
Report from Dagstuhl Seminar 13141

Formal Verification of Distributed Algorithms
Edited by
Bernadette Charron-Bost1, Stephan Merz2, Andrey Rybalchenko3,
and Josef Widder4

1 École polytechnique, Palaiseau, FR, charron@lix.polytechnique.fr
2 INRIA, Nancy, FR, stephan.merz@loria.fr
3 TU München, DE, rybal@in.tum.de
4 TU Wien, AT, widder@forsyte.tuwien.ac.at

Abstract
The Dagstuhl Seminar 13141 “Formal Verification of Distributed Algorithms” brought together
researchers from the areas of distributed algorithms, model checking, and semi-automated proofs
with the goal to establish a common base for approaching the many open problems in verification
of distributed algorithms. In order to tighten the gap between the involved communities, who
have been quite separated in the past, the program contained tutorials on the basics of the
concerned fields. In addition to technical talks, we also had several discussion sessions, whose
goal was to identify the most pressing research challenges. This report describes the program
and the outcomes of the seminar.

Seminar 1.–5. April, 2013 – www.dagstuhl.de/13141
1998 ACM Subject Classification C.2 Computer-Communication Networks, D.3.1 Formal Defin-

itions and Theory, D.2.4 Software/Program Verification, F.3 Logics and Meanings of Pro-
grams

Keywords and phrases Distributed algorithms, semi-automated proofs, model checking
Digital Object Identifier 10.4230/DagRep.3.4.1
Edited in cooperation with Thomas Nowak

1 Executive Summary

Bernadette Charron-Bost
Stephan Merz
Andrey Rybalchenko
Josef Widder

License Creative Commons BY 3.0 Unported license
© Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder

While today’s society depends heavily on the correct functioning of distributed computing
systems, the current approach to designing and implementing them is still error prone. This
is because there is a methodological gap between the theory of distributed computing and the
practice of designing and verifying the correctness of reliable distributed systems. We believe
that there are two major reasons for this gap: On the one hand, distributed computing
models are traditionally represented mainly in natural language, and algorithms are described
in pseudo code. The classical approach to distributed algorithms is thus informal, and it is
not always clear under which circumstances a given distributed algorithm actually is correct.
On the other hand, distributed algorithms are designed to overcome non-determinism due to
issues that are not within the control of the distributed algorithm, including the system’s

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Formal Verification of Distributed Algorithms, Dagstuhl Reports, Vol. 3, Issue 4, pp. 1–16
Editors: Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/DagRep.3.4.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 13141 – Formal Verification of Distributed Algorithms

timing behavior or faults of some components. Such issues lead to a huge executions space
which is the major obstacle in applying verification tools to distributed algorithms.

The rationale behind our Dagstuhl seminar was that closing the methodological gap
requires collaboration from researchers from distributed algorithms and formal verification. In
order to spur the interaction between the communities, the program contained the following
overview talks on the related subjects:

Distributed algorithms: Eric Ruppert (York University)
Semi-automated proofs: John Rushby (SRI)
Parameterized model checking: Muralidhar Talupur (Intel)

In addition to the tutorials, we organized several open discussion rounds. The seminar
participants identified modeling issues as a central question, which confirmed one of our
motivation for the seminar, namely, the lack of a universal model for distributed algorithms.
Hence, one of the discussion rounds was exclusively devoted to this topic. Unlike sequential
programs, whose semantics is well understood and closely follows the program text, the
executions of distributed algorithms are to a large extent determined by the environment,
including issues such as the distribution of processes, timing behavior, inter-process com-
munication, and component faults. Models of distributed algorithms and systems embody
different assumptions about how the environment behaves. These hypotheses are often left
implicit but are of crucial importance for assessing the correctness of distributed algorithms.
The discussions during the seminar raised the awareness of these issue among the researchers,
and showed that research in this area is a necessary first step towards a structured approach
to formal verification of distributed algorithms. In addition to modeling, we discussed
issues such as benchmarks, implementation of distributed algorithms, or application areas of
distributed algorithms.

To round-off the technical program, we had several short presentations by participants who
presented their past and current work in the intersection of formal methods and distributed
algorithms, and a joint session with the other seminar going on concurrently at Dagstuhl on
Correct and Efficient Accelerator Programming. The topics of the talks spanned large parts
of the concerned areas, for instance, there were talks on model checking techniques such as
partial order reductions or abstractions, and their applications to distributed algorithms;
several talks focuses on proof assistants, and how they can be used to verify distributed
algorithms; some talks considered concurrent systems, and some focused on transactional
memory. The atmosphere during these sessions was very constructive, and the short talks
were always followed by elaborate and insightful discussions.

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 3

2 Table of Contents

Executive Summary
Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder . 1

Overview of Talks
Partial-Order Reductions: Landscape & Practice
Péter Bokor . 5

Automated Repair of Distributed Systems: Beyond Verification
Borzoo Bonakdarpour . 5

Formal Proofs in Coq of Local Computation Systems
Pierre Castéran . 5

Semantics of Eventually Consistent Systems
Alexey Gotsman . 6

A Fault-tolerant Communication Mechanism for Cooperative Robots
Serge Haddad . 6

Scaling Up Interactive Verification
Gerwin Klein . 7

Parameterized Model Checking of Fault-Tolerant Broadcasting Algorithms
Igor Konnov . 7

Verification of a Quasi Certification Protocol over a DHT
Fabrice Kordon . 7

Finding Non-terminating Executions in Distributed Asynchronous Programs
Akash Lal . 8

A Framework for Formally Verifying Software Transactional Memory (and Other
Concurrent Algorithms)
Victor Luchangco . 8

Verification of Fault-Tolerant Distributed Algorithms in the Heard-Of Model
Stephan Merz . 9

Verifying Consensus . . . Using Process Calculi, State Machines, and Proof Checkers
Uwe Nestmann . 10

Tutorial on Distributed Algorithms
Eric Ruppert . 10

Getting the Best out of General-Purpose Tools: Theorem Provers and Infinite-
Bounded Model Checker
John Rushby . 11

An Epistemic Perspective on Consistency of Concurrent Computations
Andrey Rybalchenko . 11

Unidirectional Channel Systems Can Be Tested
Philippe Schnoebelen . 11

Formal Verification of Distributed Algorithms at TTTech
Wilfried Steiner . 12

13141

4 13141 – Formal Verification of Distributed Algorithms

Tutorial on Parameterized Model Checking
Murali Talupur . 12

Correctness without Serializabilty: Verifying Transactional Programs under Snap-
shot Isolation
Serdar Tasiran . 13

(Dis)Proof Automation: What We Can Do, What We Could Do and What Is
Needed?
Christoph Weidenbach . 13

Efficient Checking of Link-Reversal-Based Concurrent Systems
Josef Widder . 14

Panel Discussions
Session 1: What are the problems? . 14

Session 2: Modeling . 15

Session 3: Follow-up . 15

Participants . 16

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 5

3 Overview of Talks

3.1 Partial-Order Reductions: Landscape & Practice
Péter Bokor (ALTEN Engineering, Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Péter Bokor

Joint work of Bokor, Péter; Kinder, Johannes; Serafini, Marco; Suri, Neeraj
Main reference P. Bokor, J. Kinder, M. Serafini, N. Suri, “Supporting domain-specific state space reductions

through local partial-order reduction,” in Proc. of the 26th IEEE/ACM Int’l Conf. on Automated
Software Engineering (ASE’11), pp. 113–122. IEEE Press, New York City, 2011.

URL http://dx.doi.org/10.1109/ASE.2011.6100044

This talk is about mainstream partial-order reductions (such as DPOR), their extensions
(LPOR), new approaches (our current ongoing work Ostrich), and applications (to fault-
tolerant distributed protocols).

3.2 Automated Repair of Distributed Systems: Beyond Verification
Borzoo Bonakdarpour (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Borzoo Bonakdarpour

Although verification of concurrent and distributed applications has recently made consider-
able attention in the recent years, correct construction of such applications still remains a
challenge. This is simply due to the inherently complex structure of concurrent applications
caused by non-determinism and occurrence of faults (in a distributed setting). To deal
with the subtleties of developing concurrent applications, my position is to focus on formal
methods that automatically build such applications that are correct-by-construction. In
this talk, I briefly describe the efforts made for achieving correctness by construction for
concurrent/distributed applications in the area of automated repair of concurrent models.

3.3 Formal Proofs in Coq of Local Computation Systems
Pierre Castéran (University of Bordeaux, FR)

License Creative Commons BY 3.0 Unported license
© Pierre Castéran

Joint work of Castéran, Pierre; Filou, Vincent; Fontaine, Allyx
Main reference P. Castéran, V. Filou, “Tasks, types and tactics for local computation systems,” Studia Informatica

Universalis 9(1):39–86, 2011.
URL http://studia.complexica.net/index.php?option=com_content&view=article&id=186%3Atasks-

types-and-tactics-for-local-computation-systems-pp-39-86-

We present a library written for the Coq proof assistant, for reasoning about a quite abstract
model of distributed computing based on graph rewriting: Local Computations Systems. A
first development allowed us to prove some facts about the expressive power of several sub-
classes of such systems, e.g., impossibility results and certified transformations. Directions
for future evolutions will be also discussed, in particular reasoning on dynamic graphs and
self-stabilizing systems.

13141

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ASE.2011.6100044
http://dx.doi.org/10.1109/ASE.2011.6100044
http://dx.doi.org/10.1109/ASE.2011.6100044
http://dx.doi.org/10.1109/ASE.2011.6100044
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://studia.complexica.net/index.php?option=com_content&view=article&id=186%3Atasks-types-and-tactics-for-local-computation-systems-pp-39-86-
http://studia.complexica.net/index.php?option=com_content&view=article&id=186%3Atasks-types-and-tactics-for-local-computation-systems-pp-39-86-
http://studia.complexica.net/index.php?option=com_content&view=article&id=186%3Atasks-types-and-tactics-for-local-computation-systems-pp-39-86-
http://studia.complexica.net/index.php?option=com_content&view=article&id=186%3Atasks-types-and-tactics-for-local-computation-systems-pp-39-86-

6 13141 – Formal Verification of Distributed Algorithms

3.4 Semantics of Eventually Consistent Systems
Alexey Gotsman (IMDEA Software, Madrid, ES)

License Creative Commons BY 3.0 Unported license
© Alexey Gotsman

Joint work of Burckhardt, Sebastian; Gotsman, Alexey; Yang, Hongseok
Main reference S. Burckhardt, A. Gotsman, H. Yang, “Understanding Eventual Consistency,” Technical Report

MSR-TR-2013-39, Microsoft Research, 2013.
URL http://software.imdea.org/~gotsman/papers/distrmm.pdf

Modern geo-replicated databases underlying large-scale Internet services guarantee immediate
availability and tolerate network partitions at the expense of providing only weak forms
of consistency, commonly dubbed eventual consistency. At the moment there is a lot of
confusion about the semantics of eventual consistency, as different systems implement it
with different sets of features and in subtly different forms, stated either informally or using
disparate and low-level formalisms.

We address this problem by proposing a framework for formal and declarative specification
of the semantics of eventually consistent systems using axioms. Our framework is fully
customisable: by varying the set of axioms, we can rigorously define the semantics of systems
that combine any subset of typical guarantees or features, including conflict resolution policies,
session guarantees, causality guarantees, multiple consistency levels and transactions. We
prove that our specifications are validated by an example abstract implementation, based
on algorithms used in real-world systems. These results demonstrate that our framework
provides system architects with a tool for exploring the design space, and lays the foundation
for formal reasoning about eventually consistent systems.

This is joint work with Sebastian Burckhardt (MSR Redmond) and Hongseok Yang
(Oxford).

3.5 A Fault-tolerant Communication Mechanism for Cooperative
Robots

Serge Haddad (ENS Cachan, FR)

License Creative Commons BY 3.0 Unported license
© Serge Haddad

Joint work of El Haddad, Joyce; Haddad, Serge
Main reference J. El Haddad, S. Haddad, “A fault-tolerant communication mechanism for cooperative robots,”

International Journal of Production Research, 42(14):2793–2808, 2004.
URL http://dx.doi.org/10.1080/00207540410001705185

Operations in unpredictable environments require coordinating teams of robots. This coordin-
ation implies peer-to-peer communication between the team’s robots, resource allocation, and
coordination. We address the problem of autonomous robots which alternate between execu-
tion of individual tasks and peer-to-peer communication. Each robot keeps in its permanent
memory a set of locations where it can meet some of the other robots. The proposed protocol
is constructed by two layered modules (sub-algorithms: a self-stabilizing scheduling and a
construction of a minimum-hop path forest). The first self-stabilizing algorithm solves the
management of visits to these locations ensuring that, after the stabilizing phase, every visit
to a location will lead to a communication. We model the untimed behaviour of a robot by a
Petri net and the timed behaviour by an (infinite) Discrete Time Markov Chain. Theoretical
results in this area are then combined in order to establish the proof of the algorithm. The
second self-stabilizing algorithm computes the minimum-hop path between a specific robot’s
location and the locations of all the other robots of the system inorder to implement routing.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://software.imdea.org/~gotsman/papers/distrmm.pdf
http://software.imdea.org/~gotsman/papers/distrmm.pdf
http://software.imdea.org/~gotsman/papers/distrmm.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1080/00207540410001705185
http://dx.doi.org/10.1080/00207540410001705185
http://dx.doi.org/10.1080/00207540410001705185

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 7

3.6 Scaling Up Interactive Verification
Gerwin Klein (NICTA & UNSW, Sydney, AU)

License Creative Commons BY 3.0 Unported license
© Gerwin Klein

This talk gives a brief overview of the formal verification of the seL4 microkernel. I will
cover the proof of functional correctness, later high-level security properties, the extension of
the proof to the binary level, and the effect of maintenance on the verification. After this,
the idea is to open the floor to a more free-form discussion on the experience of large-scale
software verification and the applicability of our experience to the distributed algorithms
section.

3.7 Parameterized Model Checking of Fault-Tolerant Broadcasting
Algorithms

Igor Konnov (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Igor Konnov

Joint work of John, Annu; Konnov, Igor; Schmid, Ulrich; Veith, Helmut; Widder, Josef
Main reference A. John, I. Konnov, U. Schmid, H. Veith, J. Widder, “Counter Attack on Byzantine Generals:

Parameterized Model Checking of Fault-tolerant Distributed Algorithms,” arXiv:1210.3846v2
[cs.LO], 2013.

URL http://arxiv.org/abs/1210.3846v2

We introduce an automated parameterized verification method for fault-tolerant distributed
algorithms (FTDA). FTDAs are parameterized by both the number of processes and the
assumed maximum number of Byzantine faulty processes. At the center of our technique
is a parametric interval abstraction (PIA) where the interval boundaries are arithmetic
expressions over parameters. Using PIA for both data abstraction and a new form of
counter abstraction, we reduce the parameterized problem to finite-state model checking.
We demonstrate the practical feasibility of our method by verifying several variants of the
well-known distributed algorithm by Srikanth and Toueg. Our semi-decision procedures are
complemented and motivated by an undecidability proof for FTDA verification which holds
even in the absence of interprocess communication. To the best of our knowledge, this is the
first paper to achieve parameterized automated verification of Byzantine FTDA.

3.8 Verification of a Quasi Certification Protocol over a DHT
Fabrice Kordon (UPMC, Lab. LIP6, Paris, FR)

License Creative Commons BY 3.0 Unported license
© Fabrice Kordon

Joint work of Kordon, Fabrice; Bonnaire, Xavier; Cortés, Rudyar; Marin, Olivier

Building a certification authority that is both decentralized and fully reliable is impossible.
However, the limitation thus imposed on scalability is unacceptable for many types of
information systems, such as e-government services. We propose a solution to build an highly
reliable certification authority, based on a distributed hash table and a dedicated protocol
ensuring a very low probability of arbitrary failure. Thus, in practice, false positives should
never occur. This talk briefly presents the protocol and shows its verification in two steps:
(1) a formal model to assess that the protocol behaves as expected in an “ideal world” where

13141

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1210.3846v2
http://arxiv.org/abs/1210.3846v2
http://arxiv.org/abs/1210.3846v2
http://arxiv.org/abs/1210.3846v2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

8 13141 – Formal Verification of Distributed Algorithms

communications are reliable, and, (2) a probabilistic analysis to evaluate the probability of
failure of the certification.

3.9 Finding Non-terminating Executions in Distributed Asynchronous
Programs

Akash Lal (Microsoft Research India, Bangalore, IN)

License Creative Commons BY 3.0 Unported license
© Akash Lal

Joint work of Emmi, Michael; Lal, Akash
Main reference M. Emmi, A. Lal, “Finding non-terminating executions in distributed asynchronous programs,” in

Proc. of the 19th Int’l Symp. on Static Analysis (SAS’12), LNCS, Vol. 7460, pp. 439–455, Springer,
2012.

URL http://dx.doi.org/10.1007/978-3-642-33125-1_29

Programming distributed and reactive asynchronous systems is complex due to the lack of
synchronization between concurrently executing tasks, and arbitrary delay of message-based
communication. As even simple programming mistakes have the capability to introduce
divergent behavior, a key liveness property is eventual quiescence: for any finite number of
external stimuli (e.g., client-generated events), only a finite number of internal messages are
ever created.

In this work we propose a practical three-step reduction-based approach for detecting
divergent executions in asynchronous programs. As a first step, we give a code-to-code
translation reducing divergence of an asynchronous program P to completed state-reachability,
i.e., reachability to a given state with no pending synchronous tasks, of a polynomially-sized
asynchronous program P ′. In the second step, we give a code-to-code translation under-
approximating completed state-reachability of P ′ by state-reachability of a polynomially-sized
recursive sequential program P ′′(K), for the given analysis parameter K. Following Emmi
et al.’s delay-bounding approach, P ′′(K) encodes a subset of P ′, and thus of P , by limiting
scheduling nondeterminism. As K is increased, more possibly divergent behaviors of P are
considered, and in the limit as K approaches infinity, our reduction is complete for programs
with finite data domains. As the final step we give the resulting state-reachability query to
an of-the-shelf SMT-based sequential program verification tool.

We demonstrate the feasibility of our approach by implementing a prototype analysis
tool called Alive, which detects divergent executions in several hand-coded variations of
textbook distributed algorithms.

3.10 A Framework for Formally Verifying Software Transactional
Memory (and Other Concurrent Algorithms)

Victor Luchangco (Oracle Corporation, Burlington, US)

License Creative Commons BY 3.0 Unported license
© Victor Luchangco

Joint work of Lesani, Mohsen; Luchangco, Victor; Moir, Mark
Main reference M. Lesani, V. Luchangco, M. Moir, “A framework for formally verifying software transactional

memory algorithms,” in Proc. of the 23rd Int’l Conf. on Concurrency Theory (CONCUR’12),
LNCS, Vol. 7454, pp. 516–530. Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-32940-1_36

We present a framework for verifying transactional memory (TM) algorithms. Specifications
and algorithms are specified using I/O automata, enabling hierarchical proofs that the

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33125-1_29
http://dx.doi.org/10.1007/978-3-642-33125-1_29
http://dx.doi.org/10.1007/978-3-642-33125-1_29
http://dx.doi.org/10.1007/978-3-642-33125-1_29
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-642-32940-1_36

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 9

algorithms implement the specifications. We have used this framework to develop what we
believe is the first fully formal machine-checked verification of a practical TM algorithm: the
NOrec algorithm of Dalessandro, Spear and Scott. Our framework is available for others
to use and extend. New proofs can leverage existing ones, eliminating significant work and
complexity.

3.11 Verification of Fault-Tolerant Distributed Algorithms in the
Heard-Of Model

Stephan Merz (LORIA, Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Stephan Merz

Joint work of Débrat, Henri; Merz, Stephan
Main reference H. Debrat, S. Merz, “Verifying fault-tolerant distributed algorithms in the Heard-Of model,”

Archive of Formal Proofs, 2012.
URL http://afp.sf.net/entries/Heard_Of.shtml

Distributed algorithms are quite subtle, both in the way they function and in the hypotheses
assumed for their correctness. Moreover, many different computational models exist in the
literature, but comparisons between algorithms expressed in different models is difficult.
Formal verification can help ascertain the correctness of a given algorithm w.r.t. well-
specified hypotheses. We present work on the formal verification of fault-tolerant distributed
algorithms in the Heard-Of model introduced by Charron-Bost and Schiper [1, 2]. In this
model, algorithms execute in communication-closed rounds and are subject to hypotheses
expressed in terms of Heard-Of sets, i.e., the sets of processes from which messages are
received in a given round. We formally prove a reduction theorem that justifies verifying
these algorithms in a coarse-grained (synchronous) model of execution. In this way, entire
system rounds become the unit of atomicity, and verification becomes much simpler than
when interleavings of individual process actions are considered. We have verified six different
Consensus algorithms that differ with respect to the presence of a coordinator, the types and
numbers of faults they tolerate (both benign and Byzantine failures are considered), and
the degree of synchrony that is required for correctness. Both the reduction proof and the
verification of the various algorithms are carried out in the proof assistant Isabelle/HOL [3],
and they are available online [4].

References
1 Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in distrib-

uted systems with benign faults. Distributed Computing 22(1):49-71, 2009.
2 Martin Biely, Bernadette Charron-Bost, Antoine Gaillard, Martin Hutle, André Schiper,

and Josef Widder. Tolerating corrupted communication. Proc. 26th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC’07), pp. 244–253. ACM, New York
City, 2007.

3 Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL. A Proof Assistant
for Higher-Order Logic. LNCS 2283, Springer, 2002.

4 Henri Debrat and Stephan Merz. Verifying fault-tolerant distributed algorithms in the
Heard-Of model. Archive of Formal Proofs, http://afp.sf.net/entries/Heard_Of.shtml,
2012.

13141

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://afp.sf.net/entries/Heard_Of.shtml
http://afp.sf.net/entries/Heard_Of.shtml
http://afp.sf.net/entries/Heard_Of.shtml
http://afp.sf.net/entries/Heard_Of.shtml

10 13141 – Formal Verification of Distributed Algorithms

3.12 Verifying Consensus . . . Using Process Calculi, State Machines,
and Proof Checkers

Uwe Nestmann (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Uwe Nestmann

We focus on the gap between pseudo code, as often used for the description of distributed
algorithms, and correctness proofs, as usually written in math-enhanced natural language.
Trying to bridge the gap, we discuss the use of process calculi and state machines, as well
as their connection. We also briefly report on the mechanisation of state-machine-based
correctness proofs within the proof assistant Isabelle.

References
1 R. Fuzzati, M. Merro and U. Nestmann. Distributed Consensus, Revisited. Acta Inf.,

44(6):377–425, 2007.
2 M. Kühnrich and U. Nestmann. On Process-Algebraic Proof Methods for Fault Tolerant

Distributed Systems. In D. Lee, A. Lopes and A. Poetzsch-Heffter, eds, FMOODS/FORTE,
volume 5522 of Lecture Notes in Computer Science, pages 198–212. Springer, 2009.

3 P. Küfner, U. Nestmann and C. Rickmann. Formal Verification of Distributed Algorithms
– From Pseudo Code to Checked Proofs. In J. C. M. Baeten, T. Ball and F. S. de Boer, eds,
IFIP TCS, volume 7604 of Lecture Notes in Computer Science, pages 209–224. Springer,
2012.

4 U. Nestmann and R. Fuzzati. Unreliable Failure Detectors via Operational Semantics In
V. A. Saraswat, ed, ASIAN, volume 2896 of Lecture Notes in Computer Science, pages
54–71. Springer, 2003.

5 U. Nestmann, R. Fuzzati and M. Merro. Modeling Consensus in a Process Calculus. In
R. M. Amadio and D. Lugiez, eds, CONCUR, volume 2761 of Lecture Notes in Computer
Science, pages 393–407. Springer, 2003.

3.13 Tutorial on Distributed Algorithms
Eric Ruppert (York University, Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Eric Ruppert

I gave some background information on the way distributed algorithm designers model
distributed systems and define correctness properties. I briefly described some of the
challenges faced in designing distributed algorithms and some techniques used to overcome
them, with examples of algorithms that use the techniques. These techniques include quorums,
repeated reads to obtain consistent views, timestamps, helping, using CAS to synchronize,
pointer swinging and locks.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 11

3.14 Getting the Best out of General-Purpose Tools: Theorem Provers
and Infinite-Bounded Model Checker

John Rushby (SRI, Menlo Park, US)

License Creative Commons BY 3.0 Unported license
© John Rushby

In traditional “by hand” formal verification of distributed algorithms it is often beneficial to
work with a model of computation specialized to the issue of primary concern (e.g., timed
automata). But the best developed, most powerful mechanized verification tools tend to
be general-purpose (or specialized to a different model than the one you want). I describe
and demonstrate some techniques for getting the best out of general-purpose tools through
adjustments to (the representation of) models that better exploit the underlying automation.
I cover representation of nondeterminism in a theorem prover (illustrated using Byzantine
Agreement in PVS) and timed systems in an infinite bounded model checker (illustrated
using Biphase Mark in SAL). I also briefly describe computational reflection, and some
prospects and hopes for the future.

3.15 An Epistemic Perspective on Consistency of Concurrent
Computations

Andrey Rybalchenko (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Andrey Rybalchenko

Joint work of von Gleissenthal, Klaus; Rybalchenko, Andrey
Main reference K. v. Gleissenthall, A. Rybalchenko, “An Epistemic Perspective on Consistency of Concurrent

Computations,” arXiv:1305.2295v1 [cs.LO], 2013.
URL http://arxiv.org/abs/1305.2295

Consistency properties of concurrent computations, e.g., sequential consistency, linearizability,
or eventual consistency, are essential for devising correct concurrent algorithms. In this
paper, we present a logical formalization of such consistency properties that is based on a
standard logic of knowledge. Our formalization provides a declarative perspective on what
is imposed by consistency requirements and provides some interesting unifying insight on
differently looking properties.

3.16 Unidirectional Channel Systems Can Be Tested
Philippe Schnoebelen (ENS Cachan, FR)

License Creative Commons BY 3.0 Unported license
© Philippe Schnoebelen

Joint work of Jančar, Petr; Karandikar, Prateek; Schnoebelen, Philippe
Main reference P. Jančar, P. Karandikar, P. Schnoebelen, “Unidirectional channel systems can be tested,” in Proc.

of the 7th IFIP TC1/WG2.2 Int’l Conf. on Theoretical Computer Science (TCS’12), LNCS,
Vol. 7604, pp. 149–163, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-33475-7_11

“Unidirectional channel systems” (Chambart & Schnoebelen, CONCUR 2008) are systems
where one-way communication from a sender to a receiver goes via one reliable and one
unreliable (unbounded fifo) channel. Equipping these systems with the possibility of testing

13141

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1305.2295
http://arxiv.org/abs/1305.2295
http://arxiv.org/abs/1305.2295
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33475-7_11
http://dx.doi.org/10.1007/978-3-642-33475-7_11
http://dx.doi.org/10.1007/978-3-642-33475-7_11
http://dx.doi.org/10.1007/978-3-642-33475-7_11

12 13141 – Formal Verification of Distributed Algorithms

regular properties on the contents of channels makes verification undecidable. Decidability is
preserved when only emptiness and nonemptiness tests are considered: the proof relies on
a series of reductions eventually allowing us to take advantage of recent results on Post’s
Embedding Problem.

3.17 Formal Verification of Distributed Algorithms at TTTech
Wilfried Steiner (TTTech Computertechnik, Vienna, AT)

License Creative Commons BY 3.0 Unported license
© Wilfried Steiner

System design for safety-critical systems and mixed-criticality systems, such as aerospace or
space applications, is inherently complex and demands a level of quality assurance often only
to be met by the use of formal methods. This is due to the tightly interwoven requirements
of fault tolerance, the ability to sustain partial failures of the system, and real-time control.
One key element of a safety-critical system is its communication infrastructure, which more
and more determines the overall system architecture. With its central role, the correct
design of the communication infrastructure, and in particular the distributed algorithms
that the infrastructure implements, is a crucial pre-requisite for mission success. In this
talk we discuss how formal methods have been used during the design of the TTEthernet
communication infrastructure and their general use at TTTech.

3.18 Tutorial on Parameterized Model Checking
Murali Talupur (Intel SCL, Hillsboro, US)

License Creative Commons BY 3.0 Unported license
© Murali Talupur

With the move towards multi-core processors and SoCs (systems-on-chip) parameterized
verification of distributed protocols has taken on a new urgency. Protocols like cache
coherence protocols, bus lock protocols form the bedrock on which these processors are
built and verifying them is a challenging task. In this talk I will describe a highly scalable
and automated method, called the CMP+ Flows method, for formally and parametrically
verifying protocols. As the name indicates the method has two components. The first
component, the CMP method, is a compositional reasoning technique that uses abstraction
to reduce an unbounded parameterized verification problem to a finite problem that can then
be model checked. The abstraction operation is completely automatic but the user has to
supply lemmas (or candidate invariants) to progressively refine the abstraction. Though the
CMP method imposes less manual burden than pure theorem proving, supplying lemmas is
still a non-trivial task, especially for large industrial protocols. The second component of our
method addresses this gap by showing how to derive invariants automatically from informal
design artifacts called Flows. Flows are essentially partial orders on system events, such as
sending and receiving of messages, that architects typically use to conceive the protocols.
These are readily available in design documents and as we show they yield powerful invariants.
The combined CMP+ Flows method is extremely scalable while imposing minimal burden
on the user. Using this method we have verified multiple industrial strength cache coherence
protocols and other co-ordination protocols. To our knowledge no other method has been
used successfully to verify protocols of such sizes.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 13

3.19 Correctness without Serializabilty: Verifying Transactional
Programs under Snapshot Isolation

Serdar Tasiran (Koc University, Istanbul, TR)

License Creative Commons BY 3.0 Unported license
© Serdar Tasiran

We present a static verification approach for programs running under snapshot isolation
(SI) and similar relaxed transactional semantics. In a common pattern in distributed and
concurrent programs, transactions each read a large portion of shared data, perform local
computation, and then modify a small portion of the shared data. Requiring conflict
serializability in this scenario results in serial execution of transactions or worse, and
performance suffers. To avoid such performance problems, relaxed conflict detection schemes
such as snapshot isolation (SI) are used widely. Under SI, transactions are no longer
guaranteed to be serializable, and the simplicity of reasoning sequentially within a transaction
is lost. In this paper, we present an approach for statically verifying properties of transactional
programs operating under SI. Differently from earlier work, we handle transactional programs
even when they are designed not to be serializable.

In our approach, the user first verifies his program in the static verification tool VCC
pretending that transactions run sequentially. This task requires the user to provide program
annotations such as loop invariants and function pre- and post-conditions. We then apply
a source-to-source transformation which augments the program with an encoding of the
SI semantics. Verifying the resulting program with transformed user annotations and
specifications is equivalent to verifying the original transactional program running under
SI—a fact we prove formally. Our encoding preserves the modularity and scalability of
VCC’s verification approach. We applied our method successfully to benchmark programs
from the transactional memory literature. In each benchmark, we were able to verify the
encoded program without manually providing any extra annotations beyond those required
for verifying the program sequentially. The correctness argument of the sequential versions
generalized to SI, and verification times were similar.

3.20 (Dis)Proof Automation: What We Can Do, What We Could Do
and What Is Needed?

Christoph Weidenbach (MPI für Informatik, Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Christoph Weidenbach

After an introduction to the underlying principles of designing automated reasoning systems,
I discuss FOL(T), the hierarchic combination of a theory T and first-order logic. In particular
for the case where T is a language of arithmetic, e.g., linear rational arithmetic. I show that
this language is expressive enough to represent timed, hybrid, and probabilistic automata.
Superposition-based reasoning delivers a decision procedure for known decidable reasoning
challenges and beyond. The language also strictly generalizes the SMT setting as it considers
universally quantified variables in addition to constants.

13141

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

14 13141 – Formal Verification of Distributed Algorithms

3.21 Efficient Checking of Link-Reversal-Based Concurrent Systems
Josef Widder (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Josef Widder

Joint work of Függer, Matthias; Widder, Josef
Main reference M. Függer, J. Widder, “Efficient checking of link-reversal-based concurrent systems,” in Proc. of

the 23rd Int’l Conf. on Concurrency Theory (CONCUR’12), LNCS, Vol. 7454, pp. 486–499,
Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-32940-1_34

Link reversal is an algorithmic method with various applications. Originally proposed by
Gafni and Bertsekas in 1981 for routing in radio networks, it has been later applied also
to solve concurrency related problems as mutual exclusion, resource allocation, and leader
election. For resource allocation, conflicts can be represented by conflict graphs, and link
reversal algorithms work on these graphs to resolve conflicts. In this talk I explain that
executions of link reversal algorithms on large graphs are similar (a notion which I make
precise) to executions on smaller graphs. This similarity then allows to verify linear time
temporal properties of the large systems, by verifying a smaller one.

4 Panel Discussions

The tentative program included three time slots for discussions. It was intended to have
several working groups in parallel where specific topics would be discussed, and then report
on the outcomes in a joint session. However, just listing the topics for the working groups
sparked a lively discussion, in which most of the participants participated actively. Because
the format of seminar-wide discussions turned out to be fruitful, we decided to stick with
seminar-wide, moderated sessions.

In the first session, participants were asked what they considered the major open questions
in the area of formal verification of distributed algorithms, and what kind of information
from the other community they would need to make progress in this area. We identified
modeling as the most urgent point: While the formal methods community is used to have
a precise description of the object they consider (programming languages, input languages
of model checking tools, etc.), distributed algorithms are typically given in pseudo code
only. This formalization gap appeared to be crucial, and it was decided to devote the second
discussion session to this subject. The final discussion session was devoted to the next steps
we could take to bring the concerned communities together. We list the major topics that
were discussed:

4.1 Session 1: What are the problems?
There exists a large variety of modeling frameworks, corresponding to different classes
of systems. The DA community usually presents models and algorithms informally
(using text and pseudo-code), whereas FM researchers and tools require formal semantics
definitions. Is formalization just a tedious detail or is it a contribution in itself? Is there
a classification of relevant computational models and their relationships?
A collection of benchmark problems could give some guidance to the FM community.
Different formal methods could tackle these problems at different levels of abstraction,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-32940-1_34
http://dx.doi.org/10.1007/978-3-642-32940-1_34
http://dx.doi.org/10.1007/978-3-642-32940-1_34
http://dx.doi.org/10.1007/978-3-642-32940-1_34

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 15

enabling their comparison over practically relevant case studies. These should include
novel paradigms of the DA field and different application areas. A collection of verified
algorithms, as well as results of verification competitions would help DA researchers
evaluate the potential and the usability of FM methods and tools.
Within the FM community, an important line of research is about the integration of
different techniques such as model checking, proof assistants, SMT solving, etc. Doing
so requires consistent semantic models and raises the issue of trust in the results obtained
in this way.
Beyond the verification of distributed algorithms at a high level of abstraction, issues
of verified implementation of distributed systems, as well as formal assurances on
non-functional properties such as performance or security are of great interest. To
what extent can formal verification play a role in certification processes that are used
in safety-critical settings? Is it possible to obtain guarantees on systems that integrate
verified and unverified components?

4.2 Session 2: Modeling
The main purpose of a formal model is to clearly express the semantics of an algorithm
or system. There is a tradeoff between models expressed in natural language and pseudo-
code (concise and readable but potentially ambiguous) and formal semantics description
(complete and precise but maybe cluttered with too much detail).
Different models are geared towards different purposes. For example, there is a tradeoff
between efficient checking vs. the ease of expressing distributed algorithms.
For distributed algorithms that are intended to operate continually, specifying initial
states can be problematic. For example, there is a subtle difference between the Consensus
problem where all nodes start from scratch, and the repeated Consensus problem where
nodes may start at vastly different times.
The DA community should provide a catalogue of the most important existing models
for distributed algorithms. This includes variations of shared memory vs. message passing
models, round-based vs. asynchronous models, failure models etc. The system model
should be distinguished from the computational model.

4.3 Session 3: Follow-up
A follow-up seminar should be organized in a few years, presenting progress on research
into the issued raised during the seminar. Besides another Dagstuhl seminar, a workshop
gathering researchers from the DA and FM communities could be organized as a satellite
of a major conference, such as FLOC 2014 in Vienna. It would also be useful to raise the
awareness of the topics discussed in this seminar by inviting DA researchers to give talks
at FM conferences, and vice versa.
The topic of models was identified as the most important one, and it would be useful to
work out a catalogue or classification, as mentioned above.
Research about the application of FM methods and tools on interesting distributed
algorithms would benefit from maintaining a list of verified algorithms, e.g. in the form
of a Wiki page to which different people could contribute.

13141

16 13141 – Formal Verification of Distributed Algorithms

Participants

Béatrice Bérard
UPMC, Lab. LIP6 – Paris, FR

Péter Bokor
ALTEN Engineering – Berlin, DE

Borzoo Bonakdarpour
University of Waterloo, CA

Pierre Castéran
University of Bordeaux, FR

Bernadette Charron-Bost
Ecole Polytechnique –
Palaiseau, FR

Marie Duflot
LORIA & INRIA Nancy, FR

Cormac Flanagan
University of California – Santa
Cruz, US

Matthias Függer
TU Wien, AT

Alexey Gotsman
IMDEA Software – Madrid, ES

Serge Haddad
ENS – Cachan, FR

Gerwin Klein
NICTA & UNSW – Sydney, AU

Igor Konnov
TU Wien, AT

Fabrice Kordon
UPMC, Lab. LIP6 – Paris, FR

Akash Lal
Microsoft Research India –
Bangalore, IN

Victor Luchangco
Oracle Corporation –
Burlington, US

Stephan Merz
LORIA – Nancy, FR

Uwe Nestmann
TU Berlin, DE

Thomas Nowak
Ecole Polytechnique –
Palaiseau, FR

Eric Ruppert
York University – Toronto, CA

John Rushby
SRI – Menlo Park, US

Andrey Rybalchenko
TU München, DE

André Schiper
EPFL – Lausanne, CH

Klaus Schneider
TU Kaiserslautern, DE

Philippe Schnoebelen
ENS – Cachan, FR

Wilfried Steiner
TTTech Computertechnik –
Wien, AT

Murali Talupur
Intel SCL – Hillsboro, US

Serdar Tasiran
Koc University – Istanbul, TR

Helmut Veith
TU Wien, AT

Christoph Weidenbach
MPI für Informatik –
Saarbrücken, DE

Jennifer L. Welch
Texas A&M University –
College Station, US

Josef Widder
TU Wien, AT

Karsten Wolf
Universität Rostock, DE

	Executive Summary Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder
	Table of Contents
	Overview of Talks
	Partial-Order Reductions: Landscape & Practice Péter Bokor
	Automated Repair of Distributed Systems: Beyond Verification Borzoo Bonakdarpour
	Formal Proofs in Coq of Local Computation Systems Pierre Castéran
	Semantics of Eventually Consistent Systems Alexey Gotsman
	A Fault-tolerant Communication Mechanism for Cooperative Robots Serge Haddad
	Scaling Up Interactive Verification Gerwin Klein
	Parameterized Model Checking of Fault-Tolerant Broadcasting Algorithms Igor Konnov
	Verification of a Quasi Certification Protocol over a DHT Fabrice Kordon
	Finding Non-terminating Executions in Distributed Asynchronous Programs Akash Lal
	A Framework for Formally Verifying Software Transactional Memory (and Other Concurrent Algorithms) Victor Luchangco
	Verification of Fault-Tolerant Distributed Algorithms in the Heard-Of Model Stephan Merz
	Verifying Consensus …Using Process Calculi, State Machines, and Proof Checkers Uwe Nestmann
	Tutorial on Distributed Algorithms Eric Ruppert
	Getting the Best out of General-Purpose Tools: Theorem Provers and Infinite-Bounded Model Checker John Rushby
	An Epistemic Perspective on Consistency of Concurrent Computations Andrey Rybalchenko
	Unidirectional Channel Systems Can Be Tested Philippe Schnoebelen
	Formal Verification of Distributed Algorithms at TTTech Wilfried Steiner
	Tutorial on Parameterized Model Checking Murali Talupur
	Correctness without Serializabilty: Verifying Transactional Programs under Snapshot Isolation Serdar Tasiran
	(Dis)Proof Automation: What We Can Do, What We Could Do and What Is Needed? Christoph Weidenbach
	Efficient Checking of Link-Reversal-Based Concurrent Systems Josef Widder

	Panel Discussions
	Session 1: What are the problems?
	Session 2: Modeling
	Session 3: Follow-up

	Participants

