabilities of aspects in the presence of exceptions: A static analysis based
approach. In Information Sciences, 181, no. 13, pages 2700–2720. 2011

3 Roberta Coelho, Awais Rashid, Alessandro Garcia, Fabiano Ferrari, Nélio Cacho, Uirá
Kulesza, Arndt and von Staa, Carlos Lucena Assessing the impact of aspects on exception
flows: An exploratory study. In Proceedings of ECOOP 2008– European Conference on
Object-Oriented Programming, pages 207–234. 2008.

13091

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/SBES.2012.15
http://dx.doi.org/10.1109/SBES.2012.15
http://dx.doi.org/10.1109/SBES.2012.15
http://dx.doi.org/10.1109/SBES.2012.15

154 13091 – Analysis, Test and Verification in The Presence of Variability

3.9 ProVeLines: a Product Line of Model Checkers for Software
Product Lines and some of the Theory behind it

Maxime Cordy (University of Namur, BE)

License Creative Commons BY 3.0 Unported license
© Maxime Cordy

Joint work of Cordy, Maxime; Classen, Andreas; Heymans, Patrick; Schobbens, Pierre-Yves; Legay, Axel
Main reference A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, J.-F. Raskin, “Featured Transition

Systems: Foundations for Verifying Variability-Intensive Systems and their Application to LTL
Model Checking,” IEEE Transactions on Software Engineering, 2013.

URL http://dx.doi.org/10.1109/TSE.2012.86
URL http://info.fundp.ac.be/fts

Software Product Lines (SPLs) are families of similar software products built from a common
set of features. As the number of products of an SPL is potentially exponential in the number
of its features, the model checking problem is harder than for single software. A practical
way to face this exponential blow-up is to reuse common behaviour between products. We
previously introduced Featured Transition Systems, a mathematical model from which serves
as a basis for efficient SPL model checking techniques. Here, we present ProVeLines, a
product line of verifiers for SPLs that incorporates the results of over three years of research
on formal verification of SPLs. Being itself a product line, our tool is flexible and extensible,
and offers a wide range of solutions for SPL modelling and verification.

3.10 Toward the Systematic Derivation of Variational Program
Analyses

Martin Erwig (Oregon State University, US)

License Creative Commons BY 3.0 Unported license
© Martin Erwig

Joint work of Erwig, Martin; Walkingshaw, Eric
Main reference M. Erwig, E. Walkingshaw, “Variation Programming with the Choice Calculus”, in Proc. of the

Int’l Summer School on Generative and Transformational Techniques in Software Engineering IV
(GTTSE’11), LNCS, Vol. 7680, pp. 55–100, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-35992-7_2
URL http://eecs.oregonstate.edu/ erwig/papers/abstracts.html#GTTSE12

In this presentation I will illustrate some basic principles for the systematic derivation of
variational program analyses from non-variational ones. The approach is based on the view
of an analysis as a function f that maps programs from an object language L to elements
of some type T that represents the possible results of the analysis. The method proceeds
in a number of small steps. First, the syntax of L is extended to a language VL that can
represent variational programs. Then, in a similar way, the result type T is extended to a
type VT to represent variational results. The language extension is realized through the
choice calculus, which provides a generic representation for variation in (tree-structured)
software artifacts. Because of its generic structure, the choice calculus can essentially be used
as a variational type constructor V, and this makes the first two language extension steps
systematic. Finally, f is lifted into a variational analysis by employing a number of simple
transformations. Here it is the fact that the variational type constructor V is a monad that
makes much of the lifting systematic, because the complexity involved in lifting f can be
captured in many cases through an application of the monadic bind operation.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/TSE.2012.86
http://dx.doi.org/10.1109/TSE.2012.86
http://dx.doi.org/10.1109/TSE.2012.86
http://dx.doi.org/10.1109/TSE.2012.86
http://info.fundp.ac.be/fts
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-35992-7_2
http://dx.doi.org/10.1007/978-3-642-35992-7_2
http://dx.doi.org/10.1007/978-3-642-35992-7_2
http://dx.doi.org/10.1007/978-3-642-35992-7_2
http://eecs.oregonstate.edu/~erwig/papers/abstracts.html#GTTSE12

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 155

3.11 Topologically configurable systems as product families
Alessandro Fantechi (University of Firenze, IT)

License Creative Commons BY 3.0 Unported license
© Alessandro Fantechi

Main reference A. Fantechi, “Topologically configurable systems as product families”, to appear in the Proc. of the
17th Int’l Software Product Line Conf., Tokyo, August 2013.

We address a category of systems whose deployment requires a configuration according to
topological information. Actually, this study is inspired by the case of railway interlocking
systems, but gives a general definition of topologically configurable control systems. We
consider the application of product line engineering principles to the development of these
systems, e.g. by discussing the adoption of different approaches to achieve a flexible configur-
ation of products, that allow factorising most of the design effort, as typical in a product
line approach.

Things become more complex when there is a need of analysing the behaviour of such
systems, either by testing or by formal verification: the intricate relations between the actual
topology controlled by a product and its functional requirements may prevent any attempt
to factorise analysis activities.

Indeed, in the cited case of the interlocking systems, the heavy verification and certification
activities required by the safety regulations make a large part of the software development
costs. Every newly configured product needs to undergo such certification activities, and
little is saved from certifications made for previously deployed systems, with significant costs
for each new installation.

We will discuss how a product line approach can help, with special focus on formal
verification, showing that several research issues are still to be investigated in this direction.

3.12 Patterns in Configuration Dependence
Brady J. Garvin (University of Nebraska – Lincoln, US)

License Creative Commons BY 3.0 Unported license
© Brady J. Garvin

Joint work of Garvin, Brady J.; Cohen, Myra B.; Dwyer, Matthew B.

For configuration-aware testing and analysis techniques to effectively exploit whitebox
knowledge, it is essential that the mapping of configurability to source code be precise. Unfor-
tunately, as systems grow, less and less of the mapping is syntactically explicit; configuration
information may flow through non- configuration data and control dependencies, ultimately
rendering code dead in seemingly unrelated places. These dependency chains can grow quite
long, and the heavyweight analyses needed to track the relevant properties may not scale to
the whole-program level. I will give some examples in my talk.

Using a combination of static and dynamic analysis, we have established the configuration
dependence in some small subjects exactly, in order to look for common patterns. Following
earlier work, we express reachability of a block either as a CNF formula over atoms that
represent configuration options, or else the complement of such a formula, and, thus far, the
clauses tend to be extremely short (usually one literal, or, very rarely, two), with unique
clauses across all basic blocks being few. In addition to some illustrative data, I will also
overview results from previous studies that corroborate these findings.

13091

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
A. Fantechi, ``Topologically configurable systems as product families'', to appear in the Proc. of the 17th Int'l Software Product Line Conf., Tokyo, August 2013.
A. Fantechi, ``Topologically configurable systems as product families'', to appear in the Proc. of the 17th Int'l Software Product Line Conf., Tokyo, August 2013.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

156 13091 – Analysis, Test and Verification in The Presence of Variability

If these observations hold up in other settings, and we can reasonably assume these
patterns in larger systems, then we can drastically shrink the family of possible configuration
dependence formulae and therefore the analysis effort needed to identify the formula for a
particular basic block.

3.13 Making Software Product Line Evolution Safer
Rohit Gheyi (Federal University of Campina Grande, BR)

License Creative Commons BY 3.0 Unported license
© Rohit Gheyi

Developers evolve software product lines (SPLs) manually or using typical program refactoring
tools. However, when evolving a product line to introduce new features or to improve its
design, it is important to make sure that the behavior of existing products is not affected.
Typical program refactorings cannot guarantee that because the SPL context goes beyond
code and other kinds of core assets, and involves additional artifacts such as feature models
and configuration knowledge. Besides that, in a SPL we typically have to deal with a set
of possibly alternative assets that do not constitute a well-formed program. As a result,
manual changes and existing program refactoring tools may introduce behavioral changes
or invalidate existing product configurations. To avoid that, we propose approaches and
implement tools for making product line evolution safer; these tools check whether SPL
transformations are refinements in the sense that they preserve the behavior of the original
SPL products. This talk is based on some previous publications [1, 2].

References
1 Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. A theory of software product line

refinement. Theoretical Computer Science, 455:2 – 30, 2012.
2 Gustavo Soares, Rohit Gheyi, Tiago Massoni. Automated behavioral testing of refactoring

engines. IEEE Transactions on Software Engineering, 39: 147–162, 2013.

3.14 Reuse of Formal Verification Proofs By Abstract Method Calls
Reiner Hähnle (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Reiner Hähnle

Joint work of Hähnle, Reiner; Schaefer, Ina; Bubel, Richard
Main reference R. Hähnle, I. Schaefer, R. Bubel, “Reuse in Software Verification by Abstract Method Calls,” in

Proc. of the 24th Conf. on Automated Deduction (CADE’13), LNCS, Vol. 7898, pp. 300–314,
Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-38574-2_21

Modern software tends to undergo frequent requirement changes and typically is deployed in
many different scenarios. This poses significant challenges to formal software verification,
because it is not feasible to verify a software product from scratch after each change. It is
essential to perform verification in a modular fashion instead. The goal must be to reuse not
merely software artifacts, but also specification and verification effort.

In our setting code reuse is realized by delta-oriented programming, an approach where
a core program is gradually transformed by code “deltas” each of which corresponds to a
product feature. The delta-oriented paradigm is then extended to contract-based formal

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-38574-2_21
http://dx.doi.org/10.1007/978-3-642-38574-2_21
http://dx.doi.org/10.1007/978-3-642-38574-2_21
http://dx.doi.org/10.1007/978-3-642-38574-2_21

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 157

specifications and to verification proofs. As a next step towards modular verification we
transpose Liskov’s behavioural subtyping principle to the delta world. Finally, based on
the resulting theory, we perform a syntactic analysis of contract deltas that permits to
automatically factor out those parts of a verification proof that stays valid after applying a
code delta. This is achieved by a novel verification paradigma called “abstract verification”.

3.15 Complete and Reproducible Applications of SPL Testing
Martin Fagereng Johansen (University of Oslo, NO)

License Creative Commons BY 3.0 Unported license
© Martin Fagereng Johansen

Joint work of Johansen, Martin Fagereng; Haugen, Øystein; Fleurey, Franck; Carlson, Erik; Endresen, Jan; Wien,
Tormod

Main reference M.F. Johansen, Ø. Haugen, F. Fleurey, E. Carlson, J. Endresen, T. Wien, “A Technique for Agile
and Automatic Interaction Testing for Product Lines”, in Proc. of the 24th IFIP WG 6.1 Int’l
Conf. on Testing Software and Systems (ICTSS’12), LNCS, Vol. 7641, pp. 39–54, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-34691-0_5

Product line engineering is an inherently large scale effort; thus, most product lines are closed
source, proprietary and not free. Understanding and verifying the performance of product
line testing techniques benefits from a complete application of it that can be reproduced
freely and easily. As resource material for a recent paper, we did provide two such complete
and reproducible applications, available freely; one small application using CVL and model
driven engineering, and a second large application with the Eclipse IDEs using the Eclipse
plug-in system and ordinary textual programming. A quick overview of these two examples
will be given with views on the benefits of the availability of complete and reproducible
applications of SPL testing.

3.16 Analyzing the #ifdef hell with TypeChef – Or the quest for
realistic subjects in product-line analysis

Christian Kästner (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Christian Kästner

Joint work of Kästner, Christian; Apel, Sven; Berger, Thorsten; Erdweg, Sebastian; Giarrusso, Paolo; Liebig,
Joerg; Ostermann, Klaus; von Rhein, Alexander; Rendel, Tillmann

In recent years, work on analysis of configurable systems has exploded. I and many others
have investigated how we can make analysis of entire product lines faster, for example type
check all configurations of a program annotated with features. The community has come up
with many approaches to speed up analyses (type checking, model checking, static analysis,
parsing, and others) by orders of magnitude compared to a brute-force approach [20].

We have claimed that analyses of entire product lines are necessary, because there is
an exponentially exploding number of configurations. We have claimed that one could not
feasibly check every configuration in isolation. We have claimed that industrial product lines
typically have hundreds or thousands of configuration options and more configurations than
there are atoms in the universe. We have claimed that analysis is critical, because otherwise
users, who configure the systems, run into problems late in the development process when
problems are expensive to fix.

13091

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-34691-0_5
http://dx.doi.org/10.1007/978-3-642-34691-0_5
http://dx.doi.org/10.1007/978-3-642-34691-0_5
http://dx.doi.org/10.1007/978-3-642-34691-0_5
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

158 13091 – Analysis, Test and Verification in The Presence of Variability

When we proposed analysis mechanisms, our evaluations did not really align with our
claims. For example, in our work on type checking in CIDE [7], we implemented the checks
in a research environment and checked three systems with less than 15 configuration options
and one system with 42 configuration options—far away from “more than atoms in the
universe”. Given the fact that many of our arguments are empirical (SAT solvers, sharing in
typical applications), results may not immediately generalize. In fact, analyzable subject
systems are rare. The few systems we had, we shared. The graph product line [15] has served
the community well as a canonical example, but it’s tiny. MobileMedia [6] is a common
candidate but also rather limited in size and generalizability. The collected applications in
CIDE, FeatureHouse [1], and the collected feature models in SPLOT [16] are a great start,
but all relatively small and mostly stemming from student projects. We knew that there are
lot’s of large industrial product lines, but we could not get our hands on them.

With envy, we have been looking at evaluation subjects from the testing community.
Real-world large-scale systems, such as MySQL [23] and GCC [4, 22] with hundreds of
configuration options tested and bugs found. For feature modeling, the Kconfig model of the
Linux kernel turned out to be a great source for insights [17, 3].

To demonstrate that our analyses can scale to real-world problems and find real-world
bugs in actual product lines, we searched for larger subject systems. Even though potentially
not really product lines, we found that many C systems are highly configurable at compile
time through their use of #ifdef directives and the C preprocessor. And the good news was
that there are many openly available C systems with active developer communities, who
might care about our results.

In initial studies, we found that most open-source systems that we looked at contain a
massive amount of variability through the preprocessor [12]. Unfortunately, the way that
the preprocessor is used (not always but often enough) makes it hard to parse the code
without preprocessing it [13]. That meant, if we wanted to analyze that code in a precise
way, and after all we intended to perform at least type checking without running into many
false negatives, we would need to build our own infrastructure.

We decided to go after the Linux kernel, which was previously already investigated in the
community regarding it’s feature model and dead code [17, 3, 19, 18]. That was the birth of
the TypeChef project (initially short for “type checking #ifdef code”). Over the following
years, we developed a lexer and parser that could actually process unpreprocessed C code in
a sound and complete way [9]. On top, we have built various analyses, which by now form
an interesting ecoystem. As of writing, TypeChef includes parsers for GNU C and Java, a
type system for C, linker checks, control-flow graphs, and intra-procedural data-flow analysis,
first steps toward refactoring engines and interpreters and sampling algorithms; and several
more are currently planned and part of ongoing work.

TypeChef is now able to handle the x86 architecture of the Linux kernel (9 million lines
of code, 6000 configuration options), Busybox (250 thousand lines of code, 800 configuration
options) and we are currently looking into several other systems including OpenSSL, openVPN,
BerkeleyDB, Apache, ChibiOS, and vim. We have found and reported several configuration-
specific type errors already. We share the necessary scaffolding for these projects as well,
which makes it easy to use and extend TypeChef and build other analyses.

While ecosystem and community around TypeChef is thriving, TypeChef is not without
limitations. As any analysis of C code it struggles with C dialects and extensions. The parser
is unnecessarily slow for mere technical reasons and we do not offer unparsing yet. Setting
up analysis for a new system is difficult, because build paths, build system, and feature
model need to be reverse engineered—a task where the community has helped us a lot with

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 159

Linux [2, 17, 18] and a reason why we publish all our scaffolding to setups easier for others.
Overall, I have seen a great spirit in this community that has frequently shared subject

systems such as the graph product line [15], MobileMedia [6], and ArgoUML [5], and I have
tried to contribute my own with CIDE and now TypeChef. As a community, we should
foster and expand this sharing. Project collecting subject systems, such as first SPLOT for
feature models and now SPL2go for product-line implementations are great. Currently, I’d
be interested in such a repository for product lines with specifications or test cases...

Acknowledgments. TypeChef was only possible through great collaborations across several
research groups, including direct contributors to the project and many colleagues who have
helped with the infrastructure around it. I deeply appreciate the help of Sven Apel, Thorsten
Berger, Sebastian Erdweg, Paolo G. Giarrusso, Steffen Haase, Andy Kenner, Joerg Liebig,
Sarah Nadi, Klaus Ostermann, Alexander von Rhein, Tillmann Rendel, and Reinhard Tartler.

Further Reading on TypeChef. An in-depth discussion of the parsing approach and our
experience with parsing Linux was published at OOPSLA 2011 [9]. In the context of a
variability-aware module system, we discussed type checking and linker checks on the example
of Busybox, published at OOPSLA 2012 [10]. A more detailed discussion of the variability-
aware lexer (or partial preprocessor) was presented at VaMoS 2011 [8]. More information
on the performance of our type system and data-flow analysis can be found in a technical
report [14]. A simple variability-aware interpreter for executing test cases was build on
top of TypeChef and published at FOSD 2012 [11]. For an overview of variability-aware
analysis in general, please refer to the corresponding reports [20, 21] on the following webpage
http://fosd.net/spl-strategies.

References
1 S. Apel, C. Kästner, and C. Lengauer. Language-independent and automated software

composition: The FeatureHouse experience. IEEE Transactions on Software Engineering
(TSE), 2012. in press.

2 T. Berger, S. She, K. Czarnecki, and A. Wąsowski. Feature-to-code mapping in two large
product lines. In Proc. Int’l Software Product Line Conference (SPLC), pages 498–499.
Springer-Verlag, 2010.

3 T. Berger, S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki. Variability modeling in the
real: A perspective from the operating systems domain. In Proc. Int’l Conf. Automated
Software Engineering (ASE), pages 73–82. ACM Press, 2010.

4 M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing of highly-configurable systems
in the presence of constraints. In Proc. Int’l Symp. Software Testing and Analysis (ISSTA),
pages 129–139. ACM Press, 2007.

5 M. V. Couto, M. T. Valente, and E. Figueiredo. Extracting software product lines: A case
study using conditional compilation. In Proc. European Conf. on Software Maintenance
and Reengineering (CSMR), pages 191–200. IEEE Computer Society, 2011.

6 E. Figueiredo et al. Evolving software product lines with aspects: An empirical study on
design stability. In Proc. Int’l Conf. Software Engineering (ICSE), pages 261–270. ACM
Press, 2008.

7 C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking annotation-based product
lines. ACM Trans. Softw. Eng. Methodol. (TOSEM), 21(3):Article 14, 2012.

8 C. Kästner, P. G. Giarrusso, and K. Ostermann. Partial preprocessing of C code for
variability analysis. In Proc. Int’l Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), pages 137–140. ACM Press, 2011.

9 C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger.
Variability-aware parsing in the presence of lexical macros and conditional compilation.

13091

http://fosd.net/spl-strategies

160 13091 – Analysis, Test and Verification in The Presence of Variability

In Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 805–824. ACM Press, Oct. 2011.

10 C. Kästner, K. Ostermann, and S. Erdweg. A variability-aware module system. In
Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA). ACM Press, 2012.

11 C. Kästner, A. von Rhein, S. Erdweg, J. Pusch, S. Apel, T. Rendel, and K. Ostermann.
Toward variability-aware testing. In Proc. GPCE Workshop on Feature-Oriented Software
Development (FOSD), pages 1–8, 2012.

12 J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An analysis of the variability in
forty preprocessor-based software product lines. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 105–114. ACM Press, 2010.

13 J. Liebig, C. Kästner, and S. Apel. Analyzing the discipline of preprocessor annotations
in 30 million lines of C code. In Proc. Int’l Conf. Aspect-Oriented Software Development
(AOSD), pages 191–202. ACM Press, 2011.

14 J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer. Large-scale
variability-aware type checking and dataflow analysis. Technical report, Department of
Informatics and Mathematics, University of Passau, 2012.

15 R. Lopez-Herrejon and D. Batory. A standard problem for evaluating product-line meth-
odologies. In Proc. Int’l Conf. Generative and Component-Based Software Engineering
(GCSE), volume 2186 of Lecture Notes in Computer Science, pages 10–24. Springer-Verlag,
2001.

16 M. Mendonca, M. Branco, and D. Cowan. S.p.l.o.t.: Software product lines online tools.
In Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 761–762. ACM Press, 2009.

17 S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki. The variability model of
the Linux kernel. In Proc. Int’l Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), pages 45–51. University of Duisburg-Essen, 2010.

18 R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat. Feature consistency in
compile-time-configurable system software: Facing the Linux 10,000 feature problem. In
Proc. European Conference on Computer Systems (EuroSys), pages 47–60. ACM Press,
2011.

19 R. Tartler, J. Sincero, W. Schröder-Preikschat, and D. Lohmann. Dead or alive: Finding
zombie features in the Linux kernel. In Proc. GPCE Workshop on Feature-Oriented Software
Development (FOSD), pages 81–86. ACM Press, 2009.

20 T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and G. Saake. Analysis
strategies for software product lines. Technical Report FIN-004-2012, School of Computer
Science, University of Magdeburg, Apr. 2012.

21 A. von Rhein, S. Apel, C. Kästner, T. Thüm, and I. Schaefer. The pla model: On the com-
bination of product-line analyses. In Proceedings of the 7th Int’l Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS), pages 14:1–14:8, 1 2013.

22 X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in C compilers.
In Proc. Conf. Programming Language Design and Implementation (PLDI), pages 283–294.
ACM Press, 2011.

23 C. Yilmaz. Test case-aware combinatorial interaction testing. IEEE Trans. Softw. Eng.
(TSE), PP(99):1–1, 2012.

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 161

3.17 Is medical underwriting knowledge a field for verification in the
presence of variability?

Kim Lauenroth (adesso AG – Dortmund, DE)

License Creative Commons BY 3.0 Unported license
© Kim Lauenroth

Medical underwriting is a part of the application process and refers to the assessment of an
applicant for insurance coverage (e.g. life or health insurances). Many insurance companies
use software systems to automate the medical underwriting process.

The necessary assessment knowledge for these systems is specified by:

(a) a large set of medical variables including weight, height, body mass index (bmi), type of
diabetes;

(b) different questions to elicit medical variables, e.g. “What is your height (cm)?” or “What
is your weight (kg)?”;

(c) rules that trigger additional questions, e.g. if (height > 200) then ask “Do you suffer
from back pain?”;

(d) rules that lead to a risk decision (if (type of diabetes == 2 AND bmi >30) then reject
application).

Variables, rules, and questions vary in several dimensions, for example, between different
insurance products, and between countries or regions of the world. Quality assurance of this
assessment knowledge is a constant challenge for insurance companies, since the knowledge
is modified regularly because of new medical research results and new insurance products.

Insurance companies typically perform the quality assurance of their assessment knowledge
based on different sample test cases but do not use automated techniques such as model
checking. This talk has two goals:

1. Give an introduction into the field of medical underwriting and into the structure of the
assessment knowledge;

2. Discuss possible strategies for the automated quality assurance of assessment knowledge
with the seminar participants.

3.18 Scientific Workflows: Eternal Components, Changing Interfaces,
Varying Compositions

Tiziana Margaria (Universität Potsdam, DE)

License Creative Commons BY 3.0 Unported license
© Tiziana Margaria

Joint work of Margaria, Tiziana; Lamprecht, Anna-Lena
Main reference A.-L. Lamprecht, T. Margaria, “Scientific workflows: eternal components, changing interfaces,

varying compositions,” in Proc. of the 5th Int’l Conf. on Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Mastering Change – Part I (ISoLA’12),
LNCS, Vol. 7609, pp. 47–63, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-34026-0_5

We describe how scientific application domains are characterized by the long-term availability
of the basic computational components, and how software systems for managing the actual
scientific workflows must deal with changing service interfaces and varying service composi-
tions. In this light, we explain how rigorous technical and semantic abstraction, which is key

13091

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-34026-0_5
http://dx.doi.org/10.1007/978-3-642-34026-0_5
http://dx.doi.org/10.1007/978-3-642-34026-0_5
http://dx.doi.org/10.1007/978-3-642-34026-0_5
http://dx.doi.org/10.1007/978-3-642-34026-0_5

162 13091 – Analysis, Test and Verification in The Presence of Variability

to dealing with huge and heterogeneous application domains in an “extreme model driven
design” framework like the jABC, supports the management of workflow evolution. We
illustrate the different aspects by means of examples and experiences from the application of
the framework in different scientific application domains.

3.19 Compositional Verification of Software Product Lines
Jean-Vivien Millo (INRIA Sophia Antipolis – Méditerranée, FR)

License Creative Commons BY 3.0 Unported license
© Jean-Vivien Millo

Joint work of Millo, Jean-Vivien; Ramesh, S; Sankara Narayanan, Krishna; Narwane Kandhu, Ganesh
Main reference J.-V. Millo, S. Ramesh, K. Sankara Narayanan, G. Narwane Kandhu, “Compositional Verification

of Software Product Lines,” in Proc. of the 10th Int’l Conf. on Integrated Formal Methods
(IFM’13), LNCS, Vol. 7940, pp. 109–123, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-38613-8_8
URL http://hal.archives-ouvertes.fr/hal-00747533/

This work presents a novel approach to the design verification of Software Product Lines
(SPL). The proposed approach assumes that the requirements and designs at the feature
level are modeled as finite state machines with variability information. The variability
information at the requirement and design levels are expressed differently and at different
levels of abstraction. Also the proposed approach supports verification of SPL in which new
features and variability may be added incrementally. Given the design and requirements of an
SPL, the proposed design verification method ensures that every product at the design level
behaviourally conforms to a product at the requirement level. The conformance procedure is
compositional in the sense that the verification of an entire SPL consisting of multiple features
is reduced to the verification of the individual features. The method has been implemented
and demonstrated in a prototype tool SPLEnD (SPL Engine for Design Verification) on a
couple of fairly large case studies.

3.20 Feature Maintenance with Emergent Interfaces
Marcio Ribeiro (Federal University of Pernambuco – Recife, BR)

License Creative Commons BY 3.0 Unported license
© Marcio Ribeiro

Joint work of Ribeiro, Marcio; Pacheco, Humberto; Teixeira, Leopoldo; Borba, Paulo
Main reference M. Ribeiro, H. Pacheco, L. Teixeira, P. Borba. “Emergent Feature Modularization,” in In Onward!,

affiliated with ACM SIGPLAN Int’l Conf. on Systems, Programming, Languages and Applications:
Software for Humanity (SPLASH’10), pp. 11–18, ACM, 2012.

URL http://dx.doi.org/10.1145/1869542.1869545

Hidden code dependencies are responsible for many complications in maintenance tasks. With
the introduction of variable features in product lines, dependencies may even cross feature
boundaries and related problems are prone to be detected late. Many current implementation
techniques for product lines lack proper interfaces, which could make such dependencies
explicit. As alternative to changing the implementation approach, we introduce a tool-
based solution to support developers in recognizing and dealing with feature dependencies:
emergent interfaces. Emergent interfaces are computed on demand, based on feature-sensitive
interprocedural dataflow analysis. They emerge in the IDE and emulate benefits of modularity
not available in the host language.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-38613-8_8
http://dx.doi.org/10.1007/978-3-642-38613-8_8
http://dx.doi.org/10.1007/978-3-642-38613-8_8
http://dx.doi.org/10.1007/978-3-642-38613-8_8
http://hal.archives-ouvertes.fr/hal-00747533/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/1869542.1869545
http://dx.doi.org/10.1145/1869542.1869545
http://dx.doi.org/10.1145/1869542.1869545
http://dx.doi.org/10.1145/1869542.1869545

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 163

References
1 M. Ribeiro, H. Pacheco, L. Teixeira, and P. Borba. Emergent Feature Modularization. In

Onward!, affiliated with ACM SIGPLAN International Conference on Systems, Program-
ming, Languages and Applications: Software for Humanity (SPLASH), pages 11–18, New
York, NY, USA, 2010. ACM.

2 M. Ribeiro, F. Queiroz, P. Borba, T. Tolêdo, C. Brabrand, and S. Soares. On the impact of
feature dependencies when maintaining preprocessor-based software product lines. In Proc.
of the 10th ACM International Conference on Generative Programming and Component
Engineering (GPCE), pages 23–32, Portland, Oregon, USA, 2011. ACM.

3 C. Brabrand, M. Ribeiro, T. Tolêdo, J. Winther, and P. Borba. Intraprocedural dataflow
analysis for software product lines. Transactions on Aspect-Oriented Software Development
(TAOSD), 10:73–108, 2013.

3.21 Delta-oriented Regression-based Testing of Software Product
Lines

Ina Schaefer (TU Braunschweig, DE)

License Creative Commons BY 3.0 Unported license
© Ina Schaefer

Joint work of Schaefer, Ina; Malte Lochau; Sascha Lity
Main reference M. Lochau, I. Schaefer, J. Kamischke, S. Lity, “Incremental Model-Based Testing of Delta-Oriented

Software Product Lines,” in Proc. of the 6th Int’l Conf. on Tests and Proofs (TAP’12), LNCS,
Vol. 7305, pp. 67–82, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-30473-6_7

Software architecture specifications are of growing importance for coping with the complexity
of large-scale systems. They provide an abstract view on the high-level structural system
entities together with their explicit dependencies and build the basis for ensuring behavioral
conformance of component implementations and interactions, e.g., using model-based integra-
tion testing. The increasing inherent diversity of such large-scale variant-rich systems further
complicates quality assurance. In this article, we present a combination of architecture-driven
model-based testing principles and regression-inspired testing strategies for efficient, yet
comprehensive variability-aware conformance testing of variant-rich systems. We propose an
integrated delta-oriented architectural test modeling and testing approach for component
as well as integration testing that allows the generation and reuse of test artifacts among
different system variants. Furthermore, an automated derivation of retesting obligations
based on accurate delta-oriented architectural change impact analysis is provided. Based on
a formal conceptual framework that guarantees stable test coverage for every system variant,
we present a sample implementation of our approach and an evaluation of the validity and
efficiency by means of a case study from the automotive domain.

3.22 Model-Based Testing of Software Product Lines
Holger Schlingloff (HU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Holger Schlingloff

We give an introduction to software product lines as defined in the literature, share our view
on model-based testing, and survey some recent work in the model-based testing of software
product lines.

13091

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-30473-6_7
http://dx.doi.org/10.1007/978-3-642-30473-6_7
http://dx.doi.org/10.1007/978-3-642-30473-6_7
http://dx.doi.org/10.1007/978-3-642-30473-6_7
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

164 13091 – Analysis, Test and Verification in The Presence of Variability

3.23 Reuse of Test Cases for Model-Based Development of Software
Product Lines

Holger Schlingloff (HU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Holger Schlingloff

Main reference T. Kahsai, M. Roggenbach, B.-H. Schlingloff, “Specification-Based Testing for Software Product
Lines,” in Proc. of the 6th IEEE Int’l Conf. on Software Engineering and Formal Methods
(SEFM’08), pp. 149–158, IEEE CS, 2008.

URL http://dx.doi.org/10.1109/SEFM.2008.38
URL http://www2.informatik.hu-berlin.de/~hs/Publikationen/2008_SEFM_Kahsai-Roggenbach-

Schlingloff_Specification-based-Testing-of-Product-Lines.pdf

In a model-based development process of a software product line, the feature model determines
which functions are present in each instance. The functional model elaborates the features
to be transformed into an implementation. Both feature model and functional model
are constantly enhanced and extended to allow for the incorparation of new features and
functionalities. A frequent problem in this process is to decide which test cases can be reused
from one instance to the next one. New features can extend the existing ones, or be in
conflict with them. Thus, some test cases remain valid for the new product, while others
have to be reworked. In this talk, we formalize these notions and show how to decide which
parts of a test suite can be reused in a controlled product line development.

3.24 Test Case Prioritization Criteria for Software Product Lines
Sergio Segura (University of Sevilla, ES)

License Creative Commons BY 3.0 Unported license
© Sergio Segura

Testing all the products of a software product line is usually unfeasible, there are simply
too many. To address this problem, contributions in the last years has focused on obtaining
a representative subset of the products to be tested. But, once we have selected a set of
products, is the order in which they are tested relevant? We think so. This is what test case
prioritization techniques are about. For example, testers may wish to order their test cases
in order to achieve code coverage at the fastest rate possible, employ features in order of
expected frequency of use or increase the rate of fault detection of test cases. Our preliminary
results show that the order in which test cases are run may have a significant impact in the
rate of fault detection.

3.25 Composing Variable Components Considering Interaction
Behavior – A Problem Statement

Vanessa Stricker (Universität Duisburg – Essen, DE)

License Creative Commons BY 3.0 Unported license
© Vanessa Stricker

Current approaches for integrating variability into hierarchical component structures neglect
the behavioral specification of the component hierarchy. Though, in single system development
it is acknowledged that early verification, ensuring that a component composition behaves
as intended, is crucial. Especially the interaction between the components might result
in unexpected deviations and inconsistencies between the actual and intended behavior.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/SEFM.2008.38
http://dx.doi.org/10.1109/SEFM.2008.38
http://dx.doi.org/10.1109/SEFM.2008.38
http://dx.doi.org/10.1109/SEFM.2008.38
http://www2.informatik.hu-berlin.de/~hs/Publikationen/2008_SEFM_Kahsai-Roggenbach-Schlingloff_Specification-based-Testing-of-Product-Lines.pdf
http://www2.informatik.hu-berlin.de/~hs/Publikationen/2008_SEFM_Kahsai-Roggenbach-Schlingloff_Specification-based-Testing-of-Product-Lines.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 165

Detecting these inconsistencies in composed component behavior is even more important,
but also more complicated, in the presence of variability. The analysis of composed behavior
has to identify if variable components can safely be composed as well as how the components
have to be configured (i.e. binding of variability) in a composition in order to behave as
intended. This is in particular important since a component’s behavior might be restricted by
its relations to other components. The influence of variability onto these behavior restrictions
needs to be analyzed carefully and cannot be considered in isolation — especially if the
variability of the components is described decentralized in multiple variability models, e.g.
for 3rd party components or supplier product lines. To enable a rigorous analysis and
reasoning about the behavioral correctness of variable component compositions, existing
component-oriented design and analysis methods need to be extended to be able to consider
variability. Using existing approaches of the formal methods community in an engineering
method for composing variable components has to address certain challenges: There is a
large set of existing formal methods in single system development and software product
line engineering, which focus on verifying specific properties of component behaviors while
having certain assumptions and restrictions. Therefore, the question arises whether these
approaches can be used in an engineering approach, how they might have to be adapted and
combined and how the results can be interpreted and exploited.

3.26 Safe Evolution of Software Product Lines and Communities
Leopoldo Teixeira (Federal University of Pernambuco – Recife, BR)

License Creative Commons BY 3.0 Unported license
© Leopoldo Teixeira

Joint work of Teixeira, Leopoldo; Borba, Paulo; Gheyi, Rohit
Main reference P. Borba, L. Teixeira, R. Gheyi, “A theory of software product line refinement,” Theoretical

Computer Science, Vol. 455, pp. 2–30, 2010.
URL http://dx.doi.org/10.1016/j.tcs.2012.01.031

Software Product Line evolution can benefit from refactorings with formal basis, to ensure
correctness by construction. In this talk, we present a language independent theory of product
line refinement, establishing refinement properties that justify stepwise and compositional
product line evolution [1]. Instead of dealing directly with the stronger notion of refactoring,
we focus on refinement, which also captures behavior preservation but abstracts quality
improvement. We take the broader view of refinement as a relation that preserves properties
necessary to assure safe evolution. The theory also supports reasoning about sets of product
lines that define communities. To illustrate one of the practical applications of the theory,
we introduce and prove soundness of a number of refinement transformation templates [2],
that range from evolving individual artifacts to the product line as a whole, and sets of
product lines. These templates can be used as the basis to derive comprehensive product
line refinement catalogues. We use the Prototype Verification System to encode and prove
soundness of the theory and associated properties and templates.

References
1 Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. A theory of software product line

refinement. Theoretical Computer Science, 455:2–30, 2012.
2 Laís Neves, Leopoldo Teixeira, Demóstenes Sena, Vander Alves, Uirá Kulezsa, and Paulo

Borba. Investigating the safe evolution of software product lines. In Proceedings of the 10th
ACM International Conference on Generative Programming and Component Engineering
(GPCE’11), pages 33–42, 2011.

13091

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.tcs.2012.01.031
http://dx.doi.org/10.1016/j.tcs.2012.01.031
http://dx.doi.org/10.1016/j.tcs.2012.01.031

166 13091 – Analysis, Test and Verification in The Presence of Variability

3.27 Product-Line Verification with Contracts
Thomas Thüm (Universität Magdeburg, DE)

License Creative Commons BY 3.0 Unported license
© Thomas Thüm

Main reference T. Thüm, “Verification of Software Product Lines Using Contracts,” in Doktorandentagung
Magdeburger-Informatik-Tage (MIT), pp. 75–82, University of Magdeburg, 2012.

URL http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/Th:MIT12.pdf

Software product lines challenge existing specification and verification techniques known
from single-system engineering. Specifying and verifying each product separately involves
redundant effort and is usually not feasible. A promising technique is to specify and verify
product lines based on design by contract. We apply generative programming to contracts,
and generate contracts for each product based on domain artifacts. Furthermore, we analyze
whether all products fulfill their contracts using model checking, static analysis, and deductive
verification. Finally, we discuss pitfalls and benefits of design by contract for product-line
verification.

References
1 S. Apel, A. von Rhein, T. Thüm, and C. Kästner. Feature-Interaction Detection based on

Feature-Based Specifications. Computer Networks, 2013. To appear.
2 F. Benduhn. Contract-Aware Feature Composition. Bachelor’s thesis, University of Mag-

deburg, Germany, 2012.
3 W. Scholz, T. Thüm, S. Apel, and C. Lengauer. Automatic Detection of Feature Interac-

tions using the Java Modeling Language: An Experience Report. In Proc. Int’l Workshop
Feature-Oriented Software Development (FOSD), pages 7:1–7:8. ACM, 2011.

4 T. Thüm. Verification of Software Product Lines Using Contracts. In Doktorandentagung
Magdeburger-Informatik-Tage (MIT), pages 75–82. University of Magdeburg, 2012.

5 T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and G. Saake. Analysis
Strategies for Software Product Lines. Technical Report FIN-004-2012, School of Com-
puter Science, University of Magdeburg, Germany, 2012.

6 T. Thüm, I. Schaefer, S. Apel, and M. Hentschel. Family-Based Deductive Verification
of Software Product Lines. In Proc. Int’l Conf. Generative Programming and Component
Engineering (GPCE), pages 11–20. ACM, 2012.

7 T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel. Proof Composition for Deductive Veri-
fication of Software Product Lines. In Proc. Int’l Workshop Variability-intensive Systems
Testing, Validation and Verification (VAST), pages 270–277. IEEE, 2011.

8 T. Thüm, I. Schaefer, M. Kuhlemann, S. Apel, and G. Saake. Applying Design by Con-
tract to Feature-Oriented Programming. In Proc. Int’l Conf. Fundamental Approaches to
Software Engineering (FASE), volume 7212 of LNCS, pages 255–269. Springer, 2012.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/Th:MIT12.pdf
http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/Th:MIT12.pdf
http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/Th:MIT12.pdf

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 167

3.28 Evaluating Dataflow Analysis for Software Product Lines
Tarsis Tolêdo (Federal University of Pernambuco – Recife, BR)

License Creative Commons BY 3.0 Unported license
© Tarsis Tolêdo

Joint work of Brabrand, Claus; Ribeiro, Márcio; Tolêdo, Tarsis; Borba, Paulo
Main reference C. Brabrand, M. Ribeiro, T. Tolêdo, P. Borba, “Intraprocedural dataflow analysis for software

product lines,” in Proc. of the 11th Annual Int’l Conf. on Aspect-oriented Software Development
(AOSD’12), pp. 13–24, ACM, 2012.

URL http://dx.doi.org/10.1145/2162049.2162052

Brabrand et al. [1] proposed four different approaches to perform feature-sensitive intrapro-
cedural dataflow analysis, which avoids having to explicitly generate each variant of a method
before analyzing it. We evaluated these four approaches on four different software product
lines and learned that each approach behaves differently depending on different characteristics
of each method, like method size, size of lattice domain, number of confluence points; and also
on different characteristics of the variability constructs, such as number, size and position of
the #ifdef statements. In this talk, we discuss the confounding factors and possible strategies
for a better evaluation of the approaches.

References
1 Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, and Paulo Borba. Intraprocedural Dataflow

Analysis for Software Product Lines. In Proceedings of the 11th International Conference
on Aspect- oriented Software Development (AOSD 2012), pages 13–24. ACM, Potsdam,
Germany, 2012.

3.29 Inferring Variational Types for Variational Programs
Eric Walkingshaw (Oregon State University, US)

License Creative Commons BY 3.0 Unported license
© Eric Walkingshaw

Joint work of Chen, Sheng; Erwig, Martin; Walkingshaw, Eric
Main reference S. Chen, M. Erwig, E. Walkingshaw, “An Error-Tolerant Type System for Variational Lambda

Calculus,” in Proc. of the ACM SIGPLAN Int’l Conf. on Functional Programming (ICFP’12),
pp. 29–40, ACM, 2012.

URL http://dx.doi.org/10.1145/2364527.2364535
URL http://eecs.oregonstate.edu/~erwig/ToSC/VLC-TypeSystem.pdf

I presented a type system and type inference algorithm for variational lambda calculus (VLC).
VLC extends the lambda calculus with a simple construct for representing variation points
as choices between alternatives. Each choice is associated with a dimension and all choices
in the same dimension are synchronized. The type of a VLC expression is a correspondingly
variational type. VLC and variational types are two different instantiations of the choice
calculus, making the extension of the Damas-Milner algorithm systematic, and giving us
many components of the type system and inference algorithm “for free”.

References
1 S. Chen, M. Erwig, and E. Walkingshaw. Extending Type Inference to Variational Pro-

grams. (Journal paper, in minor revision). 2013.
2 S. Chen, M. Erwig, and E. Walkingshaw. An Error- Tolerant Type System for Variational

Lambda Calculus. ACM SIGPLAN Int. Conf. on Functional Programming, pages 29–40,
2012.

13091

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2162049.2162052
http://dx.doi.org/10.1145/2162049.2162052
http://dx.doi.org/10.1145/2162049.2162052
http://dx.doi.org/10.1145/2162049.2162052
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2364527.2364535
http://dx.doi.org/10.1145/2364527.2364535
http://dx.doi.org/10.1145/2364527.2364535
http://dx.doi.org/10.1145/2364527.2364535
http://eecs.oregonstate.edu/~erwig/ToSC/VLC-TypeSystem.pdf

168 13091 – Analysis, Test and Verification in The Presence of Variability

3.30 Combinatorial Interaction Testing
Cemal Yilmaz (Sabanci University – Istanbul, TR)

License Creative Commons BY 3.0 Unported license
© Cemal Yilmaz

Main reference C. Yilmaz, “Test Case-Aware Combinatorial Interaction Testing”, IEEE Transactions on Software
Engineering, Vol. 39, No. 5, pp. 684–706, 2013.

URL http://dx.doi.org/10.1109/TSE.2012.65

The configuration spaces of modern software systems are too large to test exhaustively.
Combinatorial interaction testing (CIT) approaches, such as covering arrays, systematically
sample the configuration space and test only the selected configurations. Given a configuration
space model, a t-way covering array is a set of configurations in which each valid combination
of option settings for every combination of t options appears at least once. This talk has two
parts. In the first part, I provide a brief survey of CIT approaches, including t-way covering
arrays, system-wide inter-option constraints, seeding mechanisms, and variable strength
covering arrays. In the second part, I introduce two novel combinatorial objects for testing,
namely test case-aware covering arrays and cost-aware covering arrays. Traditional covering
arrays, while taking system-wide inter-option constraints into account, do not provide a
systematic way of handling test case-specific inter-option constraints. Thus they suffer from
masking effects – unaccounted test case- specific constraints perturb program executions
so as to prevent some option- related behaviors from being exercised. On the other hand,
test case-aware covering arrays account for test case-specific constraints while constructing
covering sets. A t-way test case-aware covering array is not just a set of configurations
as is the case in traditional covering arrays, but a set of configurations, each of which is
associated with a set of test cases, such that all system-wide and test case-specific constraints
are satisfied and that, for each test case, each valid combination of option settings for every
combination of t options appears at least once in the set of configurations that the test case is
associated with. Another downside of traditional covering arrays is that they simply assume
that every configuration costs the same. We, however, argue that this is often not the case in
practice. Cost aware-covering arrays take actual cost of testing into account when computing
covering sets. A t-way cost-aware covering array is a t- way covering array that minimizes a
given cost function.

3.31 Effective Test Execution for Software Product Lines
Sabrina de Figueirêdo Souto (Federal University of Pernambuco – Recife, BR)

License Creative Commons BY 3.0 Unported license
© Sabrina de Figueirêdo Souto

Joint work of de Figueirêdo Souto, Sabrina; d’Amorim, Marcelo
URL http://www.cin.ufpe.br/~sfs/souto-dagstuhl2013-talk.pdf

Software Product Lines (SPLs) have gained significant attention recently as an approach
to improve productivity in development of software families. Considering that the number
of valid products in one SPLs can be very high, one important practical problem is to
speedup testing. This paper evaluates Symbolic Execution of Features (SEF) to address
this problem. It is widely known that general symbolic execution is expensive compared to
concrete execution. The efficiency of SEF comes from its ability to partition the state in two
parts: one symbolic and one concrete. The symbolic part models the features which need to
be enabled in the system along the analysis of one path while the concrete part models the

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/TSE.2012.65
http://dx.doi.org/10.1109/TSE.2012.65
http://dx.doi.org/10.1109/TSE.2012.65
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.cin.ufpe.br/~sfs/souto-dagstuhl2013-talk.pdf

Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wąsowski 169

entire program state. In SEF, the symbolic data does not flow to the stores associated to
the concrete parts of the state; hence, operations that elaborate the program state perform
efficiently as they only manipulate concrete data. Feasibility checking of paths is achieved
with efficient incremental sat solving of feature constraints.

3.32 Modelling, analysing and verifying variability by means of Modal
Transition Systems

Maurice H. ter Beek (CNR – Pisa, IT)

License Creative Commons BY 3.0 Unported license
© Maurice H. ter Beek

Joint work of ter Beek, Maurice H.; Fantechi, Alessandro; Gnesi, Stefania; Mazzanti, Franco; Asirelli, Patrizia
Main reference P. Asirelli, M.H. ter Beek, S. Gnesi, A.Fantechi, “Formal Description of Variability in Product

Families,” in Proc. of the 15th Int’l Software Product Line Conference (SPLC’11), pp. 130–139,
IEEE, 2011.

URL http://dx.doi.org/10.1109/SPLC.2011.34

Our aim is a unifying logical framework for modelling, analysing and verifying behavioural
variability in product families, with tool support for formal verification. We use Modal
Transition Systems (MTSs) for modelling the behaviour and v-ACTL, a suitable action-based
branching-time temporal logic interpreted over MTSs, for the necessary additional constraints.
Our tool (VMC) accepts a product family specified as an MTS, possibly with additional
variability constraints. Subsequently, VMC can be used for the derivation, exploration and
analysis (from ‘family-based’ to ‘product-based’ analyses) of the family and its products,
including the efficient verification of temporal logic properties through on-the-fly model
checking. This talk is based on a number of previous publications [1, 2, 3].

References
1 Patrizia Asirelli, Maurice H. ter Beek, Alessandro Fantechi, and Stefania Gnesi. A Lo-

gical Framework to Deal with Variability. In Proceedings 8th International Conference on
Integrated Formal Methods (IFM 2010). LNCS 6396, Springer, 2010, 43–58.

2 Patrizia Asirelli, Maurice H. ter Beek, Alessandro Fantechi, and Stefania Gnesi. Formal
Description of Variability in Product Families. In Proceedings 15th International Software
Product Line Conference (SPLC 2011). IEEE, 2011, 130–139.

3 Maurice H. ter Beek, Franco Mazzanti, and Aldi Sulova. VMC: A Tool for Product Vari-
ability Analysis. In Proceedings 18th International Symposium on Formal Methods (FM
2012). LNCS 7436, Springer, 2012, 450–454.

13091

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/SPLC.2011.34
http://dx.doi.org/10.1109/SPLC.2011.34
http://dx.doi.org/10.1109/SPLC.2011.34
http://dx.doi.org/10.1109/SPLC.2011.34

170 13091 – Analysis, Test and Verification in The Presence of Variability

Participants
Vander Alves

University of Brasilia, BR
Sven Apel

Universität Passau, DE
Joanne M. Atlee

University of Waterloo, CA
Kacper Bąk

University of Waterloo, CA
Don Batory

University of Texas at Austin, US
Thorsten Berger

IT Univ. of Copenhagen, DK
Eric Bodden

TU Darmstadt, DE
Paulo Borba

University of Pernambuco –
Recife, BR

Claus Brabrand
IT Univ. of Copenhagen, DK

Dave Clarke
KU Leuven, BE

Andreas Classen
University of Namur, BE

Roberta Coelho
Federal University of Rio Grande
do Norte, BR

Myra Cohen
Univ. of Nebraska – Lincoln, US

Maxime Cordy
Facultés Universitaires
Notre-Dame de la Paix, BE

Krzysztof Czarnecki
University of Waterloo, CA

Sabrina de Figueirêdo Souto
University of Pernambuco –
Recife, BR

Martin Erwig
Oregon State University, US

Alessandro Fantechi
University of Firenze, IT

Brady J. Garvin
Univ. of Nebraska – Lincoln, US

Rohit Gheyi
Federal University of Campina
Grande, BR

Stefania Gnesi
CNR – Pisa, IT

Reiner Hähnle
TU Darmstadt, DE

Øystein Haugen
SINTEF – Oslo, NO

Martin Fagereng Johansen
University of Oslo, NO

Christian Kästner
Carnegie Mellon University –
Pittsburgh, US

Shriram Krishnamurthi
Brown University, US

Kim Lauenroth
adesso AG – Dortmund, DE

Axel Legay
INRIA Bretagne Atlantique –
Rennes, FR

Martin Leucker
Universität Lübeck, DE

Tiziana Margaria
Universität Potsdam, DE

Dusica Marijan
Simula Reseach Laboratory –
Lysaker, NO

Jean-Vivien Millo
INRIA Sophia Antipolis –
Méditerranée, FR

Gilles Perrouin
University of Namur, BE

Márcio Ribeiro
University of Pernambuco –
Recife, BR

Ina Schaefer
TU Braunschweig, DE

Holger Schlingloff
HU Berlin, DE

Sergio Segura
University of Sevilla, ES

Vanessa Stricker
Univ. Duisburg–Essen, DE

Leopoldo Teixeira
University of Pernambuco –
Recife, BR

Maurice H. ter Beek
CNR – Pisa, IT

Thomas Thüm
Universität Magdeburg, DE

Társis Tolêdo
University of Pernambuco –
Recife, BR

Salvador Trujillo
Ikerlan Research Centre –
Arrasate-Mondragón, ES

Eric Walkingshaw
Oregon State University, US

Andrzej Wąsowski
IT Univ. of Copenhagen, DK

Cemal Yilmaz
Sabanci Univ. – Istanbul, TR

	Executive Summary Paulo Borba, Myra B. Cohen, Axel Legay, and Andrzej Wasowski
	Table of Contents
	Overview of Talks
	Family and Sampling-based Reliability Analysis in Dynamic Software Product Line: the Body Area Network Case Vander Alves
	Classifying and Unifying Product-Line Analyses Sven Apel
	Software Product Lines in Clafer Kacper Bak
	Analyzing Software Product Lines in Minutes instead of Years Eric Bodden
	State of The Art in Analysis of Programs with Variability Eric Bodden
	Intraprocedural Dataflow Analysis for Software Product Lines Claus Brabrand
	If not interfaces, then views Dave Clarke
	On a Feature-Oriented Characterization of Exception Flows in Software Product Lines Roberta Coelho
	ProVeLines: a Product Line of Model Checkers for Software Product Lines and some of the Theory behind it Maxime Cordy
	Toward the Systematic Derivation of Variational Program Analyses Martin Erwig
	Topologically configurable systems as product families Alessandro Fantechi
	Patterns in Configuration Dependence Brady J. Garvin
	Making Software Product Line Evolution Safer Rohit Gheyi
	Reuse of Formal Verification Proofs By Abstract Method Calls Reiner Hähnle
	Complete and Reproducible Applications of SPL Testing Martin Fagereng Johansen
	Analyzing the #ifdef hell with TypeChef – Or the quest for realistic subjects in product-line analysis Christian Kästner
	Is medical underwriting knowledge a field for verification in the presence of variability? Kim Lauenroth
	Scientific Workflows: Eternal Components, Changing Interfaces, Varying Compositions Tiziana Margaria
	Compositional Verification of Software Product Lines Jean-Vivien Millo
	Feature Maintenance with Emergent Interfaces Marcio Ribeiro
	Delta-oriented Regression-based Testing of Software Product Lines Ina Schaefer
	Model-Based Testing of Software Product Lines Holger Schlingloff
	Reuse of Test Cases for Model-Based Development of Software Product Lines Holger Schlingloff
	Test Case Prioritization Criteria for Software Product Lines Sergio Segura
	Composing Variable Components Considering Interaction Behavior – A Problem Statement Vanessa Stricker
	Safe Evolution of Software Product Lines and Communities Leopoldo Teixeira
	Product-Line Verification with Contracts Thomas Thüm
	Evaluating Dataflow Analysis for Software Product Lines Tarsis Tolêdo
	Inferring Variational Types for Variational Programs Eric Walkingshaw
	Combinatorial Interaction Testing Cemal Yilmaz
	Effective Test Execution for Software Product Lines Sabrina de Figueirêdo Souto
	Modelling, analysing and verifying variability by means of Modal Transition Systems Maurice H. ter Beek

	Participants

