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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13151 “Drawing
Graphs and Maps with Curves”. The seminar brought together 34 researchers from different
areas such as graph drawing, information visualization, computational geometry, and cartography.
During the seminar we started with seven overview talks on the use of curves in the different
communities represented in the seminar. Abstracts of these talks are collected in this report.
Six working groups formed around open research problems related to the seminar topic and we
report about their findings. Finally, the seminar was accompanied by the art exhibition Bending
Reality: Where Arc and Science Meet with 40 exhibits contributed by the seminar participants.
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Graphs and networks, maps and schematic map representations are frequently used in many
fields of science, humanities and the arts. The need for effective visualization and aesthetically
pleasing design is attested by the numerous conferences and symposia on related topics,
and a history that is several centuries old. From Mercator’s maps dating to the 1500’s,
to interactive services such as Google Earth, geography and cartography have generated
and solved many theoretical and practical problems in displaying spatial data effectively
and efficiently. From Euler’s visualization of the bridges of Königsberg in the 1700’s, to
Facebook’s social networks, graph drawing has also proven a fertile area for theoretical and
practical work. More recent is the notion of highly schematized maps and graphs, with the
classic examples of statistical value-by-area cartograms by Raisz and Henry Beck’s London
Tube map, both dating back to the 1930’s.

A key challenge in graph and cartographic visualization is designing cognitively useful
spatial mappings of the underlying data that allow people to intuitively understand the
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Figure 1 Lombardi graph drawings [1]: Brinkman graph, Dyck graph, and F40 (dodecahedron
double cover).

Figure 2 One of Mark Lombardi’s pieces: George W. Bush, Harken Energy, and Jackson Stevens
ca. 1979–90, 1999. Graphite on paper, 20 × 44 inches. Courtesy Pierogi Gallery and Donald
Lombardi. Photo credit: John Berens.

displayed information. Such work draws on the intellectual history of several traditions,
including information visualization, human-computer interaction, psychology, cognitive
science, graphic design, cartography, and art. The synthesis of relevant ideas from these
fields with new techniques can lead to new and better visualizations to help us keep pace
with the torrents of data confronting us.

Although a great deal is known, both in theory and in practice, about drawing graphs
and maps with straight-line segments, there are few corresponding results about circular-arc
drawings in particular, and curve drawings in general. The use of circular arcs in place of
straight-line segments opens a new chapter in drawing graphs and maps from both theoretical
and practical points of view. Specifically, we are interested in the interplay between practical
requirements of drawing with curves, arising in cartography and GIS, and theoretical results
in computational geometry and graph drawing. Such work is motivated by perception
research which indicates that representing paths with smooth geodesic trajectories aids in
comprehension, as well as by the aesthetic appeal of smooth curves; see Fig. 1 and Fig. 2.

Aims of the Seminar
The main goal of this seminar was to bring together researchers with interests in drawing
graphs and maps with curves coming from information visualization, psychology, cognitive
science, human-computer interaction, graph drawing, computational geometry, cartography,
and GIS. It follows in a tradition of several previous similarly structured Dagstuhl seminars
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on graph drawing and map visualization. From April 7th to April 12th a group of 34 junior
and senior researchers from eight different countries gathered in Dagstuhl. Being a small
seminar with a target participation of 30 persons, the seminar was fully booked, which shows
that this seemingly narrow topic still raises a lot of interest in the different communities.
We all came together to discuss open research questions and engage in new collaborations
around visualizations that replace straight lines with circular arcs and curves. This topic
opens a great deal of theoretical and practical possibilities and with this in mind, the specific
aims of the Dagstuhl seminar were:

To learn about the state of the art of the use of curves in the different research areas. We
invited a small number of survey lectures to define a common ground for interdisciplinary
work.
To organize an exhibition of art and visual designs on the common theme of curves
contributed by participants and artists, and use this to stimulate discussion.
To identify specific theoretical and practical open problems that need to be solved in
order to make it possible to draw graphs and maps with circular arcs and curves.
To form smaller working groups around some of the identified problems and to initiate a
collaborative research process for finding answers and solutions to these problems.
To report about the progress made in the working groups in a plenary session for getting
feedback and further input from members of the other groups.
To continue the joint research efforts beyond the seminar week and eventually publish
those results.

Achievements of the Seminar
The achievements in the seminar were numerous and varied. The subsequent chapters of this
report summarize the more important ones.

1. On Monday and Tuesday, we enjoyed seven survey lectures; see Section 3 for the abstracts.
David Eppstein opened with a broad overview of the use of curves in visualization of graphs
and networks. Günter Rote talked about algorithms for approximating polygonal curves
by simpler curves and sequences of biarcs. Sylvain Lazard illustrated connections with
algebra and geometry when dealing with curves. Jo Wood surveyed the use of curves in
cartography and information visualization. Helen Purchase discussed perception theories
and empirical studies on the use of curves in visualization, and Maxwell Roberts discussed
the question whether curvilinear metro maps have cognitive benefits over traditional
straight-line schematic maps. Finally, Monique Teillaud and Michael Hemmer overviewed
the history of the open source project CGAL, the Computational Geometry Algorithms
Library, and then discussed specific CGAL packages that are relevant for drawing circular
arcs and smooth algebraic curves. Beyond the survey and review talks, we also heard a
presentation by Wouter Meulemans about the use of curved schematization of geometric
shapes, where the results were obtained via a user study of the participants in the seminar.

2. We also had two short impromptu presentations and software demos. In particular,
Günter Rote presented an ipelet to transform polygons into splines in the drawing editor
ipe. Jan-Henrik Haunert reported about work in progress and showed a demo on morphing
polygonal lines so that edge lengths and angles behave as consistently as possible over
time.
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3. A number of relevant open problems were formulated early in the seminar and six working
groups formed around some of the problems. The groups then worked by themselves,
formalizing and solving their specific theoretical and practical challenges. Section 4
contains the working group reports summarizing the problem and sketching the current
progress made by the groups. Below is a list of the working group topics.
a. Smooth Orthogonal Drawings: What is the complexity of recognizing whether a

given 4-planar graph admits a smooth orthogonal drawing of edge complexity 1?
b. Confluent Drawing: What is the complexity of determining whether a given graph

has a so-called strict confluent drawing?
c. Automated Evaluation of Metro Map Usability: What are good, objective,

quantifiable criteria by which curvilinear metro maps can be evaluated? Can such
criteria be used so that linear maps can likewise be compared both with each other
and also with curvilinear maps?

d. Universal Point Sets for Planar Graph Drawings with Circular Arcs: What
can be said about universal point sets for drawing planar graphs if curves are used
instead of straight-line segments?

e. Labeling Curves with Curved Labels: How can points on a smooth curve be
labeled automatically using curved labels?

f. Graphs with Circular Arc Contact Representation: Which graphs can be
represented by contacts of circular arcs?

The remaining open problems collected during the seminar are listed in Section 5.
4. We had an excellent exhibition entitled “Bending Reality: Where Arc and Science Meet”;

see Section 6. This exhibition is the third one in a series of exhibitions that accompany
Dagstuhl seminars where aesthetics and art are naturally part of the scientific topics. It
was on display from April 8 to April 21, 2013. Moreover, for the first time in Dagstuhl
history, this exhibition is made permanently available as a virtual exhibition that can be
accessed at http://www.dagstuhl.de/ueber-dagstuhl/kunst/13151.

The last three days of the seminar were dedicated to working group efforts. Several of
the groups kept their focus on the original problems as stated in the open problem session,
while other groups modified and expanded the problems; see Section 4. On the last day of
the seminar we heard progress reports from all groups. The results of two of the groups have
recently been accepted to international conferences, and we are expecting further research
publications to result directly from the seminar.

Arguably the best, and most-appreciated, feature of the seminar was the opportunity
to engage in discussion and interactions with experts in various fields with shared passion
about curves. The aforementioned exhibition “Bending Reality” helped make the topics
of the seminar more visible and raised new questions. In summary, we regard the seminar
as a great success. From the positive feedback that we got it is our impression that the
participants enjoyed the unique scientific atmosphere at Schloss Dagstuhl and profited from
the scientific program. We are grateful for having had the opportunity to organize this
seminar and thank the scientific, administrative, and technical staff at Schloss Dagstuhl. We
also thank Benjamin Niedermann for helping us to put this report together.

References
1 Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov, and

Martin Nöllenburg. Lombardi drawings of graphs. J. Graph Algorithms and Applications,
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3 Overview of Talks

3.1 A Brief History of Curves in Graph Drawing
David Eppstein (University California – Irvine)
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“It is not the right angle that attracts me, nor the straight line, hard and inflexible,
created by man. What attracts me is the free and sensual curve—the curve that I
find in the mountains of my country, in the sinuous course of its rivers, in the body of
the beloved woman.”

—Oscar Niemeyer [45]

3.1.1 Early Directions

Hand-generated graph drawings have long used curves, independently of graph drawing
research. Examples can be found, for instance, in the works of Listing [38] and Peterson [46].
Mark Lombardi (1951–2000) raised hand-made curved graph drawings to an art form with
his diagrams of connections between the actors in global financial, criminal, and political
conspiracies, or as he called them, narrative structures [31]. Hand-drawn graphs have also
been the subject of graph drawing research: Plimmer et al. [48] describe techniques for the
automated rearrangement of hand-drawn graphs, taking care to preserve the features that
make these graphs look hand-drawn such as the curvature of their edges.

The earliest research on the mathematics and algorithmics of curved graph drawing
concerned a drawing style that is now called an arc diagram. These are drawings in which the
vertices are placed on a line, and the edges are drawn on one or more semicircles, either above
or below the line. Drawings with these styles were first used by Saaty [54] and Nicholson [44]
as a way to formalize and attempt to solve the problem of minimizing crossing numbers
of graphs. Finding the minimum number of crossings of a graph in this style turns out
to be NP-hard [41], although if crossing-free diagrams exist they may be found by solving
a 2-satisfiability problem once the vertex ordering has been determined [17]. Djidjev and
Vrt’o [10] and Cimikowski [8] developed heuristics to reduce the number of crossings in
drawings of this type without guaranteeing to find the minimum. For st-planar graphs (and
also for undirected planar graphs) it is always possible to find drawings in this style in which
edges are drawn as smooth curves formed of at most two semicircles (oriented left to right in
the st-planar case) with at most one crossing of the spine on which the vertices are placed
[29, 3].

3.1.2 Uses of Curvature

One use of curvature, in drawings with edges that are curved but that do not have inflection
points, is to indicate directionality: if each edge is oriented in clockwise from source to
destination, then this orientation will be unambiguously indicated by the curve of the edge
without having to use other visual techniques to show it such as arrowheads or line thickness
variation [22]. This style is a good fit for arc diagrams [49] but for other layout styles, user
studies have shown that it can be confusing to readers [34].

Curved edges may also be used to help edges avoid obstacles that a straight edge would
run into. This can already be seen in the work of Peterson [46], who used circular arcs to

http://creativecommons.org/licenses/by/3.0/
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represent distinct edges connecting the same two vertices in a multigraph. In Sugiyama-style
layered graph drawing [58], vertices are assigned to layers and edges are subdivided by
dummy vertices so that each connection is between consecutive layers. The dummy vertices
(which are used to route edges between the other vertices on each layer) may then be used to
guide the placement of spline curves so that the edges may be drawn as smooth curves [28].
A simplified version of this spline calculation by Sander [55] was used by him to win the
graph drawing contest at GD 1994 GD. Another obstacle-avoiding drawing style, by Dobkin
et al. [11], involves placing the vertices of the drawing first, and then in a second stage of
the algorithm routing the edges around the vertices. In their algorithm, each edge is routed
first as a shortest obstacle-avoiding polyline, which is then smoothed by a spline curve, and
finally the curves are adjusted locally to eliminate any intersections with obstacles caused by
the smoothing step. There has also been much related work in motion planning on finding
smooth curves for a fixed obstacle-avoiding route; see e.g. Lutterkort and Peters [40].

The two ideas of curvature indicating directionality and curvature to avoid obstacles
were combined in PivotGraph [60], a system for displaying graphs whose vertices have other
numerical or categorical data associated with them. The vertices are placed into a grid using
this additional data as Cartesian coordinates, but this placement would lead to many edges
that pass directly through vertices if drawn as straight lines. By using curves (oriented
clockwise by directionality) they avoid these bad edge-vertex intersections as well as showing
the orientation of the edges graphically. In another visualization system, NodeXL [57], a
“polar” layout places vertices on concentric circles; curved edges are used to connect vertices
on consecutive circles without passing through the inner circle, cf. [1].

3.1.3 Focus + Context

Sarkar and Brown [56] suggested interactive fisheye views of graphs that could be used to
simultaneously zoom in on a point of interest and showing its surrounding context. The
Poincaré model of hyperbolic geometry (with edges drawn as circular arcs) automatically has
this effect [37] and has the additional advantage that there is a natural way to morph from
one focus to another, “maintaining the mental map”. Mohar [42] proves a version of Fáry’s
theorem (stating that the existence of non-crossing drawings in which each edge follows a
geodesic path) for graphs in the hyperbolic plane or on surfaces of negative curvature.

In later work on highlighting points of interest, Wong et al. [62] use edge curvature to
bend edges locally away from a part of a drawing without distorting the vertex placements
in the drawing. A related technique called edge plucking allows interactive user control of
local bending of bundles of edges [61].

3.1.4 Edge Complexity

Much research in graph drawing has focused on drawing styles with angular bends but low
curve complexity (bends per edge). However, graph drawing researchers have long known
that bends can be replaced by smoothed curves [16]. Bekos et al. [3] formalize the edge
complexity of graphs drawn with piecewise-circular-arc smooth curves, as the maximum
number of arcs and straight segments per edge. They observe that edge complexity is always
within a constant factor of bend complexity but that in many cases it is actually possible to
achieve lower edge complexity than bend complexity.

Goodrich and Wagner [30] achieve low edge complexity in a planar graph drawing. They
modify the (straight line) planar drawing algorithm of Fraysseix et al. [25] by surrounding
each vertex with a protected region of radius proportional to its degree, and placing equally
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spaced “ports” on the boundary of this region. Spline curves through the ports have constant
edge complexity, near-optimal angular resolution, and do not cross. Similar ideas have also
been used by Cheng et al. [6] and Duncan et al. [12] for drawings with piecewise circular
edges, again achieving high angular resolution.

3.1.5 Force-directed Graph Drawing (Spring Systems)

Force-directed methods have long been a mainstay of practical graph drawing. These methods
use forces (which may be visualized as springs) to attract adjacent pairs of vertices and
repel other pairs. Despite being somewhat slow they are very flexible, as they allow the
implementer great freedom of choice in modifying the system to add other forces beyond
these basic attractive and repulsive ones. Force-directed methods began with Tutte [59],
who showed that springs can automatically generate planar straight line drawings of planar
graphs. Other important early research in this area (also using straight edges) was done by
Eades [15], Kamada and Kawai [36], and Fruchterman and Reingold [26].

The combination of curves and forces was made by Brandes and Wagner [5], as part of a
system for drawing graphs that represent train systems. In these graphs, vertices represent
train stations and edges connect consecutive stops on the same train route. The vertex
placement is fixed by the geographic position of the stations, and in many cases involves
sets of nearly-collinear stations spaced out along the same train line. However, the edges
representing express trains skip some of these vertices, representing local train stations, and
(if drawn as straight) would overlap the positions of these stations. The solution of Brandes
and Wagner [5] is to use force-directed methods, with forces on the control points of splines,
to bend these edges outwards. In another application to train systems, Fink et al. [23] use
force-directed drawing to schematize train system maps, by replacing paths of degree-two
vertices by spline curves. Bending outwards can also be used in 3d to separate edges of
geographic graphs from the Earth’s surface [43].

For arbitrary graphs, Finkel and Tamassia [24] place a new vertex in the middle of each
edge of a given graph, apply force-directed layout, and then use the new vertices as spline
control points. They report that this gives significant improvements in angular resolution
and modest improvements in crossings compared to straight line drawings. Similar ideas
were used by Chernobelskiy et al [7] to spread out the edges in drawings with circular-arc
edges.

3.1.6 Edge Bundling

Edge bundling is a technique that, as initially developed, was used to simplify drawings of
large graphs with a hierarchically clustered vertex structure. This technique groups edges
that connect the same two clusters (at some level of the hierarchy) into “bundles” drawn as
nearly-parallel curves, making the set of edges both visually distinctive and more compact
than if they were all drawn separately. This idea was introduced by Holten [32] based on
a physical analogy to electrical wiring bundles; it is also closely related to flow maps for
numerical geographic data [47], and since the initial work on this style there have been
hundreds of successor papers.

Some of the many variations on bundling that have been considered include:

Non-hierarchical bundling by modeling edges as springs that attract each other [33].
A circular vertex layout, with unbundled edges outside the circle chosen to minimize
crossings, and with edges grouped into bundles inside the circle using a heuristic that
attempts to minimize the total amount of ink used for the drawing [27].



Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 43

Edge bundling in Sugiyama-style layered drawing [50].
Forbidding crossings within the edges of a bundle, and routing the edges of each bundle
on parallel tracks resembling metro maps, so that individual edges are easier to follow [4].

For a taxonomy of bundling-related curved edge techniques see Riche et al. [53].

3.1.7 Confluent Drawing

Although visually similar to bundled drawing, and often co-cited with it, confluent drawing
[9] is semantically very different. In confluent drawing, one represents a graph using train
tracks (sets of smooth curves meeting at points called junctions) rather than drawing the
edges as individual curves. Two vertices are adjacent in the underlying graph if and only if
they can be connected by a smooth curve through the curves and junctions of the drawing.
Thus, each curve carries a set of edges, similar to bundling, but in an unambiguous way.

The graphs with crossing-free confluent drawings form a strict superset of the planar
graphs, and include for example the interval graphs [9] and distance-hereditary graphs [20, 35].
A partially ordered set has an upward-planar confluent Hasse diagram if and only if its order
dimension is at most two [19].

Confluent edge routing (allowing crossings between pairs of confluent tracks) has been
combined with Sugiyama-style layered drawing, by finding complete bipartite subgraphs
within the sets of edges that connect consecutive layers and replacing these subgraphs by
confluent tracks [21]; this style was used for a winning entry in the 2003 graph drawing
contest. Confluence has also been used as a way to achieve axis-parallel edges for high-degree
planar graphs [52].

3.1.8 Lombardi Drawing

Inspired by the art of Mark Lombardi, graph drawing researchers have defined Lombardi
drawing to be a very strict layout style in which edges must be drawn as circular arcs, meeting
at equal angles at each vertex. This allows plane trees to be drawn in balloon style (with
their subtrees drawn recursively in disks surrounding the root node) with polynomial area,
in contrast to straight line drawing styles for which drawing plane trees with equally spaced
edges at each vertex may sometimes require exponential area [14].

Lombardi drawing may also be used for regular graphs and symmetric graphs [13], planar
graphs with maximum degree three [18], and some other special cases [39]. However, not
every graph has a Lombardi drawing, causing researchers in this area to resort to force-based
approximations [7] or multi-arc relaxations [12]. User studies on the aesthetics and usability
of force-based Lombardi-like drawings have had mixed results [63, 51] perhaps indicating
that additional constraints (such as restricting edges to arcs that cover less than half of their
circles) are necessary to make this style more effective.

A related result is that every 3-connected 4-regular planar graph may be represented as
the graph of an arrangement of circles [2]; however, the arcs of this representation will not in
general be equally spaced around each vertex.

3.1.9 Conclusions

Curves have been used very widely in graph drawing: almost every method of graph drawing
that has been studied, has been studied with curves. There are still many remaining technical
challenges (for instance on the edge complexity needed for 1-planar drawings, or on the
existence of outerplanar Lombardi drawings) but the biggest future challenge for curved
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drawing is more general, and still has not been completely achieved: designing methods for
curved drawing that are general (applicable to every graph and not just specialized graph
classes), usable (as measured in user studies), and consistently beautiful.
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3.2 Algorithms for Curve Approximation
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number of circular arcs and biarcs,” Computational Geometry, Theory and Applications 41 (2008),
31-47.

URL http://dx.doi.org/10.1016/j.comgeo.2007.10.009

This is a survey of algorithms for approximating a curve by a simpler curve, mostly by a
polygon with few edges. In the last part I also mention an algorithm of Drysdale, Rote, and
Sturm [1] for smooth (tangent-continuous) approximation by biarcs. I discuss the problem
definition, the variations and different objectives, and the pitfalls. I also survey the classical
algorithms of Douglas and Peucker; Imai and Iri; and of Chan and Chin.
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3.3 Algebraic Curves in Computational Geometry
Sylvain Lazard (INRIA Grand Est – Nancy, FRA)
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I will survey some recent results on the problem of drawing, in a certified way, algebraic
curves in the plane given by their implicit equation. I will focus on the problem of computing
the topology of such curves and their critical points. The talk will mostly be centered on
the presentation of the standard tools and main classes of methods for this problem. I will
also present some recent results (joint with Y. Bouzidi, M. Pouget and F. Rouillier) on the
problem of computing the critical points of the curve or, more precisely, on the problem of
solving bivariate algebraic systems by means of rational univariate representations. I will
show that computing such representations can be done in O(d8 + dτ ) bit operations modulo
polylogarithmic factors, where d is the degree of the input curve and τ is the maximum
bitsize of its coefficients. This decreases by a factor d2 the best known complexity for this
problem. I will finally present some experiments and comparisons between state-of-the-art
software for computing the topology of plane algebraic curves.
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3.4 Curved Lines in Cartography and Information Visualization
Jo Wood (City University – London)
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Calling on examples from the history of cartography and information visualization this talk
shows where curved lines have been used to carry information in visual depiction. Examples
range from terrain analysis, through sketchy rendering, to flows of people, bicycles and
money. The role of metaphor in visual depiction in both maps and information visualization
is considered and related to the geometric properties of curved lines.

3.5 Some Brief Notes on Perceptual Theories — in Relation to
Empirical Studies

Helen C. Purchase (University of Glasgow)
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In trying to understand how people understand information visualisations, we can use
two sources; empirical data collected through experiments, or theories of perception. Of
course, the two are necessarily intertwined: data suggests theory, theory is validated by data.
Conducting experiments is costly and the results are not easily generalisable outside the
experimental parameters. What we would like to be able to do is predict the effectiveness of
a visualisation prior to its use, and existing theories of perception and cognition can help us
do this.

This presentation introduces some common theories of perception that can help in pre-
experiment assessment of visualisation effectiveness. It takes as a starting point a paper
by Peebles (2004) where the effect of a commonly-known visual illusion was investigated
in data plots used for comparing the performance of local councils with respect to several
issues (e.g. education, leisure, housing). This example demonstrates how existing perceptual
theories can be used to predict the effectiveness of a visualisation – and how, in this case, the
predictions were confirmed through an empirical study (and as a result, a better visualisation
was proposed).

Several perceptual theories are introduced in this presentation, with focus on the Gestalt
theories, and visual acutity. These theories are then related to graph drawings, showing,
for example, that the existance of non-symmetric edges can overcome the preception of
symmetric nodes. The relative visual priority of visual features like colour, shape, texture
etc., is demonstrated through the process of ‘pop-out’.

Finally, an experiment comparing the effectiveness of graphs with straight line edges
vs curved edges is presented as an example of a study explicitly addressing the limits of
visual acuity. The results, surprisingly, showed better performance with the straight-line
graph, suggesting that visual acuity is not as problematic in graph-reading tasks as might be
expected.
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3.6 Do We Need Curvilinear Metro Maps?
Maxwell J. Roberts (University of Essex)

License Creative Commons BY 3.0 Unported license
© Maxwell J. Roberts

The topics of cognitive load and cognitive capacity are related to metro map usage and,
in relation to this, the following optimisation criteria are identified: simplicity; coherence;
balance; harmony, and topographicity. It is suggested that as long as these criteria are
fulfilled, the design ruses do not matter, and that in certain circumstances it may be necessary
to design a curvilinear metro map. Three types of such map are identified: freeform Bézier,
concentric circles, and Lombardi, each with strengths and weaknesses likely to suit networks
with different qualities. Generally, curvilinear maps may be particularly suited to dense,
interconnected networks with complex line trajectories, where linear maps have high angular
density and poor coherence (e.g., Paris, Tokyo).

3.7 Curves in CGAL
Michael Hemmer (TU Braunschweig) and Monique Teillaud (INRIA Sophia Antipolis –
Méditerranée)
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CGAL, the Computational Geometry Algorithms Library, followed the evolution of Compu-
tational Geometry, progressively offering more and more curved objects and functionality on
them.

The talk first quickly overviews the history of the CGAL open source project, the
development process and the contents of the library. It recalls how CGAL solves robustness
issues, following the so-called exact geometric computing paradigm pioneered by Chee Yap.

Then packages in CGAL that should be relevant within the context of graph drawing
with curves are examined. In particular, support for circles, spheres, triangulations and
Voronoi diagrams involving circular arcs, planar arrangements of arbitrary algebraic curves
and the algebraic kernel are discussed in more detail.

3.8 Curved Schematization – User Study Results
Wouter Meulemans (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
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Joint work of Arthur van Goethem, Wouter Meulemans, Bettina Speckmann, Jo Wood

We invited the participants of the seminar to also participate in an online user study related
to curved schematization. Curved schematization is the task of obtaining a low-complexity
representation of a detailed shape using curves. In particular, we use circular arcs. We had
three hypotheses: curved schematization is better than straight-line schematization in terms
of (1) aesthetics, (2) visual simplicity, and (3) recognizability. To verify these hypotheses in
the user study, we had a single algorithm generate schematizations according to four different
styles. One style admitted only straight-line edges; the other three styles used circular
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arcs. The latter differentiated themselves in the degree of “curviness” (measured as central
angle) they strive for. The user study itself consisted of three tasks, one for each hypothesis.
For each task, the participant was given a random set of questions about either aesthetics,
simplicity, or recognizability. The study had 303 participants. We concluded that the three
curved styles were preferred over the straight-line style, but there was no clear preference
for any particular curved style. Hence we accept hypothesis (1). In terms of simplicity, the
straight-line style and the curved style with low curviness (i.e. using arcs that are almost a
straight line) were the best. Therefore we reject hypothesis (2). As for recognizability, we
observed that the curved styles performed better than the straight-line style in a range of
“medium complexity” (approximately 10 arcs). Thus we accept hypothesis (3).

4 Working Groups

4.1 Smooth Orthogonal Drawings
Michael A. Bekos (National TU – Athens)
Martin Gronemann (Universität Köln)
Sergey Pupyrev (University of Arizona – Tucson)
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4.1.1 Introduction

Smooth orthogonal drawings were recently introduced in the graph drawing literature as
a response to the problem of smoothening orthogonal drawings (of graphs of maximum
degree 4), by “replacing” bends with smooth circular arcs. It is expected that such drawings
are of improved readability and more aesthetic appeal, since it is widely accepted that bends
interrupt the eye movement and require sharp changes of direction. Smooth orthogonal
drawings follow the paradigms of traditional orthogonal drawings, in which each vertex
is drawn as a point on the plane and each edge is drawn as an alternating sequence of
axis-aligned line-segments. However, they also allow for circular arc-segments. We are
particularly interested in providing theoretical guarantees about graphs that admit smooth
orthogonal drawings of edge complexity 1, where the edge complexity of a drawing is given
by the maximum number of segments forming any of its edge. Formally, we say that a graph
has smooth complexity k if it admits a smooth orthogonal drawing of edge complexity at
most k.

The work of Bekos, Kaufmann, Kobourov and Symvonis [1] was the first on the problem
of creating smooth orthogonal drawings of 4-planar graphs. They presented an infinite class
of 4-regular planar graphs generated from the octahedron graph that do not admit smooth
orthogonal drawings of edge complexity 1. They also proved that biconnected 4-planar
graphs admit drawings of smooth complexity 3. For triconnected 3-planar graphs and
Hamiltonian 3-planar graphs, they gave algorithms to produce smooth orthogonal drawings
of edge complexity 1. Finally, they showed that there exist graphs whose smooth complexity-1
drawings needs exponential drawing area (assuming a quite restricted drawing model that
requires fixed embedding and fixed ports).
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4.1.2 Results

As already stated, not all 4-planar graphs admit smooth orthogonal drawings of smooth
complexity 1. What if crossings are allowed in the resulting drawing? The following theorem
answers this question in a positive way.

I Theorem 1. Any graph of maximum degree 4 admits a (not necessary planar) drawing of
smooth complexity 1.

The input graph is augmented such that it is 4-regular. Based on the work of Peterson [2], a
cycle cover decomposition is used to create a book-embedding-like drawing. The cycle cover
decomposition guarantees that the port constraints are respected. However, the resulting
drawing is not necessarily planar.

Bekos et al. [1] have proven that triconnected 3-planar graphs admit drawings of smooth
complexity 1. Their approach is based on canonical ordering, hence, the requirement for
triconnectivity. We are able to strengthen this result by using the BC (Block-Cutpoint) and
SPQR-tree data structures to decompose the graph into its bi- and triconnected components,
respectively.

I Theorem 2. Any 3-planar graph admits a (planar) drawing of smooth complexity 1.

The proof is constructive and provides an algorithm that exploits the special structure of
the BC- and SPQR-trees on 3-planar graphs. The approach uses a slightly modified version
of the algorithm in Bekos et al. [1] to deal with the triconnected components. Similar to
Eppstein [3] who uses these properties to create Lombardi-style drawings of sub cubic graphs,
we are able to maintain smooth complexity 1 while reassembling the components into one
drawing. However, the approach relies heavily on the degree restriction, hence, does not
easily extend to higher degree.

4.1.3 Open Problems & Ongoing Work

While working on the aforementioned problems during the seminar, it seemed tempting to
use a book embedding style drawing as a basis for a layout. Especially when considering the
Kandinsky model, i.e. one drops the port constraints, the two seem to be related. Besides
the results of the seminar, a list of open problems has been compiled.

What is the complexity of recognizing whether a given 4-planar graph admits a smooth
orthogonal drawing of edge complexity 1?
Is it possible to determine a universal point set so that any 4-planar graph can be
embedded on it with a certain smooth complexity (e.g., SC 2 or SC 3)?
The algorithm that we currently have for drawing any graph of maximum degree 4
with smooth complexity 1 does not take care of the crossings that arise. So, crossing
minimization for non planar graphs is of importance.
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4.2 Confluent Drawing
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Confluent drawing [1] is a style of graph drawing in which edges are not drawn explicitly;
instead vertex adjacency is indicated by the existence of a smooth path through a system of
arcs and junctions that resemble train tracks. These types of drawings allow even very dense
graphs, such as complete graphs and complete bipartite graphs, to be drawn in a planar way.
We introduce a subclass of confluent drawings, which we call strict confluent drawings. Strict
confluent drawings are confluent drawings with the additional restrictions that between any
pair of vertices there can be at most one smooth path, and there cannot be any paths from
a vertex to itself. Figure 3 illustrates the forbidden configurations. We believe that these
restrictions may make strict drawings easier to read, by reducing the ambiguity caused by
the existence of multiple paths between vertices.

Our results are as follows:

It is NP-complete to determine whether a given graph has a strict confluent drawing. To
prove this, we reduce from planar 3-SAT and we use the fact that K4 has exactly two
strict confluent drawings.
For a given graph, with a given cyclic ordering of its n vertices, there is an O(n2)-time
algorithm to find an outerplanar strict confluent drawing, if it exists: this is a drawing in
a (topological) disk, with the vertices in the given order on the boundary of the disk (see
Figure 4). We define a canonical diagram which is a unique representation of all possible
outerplanar strict confluent drawings, where some of the faces are marked as cliques. We
compute a canonical diagram by first computing its junctions, and then computing the
arcs between them. From a canonical diagram we can easily derive an outerplanar strict
confluent drawing.
When a graph has an outerplanar strict confluent drawing, an algorithm based on circle
packing can construct a layout of the drawing in which every arc is drawn using at most
two circular arcs (again, see Figure 4).

The full version of this abstract will appear (under the title Strict Confluent Drawing) in
the proceedings of the 21st International Symposium on Graph Drawing 2013. The most
pressing problem left open by this research is to recognize the graphs that have outerplanar
strict confluent drawings, without imposing a fixed vertex order. Can we recognize these
graphs in polynomial time?

(a) (b)

Figure 3 (a) A drawing with a duplicate path. (b) A drawing with a self-loop.
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Figure 4 Two outerplanar strict confluent drawings.
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The problem addressed by this workgroup concerns devising objective quantifiable criteria by
which curvilinear metro maps can be evaluated and, subsequently, broadening the applicability
of the criteria so that linear maps can likewise be compared both with each other and also
with curvilinear maps. In the first instance, the intention was to predict journey planning time
differences between maps, as per those revealed in usability studies (for example, comparing
freeform Bézier maps with official octolinear designs, for London a curvilinear design is
equivalent to the official map, but for Paris a curvilinear design is 50% faster for journey
planning than the official map). Ultimately, the development of successful evaluation routines
would curtail the need for usability studies.

The methodology adopted was to identify criteria for good design of curvilinear maps,
based on exemplars of extreme difference in simplification to line trajectories (a Madrid
curvilinear map devised by the first author and one devised by the designers of the current
tetralinear official map). From this, the following criteria for good design were identified and
attempts made to quantify them independently of each other.

Lower order criteria concern the trajectories of individual lines in isolation of each other.
These contribute to the overall simplicity of the design.
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Curve inflections (number and severity).
Curvature (quantity of change, and severity of change).
Symmetry of curvature (at Bézier control points).

Higher order criteria concerning relationships between line trajectories. These contribute
to the overall coherence of the design.

Parallel Bézier curves within defined fields.
Few edge crossings.
Good angular resolution at edge crossings, especially at line interchanges where the line
trajectories are typically part-obscured by the addition of a symbol.

Higher order criteria concerning relationships between line trajectories and stations. These
also contribute to the overall coherence of the design.

Adequate distance between stations and edge crossings (a station too close to an edge
crossing is the most frequent source of planning errors in usability studies).
Continuity of station density (a balanced design should not have abrupt changes in station
density in nearby regions of the map).
Horizontal/vertical alignment of stations.

The first objective was to assemble criteria that would predict differences in basic usability
between designs: the mean time necessary to plan a journey (station location time is another
variable of interest in evaluating usability). Purely aesthetic criteria were not identified.
Aesthetic judgement will be related to the usability criteria outlined above, but other aesthetic
criteria (such as a preference for straight lines versus curves) may impact only upon user-
acceptance of a design (an important consideration, albeit one that is vulnerable to individual
differences in preference). Measures of topographical accuracy were also not implemented.
These may affect user acceptance of a design, but their prime influence on usability is their
potential to affect journey choices: whether an efficient or inefficient journey is planned. Any
such algorithm should penalise a map more for distorted relative positions of nearby stations
than distant stations. Finally, the relationship between label placement and usability was not
considered. These are an important element of map usability, and future work will address
criteria for effective placement.

4.3.1 Specific Criteria Quantifications

Quantified evaluations of lower order criteria for line curvature were fully implemented on
an individual line-by-line basis, derived from plots of curvature versus distance. From this,
aspects of poor design could easily be identified visually and numerically. The main challenge
now is to weight the relative importance of these.

Parallelism and angular resolution were implemented together, the former on the basis
of constancy of distance between lines within a defined distance of each other. Angular
resolution was incorporated by not subjecting lines to a parallelism analysis if their crossing
was greater than a pre-determined angle.

Station density plots were created which enabled hotspots and coldspots to be identified.
Designs were penalised on the basis of distance between these. Station placement was
evaluated by identifying x-co-ordinates and y-co-ordinates, and for each of these determining
the number of aligned stations.

Scores for various criteria were obtained for a variety of curvilinear and linear Madrid
maps (high scores are bad for all measures)
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1. total inflections
2. overall extent of curvature (variation of curvature over the whole line)
3. symmetry of curvature (sum of the squares of the vertical jumps in curvature–ie: extreme

changes in curvature–over the whole line)
4. “lack of parallelism” penalty (not yet normalised for number of lines)
5. number of edge crossings (not yet normalised for complexity = stations x lines)
6. spacing discontinuity of stations
7. vertical/horizontal mis-alignment of station symbols

Simplified curvilinear map: 1) 19; 2) 1.23; 3) 0.006; 4) 5.76; 5) 42; 6) 0.21; 7) 0.19
Tetralinear (rectilinear) map: 1) NYC; 2) NYC; 3) NYC; 4) NYC; 5) 46; 6) 0.26; 7) 0.11
Hexalinear map: 1) NYC; 2) NYC; 3) NYC; 4) NYC; 5) 47; 6) 0.19; 7) 0.16
Complex curvilinear map: 1) 80; 2) 4.02; 3) NYC; 4) 6.94; 5) 42; 6) 0.28; 7) 0.21
Concentric circles map: 1) NYC; 2) NYC; 3) NYC; 4) NYC; 5) 43; 6) 0.18; 7) 0.18
NYC = not yet computed

4.3.2 Future work

Having identified methods of quantification, the next step is to extend them so that relative
predictions can be made for linear versus curvilinear maps, and to combine and weight them
so that they make predictions that match usability study data. The latter are, unfortunately,
relatively course: typically all that can be identified is a relative difference in journey planning
time between pairs of maps. This can be mitigated by comparing as may different maps
as possible using different design techniques from a variety of cities. Once available data
has been modelled, this will then enable future usability studies to be identified so that
predictions can be tested and refined. In addition to this, the availability of these criteria
will enable particular defects with maps to be identified, and possibly resolved automatically
via a simulated annealing process.

4.4 Universal Point Sets for Planar Graph Drawings with Circular Arcs
Patrizio Angelini (Università di Roma III)
David Eppstein (University California – Irvine)
Fabrizio Frati (The University of Sydney)
Michael Kaufmann (Universität Tübingen)
Sylvain Lazard (INRIA Grand Est – Nancy)
Tamara Mchedlidze (KIT – Karlsruhe Institute of Technology)
Monique Teillaud (INRIA Sophia Antipolis – Méditerranée)
Alexander Wolff (Universität Würzburg)

License Creative Commons BY 3.0 Unported license
© Patrizio Angelini, David Eppstein, Fabrizio Frati, Michael Kaufmann, Sylvain Lazard, Tamara
Mchedlidze, Monique Teillaud, and Alexander Wolff

It is well known that every planar graph has a drawing on the plane where vertices are mapped
to points of an O(n) × O(n) integer grid, and edges to straight-line segments connecting
the corresponding points. To generalize this result, Mohar (according to Pach [1]) posed
the following question: What is the smallest size f(n) (as a function of n) of a point set S
such that every n-vertex planar graph G admits a planar straight-line drawing in which the
vertices of G are mapped to points in S? Such a point set S is called universal point set.
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Despite more than twenty years of research efforts, the best known lower bound for the value
of f(n) is linear in n, while the best known upper bound is quadratic in n. The question is
listed as problem #45 in the Open Problems Project [1].

Given the topic of our seminar, we are interested in understanding whether drawing edges
as circular arcs rather than straight-line segments helps to answer the corresponding question.
Our starting point is a result of Everett et al. [2] saying that, for any natural number n,
there is a universal set of size n if edges are drawn as one-bend polygonal chains.

It turns out that we can get the same result for drawings with circular arcs. More
specifically, we prove the existence of a set S of n points on the parabolic arc P = {(x, y) : x ≥
0, y = −x2} such that every n-vertex planar graph G can be drawn such that its vertices
are mapped to S and its edges are mapped to pairwise non-crossing circular arcs connecting
points in S. We start with a sequence of n2 points, q0, . . . , qn2−1, on P such that x0 ≥ 1 and
xi ≥ 2xi−1 for i = 1, . . . , n2 − 1. For our universal point set S, we take the n points pi = qni
with i = 0, . . . , n− 1. We call the points in q0, . . . , qn2−1 that are not in the universal point
set helper points. In the same spirit as Everett et al. [2], we draw G in two steps.

In the first step, we construct a monotone topological book embedding of G. This is a
drawing of G such that the vertices lie on a horizontal line, called spine, and the edges are
represented by non-crossing curves, monotonically increasing in the direction of the spine.
Di Giacomo et al. [3] have shown that every planar graph has a monotone topological book
embedding where each edge crosses the spine exactly once and consists of two semi-circles,
one below and one above the spine.

In the second step, we map the vertices of G and the crossings with the spine to the
points in q0, . . . , qn2−1 in the same order as they appear on the spine of the book embedding,
so that the vertices of G are mapped to points in S and the crossings with the spine to
helper points. Each edge of G is then drawn as a circular arc that passes through two points
of S and a helper point between them. By exploring geometrical properties of circular arcs
through three points of q0, . . . , qn2−1, we show that the constructed drawing is planar.

Our n-point universal point set uses an area of 2O(n2). Hence, it would be interesting
to investigate whether there exist universal point sets of size n (or o(n2)) for circular arc
drawings that fit in polynomial area.

The full version of this abstract will appear (under the same title) in Proc. 25th Canadian
Conference on Computational Geometry 2013, see also http://hal.inria.fr/hal-00846953.
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Figure 5 (a)–(c) Different types of labels for the same metro line C. (a) Curved labels connecting
stops of curve C with ports to the left of C. (b) Using straight labels perpendicular to C yields
unavoidable clashes. (b) Straight labels can become cluttered when aligned horizontally. (c) Control
points of a curved label.

Laying out metro maps automatically is a challenging question in research that in
particular comprises finding an appropriate labeling of the metro lines and their stops
automatically. We focus on the problem of labeling already embedded metro lines having
a smooth curved shape. To the best of our knowledge we present the first considerations
towards labeling smooth curved metro lines automatically. So far only labeling of metro
lines represented by polygonal chains has been discussed in previous work, for example
see [1, 2, 3, 4]. In order to simplify the problem of laying out metro maps with curves we
started with only one metro line and assume that its shape is already given by a directed,
smooth, non-self-intersecting curve C in the plane, for example described by a Bézier curve.
Further, the stops of the metro line are given by n ordered points s1, . . . , sn on C, which we
hence call stops. Going along C from its beginning to its end we assume that these stops
appear in the order s1, . . . , sn. Depending on the specific problem formulation one may
assume that the stops are not fixed on C, but that we need to find their concrete positions
maintaining their order. For each stop si we are further given a label that should be placed
closely to it. We do not follow traditional map labeling abstracting from the given text by
bounding boxes, but we use fat curves prescribing the shape of the labels; see Fig. 5b. We
identified the following criteria, which motivated us to consider curved text.

For aesthetic reasons the labels should integrate into the curved style of the metro map.
More labels can be placed without intersections when considering curved labels; see
Fig. 5a–5c.

Hence, we want to find directed fat curves c1, . . . , cn of fixed width such that for each ci,
1 ≤ i ≤ n it is true that 1. ci begins at si, 2. ci does not intersect C, and 3. ci does not
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intersect any other curve cj , 1 ≤ j ≤ n. We call these curves curved labels. To avoid labels
describing wavy lines we assume that c1, . . . , cn are cubic Bézier curves. Thus, we need to
specify the four control points si, s′i, p′i and pi as depicted in Fig 5d. Using the notion of
boundary labeling we call the second endpoint pi of ci the port of ci. We considered different
choices of those control points, e.g., pi and si are given, s′i is located on the perpendicular line
to C through si, p′i is located on the horizontal line through pi and the distance of si and s′i
is equals to the distance of pi and p′i. Thus, in that example only one degree of freedom
remains, namely the distance between si and s′i. We think that force-directed methods could
be a reasonable way to determine those parameters. However, we still need to identify an
appropriate system of forces that also respects conditions 1–3 mentioned above.

To tackle the problem from a more algorithmic point of view we make the assumption that
the locations of the stops are given and the ports of the curves are located on a vertical line `
that lies to one side of C. To test whether curves c1, . . . , cn exist with respect to condition 1–3,
we developed basic algorithms that either follow a greedy strategy or a dynamic-programming
approach. For the greedy strategy we assume that the number of stops and ports coincide.
Thus, going along ` from bottom to top the assignment between stops and ports is unique.
If the number of ports is greater than the number of stops we apply a dynamic-programming
approach using the observation that a curve ci of a solution partitions the instance into two
independent sub-instances. We think that these algorithms can be used for finding an initial
solution, which later can be refined with a force-directed algorithm as described above.

For future work we identified the following questions to be answered. How can the
approaches be extended if ports lie on both sides of the given metro line C? Where should
ports be placed? How can the case be handled that several metro lines are given? How to
define an appropriate system of forces in order to fine-tune the parameters of the Bézier
curves?
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4.6 Graphs with Circular Arc Contact Representation
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An arc is an open connected subset of a circle. For an arc a the two points in the closure of
a that are not on a are called its endpoints. If a has only one endpoint, i.e., it is a circle
with one point removed, then this endpoint is counted with multiplicity two. Let A be an
arrangement of disjoint circular arcs in the plane. We say that an arc a1 touches an arc a2,
if one of the endpoints of a1 lies on a2. A graph G is represented by A if there is a bijection
between the vertices of G and the arcs in A with the property that two arcs touch in the
arrangement exactly if their corresponding vertices are adjacent in G. We call A a circular
arc contact representation of G, arc-representation for short. Notice that G might contain
parallel edges but no self-loops. Fig. 6 shows an example of a circular arc arrangement and
its associated graph.
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Figure 6 A graph (on the left) and one of its arc-representation (on the right).

We study the question of which graphs can be represented by an arc-representation. In
every arc-representation each arc touches at most two other arcs with its endpoints. Hence,
there are at most twice as many edges in G as there are vertices. This observation is not
only true for the full arrangement, but also for every subset of it. Furthermore, since the
arrangement is non-intersecting, the graph G has to be planar as well. In terms of the
following notation, graphs with arc-representation are (2, 0)-sparse and planar.

I Definition 1 (Lee and Streinu [3]). A graph G = (V,E) is called (k, `)-tight for some
natural numbers k, `, if

1. |E| = k|V | − `,
2. for every subset X ⊆ V with induced edge set E[X] we have that |E[X]| ≤ k|V | − `.
If only condition 2. is fulfilled we call the graph (k, `)-sparse.

Every planar (2, 3)-sparse graph has contact representation with straight line segments [1],
and therefore an arc-representation. On the other hand, every graph with a segment contact
representation is necessarily (2, 3)-sparse. We claim the following:
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I Theorem 2. Every planar (2, 1)-sparse graph has an arc-representation.

Since graphs with arc-representations are closed under taking subgraphs, it clearly suffices
to prove Theorem 2 for (2, 1)-tight graphs. Our main tool for the proof is a construction
sequence that produces G by sequentially adding a vertex with low vertex degree, while
maintaining the planarity and the tightness constraint of the graph. These local operations
are called Henneberg steps [2]. When introducing a vertex of degree k + 1, we have to
add k − 1 edges, such that tightness constraint remains fulfilled. If the new vertex has
degree k + 1 the modification is called a Henneberg-k step, Hk step for short. In general
Henneberg steps do not have to preserve planarity. However, in our setting it suffices to
consider planarity-preserving planar Henneberg steps.

Every planar (2, 2)-tight graph can be constructed by a series of planar H1 and H2 steps
starting from a graph with two vertices and a double edge. Similarly, every planar (2, 1)-tight
graph can be constructed by a series of planar H1 and H2 steps starting from a graph with
two vertices and a triple edge. In the (2, 0)-tight case we have to allow three Henneberg
steps, H1, H2 and H3. Here the base case is any plane graph each of whose components
consists of two vertices and 4 parallel edges.

To show that every planar (2, 1)-tight graph G has an arc-representation we follow its
construction sequence. We start with an arc-representation of the triple edge and then apply
the Henneberg steps that lead to G. All these steps are carried out geometrically in the
arc-representation. This way we finally construct an arc-representation of G. The same
strategy can be used to show that all (2, 2)-tight graphs have an arc-representation. The
only difference is the base case.

To carry out the Henneberg steps in the arc-representation we need one more tool. When
adding an arc to the arc-representation we have to ensure that we can establish the desired
connectivity between the arcs. To guarantee this we enhance the arc-representation with so
called corridors as spatial certificates for the circular arc visibility. We can show that each
Henneberg step in the construction sequence maintains a required set of corridors. Some
more technical parts of the proposed proof still need to be checked.

Our techniques do not apply for general planar (2, 0)-tight graphs yet. The main difference
to the previous cases is that during the construction the graph might become disconnected.
However, if the construction sequence maintains the connectivity we can prove that the
graph has an arc-representation.
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5 Open Problems

Apart from the six problems, for which working groups formed during the seminar, we
collected several additional open problems during the two open problem sessions. They are
briefly summarized in this section.
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5.1 Drawing r-partite hypergraphs
Günter Rote (FU Berlin)
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A 3-uniform 3-partite hypergraph is a subset of A×B ×C for three disjoint sets A,B,C. It
can be drawn by placing points for the vertices in A,B,C on three vertical lines and drawing
each triplet (hyperedge) (a, b, c) as a quadratic function (parabolic arc) joining the three
corresponding points. The hypergraph can, in principle, be reconstructed uniquely from
this drawing, even if different arcs going through a vertex have the same tangent direction.
The open question is to define quality criteria for the visual appearance, beauty, clarity, or
clutteredness of such a drawing and to see whether one can optimize the drawing by placing
the vertices suitably. The problem extends to r-uniform r-partite hypergraphs by using
curves of degree r − 1.

5.2 Characterization of Planar Lombardi Graphs
David Eppstein (UC Irvine)

Lombardi drawings are drawings of graphs that use circular arcs to represent edges and
require that every vertex v has perfect angular resolution 2π/deg(v), see Section 3.1.8 and [1].
A graph that admits a planar Lombardi drawing is called a planar Lombardi graph. Not every
planar graph has a planar Lombardi drawing [12] and it is an open question to characterize
the planar Lombardi graphs. In particular, it is unknown whether every outerplanar graph
has a planar Lombardi drawing.
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5.3 Small Path Covers in Planar Graphs
André Schulz (Uni Münster)

Let G = (V,E) be a graph of a graph class G with |E| = m edges. A path-cover P =
{P1, . . . , Pk} is a partition of E into edge-disjoint simple paths. The size of the cover is
σ(P) = k. I am interested in upper and lower bounds for the quantity

pc(G) := min
G∈G

max
P is path-cover of G

m/σ(P).

In other words, how large is the average path length in the smallest path-cover in the
worst case. The graphs classes G I am interested in are (1) planar 3-connected graphs, and
(2) triangulations.

There is a simple observation for an upper bound: In every odd-degree vertex one path
has to start/end. By Euler’s formula a planar graph can have up to 3|V | − 6 edges. So when
all vertices in a triangulation G have odd degree then pc(G) ≤ 6− ε. The variable ε > 0 can
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be made arbitrarily small by considering larger triangulations. The same bound follows from
the fact that d(|V | − 1)/2e paths have to pass through a vertex of degree |V | − 1.
I Problem 1. Does any 3-connected planar graph (triangulation) G = (V,E) have a path-cover
of size pc(G) ≥ 6− c/|V |, for c > 0 being a constant.
The problem might be related to the linear arboricity conjecture. This conjecture claims
that the number of linear forests (disjoint unions of paths) of any graph is either d∆/2e or
d(∆ + 1)/2e, where ∆ denotes the maximal vertex degree of the graph. It was proven for
planar graphs by Wu [3].

If the graph is a triangulation it can be decomposed into edge-disjoint simple paths that
have all exactly three edges [2]. The same is true for cubic bridge-less graphs [1]. So in both
cases we have a lower bound of pc(G) ≥ 3 for those graph classes.
I Problem 2. Does there exist for every planar 3-connected graph a path-cover in which
every path has exactly three edges, with the exception of one path that might be shorter?

These questions are motivated from proving lower bounds for certain problems in graph
drawing with circular arcs.
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5.4 Self-approaching Networks on Planar Point Sets
Fabrizio Frati (University of Sydney)

A curve C in the plane with end-points u and v is called self-approaching from u to v if,
for every three points a, b, and c in this order along C from u to v, the Euclidean distance
between a and c is greater than the Euclidean distance between b and c. A drawing D of
a graph G is called self-approaching if, for every ordered pair (u, v) of vertices of G, there
exists a path in G whose drawing in D is a self-approaching curve from u to v.

The problem asks whether, for every point set P in the plane, there exists a planar
drawing D of a graph G that spans the points in P and that is self-approaching. The problem
has been defined by Alamdari et al. [1].
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5.5 Improving Curved Drawings with Edge Direction and Curvature
Optimization

Kai Xu (Middlesex University)

We presented three related problems on improving Lombardi-like drawings:

1. The first is how to choose the edge curve direction to improve the layout. Different criteria
can be applied here. Examples are to reduce edge crossing or improve the continuity of
paths between nodes.

2. The second one is weighting between angular resolution and other aesthetics criteria.
A method that considers different criteria may produce a layout that is better than a
method that only focuses on angular resolution. The research question is how to find the
right balance, which may vary from graph to graph.

3. The last one is to have both straight and curved edges in a drawing. Curved edges are
only used if they can improve certain aesthetic metrics, for example less edge crossings.
The research questions are when to use curved edges and how to do this efficiently.

5.6 Improving Graph Readability by Spatial Distortion of
Node-Link-Based Graph Depictions within Geographical Contexts

Danny Holten (SynerScope BV)

A multitude of layout algorithms exists for the generation of 2D/3D node-link-based graph
layouts. Most of these algorithms are fairly unrestricted in the sense that they have a high
degree of freedom with respect to the final placement of nodes and/or links within the 2D/3D
space into which the layout is embedded. However, there are situations in which additional
and sometimes stringent restrictions are applicable to (mostly) node placement, which can
severely limit the generation of an optimized and easily readable layout due to the presence of
node clutter. A typical example is when node positions are determined by, e.g., locations on
a geographical map; this does not really allow for optimized placement of nodes for improved
readability through uncluttered positioning. In such cases, (mild) continuous distortions can
be applied to the layout to unclutter the graph and, hence, improve readability by utilizing
spatial graph sparsity as a measure, e.g., by locally contracting (parts of) the graph where
node/link density is low and locally expanding (parts of) the graph where node/link density
is high.
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6 Exhibition: Bending Reality

Maxwell J. Roberts (University of Essex)

License Creative Commons BY 3.0 Unported license
© Maxwell J. Roberts

Previous seminars concerned with graph drawing and mapping have been staged in conjunction
with successful exhibitions which have highlighted the visual nature of the subject matter
[10461 – Schematization in Cartography, Visualization, and Computational Geometry –
Underground Maps Unravelled; 12261 – Putting Data on the Map – Beyond the Landscape].
Continuing with this tradition, an exhibition was staged in conjunction with this seminar:
Bending Reality: Where Arc and Science Meet.

The exhibition comprised works directly relevant to the theme of the seminar, demonstrat-
ing the use of smooth curves of any kind in order to depict spatial or abstract relationships
in the arts and science. The intention was that by showcasing relevant drawings and
other visual works this would provide an attractive environment in which to work, and
stimulate discussion amongst seminar participants. Exhibits were solicited from seminar
members and were reviewed by the exhibition committee. Part of the seminar program
comprised an unofficial opening, in which participants toured the exhibits and artists de-
scribed their own works. In the meantime, the exhibition is available online. Please visit
http://www.dagstuhl.de/ueber-dagstuhl/kunst/13151.

Exhibition Synopsis
Nature is curved. From tangled branches to meandering rivers and irregular coastlines, there
is barely a straight line to be seen. In centuries past, information designers have sought to
emulate this, with tree-like diagrams and twisting connections, but others have objected to
the inefficiency of curves. Straight lines are direct, simple and easy to follow, so why take
pointless diversions?

Straight lines can play a part in simplifying the world, highlighting routes and connections,
but they can only go so far, and sometimes curves may be better suited. Whether these are
free-form Béziers or regular geometric patterns, in some circumstances they can be more
effective or more aesthetic, and the task of the information designer is to take a flexible
approach, identifying the best tools and techniques for the particular task to hand.

This exhibition presents information from a variety of contexts, the linking theme is
that the designers have investigated the use of curves in order to show routes, structures,
movement, time and connections.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/ueber-dagstuhl/kunst/13151
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The exhibition was divided into seven sections, as described below. It has now been
implemented online, and those artworks that are now part of the online exhibition are listed.
All listed exhibits were contributed by seminar participants.

6.1 Curved Annotations of the World
The world is a sphere, but even when it is shown as a flat projection, curves are often used,
especially to show movement.

The German war society 1939 to 1945. Exploitation, interpretations, exclusion. Andreas
Reimer. 2005
The Flow of Whisky. Kevin Buchin, Bettina Speckmann, and Kevin Verbeek. 2010
A Bicycle’s Journey. Jo Wood. 2013
Airline graph after several steps of an edge bundling algorithm. Emden Gansner, Yifan
Hu, Stephen North and Carlos Scheidegger. 2011

6.2 Curving the World
Curves in the world are rarely simple, whether twisted gnarled branches or a fractal coastline.
Even man-made structures such as railway lines can have complex, uncertain trajectories.
These can be smoothed and simplified, but sometimes there is a temptation to go further,
turning the world into alien geometric shapes.

O-ZONE III. Arthur van Goethem, Wouter Meulemans, Andreas Reimer, Herman
Haverkort, and Bettina Speckmann. 2013
Curve Limit IV. Arthur van Goethem, Wouter Meulemans, Bettina Speckmann, and Jo
Wood. 2013
Countries in Southeast Asia, with straight edges, Bézier curves, and circular arcs. Arthur
van Goethem, Wouter Meulemans, Andreas Reimer, Herman Haverkort, and Bettina
Speckmann. 2013
Circular-arc cartograms of the states of Germany. Martin Nöllenburg. 2013

6.3 Early Metro Maps
The most widely used examples of the curves of reality being converted into straight lines
are metro maps worldwide. This information design technique is relatively recent, first used
in Berlin (1931) and London (1933). Before this, curves on maps generally were used in an
attempt to represent reality. However, there are also examples of attempts to simplify, even
going as far as using a regular circle.

London Underground map based upon designs by F.H. Stingemore, 1925-1932. Maxwell
J. Roberts. 2009
Metropolitan Line carriage diagram from the early 1920s. Maxwell J. Roberts. 2012
Berlin S-Bahn map based upon a 1931 design. Maxwell J. Roberts. 2012
London Underground map based upon a 1933 design by Henry Beck. Maxwell J. Roberts.
2009
Paris Metro map based upon a 1939 design by Loterie Nationale, France. Maxwell J.
Roberts. 2012
Moscow Metro schema based upon 1970s designs. Maxwell J. Roberts. 2009
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6.4 Metro Maps Using Freeform Béziers
Sometimes, straight lines fail to simplify reality. In the case of a complex highly interconnected
network, gentle curves smooth away harsh zigzags, potentially revealing the underlying
structure of the networks.

The Madrid Metro: An all-curves design. Maxwell J. Roberts. 2009
Berlin all-curves U- and S-Bahn network map. Maxwell J. Roberts. 2012
Automatically Generated Drawing of the London Underground using Bézier curves.
M. Fink, H. Haverkort, M. Nöllenburg, M. Roberts, J. Schuhmann, and A. Wolff. 2013
An all-curves map of the Paris Metro. Maxwell J. Roberts. 2007
Curvy tube map. Maxwell J. Roberts. 2008
Subway network of Vienna drawn by a force-Directed method using Bézier curves. A. Wolff,
M. Fink, H. Haverkort, M. Nöllenburg, and J. Schuhmann. 2013

6.5 Metro Maps Using Concentric Circles
Highly abstract and stylised, this new way of showing networks does not necessarily offer
simplified line trajectories, but nonetheless presents a highly organised view of the network,
which many people find striking.

The Vienna U-Bahn in minimalist style. Therese Biedl and Maxwell J. Roberts. 2012
The Madrid Metro: A concentric circles design. Maxwell J. Roberts. 2013
A concentric circles map of the Moscow Metro. Maxwell J. Roberts. 2013
Berlin concentric circles U- and S-Bahn network map. Maxwell J. Roberts. 2013
A map of the London Underground based upon concentric circles, spokes, and tangents.
Smooth corners version. Maxwell J. Roberts. 2013

6.6 Curved Relationships
In theory, the display of abstract concepts such as time and relatedness need not be constrained
by preconceptions derived from our experience of nature. In practice, use of curves can add
an aesthetic dimension, or even assist in the presentation of information.

Mark Lombardi: Kunst und Konspiration. Film poster. 2012
The collaboration network between Jazz bands. S. Pupyrev, L. Nachmanson, S. Bereg,
and A.E. Holroyd. 2011
40 Jahre Universität Konstanz. Ulrik Brandes. 2006
Poster for 21st International Symposium on Graph Drawing. David Auber. 2013
Spaghetti à la Wehrli. Mereke van Garderen and Bettina Speckmann. 2013

6.7 Mathematical Abstractions
Curves are no stranger to the mathematical world, and sometimes enable combinatorial
structures, abstract graphs and other concepts to be visualised more efficiently than with
straight lines.

Iterated Möbius-transformations. André Schulz. 2013
Random confluent Hasse diagram on 222 points. David Eppstein. 2013

http://www.realfictionfilme.de/filme/mark-lombardi/index.php
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Flowerpot. Günter Rote. 2013
Lombardi drawings. C. Duncan, D. Eppstein, M. Goodrich, S. Kobourov, and M. Löffler.
2011
The Petersen family. David Eppstein. 2010
Lombardi drawing of the full binary outertree on 1025 vertices (in a non-standard
embedding). Maarten Löffler. 2012
A selection of graphs from the Rome library drawn using a Lombardi force-directed
algorithm. Stephen Kobourov. 2011
Hyperbolic tessellation generated by a Fuchsian group with genus 1 and a period of 3.
Jakob von Raumer. 2013
Covering of the hyperbolic plane. Mikhail Bogdanov, Olivier Devillers, and Monique
Teillaud. 2013
The Nauru graph in 3d. David Eppstein. 2008
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