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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13101 “Computa-
tional Geometry”. The seminar was held from 3rd to 8th March 2013 and 47 senior and young
researchers from various countries and continents attended it. Recent developments in the field
were presented and new challenges in computational geometry were identified.
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Computational Geometry and its Evolution
The field of computational geometry is concerned with the design, analysis, and implementa-
tion of algorithms for geometric and topological problems, which arise in a wide range of
areas, including computer graphics, CAD, robotics computer vision, image processing, spatial
databases, GIS, molecular biology, and sensor networks. Since the mid 1980s, computational
geometry has arisen as an independent field, with its own international conferences and
journals.

In the early years mostly theoretical foundations of geometric algorithms were laid and
fundamental research remains an important issue in the field. Meanwhile, as the field ma-
tured, researchers have started paying close attention to applications and implementations
of geometric and topological algorithms. Several software libraries for geometric compu-
tation (e.g. LEDA, CGAL, CORE) have been developed. Remarkably, this emphasis on
applications and implementations has emerged from the originally theoretically oriented
computational geometry community itself, so many researchers are concerned now with
theoretical foundations as well as implementations.
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Seminar Topics
The seminar presented recent developments in the field and identified new challenges for
computational geometry. Below we list some of the most interesting subareas of the field at
this stage, covering both theoretical and practical issues in computational geometry.

Theoretical foundations of computational geometry lie in combinatorial geometry and
its algorithmic aspects. They are of an enduring relevance for the field, particularly the
design and the analysis of efficient algorithms require deep theoretical insights.
Geometric Computing has become an integral part of the research in computational
geometry. Besides general software design questions, especially robustness of geometric
algorithms is important. Several methods have been suggested and investigated to make
geometric algorithms numerically robust while keeping them efficient, which lead to
interaction with the field of computer algebra, numerical analysis, and topology.
Computational topology concentrates on the properties of geometric objects that go
beyond metric representation: modeling and reconstruction of surfaces, shape similarity
and classification, and persistence are key concepts with applications in molecular biology,
computer vision, and geometric databases.
In its early years, computational geometry concentrated on low dimensions. High-
dimensional data has become very important recently, in particular, in work related
to machine learning and data analysis. Standard solutions suffer from the curse of
dimensionality. This has led to extensive work on dimension-reduction and embedding
techniques.
Various applications such as robotics, GIS, or CAD lead to interesting variants of the
classical topics originally investigated, including convex hulls, Voronoi diagrams and
Delaunay triangulations, and geometric data structures. For example, Voronoi diagrams
and nearest-neighbor data structures under various metrics have turned out to be useful
for many applications and are being investigated intensively.
Massive geometric data sets are being generated by networks of sensors at unprecedented
spatial and temporal scale. How to store, analyze, query, and visualize them has
raised several algorithmic challenges. New computational models have been proposed to
meet these challenges, e.g., streaming model, communication-efficient algorithms, and
maintaining geometric summaries.

Participants
47 researchers from various countries and continents attended the seminar, showing the
strong interest of the community for this event. The feedback from participants was very
positive.

Dagstuhl seminars on computational geometry have been organized in a two year rhythm
since a start in 1990. They have been extremely successful both in disseminating the
knowledge and identifying new research thrusts. Many major results in computational
geometry were first presented in Dagstuhl seminars, and interactions among the participants
at these seminars have led to numerous new results in the field. These seminars have
also played an important role in bringing researchers together, fostering collaboration, and
exposing young talent to the seniors of the field. They have arguably been the most influential
meetings in the field of computational geometry.
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No other meeting in our field allows young researchers to meet with, get to know, and work
with well-known and senior scholars to the extent possible at Dagstuhl. To accommodate
new, younger researchers, the organizers held a lottery for the first time this year. From an
initial list of selected researchers, we randomly selected a certain number of senior, young,
and female participants. Researchers on the initial list who were not selected by the lottery
were notified by us separately per email, so that they knew that they were not forgotten, and
to reassure them that—with better luck—they will have another chance in future seminars.

We believe that the lottery created space to invite younger researchers, rejuvenating
the seminar, while keeping a large group of senior and well-known scholars involved. The
seminar was much “younger” than in the past, and certainly more “family-friendly.” Five
young children roaming the premises created an even cosier atmosphere than we are used in
Dagstuhl. Without decreasing the quality of the seminar, we had a more balanced attendance
than in the past. Feedback from both seminar participants and from researchers who were
not selected was uniformly positive.

Dagstuhl itself is a great strength of the seminar. Dagstuhl allows people to really meet
and socialize, providing them with a wonderful atmosphere of a unique closed and pleasant
environment, which is highly beneficial to interactions. Therefore, we warmly thank the
scientific, administrative and technical staff at Schloss Dagstuhl!

13101



4 13101 – Computational Geometry

2 Table of Contents

Executive Summary
Otfried Cheong, Kurt Mehlhorn, and Monique Teillaud . . . . . . . . . . . . . . . . 1

Overview of Talks
Union of Random Minkowski Sums and Network Vulnerability Analysis
Pankaj Kumar Agarwal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Fast Point Location for Easy Points
Boris Aronov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Geometry-driven collapses for simplifying Cech complexes
Dominique Attali . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Exact Symbolic-Numeric Computation of Planar Algebraic Curves
Eric Berberich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Four Soviets Walk the Dog – with an Application to Alt’s Conjecture
Kevin Buchin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Trajectory Grouping Structures
Maike Buchin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Approximate Shortest Descending Paths
Siu-Wing Cheng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Graph Induced Complex on Point Data
Tamal K. Dey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Geometric Input Models
Anne Driemel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Efficiently hex-meshing things with topology
Jeff Erickson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Theory Meets Practice: Two Videos
Sándor Fekete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Random hypergraphs and small silhouettes
Marc Glisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Simplifying inclusion-exclusion formulas
Xavier Goaoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Fréchet Queries in Geometric Trees
Joachim Gudmundsson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Geometric properties of space-filling curves: some results and open problems
Herman J. Haverkort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Qualitative symbolic perturbations
Menelaos Karavelas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Bottleneck Non-Crossing Matching in the Plane
Matthew J. Katz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

On the Complexity of Higher Order Abstract Voronoi Diagrams
Rolf Klein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



Otfried Cheong, Kurt Mehlhorn, and Monique Teillaud 5

On numerical algorithms for the topology of curves with simple singularities
Guillaume Moroz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Output-Sensitive Well-Separated Pair Decompositions for Dynamic Point Sets
David M. Mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Improved Approximation for Geometric Unique Coverage Problems
Yoshio Okamoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Kinetic data structures in the black-box model
Marcel J. M. Roeloffzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

α-Visibility
Jörg-Rüdiger Sack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Parallel computation of the Hausdorff distance between shapes
Ludmila Scharf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Convex Transversals
Lena Schlipf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Delaunay and other triangulations of moving point sets: What’s going on?
Micha Sharir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Towards Elastic Shape Matching
Fabian Stehn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Extended Formulations for polytopes
Hans Raj Tiwary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Reverse stabbing queries in galleries
Suresh Venkatasubramanian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A Faster Algorithm for Computing Motorcycle Graphs
Antoine Vigneron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Towards Understanding Gaussian Weighted Graph Laplacian
Yusu Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

13101



6 13101 – Computational Geometry

3 Overview of Talks

3.1 Union of Random Minkowski Sums and Network Vulnerability
Analysis

Pankaj Kumar Agarwal (Duke University – Durham, US)

License Creative Commons BY 3.0 Unported license
© Pankaj Kumar Agarwal

Let C = {C1, . . . , Cn} be a set of n pairwise-disjoint convex s-gons, for some constant s, and
let π be a probability density function (pdf) over the non-negative reals. For each i, let Ki

be the Minkowski sum of Ci with a disk of radius ri, where each ri is a random non-negative
number drawn independently from the distribution determined by π. We show that the
expected complexity of the union of K1, . . . ,Kn is O(n logn), for any pdf π; the constant of
proportionality depends on s, but not on the pdf.

Next, we consider the following problem that arises in analyzing the vulnerability of a
network under a physical attack. Let G = (V,E) be a planar geometric graph where E is
a set of n line segments with pairwise-disjoint relative interiors. Let φ : <≥0 → [0, 1] be
an edge failure probability function, where a physical attack at a location x ∈ <2 causes an
edge e of E at distance r from x to fail with probability φ(r); we assume that φ is of the
form 1− Π(x), where Π is a cumulative distribution function on the non-negative reals. The
goal is to compute the most vulnerable location for G, i.e., the location of the attack that
maximizes the expected number of failing edges of G. Using our bound on the complexity of
the union of random Minkowski sums, we present a near-linear Monte-Carlo algorithm for
computing a location that is an approximately most vulnerable location of attack for G.

3.2 Fast Point Location for Easy Points
Boris Aronov (Polytechnic Inst. of NYU, US)

License Creative Commons BY 3.0 Unported license
© Boris Aronov

Joint work of Aronov, Boris; de Berg, Mark; Roeloffzen, Marcel; Speckmann, Bettina
Main reference B. Aronov, M. de Berg, M. Roeloffzen, B. Speckmann, “Distance-Sensitive Planar Point Location,”

WADS 2013, to appear.
URL http://www.wads.org

Let S be a connected planar polygonal subdivision with n edges and of total area 1. We
present a data structure for point location in S where queries with points far away from any
region boundary are answered faster. More precisely, we show that point location queries can
be answered in time O(1 + min(log 1

∆p
, logn)), where ∆p is the distance of the query point p

to the boundary of the region containing p. Our structure is based on the following result:
any simple polygon P can be decomposed into a linear number of convex quadrilaterals with
the following property: for any point p ∈ P , the quadrilateral containing p has area Ω(∆2

p).
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3.3 Geometry-driven collapses for simplifying Cech complexes
Dominique Attali (GIPSA Lab – Saint Martin d’Hères, FR)

License Creative Commons BY 3.0 Unported license
© Dominique Attali

Joint work of Attali, Dominique; Lieutier, André
Main reference D. Attali, A. Lieutier, “Geometry driven collapses for converting a cech complex into a

triangulation of a nicely triangulable shape,” arXiv:1304.3680v1 [cs.CG], 2013.
URL http://arxiv.org/abs/1304.3680v1

In many practical situations, the object of study is only known through a finite set of possibly
noisy sample points. It is then desirable to try to recover the geometry and the topology of
the object from this information.

In this talk, we will focus on an approach that approximates a shape from a set of sample
points by returning the Rips complex of the points. Given a point set P and a scale parameter
r, the Rips complex is the simplicial complex whose simplices are subsets of points in P
with diameter at most 2r. Rips complexes have generally a size and dimension much too
large to allow an explicit representation. Nonetheless, Rips complexes enjoy the property to
be completely determined by the graph of theirs vertices and edges which thus provide a
compressed form of storage (quadratic in the number of data points and linear in the ambient
dimension). This suggests to reconstruct a shape by first building the Rips complex of the
data points at some scale (encoded with its vertices and edges) and second by simplifying
the result through a sequence of elementary operations. In previous work, we formulated
conditions under which the Rips complex of the point set at some scale reflects the homotopy
type of the shape [1, 2]. In this talk, we give conditions under which the complex can be
transformed by a sequence of collapses into a triangulation of the shape [3].

References
1 D. Attali and A. Lieutier. Reconstructing shapes with guarantees by unions of convex sets.

In Proc. SoCG 2010, pp. 344–353, 2010.
2 D. Attali, A. Lieutier, and D. Salinas. Vietoris-Rips complexes also provide topologically

correct reconstructions of sampled shapes. Computational Geometry: Theory and Applica-
tions (CGTA), 46:448–465, 2012.

3 D. Attali and A. Lieutier. Geometry driven collapses for converting a cech complex into a
triangulation of a nicely triangulable shape. arXiv preprint arXiv:1304.3680, 2013.

3.4 Exact Symbolic-Numeric Computation of Planar Algebraic Curves
Eric Berberich (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Eric Berberich

Joint work of Berberich, Eric; Emeliyanenko, Pavel; Kobel, Alexander; Sagraloff, Michael
Main reference Eric Berberich, Pavel Emeliyanenko, Alexander Kobel, Michael Sagraloff, “Exact

Symbolic-Numeric Computation of Planar Algebraic Curves,” arXiv:1201.1548v1 [cs.CG], 2012.
URL http://arxiv.org/abs/1201.1548v1

We present a certified and complete algorithm to compute arrangements of real planar
algebraic curves. It computes the decomposition of the plane induced by a finite number
of algebraic curves in terms of a cylindrical algebraic decomposition. From a high-level
perspective, the overall method splits into two main subroutines, namely an algorithm denoted
Bisolve to isolate the real solutions of a zero-dimensional bivariate system, and an algorithm
denoted GeoTop to compute the topology of a single algebraic curve. Compared to existing
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approaches based on elimination techniques, we considerably improve the corresponding
lifting steps in both subroutines. As a result, generic position of the input system is never
assumed, and thus our algorithm never demands for any change of coordinates. In addition, we
significantly limit the types of symbolic operations involved, that is, we only use resultant and
gcd computations as purely symbolic operations. The latter results are achieved by combining
techniques from different fields such as (modular) symbolic computation, numerical analysis
and algebraic geometry. We have implemented our algorithms as prototypical contributions
to the C++-project Cgal. We exploit graphics hardware to expedite the remaining symbolic
computations. We have also compared our implementation with the current reference
implementations, that is, Lgp and Maple’s Isolate for polynomial system solving, and Cgal’s
bivariate algebraic kernel for analyses and arrangement computations of algebraic curves.
For various series of challenging instances, our exhaustive experiments show that the new
implementations outperform the existing ones.

3.5 Four Soviets Walk the Dog – with an Application to Alt’s
Conjecture

Kevin Buchin (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Kevin Buchin

Joint work of Buchin, Kevin; Buchin, Maike; Meulemans, Wouter; Mulzer, Wolfgang
Main reference K. Buchin, M. Buchin, W. Meulemans, W. Mulzer, “Four Soviets Walk the Dog-with an

Application to Alt’s Conjecture,” arXiv:1209.4403v2 [cs.CG], 2012.
URL http://arxiv.org/abs/1209.4403v2

Given two polygonal curves in the plane, there are several ways to define a measure of
similarity between them. One measure that has been extremely popular in the past is the
Fréchet distance. Since it has been proposed by Alt and Godau in 1992, many variants
and extensions have been described. However, even 20 years later, the original O(n2 logn)
algorithm by Alt and Godau for computing the Fréchet distance remains the state of the art
(here n denotes the number of vertices on each curve). This has led Helmut Alt to conjecture
that the associated decision problem is 3SUM-hard. In recent work, Agarwal et al. show
how to break the quadratic barrier for the discrete version of the Fréchet distance, where
we consider sequences of points instead of polygonal curves. Building on their work, we
give an algorithm to compute the Fréchet distance between two polygonal curves in time
O(n2(logn)(1/2)(log logn)(3/2)) on a pointer machine and in time O(n2(log logn)2) on a word
RAM. Furthermore, we show that there exists an algebraic decision tree for the Fréchet
problem of depth O(n(2−ε)), for some ε > 0. This provides evidence that computing the
Fréchet distance may not be 3SUM-hard after all and reveals an intriguing new aspect of
this well-studied problem.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1209.4403v2
http://arxiv.org/abs/1209.4403v2
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3.6 Trajectory Grouping Structures
Maike Buchin (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Maike Buchin

Joint work of Buchin, Kevin; Buchin, Maike; van Kreveld, Marc; Speckmann, Bettina; Staals, Frank
Main reference K. Buchin, M. Buchin, M. van Kreveld, B. Speckmann, F. Staals, “Trajectory Grouping

Structures,” arXiv:1303.6127v1 [cs.CG], 2013.
URL http://arxiv.org/abs/1303.6127v1

The collective motion of a set of moving entities like people, birds, or other animals, is
characterized by groups arising, merging, splitting, and ending. Given the trajectories of
these entities, we define and model a structure that captures all of such changes using the
Reeb graph, a concept from topology. The trajectory grouping structure has three natural
parameters that allow more global views of the data in group size, group duration, and
entity inter-distance. We prove complexity bounds on the maximum number of maximal
groups that can be present, and give algorithms to compute the grouping structure efficiently.
We also study how the trajectory grouping structure can be made robust, that is, how
brief interruptions of groups can be disregarded in the global structure, adding a notion of
persistence to the structure. Furthermore, we showcase the results of experiments using data
generated by the NetLogo flocking model and from the Starkey project. The Starkey data
describe the movement of elk, deer, and cattle. Although there is no ground truth for the
grouping structure in this data, the experiments show that the trajectory grouping structure
is plausible and has the desired effects when changing the essential parameters. Our research
provides the first complete study of trajectory group evolvement, including combinatorial,
algorithmic, and experimental results.

3.7 Approximate Shortest Descending Paths
Siu-Wing Cheng (HKUST – Kowloon, HK)

License Creative Commons BY 3.0 Unported license
© Siu-Wing Cheng

Joint work of Cheng, Siu-Wing; Jin, Jiongxin
Main reference S.-W. Cheng, J. Jin, “Approximate Shortest Descending Paths,” in Proc. of the 24th Annual

ACM-SIAM Symp. on Discrete Algorithms (SODA’13), pp. 144–155, SIAM, 2013.
URL http://knowledgecenter.siam.org/0236-000023/

We present an approximate algorithm for the shortest descending path problem. Given
a source s and a destination t on a terrain, a shortest descending path from s to t is a
path of minimum Euclidean length on the terrain subject to the constraint that the height
decreases monotonically as we traverse that path from s to t. Given any ε ∈ (0, 1), our
algorithm returns in O(n4 log(n/ε)) time a descending path of length at most 1 + ε times the
optimum. This is the first algorithm whose running time is polynomial in n and log(1/ε)
and independent of the terrain geometry.
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3.8 Graph Induced Complex on Point Data
Tamal K. Dey (Ohio State University, US)

License Creative Commons BY 3.0 Unported license
© Tamal K. Dey

Joint work of Dey, Tamal K.; Fan, Fengtao; Wang, Yusu
Main reference T.K. Dey, F. Fan, Y. Wang, “Graph Induced Complex on Point Data,” arXiv:1304.0662v1 [cs.CG];

to appear in Proc. of the 29th Annual Symp. on Computational Geometry 2013.
URL http://arxiv.org/abs/1304.0662v1

The efficiency of extracting topological information from point data depends largely on the
complex that is built on top of the data points. From a computational viewpoint, the most
favored complexes for this purpose have so far been Vietoris-Rips and witness complexes.
While the Vietoris-Rips complex is simple to compute and is a good vehicle for extracting
topology of sampled spaces, its size is huge–particularly in high dimensions. The witness
complex on the other hand enjoys a smaller size because of a subsampling, but fails to capture
the topology in high dimensions unless imposed with extra structures. We investigate a
complex called the graph induced complex that, to some extent, enjoys the advantages of
both. It works on a subsample but still retains the power of capturing the topology as the
Vietoris-Rips complex. It only needs a graph connecting the original sample points from
which it builds a complex on the subsample thus taming the size considerably. We show
that, using the graph induced complex one can (i) infer the one dimensional homology of
a manifold from a very lean subsample, (ii) reconstruct a surface in three dimension from
a sparse subsample without computing Delaunay triangulations, (iii) infer the persistent
homology groups of compact sets from a sufficiently dense sample. We provide experimental
evidences in support of our theory.

3.9 Geometric Input Models
Anne Driemel (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Anne Driemel

Joint work of Driemel, Anne; Har-Peled, Sariel; Wenk, Carola; Raichel, Benjamin

The worst-case analysis of the running time and space complexities as a function of the
input size is a fundamental method in algorithm design. However, it fails to describe the
actual behavior when the worst case is a contrived geometric configuration which would never
occur in practice. There are different approaches to reasoning about algorithms and data
structures for real data that allow a theoretical analysis with provable bounds. I will outline
some techniques we used and the results that we achieved. In particular, I will talk about
two results (i) an approximation algorithm for the Fréchet distance [1] and (ii) bounding the
complexity of Voronoi diagrams on terrains [2]. This research was carried out as a part of
my PhD studies and is joint work with Carola Wenk (Tulane University), Sariel Har-Peled
(UIUC) and Benjamin Raichel (UIUC).

References
1 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance

for realistic curves in near linear time. Discrete & Computational Geometry, 48(1):94–127,
2012.

2 Anne Driemel, Sariel Har-Peled, and Benjamin Raichel. On the expected complexity of
Voronoi diagrams on terrains. In Proc. SoCG 2012, pages 101–110, 2012.
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3.10 Efficiently hex-meshing things with topology
Jeff Erickson (University of Illinois – Urbana, US)

License Creative Commons BY 3.0 Unported license
© Jeff Erickson

Main reference J. Erickson, “Efficiently hex-meshing things with topology,” to appear in Proc. of the 28th Annual
Symp. on Computational Geometry 2013.

URL http://www.cs.uiuc.edu/~jeffe/pubs/hexmesh.html

A topological quadrilateral mesh Q of a connected surface in R3 can be extended to a
topological hexahedral mesh of the interior domain Ω if and only if Q has an even number of
quadrilaterals and no odd cycle in Q bounds a surface inside Ω. Moreover, if such a mesh
exists, the required number of hexahedra is within a constant factor of the minimum number
of tetrahedra in a triangulation of Ω that respects Q. Finally, if Q is given as a polyhedron
in R3 with quadrilateral facets, a topological hexahedral mesh of the polyhedron can be
constructed in polynomial time if such a mesh exists. All our results extend to domains with
disconnected boundaries. Our results naturally generalize results of Thurston, Mitchell, and
Eppstein for genus-zero and bipartite meshes, for which the odd-cycle criterion is trivial.

3.11 Theory Meets Practice: Two Videos
Sándor Fekete (TU Braunschweig, DE)

License Creative Commons BY 3.0 Unported license
© Sándor Fekete

Joint work of Fekete, Sándor; Friedrichs, Stephan; Kröller, Alexander; Schmidt, Christiane; Borrmann, Dorit; de
Rezende, Pedro J.; de Souza, Cid C.; Tozoni, Davi C.; Becker, Aaron; Lee, SengKyou; McLurkin,
James

One of the driving engines of Computational Geometry is the interaction with practical
problems; one of the application areas with strong ties to geometry is the filed of robotics.
In this talk, I present two videos that document ongoing collaborations with colleagues from
robotics.

The first [1] considers exploration and triangulation with a swarm of small robots with
relatively few individual capabilities; we develop ideas, provide theory and present a practical
demonstration of how such a swarm can be used to explore an unknown territory, and guard
it. This is joint work with colleagues from Rice University (USA).

The second [2] shows how building detailed three-dimensional maps with a robot platform
that carries a powerful laserscanner is related to the classical Art Gallery Problem (AGP).
We develop different methods for solving such problems to optimality, and demonstrate the
resulting application. This is joint work with colleagues from the University of Campinas
(Brazil) and Jacobs University Bremen (Germany).

References
1 A. Becker, S.P. Fekete, A. Kröller, L.S. Kyou, J. McLurkin and C. Schmidt.Triangulating

Unknown Environments Using Robot Swarms, Video and abstract. To appear in: Proc.
SoCG 2013.

2 D. Borrmann, P.J. de Rezende, C.C. de Souza, S.P. Fekete, S. Friedrichs, A. Kröller,
A. Nüchter, C. Schmidt and D.C. Tozoni. Point Guards and Point Clouds: Solving General
Art Gallery Problems, Video and abstract. To appear in: Proc. SoCG 2013

13101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.cs.uiuc.edu/~jeffe/pubs/hexmesh.html
http://www.cs.uiuc.edu/~jeffe/pubs/hexmesh.html
http://www.cs.uiuc.edu/~jeffe/pubs/hexmesh.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


12 13101 – Computational Geometry

3.12 Random hypergraphs and small silhouettes
Marc Glisse (INRIA Saclay – Île-de-France – Orsay, FR)

License Creative Commons BY 3.0 Unported license
© Marc Glisse

Joint work of Devillers, Olivier; Glisse, Marc; Goaoc, Xavier; Lazard, Sylvain; Michel, Julien; Pouget, Marc

We present a new simple scheme for the analysis of random geometric structures, which we
illustrate on convex hulls and Delaunay triangulations. We then introduce some refinements
of the analysis which tighten the bounds and give large-deviation-related results. Those
refinements are finally used to deduce a worst-case bound on the size of the silhouettes of a
random polytope.

3.13 Simplifying inclusion-exclusion formulas
Xavier Goaoc (INRIA Lorraine, FR)

License Creative Commons BY 3.0 Unported license
© Xavier Goaoc

Joint work of Goaoc, Xavier; Matoušek, Jiří; Paták, Pavel; Safernová, Zuzana; Tancer, Martin
Main reference X. Goaoc, J. Matoušek, P. Paták, Z. Safernová, M. Tancer, “Simplifying inclusion-exclusion

formulas,” arXiv:1207.2591v1 [math.CO] .
URL http://arxiv.org/abs/1207.2591v1

Let F = {F1, F2, . . . , Fn} be a family of n sets on a ground set X, such as a family
of balls in Rd. For every finite measure µ on X, such that the sets of F are meas-
urable, the classical inclusion-exclusion formula asserts that µ(F1 ∪ F2 ∪ · · · ∪ Fn) =∑
I:∅6=I⊆[n](−1)|I|+1µ

(⋂
i∈I Fi

)
; that is, the measure of the union is expressed using measures

of various intersections. The number of terms in this formula is exponential in n, and a
significant amount of research, originating in applied areas, has been devoted to constructing
simpler formulas for particular families F . We provide an upper bound valid for an arbitrary
F : we show that every system F of n sets with m nonempty fields in the Venn diagram
admits an inclusion-exclusion formula with mO(log2 n) terms and with ±1 coefficients, and
that such a formula can be computed in mO(log2 n) expected time. We also construct systems
of n sets on n points for which every valid inclusion-exclusion formula has the sum of absolute
values of the coefficients at least Ω(n3/2).

3.14 Fréchet Queries in Geometric Trees
Joachim Gudmundsson (University of Sydney, AU)

License Creative Commons BY 3.0 Unported license
© Joachim Gudmundsson

Joint work of Gudmundsson, Joachim; Smid, Michiel

Let T be a tree that is embedded in the plane and let ∆ > 0 be a real number. The aim is to
preprocess T into a data structure, such that, for any query polygonal path Q, we can decide
if T contains a path P whose Fréchet distance δF (P,Q) to Q is less than ∆. We present
an efficient data structure that solves an approximate version of this problem, for the case
when T is c-packed and each of the edges of T and Q has length Ω(∆) (not required if T is a
path): If the data structure returns NO, then there is no such path P . If it returns YES,
then δF (P,Q) ≤

√
2(1 + ε)∆ if Q is a line segment, and δF (P,Q) ≤ 3(1 + ε)∆ otherwise.
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3.15 Geometric properties of space-filling curves: some results and
open problems

Herman J. Haverkort (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Herman J. Haverkort

Main reference H. Haverkort, “Recursive tilings and space-filling curves with little fragmentation,” Journal of
Computational Geometry, 2(1):92–127, 2011.

URL http://www.jocg.org/index.php/jocg/article/view/68

A space-filling curve is a continuous surjective function f that maps the unit interval [0,1] to
a higher-dimensional region, such as the unit square. Such a curve is usually defined on the
basis of a recursive tiling, such that the curve traverses the tiles of each level of the tiling one
by one, and the curve can be parameterized such that the union of all points f(t) over all t in
[a,b] is a region of measure exactly b-a. In this presentation I focus on two open problems
about space-filling curves.

1. The Arrwwid number of a three-dimensional space-filling curve is the smallest number
A, such that any ball with volume B can be covered by A pieces of the curve of total size
O(B). The three-dimensional curve with the lowest known Arrwwid number has Arrwwid
number 4. We can prove that this is a lower bound for any three-dimensional curve that
traverses the tiles of a recursive tiling with convex tiles one by one. Can we also prove this
lower bound for curves that are not based on convex tiles? We would be able to prove this if
we could prove a certain relation between the number of vertices, the number of tiles and the
number of vertex-tile incidences that holds for any “reasonable” tiling in three dimensions.

2. The dilation of a two-dimensional space-filling curve is the maximum, over all a,b in
[0,1], of the squared distance between f(a) and f(b), divided by (b-a). We can prove that
each two-dimensional space-filling curve must have dilation at least 4/pi. The curve with the
lowest known dilation has dilation 4. Can we improve the lower bound—or can we find a
space-filling curve with dilation less than 4?

3.16 Qualitative symbolic perturbations
Menelaos Karavelas (University of Crete – Heraklion, GR)

License Creative Commons BY 3.0 Unported license
© Menelaos Karavelas

Joint work of Devillers, Olivier; Karavelas, Menelaos; Teillaud, Monique
Main reference O. Devillers, M. Karavelas, M. Teillaud, “Qualitative Symbolic Perturbation: a new

geometry-based perturbation framework,” HAL, RR-8153, 2012.
URL http://hal.inria.fr/hal-00758631/

In classical Symbolic Perturbations, degeneracies are resolved by using a sequence of predicates
obtained by algebraic substitution of polynomials in ε to the input. Instead of a single
perturbation, we propose to use a sequence of (simpler) perturbations and to look at their
effect geometrically instead of algebraically. We obtain solutions for Apollonius predicates
which were not solvable using the algebraic approach.
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3.17 Bottleneck Non-Crossing Matching in the Plane
Matthew J. Katz (Ben Gurion University – Beer Sheva, IL)

License Creative Commons BY 3.0 Unported license
© Matthew J. Katz

Joint work of Abu-Affash, A. Karim; Carmi, Paz; Katz, Matthew J.; Trabelsi Yohai
Main reference A. Karim Abu-Affash, P. Carmi, M.J. Katz, Y. Trabelsi, “Bottleneck Non-Crossing Matching in

the Plane,” in Proc. of the 20th Annual European Symp. on Algorithms (ESA’12), LNCS,
Vol. 7501, pp. 36–47, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-33090-2_5

Let P be a set of 2n points in the plane, and let MC (resp., MNC) denote a bottleneck
matching (resp., a bottleneck non-crossing matching) of P . We study the problem of
computing MNC. We first prove that the problem is NP-hard and does not admit a PTAS.
Then, we present an O(n1.5 log0.5 n)-time algorithm that computes a non- crossing matching
M of P , such that bn(M) ≤ 2

√
10 · bn(MNC), where bn(M) is the length of a longest edge in

M . An interesting implication of our construction is that bn(MNC)/bn(MC) ≤ 2
√

10.

3.18 On the Complexity of Higher Order Abstract Voronoi Diagrams
Rolf Klein (Universität Bonn, DE)

License Creative Commons BY 3.0 Unported license
© Rolf Klein

Joint work of Bohler, Cecilia; Cheilaris, Panagiotis; Klein, Rolf; Liu, Chih-Hung; Papadopoulou, Evanthia;
Zavershynskyi, Maksymolf

Main reference C. Bohler, P. Cheilaris, R. Klein, C. Liu, E. Papadopoulou, M. Zavershynskyi, “On the Complexity
of Higher Order Abstract Voronoi Diagrams,” to appear in the Proc. of the 40th Int’l Colloquium
on Automata, Languages and Programming (ICALP ’13), Riga, 2013.

Abstract Voronoi diagrams are based on bisecting curves enjoying simple combinatorial
properties, rather than on the geometric notions of sites and circles. They serve as a unifying
concept. Once the bisector system of any concrete type of Voronoi diagram is shown to fulfill
the AVD properties, structural results and efficient algorithms become available without
further effort. For example, the first optimal algorithms for constructing nearest Voronoi
diagrams of disjoint convex objects, or of line segments under the Hausdorff metric, have
been obtained this way.

In a concrete order-k Voronoi diagram, all points are placed into the same region that
have the same k nearest neighbors among the given sites. This paper is the first to study
abstract Voronoi diagrams of arbitrary order k. We prove that their complexity is upper
bounded by 2k(n− k). So far, an O(k(n− k)) bound has been shown only for point sites
in the Euclidean and Lp plane, and, very recently, for line segments. These proofs made
extensive use of the geometry of the sites.

Our result on AVDs implies a 2k(n− k) upper bound for a wide range of cases for which
only trivial upper complexity bounds were previously known, and a slightly sharper bound
for the known cases.
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3.19 On numerical algorithms for the topology of curves with simple
singularities

Guillaume Moroz (INRIA Grand Est – Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Guillaume Moroz

Joint work of Moroz, Guillaume; Pouget, Marc

Let C be the planar curve defined by a polynomial equation f (x, y) = 0. If C is smooth, its
topology can be computed with adaptive numerical algorithms. Otherwise, computing the
topology requires a different set of tools that induce a significant gap between the analysis
of smooth curves and singular curves, even with simple multiplicity structure. Such tools
include the computation of a resultant, the subdivision until a global separation. We present
works in progress to fill this gap for singular curves with simple self-intersections.

3.20 Output-Sensitive Well-Separated Pair Decompositions for
Dynamic Point Sets

David M. Mount (University of Maryland – College Park, US)

License Creative Commons BY 3.0 Unported license
© David M. Mount

Joint work of Park Eunhui; Mount, David M.
Main reference (Unpublished manuscript, submitted for publication)

The well-separated pair decomposition (WSPD) is a fundamental structure in computational
geometry. Given a set of n points in d-dimensional space and a positive parameter s, it is
known that there exists an s-WSPD of size O(sdn). While this is linear in n, the factor of
sd is a significant consideration when the dimension d is even a moderately large constant.
The actual number of pairs may be much smaller than this worst-case bound, for example, if
the points are clustered near a lower dimensional subspace. Batch WSPD constructions are
output sensitive, but existing algorithms for maintaining the WSPD of a dynamic point set
are not. In this paper we present output-sensitive algorithms for maintaining the WSPD of
a dynamic point set under insertion and deletion.
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3.21 Improved Approximation for Geometric Unique Coverage
Problems

Yoshio Okamoto (University of Electro-Communications, Tokyo, JP)

License Creative Commons BY 3.0 Unported license
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Joint work of Ito, Takehiro; Nakano, Shin-ichi; Okamoto, Yoshio; Otachi, Yota; Uehara, Ryuhei; Uno, Takeaki;
Uno, Yushi

Main reference T. Ito, S.-I. Nakano, Y. Okamoto, Y. Otachi, R. Uehara, T. Uno, Y. Uno, “A 4.31-Approximation
for the Geometric Unique Coverage Problem on Unit Disks,” in Proc. of the 23rd Int’l Symp. on
Algorithms and Computation (ISAAC’12), LNCS, Vol. 7676, pp. 372–381, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-35261-4_40
Main reference T. Ito, S.-I. Nakano, Y. Okamoto, Y. Otachi, R. Uehara, T. Uno, Y. Uno, “A Polynomial-Time

Approximation Scheme for the Geometric Unique Coverage Problem on Unit Squares,” in Proc. of
the 13th Scandinavian Symp. and Workshops on Algorithm Theory (SWAT’12), LNCS, Vol. 7357,
pp. 24–35, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-31155-0_3

Given a set of points and a set of objects, both in the plane, we wish to find a subset of
the objects that maximizes the number of points contained in exactly one object in the
subset. Erlebach and van Leeuwen [1] introduced this problem as the geometric version of
the unique coverage problem, and gave polynomial-time approximation algorithms. Their
approximation ratios were 18 when the objects were unit disks, and 4 when the objects were
axis-parallel unit squares (which was later improved to 2 by van Leeuwen [2]). We improve
the approximation ratios to 4.31 for unit disks and 1 + ε for axis-parallel unit squares.

References
1 Erlebach, T., van Leeuwen, E.J. Approximating geometric coverage problems. In Proc.

SODA 2008, pp. 1267–1276 (2008)
2 van Leeuwen, E. J. Optimization and approximation on systems of geometric objects. Ph.D.

Thesis, University of Amsterdam, 2009

3.22 Kinetic data structures in the black-box model
Marcel J. M. Roeloffzen (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Marcel J. M. Roeloffzen

Joint work of Berg, Mark de; Roeloffzen, Marcel; Speckmann, Bettina

Over the past decade, the kinetic-data-structures framework has become the standard
in computational geometry for dealing with moving objects. A fundamental assumption
underlying the framework is that the motions of the objects are known in advance. This
assumption severely limits the applicability of KDSs. We study KDSs in the black-box model,
which is a hybrid of the KDS model and the traditional time-slicing approach. In this more
practical model we receive the position of each object at regular time steps and we have an
upper bound on dmax, the maximum displacement of any point in one time step.

In this talk we describe the black-box model and give an overview of the results obtained
for maintaining the convex hull, Delaunay triangulation and compressed quadtree of a set
of points in the black-box model. We also go into some more detail on the latest result on
maintaining the Euclidean 2-center.
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3.23 ααα-Visibility
Jörg-Rüdiger Sack (Carleton University – Ottawa, CA)

License Creative Commons BY 3.0 Unported license
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Main reference M. Ghodsi, A. Maheshwari, M. Nouri, J.-R. Sack, H. Zarrabi-Zadeh, “α-Visibility,” in Proc. of the
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Vol. 7357, pp. 1–12, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-31155-0_1

We study a new class of visibility problems based on the notion of α-visibility. Given an
angle α and a collection of line segments S in the plane, a segment t is said to be α-visible
from a point p, if there exists an empty triangle with one vertex at p and the side opposite
to p on t such that the angle at p is α. In this model of visibility, we study the classical
variants of point visibility, weak and complete segment visibility, and the construction of the
visibility graph. We also investigate the natural query versions of these problems, when α is
either fixed or specified at query time.

3.24 Parallel computation of the Hausdorff distance between shapes
Ludmila Scharf (FU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Ludmila Scharf

Joint work of Alt, Helmut; Scharf, Ludmila

We show that the Hausdorff distance for two sets of n non-intersecting line segments can be
computed in parallel in O(log2 n) time using O(n) processors in a CREW-PRAM computation
model. We discuss how some parts of the sequential algorithm can be performed in parallel
using previously known parallel algorithms; and identify the so-far least efficiently solved
part of the problem for the parallel computation, which is the following: Given two sets of
x-monotone curve segments, red and blue, for each red segment find its extremal intersection
points with the blue set, i.e. points with the minimal and maximal x-coordinate. Each
segment set is assumed to be intersection free. The best known parallel algorithm for this
problem has total work of O(n log3 n) and uses O(n log2 n) space. The algorithm presented
here improves the theoretical time and space performance while still being practically feasible.

3.25 Convex Transversals
Lena Schlipf (FU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Lena Schlipf

The talk gives an overview of the work on convex transversals. The question about convex
transversals was initially posed by Arik Tamir at the Fourth NYU Computational Geometry
Day (1987): “Given a collection of compact sets, can one decide in polynomial time whether
there exists a convex body whose boundary intersects every set in the collection?” So
far, there have been very few results. One of these rare results is an O(n logn) algorithm
by Goodrich and Snoeyink [1] that solves this problem when the sets are n parallel line
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segments. We show that when the sets are segments in the plane, deciding existence of the
convex stabber is NP-hard (this is joint work with Arkin, Dieckmann, Knauer, Mitchell,
Polishchuk, Yang [2]). The problem remains NP-hard when the sets are simple regular
polygons. Additionally, we prove the problem to be NP-hard when the sets are disjoint bends
in the plane.

References
1 M. T. Goodrich and J.Snoeyink. Stabbing parallel segments with a convex polygon. Com-

puter Vision, Graphics, and Image Processing, 49(2):152–170, 1990.
2 E.M. Arkin, C. Dieckmann, C. Knauer, J.S.B. Mitchell, V. Polishchuk, L.Schlipf, and S.

Yang. Convex Transversals. In Proc. of WADS’11, pp. 49–60, 2011.

3.26 Delaunay and other triangulations of moving point sets: What’s
going on?

Micha Sharir (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
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Joint work of Sharir, Micha; Agarwal, Pankaj; Kaplan, Haim; Rubin, Natan; and several others

In this talk we review several recent works addressing the following problem: Given a set P
of n moving points in the plane, where the motion of each point is semialgebraic of constant
description complexity, we want to maintain the Delaunay (or some other) triangulation of
P kinetically, updating it after each discrete change that it experiences.

The Delaunay triangulation, DT(P), besides its many useful properties, is ideal for such
a maintenance, because it admits local certification, requiring the circumdisk of each triangle
to be empty. The main problem is to show that the number of discrete changes in DT(P) is
“small”, meaning nearly quadratic in n. (A quadratic lower bound is known.) This is still
open, and is considered one of the hardest open problems in combinatorial and computational
geometry.

We review several recent attempts to address this issue:
(1) Developing other triangulation schemes, with a provably near-quadratic number of

changes. This has been done by Agarwal, Wang and Yu, and later by Kaplan, Rubin and
Sharir.

(2) Maintaining the Delaunay triangulation of P under a polygonal, non-Euclidean norm.
Here too one can show that the diagram experiences only a near-quadratic number of changes,
and can be maintained efficiently, but it has several drawbacks. This goes back to Chew,
and has been treated in a more general and complete manner by Agarwal, Kaplan, Rubin,
and Sharir (work in progress).

(3) Maintaining only a “stable” portion of the Delaunay diagram, roughly corresponding
to edges whose dual Voronoi edges are seen from their sites at a sufficiently large angle.
Again, a near-quadratic bound on the number of changes can be established, and the stable
portion has several drawbacks. This is work in progress by Agarwal and many other authors,
originally presented at SoCG many years ago.

(4) Most importantly, we review a recent work by Rubin, where he manages to establish
a near-quadratic bound for the Euclidean Delaunay triangulation for points moving at unit
speeds. The analysis is quite involved, and we review some of its main technical ingredients.
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3.27 Towards Elastic Shape Matching
Fabian Stehn (Universität Bayreuth, DE)

License Creative Commons BY 3.0 Unported license
© Fabian Stehn

Joint work of Knauer, Christian; Stehn, Fabian

Geometric shape matching problems are one of the core research topics in the field of
computational geometry. The general question of a geometric matching problem is as follows:
given are two geometric objects – a pattern and a model – and a transformation class as
well as a similarity measure. One seeks a transformation t of the given class such that the
similarity measure of the pattern transformed by t to the model is maximized.

We introduced the concept of elastic (non-uniform) geometric shape matching problems.
In an elastic geometric shape matching problem the pattern is not transformed by a single
transformation, but by a so-called transformation ensemble. Transformation ensembles allow
non-uniform deformations of the pattern – different parts of the pattern can be transformed
by different mappings. Another benefit of transformation ensembles is the possibility to
incorporate temporal dependencies of the pattern and changes of its shape over time in
this modeling. This allows to compute registrations that are valid within a certain time
frame even if the reference objects change during this time period. This is achieved by
linking together transformation ensembles at different points in time and by applying suitable
temporal and spacial interpolation methods.

The modeling as an elastic geometric shape matching problem has various benefits from
a theoretical as well as practical point of view. Classical geometric shape matching problems
form a special case in this modeling and hence allow a direct comparison to results of elastic
geometric shape matching problems. On the other hand, many practical applications (such
as navigated surgeries for example) will benefit from algorithms and data structures that
compute transformation ensembles: in these applications one often has to deal with local
deformations of the input (e.g. due to distortion caused by magnetic fields), as well as
entities that vary of time (for example soft tissue deformation in the aforementioned context
of navigated surgeries).In this talk we introduced first results on elastic shape matching
problems for point sequences under translations.

3.28 Extended Formulations for polytopes
Hans Raj Tiwary (University of Brussels, BE)

License Creative Commons BY 3.0 Unported license
© Hans Raj Tiwary

Joint work of Tiwary, Hans Raj; Avis, David
Main reference D. Avis, H. Raj Tiwary, “On the extension complexity of combinatorial polytopes,”

arXiv:1302.2340v2 [math.CO]; accepted in ICALP 2013.
URL http://arxiv.org/abs/1302.2340v2

A polytope Q is said to be an extended formulation (EF) for a polytope P , iff P is the
projection of Q. The notion of extended formulations are not only important in many areas
of applied sciences but also interesting from a theoretical perspective. In a certain sense a
compact EF encodes “faithful” linear programs for solving optimization problems. In this
talk, I will discuss some basics, some recent new results, and a purposely vague open problem
related to the existence of compact EFs.
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3.29 Reverse stabbing queries in galleries
Suresh Venkatasubramanian (University of Utah, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Daruki, Samira; Hillyard, Peter; Patwari, Neal; Venkatasubramanian, Suresh

Radio Tomographic Imaging (RTI) is an emerging technology that locates moving objects
in areas surrounded by simple and inexpensive radios. RTI is useful in emergencies, rescue
operations, and security breaches, since the objects being tracked need not carry an electronic
device. Tracking humans moving through a building, for example, could help firefighters save
lives by locating victims quickly. RTI works by placing small inexpensive radios in a region
of interest. The radios can send and receive wireless signals, and form a network of links
that cover the region of interest. When a person walks through the region, they interfere
with the links, creating a “shadow” of broken links that can be used to infer presence and
track individuals.

This yields the following problem: given a collection of radios and a set of “visible” links,
infer the trajectory of a person moving through the region. This inference must be robust
under link errors and occlusion, as well as be performed in real time. In addition, there is
an associated planning problem of where to place the radios in order to make the tracking
algorithm as effective as possible.

In this talk, I present geometric algorithms for these questions. The key technical
developments include a generalization of stabbing line and transversal problems, as well as a
novel generalization of traditional art gallery problems.

3.30 A Faster Algorithm for Computing Motorcycle Graphs
Antoine Vigneron (KAUST – Thuwal, SA)

License Creative Commons BY 3.0 Unported license
© Antoine Vigneron

Joint work of Vigneron, Antoine; Lie, Yan
Main reference To appear in the Proceedings of the Symp. on Computational Geometry 2013.

We present a new algorithm for computing motorcycle graphs. Its running time is O(n4/3),
where n is the size of the input. When the motorcycles start from the side of a simple
polygon, and input coordinates are O(logn)-bit rational numbers, the time bound improves
to O(n log3 n). It yields an O(n log3 n) expected time algorithm for computing the straight
skeleton of a simple polygon.

3.31 Towards Understanding Gaussian Weighted Graph Laplacian
Yusu Wang (Ohio State University, US)

License Creative Commons BY 3.0 Unported license
© Yusu Wang

The Gaussian-weighted graph Laplacian, as a special form of graph Laplacians with general
weights, has been a popular empirical operator for data analysis applications, including
semi-supervised learning, clustering, and denoising. There have been various studies of the
properties and behaviors of this empirical operator; most notably, its convergence behavior
as the number of points sampled from a hidden manifold goes to infinity.
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In this talk we present two new results on the theoretical properties of the Gaussian-
weighted Graph Laplacian. The first one [1] is about its behavior as the input points where
we construct the graph are sampled from a, what we call, singular manifold; while previous
theoretical study of the Gaussian-weighted Graph Laplacian typically assumes that the hidden
domain is a compact smooth manifold. A singular manifold can consist of a collection of
potentially intersecting manifolds with boundaries, and represents one step towards modeling
more complex hidden domains.

The second result we present is about the stability of the Gaussian-weighted Graph
Laplacian as the hidden manifold where input points are sampled from have certain small
perturbation [2]. The goal is to understand how the spectrum of Gaussian-weighted Graph
Laplacian changes with respect to perturbations of the domain.

References
1 M. Belkin, Q. Que, Y. Wang and X. Zhou. Towards understading complex spaces: graph

Laplacians on manifolds with singularities and boundaries. In Proc. of COLT 2012, pp.
36.1–36.26, 2012.

2 T. K. Dey, P. Ranjan and Y. Wang. Weighted graph Laplace operator under Topological
noise. In Proc. of SODA 2013, 2013.

4 Open Problems

I Problem 1 (Otfried Cheong). 3-dimensional Kakeya problem: Find a smallest-volume
three-dimensional convex body K such that, for any direction u, width(K,u) ≥ 1.

In two dimensions, the optimal body is the equilateral triangle of height 1. In three
dimensions, a regular tetrahedron where the distance between opposite edges is 1 is not
optimal. One can “shave off” the corners in order to decrease the area while maintaining the
width-condition.

I Problem 2 (Jeff Erickson). Almost simple polygons: A polygon P with vertices
p1, p2, . . . , pn ∈ R2 is almost simple if, for any ε > 0, there is a simple polygon Q with vertices
q1, q2, . . . , qn such that ‖pi − qi‖ < ε for each index i. Equivalently, an n-gon P is weakly
simple if there are simple n-gons with arbitrarily small Fréchet distance to P .

Is there a polynomial-time algorithm to determine whether a given se-
quence of points is the vertex sequence of an almost-simple polygon?

There is an algorithm to decide whether a spur-free polygon is almost simple in O(n logn)
time, where a spur is a vertex with a zero-degree angle, or equivalently, a pair of consecutive
edges that overlap. A spur-free polygon is weakly simple if and only if it contains no
crossing subwalks and its winding number is ±1. (Two spur-free walks a0b1 · · · bkak+1 and
c0b1 · · · bkck+1 cross if either the triples a0, b1, c0 and ak+1, bk, ck+1 have the same orientation,
or k ≤ 1 and the walks intersect transversely.) However, this characterization does not extend
to polygons with spurs, in part because the winding number is not well-defined.

I Problem 3 (Fabian Stehn). Let S = {s1, . . . , sn} be a set of segments in the plane.
Compute n translations t1, . . . , tn such that the set S′ = {s′i | s′i = si + ti, i = 1, . . . , n} is
disjoint and the convex hull of S′ has minimum area.
Remark: Two segments of S′ are allowed to have a common endpoint and the endpoint of a
segment in S′ is allowed to lie on another segment.

I Problem 4 (Suresh Venkatasubramanian). MDS: Given a distance matrix [dij ],
where dij which is the distance between the ith and the jth object, find an embedding of
points x1, . . . , xn ∈ Rk such that

∑
(dij − ||xi − xj ||)2 is minimal.
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Other versions of the problem are, e.g., minimize
∑

(d2
ij − ||xi − xj ||2). Even the case

where k = 1 is open.

I Problem 5 (Maarten Löffler). Given a unit square, find a set of lines such that
there is a disk of radius ε centered on each line inside the unit square and such that no disk
intersects another disk or another line. What is the maximum number of lines that can be
placed?
Known bounds: Ω(1/ε) and O(1/ε2).

I Problem 6 (Günter Rote). This problem is due to Sergio Cabello and Maria Saumell.
Let P be a polygon of area 1. Let Cmax be the area of the largest convex polygon

contained in P . It is easy to see that

C2
max ≤ probability(x sees y|x, y ∈ P ).

The question is whether the following reverse bound holds

probability(x sees y|x, y ∈ P ) ≤ O(Cmax).

Other variants:
a) P is star-shaped.
b) P is any region.
c) P is a polygonal region with holes. Remark: Sándor Fekete has pointed out that a convex
region with many small holes (punctures) will be a counterexample.

I Problem 7 (Yoshio Okamoto). Given a polygonal domain P with a total number of
n vertices, what is the maximum number of local maxima of the geodesic distance function
d(p, q), p, q ∈ P , on P? Known results: O(n7) and Ω(n2) (the lower bound is tight for
polygons without holes) [1].

I Problem 8 (Rolf Klein). Lion problem: We are given a n × n grid, each cell is
contaminated or clean. Additionally, we are given a fixed number of lions. We consider
discrete time steps; in each step the contamination of a cell spreads to its four adjacent cells.
A lion can clean one adjacent cell per step.

How many lions are needed to clean the grid?
It is obvious that n lions are enough but it is an open question whether n− 1 lions are

enough. Dumitrescu et al. [4] proved that
√
n lions are not enough. Later on, Brass et al.

[3], and independently Berger et al. [2], showed that bn/2c lions are not enough.
In general, it is assumed that in the beginning all cells are contaminated but there are many
variants for the problem:
– different number of contaminated cells at the beginning
– remove boundaries
– etc.

References
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