
Report from Dagstuhl Seminar 13162

Pointer Analysis
Edited by
Ondřej Lhoták1, Yannis Smaragdakis2, and Manu Sridharan3

1 University of Waterloo, CA, olhotak@uwaterloo.ca
2 University of Athens, GR, yannis@smaragd.org
3 IBM TJ Watson Research Center – Yorktown Heights, US,

msridhar@us.ibm.com

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13162 “Pointer Ana-
lysis”. The seminar had 27 attendees, including both pointer analysis experts and researchers
developing clients in need of better pointer analysis. The seminar came at a key point in time,
with pointer analysis techniques acquiring sophistication but still being just beyond the edge
of wide practical deployment. The seminar participants presented recent research results, and
identified key open problems and future directions for the field. This report presents abstracts
of the participants’ talks and summaries of the breakout sessions from the seminar.

Seminar 14.–19. April, 2013 – www.dagstuhl.de/13162
1998 ACM Subject Classification F.3.2 Logics and Meanings of Programs: Semantics of Pro-

gramming Languages: Program Analysis, D.3.4. Programming Languages: Processors: Com-
pilers

Keywords and phrases pointer analysis, points-to analysis, alias analysis, static analysis, pro-
gramming languages

Digital Object Identifier 10.4230/DagRep.3.4.91
Edited in cooperation with Gogul Balakrishnan

1 Executive Summary

Ondřej Lhoták
Yannis Smaragdakis
Manu Sridharan

License Creative Commons BY 3.0 Unported license
© Ondřej Lhoták, Yannis Smaragdakis, Manu Sridharan

The Dagstuhl seminar on Pointer Analysis brought together experts in pointer analysis and
researchers building demanding clients of pointer analysis, with the goal of disseminating
recent results and identifying important future directions. The seminar was a great success,
with high-quality talks, plenty of interesting discussions, and illuminating breakout sessions.

Research Context
Pointer analysis is one of the most fundamental static program analyses, on which virtually
all others are built. It consists of computing an abstraction of which heap objects a program
variable or expression can refer to. Due to its importance, a large body of work exists on
pointer analysis, and many researchers continue to study and develop new variants. Pointer
analyses can vary along many axes, such as desired precision, handling of particular language

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Pointer Analysis, Dagstuhl Reports, Vol. 3, Issue 4, pp. 91–113
Editors: Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13162
http://dx.doi.org/10.4230/DagRep.3.4.91
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

92 13162 – Pointer Analysis

features, and implementation data structures and optimizations. Given the subtle implica-
tions of these design choices, and the importance of low-level details often excluded from
conference-length papers, it can be difficult even for pointer analysis experts to understand
the relationship between different analysis variants. For a non-expert aiming to use pointer
analysis in a higher-level client (for verification, optimization, refactoring, etc.), choosing the
right analysis variant can be truly daunting.

Pointer analysis is a mature area with a wealth of research results, at a temptingly close
distance from wide practical applicability, but not there yet. The breakout application of
precise analysis algorithms has seemed to be around the corner for the past decade. Although
research ideas are implemented and even deployed in limited settings, several caveats always
remain. These include assumptions about client analyses (i.e., the pointer analysis algorithm
is valid only under assumptions of how the information will be used), assumptions about the
analyzed program (e.g., that some language features are absent or that their presence does
not affect the analysis outcome), assumptions about modularity (e.g., that the code to be
analyzed constitutes the whole program), etc. The right engineering packaging of pointer
analysis algorithms as well as a convenient characterization of their domain of applicability
are still elusive.

In this light, the seminar aimed to emphasize the relationship of pointer analysis algorithms
with client analyses, as well as practical deployment issues. The seminar brought together
researchers working on pointer analysis for various programming languages with researchers
working on key analysis clients. Our main goals were (1) to deepen understanding of
the relationships between existing pointer analysis techniques, and (2) to gain a better
understanding of what pointer analysis improvements are required by clients, thereby setting
an exciting agenda for the area going forward.

Seminar Format
Our seminar employed a somewhat unusual format for participant talks, intended to encourage
a deeper discussion of each participant’s work. Each participant was alloted a 40-minute
slot to present their work, consisting of 20 minutes of presentation and 20 minutes of
discussion. The presentation and discussion times in each slot were enforced using a chess
clock: when a question arose during a talk, the clock was “flipped” to discussion time, and
after the discussion, it was flipped back to speaker time. (The times were not very strictly
enforced; in some cases, the audience would “donate” time to the speaker to complete his/her
presentation.) This format had two key benefits:

It enabled discussion to freely occur during the talk, removing the worry that the speaker
would have no time left to complete his/her presentation.
It encouraged the audience to ask more questions, in order to “use up” the alloted audience
time.

Overall, the format was very successful in encouraging good discussion, and most participants
enjoyed it.

In addition to talks, we held four 90-minute breakout sessions. The session topics were
proposed by participants before and during the seminar and voted on by participants. The
sessions were scheduled two at a time, and participants could choose which session to attend.
The discussions held in these sessions were quite illuminating, and are summarized in Section 4
of this report. Finally, the last half-day of the seminar was spent on additional discussion of
the breakout session topics, and on an initial effort to collectively improve the Wikipedia
article on pointer analysis.1

1 See http://en.wikipedia.org/wiki/Pointer_analysis.

http://en.wikipedia.org/wiki/Pointer_analysis

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 93

Seminar Results
Recent advancements in pointer analysis have come from several different directions:

Formulations (CFL, Datalog)—highly-complex analyses have been specified in terms of
consise specifications, by utilizing declarative notations.
Greater precision—interesting analyses that maintain finer-grained abstractions while
maintaining scalability have been invented.
Optimizations—data structures such as BDDs have been used to make complex analyses
feasible.
Demand-driven, refinement—the analysis problem has been specialized effectively when
pointer information only needs to be computed for select program sites.
Partial programs—analyses have been formulated to work without fully analyzing all
libraries, or even all application code.

Such advances were discussed in detail during many participant talks in the seminar, and in
the breakout sessions.

Recent work in pointer analysis has been driven by new clients for the analysis and by new
programming languages. Along with ongoing use of pointer analysis in traditional optimizing
compilers, recent years have seen many other clients emerge that require effective pointer
analysis, e.g., in the areas of program verification and bug finding, refactoring, and security.
These clients were well-represented by seminar attendees, who gave many interesting talks
on novel uses of pointer analysis (particularly in the security domain). The rich exchanges
between researchers building novel clients and those with pointer analysis expertise were one
of the most valuable aspects of the seminar. Additionally, one breakout session covered the
difficulties in designing an effective general pointer-analysis API that is suitable for a wide
variety of clients.

Mainstream programming has been transitioning to increasingly heap-intensive languages:
from C-like languages to object-oriented languages like Java and C#, and more recently to
scripting languages like JavaScript and Ruby. As languages become more heap-intensive, the
need for effective pointer analysis is greater, motivating continuing work in this area. The
seminar talks covered a wide and diverse set of languages, each with its own considerations.
A few talks covered pointer analysis for higher-level languages such as JavaScript and
MATLAB. Such languages are becoming increasingly popular, and they are very heap-
intensive compared to C-like languages, motivating the need for better pointer analysis. A
couple of talks presented techniques for control-flow analysis of functional languages like
Scheme. While the pointer analysis and control-flow analysis communities often use similar
techniques, the relationships between the techniques is often obscured by differing terminology
and presentation styles. The presentations on control-flow analysis and the corresponding
discussions were helpful in bridging this gap.

The seminar included a good deal of discussion on practical issues with pointer analysis,
including evaluation methodologies and issues arising in real-world deployments. A key
theme that arose from these discussions was the need for pointer analysis to be at least
partially unsound to be useful in practice, and how this need for unsoundness has not
been explained properly in the literature. Analyses that made soundness compromises for
practicality were deemed “soundy,” a tongue-in-cheek term that caught on quickly among
participants. Recently, some seminar participants presented a well-received PLDI Fun and
Interesting Topics (FIT) talk on the notion of “soundiness,” and several participants have
agreed to collectively co-author a publishable document on the topic.

13162

94 13162 – Pointer Analysis

Conclusions
Overall, the Pointer Analysis Dagstuhl seminar was a great success. The seminar brought
together 27 researchers from both academia and industry (including Google, IBM, Microsoft,
NEC), with a good mix of junior and senior researchers. There were many interesting talks,
with deep discussion facilitated by the chess clock time maintenance. The seminar facilitated
interaction between pointer analysis experts and researchers building novel clients (a key goal
for the seminar from the beginning), and also between researchers working on analyses for
a variety of languages. Breakout sessions enabled further discussion of certain particularly
interesting topics. In particular, there were invaluable discussions of many practical issues
that often get short shrift in conference papers. These discussions sparked the notion of
“soundiness,” which may have broader impact via a future publication.

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 95

2 Table of Contents

Executive Summary
Ondřej Lhoták, Yannis Smaragdakis, Manu Sridharan 91

Overview of Talks
Does it have to be so hard?
José Nelson Amaral . 97

Scalable and Precise Program Analysis at NEC
Gogul Balakrishnan . 97

Challenges in vulnerability detection for the Java runtime library
Eric Bodden . 98

Precise Heap Reachability by Refutation Analysis
Bor-Yuh Evan Chang . 98

Precise and Fully-Automatic Verification of Container-Manipulating Programs
Isil Dillig and Thomas Dillig . 98

The End of Pointer Analysis?
Julian Dolby . 99

The Business of Pointer Analysis
Samuel Z. Guyer . 100

Pointer analysis for dynamic information flow control
Christian Hammer . 100

Pointer Analysis Meets MATLAB
Laurie J. Hendren . 100

The Approximations vs. Abstractions Dilemma in Pointer Analysis
Uday Khedker . 101

Incomplete Program Analysis
Ondřej Lhoták . 101

Challenges in Pointer Analysis of JavaScript
Benjamin Livshits . 101

Comparing Different Points-To Analyses
Welf Löwe . 102

Towards a Quantitative Understanding of Heap Structure and Application to
Analysis Design
Mark Marron . 102

Control-flow analysis of higher-order programs
Matt Might . 103

Inference and Checking of Context-sensitive Pluggable Types
Ana Milanova . 103

Pointer Analysis for Refactoring JavaScript Programs
Anders Møller . 103

New Search Techniques for Query-Driven Dataflow Analysis
Mayur Naik . 104

13162

96 13162 – Pointer Analysis

Sparse Analysis Framework
Hakjoo Oh . 104

Empirical Evaluation of Points-To Analyses
Erhard Plödereder . 104

Set-Based Pre-Processing for Points-To Analysis
Yannis Smaragdakis . 106

Pointer Analysis for Probabilistic Noninterference
Gregor Snelting . 106

Pointer Analysis and Reflection
Manu Sridharan . 107

Modular combination of shape abstraction with numeric abstraction
Xavier Rival . 107

Scaling flow analysis using big-step semantics
Dimitris Vardoulakis . 108

Breakout Sessions
Better APIs for Clients
José Nelson Amaral . 108

Pointer analyses for open programs (libraries/frameworks)
Eric Bodden . 110

Shape Analysis and Pointer Analysis: Working Together
Bor-Yuh Evan Chang . 110

Practical Aspects of Pointer Analysis
Manu Sridharan . 112

Participants . 113

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 97

3 Overview of Talks

3.1 Does it have to be so hard?
José Nelson Amaral (University of Alberta, CA)

License Creative Commons BY 3.0 Unported license
© José Nelson Amaral

The brightest and most capable students are the ones that undertake research in the area of
pointer and reference analysis. Yet, often they take a long time to graduate, and sometimes
they produce fewer research results than students that undertake research in different areas.
Moreover, often the outcome of their research is incomplete and unsatisfying. On the other
hand, many of the papers published in the area — even the best ones that appear in the
top venues — leave readers and reviewers with a sense of a good work that is incomplete.
In this discussion we look at several shortcomings in currently published papers in pointer
and reference analysis. Then we will talk about some undertakings by the community that
could change this situation, making research in analysis more rewarding and productive for
students and practicioners, and accelerating the speed of innovation in this area.

3.2 Scalable and Precise Program Analysis at NEC
Gogul Balakrishnan (NEC Laboratories America, Inc. – Princeton, US)

License Creative Commons BY 3.0 Unported license
© Gogul Balakrishnan

Joint work of Balakrishnan, Gogul;Ganai, Malay; Gupta, Aarti; Ivancic, Franjo; Kahlon Vineet, Li, Weihong;
Maeda, Naoto; Papakonstantinou, Nadia; Sankaranarayanan, Sriram; Sinha, Nishant; Wang, Chao

Main reference G. Balakrishnan, M. K. Ganai, A. Gupta, F. Ivancic, V. Kahlon, W. Li, N. Maeda,
N. Papakonstantinou, S. Sankaranarayanan, N. Sinha, C. Wang, “Scalable and precise program
analysis at NEC,” in Proc. of 10th Int’l Conf. on Formal Methods in Computer-Aided Design
(FMCAD’10), pp. 273–274, IEEE, 2010.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960

In this talk, I will briefly present the program analysis tools that we have developed at NEC
Labs, and describe how pointer analysis is used in these tools. Specifically, I will talk about
Varvel and ARC++. Varvel is tool for finding bugs in C and C++ programs, and is based
on static analysis and model checking. ARC++ is a tool to find bugs in C++ programs
based on user-specified error patterns.

References
1 G. Balakrishnan, M. K. Ganai, A. Gupta, F. Ivancic, V. Kahlon, W. Li, N. Maeda,

N. Papakonstantinou, S. Sankaranarayanan, N. Sinha, and C. Wang. Scalable and pre-
cise program analysis at nec. In FMCAD, pages 273–274, 2010.

2 F. Ivancic, G. Balakrishnan, A. Gupta, S. Sankaranarayanan, N. Maeda, H. Tokuoka,
T. Imoto, and Y. Miyazaki. Dc2: A framework for scalable, scope-bounded software veri-
fication. In ASE, pages 133–142, 2011.

3 P. Prabhu, N. Maeda, G. Balakrishnan, F. Ivancic, and A. Gupta. Interprocedural exception
analysis for C++. In ECOOP, pages 583–608, 2011.

4 J. Yang, G. Balakrishnan, N. Maeda, F. Ivancic, A. Gupta, N. Sinha, S. Sankaranarayanan,
and N. Sharma. Object model construction for inheritance in C++ and its applications to
program analysis. In CC, pages 144–164, 2012.

13162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960

98 13162 – Pointer Analysis

3.3 Challenges in vulnerability detection for the Java runtime library
Eric Bodden (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Eric Bodden

Joint work of Bodden, Eric; Hermann, Ben; Lerch, Johannes

In this talk I will discuss a recent client analysis that we use to detect vulnerabilities in the
Java runtime library. I will discuss challenges this analysis poses in terms of managing calling
contexts and different analysis directions. In particular, it currently appears challenging to
synchronize with each other a forward and backward analysis in such a way that they both
only consider common calling contexts.

3.4 Precise Heap Reachability by Refutation Analysis
Bor-Yuh Evan Chang (University of Colorado – Boulder, US)

License Creative Commons BY 3.0 Unported license
© Bor-Yuh Evan Chang

Joint work of Blackshear, Sam; Chang, Bor-Yuh Evan; Sridharan, Manu
Main reference S. Blackshear, B.-Y.E. Chang, M. Sridharan, “Thresher: Precise Refutations for Heap

Reachability,” in Proc. of the ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI’13), pp. 275–286, ACM, 2013.

URL http://doi.acm.org/10.1145/2462156.2462186

Precise heap reachability information that can be provided by a points-to analysis is needed
for many static analysis clients. However, the typical scenario is that the points-to analysis
is never quite precise enough leading to too many false alarms in the client. Our thesis is not
that we need more precise up-front points-to analyses, but rather we can design after-the-fact
triage analyses that are effective at refuting facts to yield targeted precision improvements.
The challenge that we explore is to maximally utilize the combination of the up-front and
the after-the-fact analyses.

We have investigated refutation analysis in the context of detecting statically a class of
Android memory leaks. For this client, we have found the necessity for an analysis capable
of path-sensitive reasoning interprocedurally and with strong updates–a level of precision
difficult to achieve globally in an up-front manner. In contrast, our approach applies a
refutation analysis that mixes a backwards symbolic execution with results from the up-front
points-to analysis to prune infeasible paths quickly.

3.5 Precise and Fully-Automatic Verification of
Container-Manipulating Programs

Isil Dillig and Thomas Dillig (College of William and Mary)

License Creative Commons BY 3.0 Unported license
© Isil Dillig and Thomas Dillig

One of the key challenges in automated software verification is obtaining a conservative
yet sufficiently precise understanding of the contents of data structures in the heap. A
particularly important and widely-used class of heap data structures is containers, which

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://doi.acm.org/10.1145/2462156.2462186
http://doi.acm.org/10.1145/2462156.2462186
http://doi.acm.org/10.1145/2462156.2462186
http://doi.acm.org/10.1145/2462156.2462186
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 99

support operations such as inserting, retrieving, removing, and iterating over elements.
Examples of containers include arrays, lists, vectors, sets, maps, stacks, queues, etc.

In this talk, we will describe a sound, precise, scalable, and fully-automatic static analysis
technique for reasoning about the contents of container data structures. This technique
is capable of tracking position-value and key-value correlations, supports reasoning about
arbitrary nestings of these data structures, and integrates container reasoning directly
into a heap analysis, allowing, for the first time, the verification of complex programs that
manipulate heap objects through container data structures. More specifically, we will describe
a symbolic heap abstraction that augments a graph representation of the heap with logical
formulas and that reduces some of the difficulty of heap reasoning to standard logic operations,
such as existential quantifier elimination and satisfiability. I will present experimental results
demonstrating that our technique is very useful for verifying memory safety in complex heap-
and container-manipulating C and C++ programs that use arrays and other container data
structures from the STL and QT libraries.

3.6 The End of Pointer Analysis?
Julian Dolby (IBM TJ Watson Research Center, Hawthorne, USA)

License Creative Commons BY 3.0 Unported license
© Julian Dolby

Pointer analysis means computing an approximation of the possible objects to which any
program variable may refer; it has traditionally been done by conservatively approximating
all possible data flow in the program, resulting in a conservative approximation of the objects
held by any variable. This has always been a bit fake—no tools soundly approximates all
possible reflective and JNI behavior in Java, for instance—but even the comforting illusion
of soundness has become unsustainable in the world of framework- and browser-based Web
applications. The frameworks are built on ubiquitous complex reflective behavior, and the
browser appears as a large, complex, poorly-specified native API; the frameworks and the
applications themselves are written in JavaScript, the lingua franca of the Web, the dynamic
nature of which gives pointer analysis no help. Whether this world can be analyzed soundly
is perhaps technically still an open problem, but the prognosis seems grim at best.

We have been exploring deliberately unsound analyses which make no attempt to approx-
imate all possible data flow in a program; certain constructs are ignored not because they
are unimportant, but simply because they are too hard. The tradeoff is now between how
much can we ignore and still provide useful information versus how little can we ignore and
still be tractable in practice. The good news so far is that there appear to be good tradeoffs,
at least for a range of applications supporting IDE services. I will discuss recent and ongoing
work in providing key information for IDE services: callgraphs and smart completions.

13162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

100 13162 – Pointer Analysis

3.7 The Business of Pointer Analysis
Samuel Z. Guyer (Tufts University)

License Creative Commons BY 3.0 Unported license
© Samuel Z. Guyer

Over the past few years I have had the opportunity to work with a company that relies
on pointer analysis as part of its core business – finding security vulnerabilities in software.
I have worked closely with them to select and implement algorithms from the literature,
and I have been able to see how these algorithms work (or don’t work) at an industrial
scale. Some of the most interesting issues I have encountered, however, are not related to
the question of “Does it work on real software?” In this talk I will describe some of the
challenges of deploying sophisticated analyses for commercial purposes. They are important
and research-worthy problems that have not, to my knowledge, received much attention in
the academic community.

3.8 Pointer analysis for dynamic information flow control
Christian Hammer (Universität des Saarlandes)

License Creative Commons BY 3.0 Unported license
© Christian Hammer

Dynamic information flow control is a powerful technique to ensure that confidential data
cannot leak illicitly, and that untrusted data must not be used for trusted computations.
However, since the standard security policy noninterference is a 2-trace-property, it cannot
be enforced soundly and precisely by looking at one execution trace alone. One must either
use conservative approximations or resort to static analysis about variables that might be
modified in an alternative branch. This talk will present these challenges and how pointer
analysis for a dynamic language like JavaScript, while challenging, is imperative to improve
the precision of dynamic information flow.

3.9 Pointer Analysis Meets MATLAB
Laurie J. Hendren (McGill University, CA)

License Creative Commons BY 3.0 Unported license
© Laurie J. Hendren

Joint work of Hendren, Laurie J.; Lameed, Nurudeen, Doherty, Jesse; Dubrau, Anton; Radpour, Soroush
URL http://www.sable.mcgill.ca/mclab

MATLAB is a dynamic array-based language commonly used by students, scientists and
engineers. Although MATLAB has call-by-value semantics and no explicit pointers, there
are many flow analysis problems that are similar to pointer analysis. In this talk I discussed
why it is important for our research community to work on programming languages like
MATLAB. I then outlined the key flow analysis problems that need to be solved and gave a
summary of what my research group has accomplished and what we plan to work on in the
future (http://www.sable.mcgill.ca/mclab).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sable.mcgill.ca/mclab
http://www.sable.mcgill.ca/mclab

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 101

3.10 The Approximations vs. Abstractions Dilemma in Pointer Analysis
Uday Khedker (Indian Institute of Technology, Mumbai, India)

License Creative Commons BY 3.0 Unported license
© Uday Khedker

Given the vital importance of pointer analysis and the inherent difficulty of performing
precise pointer analysis for practical programs, a large fraction of pointer analysis community
has come to believe that compromising on precision is necessary for scalability and efficiency.
This is evidenced by the fact that a large number of reported investigations in pointer analysis
involve a significant amount of engineering approximations.

We find it hard to accept this assumption as the final inevitability. We believe that a lot
could be gained by exploring a science of pointer analysis that tries to build clean abstractions.
In our opinion, this is a road less travelled in pointer analysis. Without undermining the
engineering efforts, we propose that a search for approximations should begin only after
building clean abstractions and not before it. The talk describes our efforts in this direction.

3.11 Incomplete Program Analysis
Ondřej Lhoták (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Ondřej Lhoták

Joint work of Lhotak, Ondrej; Ali, Karim; Naeem, Nomair

Points-to analyses requiring the whole program are inefficient, hard to get right, non-modular,
and fragile. This severely hinders development of client analyses and practical adoption.
I discuss two possible solutions: the access path abstraction, which does not require the
analysis to know about all allocation sites in the program, and the separate compilation
assumption, which enables sound yet precise analysis of an application without analysis of
its separately compiled libraries.

3.12 Challenges in Pointer Analysis of JavaScript
Benjamin Livshits (Microsoft Research – Redmond)

License Creative Commons BY 3.0 Unported license
© Benjamin Livshits

This talk two specific challenges that arise in the process of doing – or attempting to do –
static analysis for JavaScript programs. The first is that JavaScript programs on the web are
not static – far from it – they’re in fact streaming. As such, the notion of whole program
analysis needs to be reevaluated and perhaps discarded in favor of incrementality. Incremental
pointer analysis for JavaScript is addressed in the Gulfstream project.

The second challenge is that of analyzing programs surrounded by complex environments,
such as the DOM API, or node.js. Understanding the surrounding frameworks is both
challenging and necessary. This is the topic of this talk and an upcoming FSE 2013 paper.

13162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

102 13162 – Pointer Analysis

3.13 Comparing Different Points-To Analyses
Welf Löwe (Linnaeus University – Växjö)

License Creative Commons BY 3.0 Unported license
© Welf Löwe

Comparing the accuracy of different points-to analysis approaches is important for us as
the research community: it allows us to focus on successful approaches and to drop the less
successful ones. However, comparing accuracy only works if the analyses are either strictly
conservative or strictly optimistic. Unfortunately, only few such analyses exist in practice;
most of them are conservative only on a subset of the languages they are designed for and,
hence, neither conservative nor optimistic in general. Practical issues add to the problem of
comparability: analyses are defined for different languages and versions and run-time systems
thereof, and there are no commonly accepted standard benchmarking suites nor accuracy
metrics defined. This makes it often impossible to take two research publications and reliably
tell which one describes the more accurate points-to analysis.

In this talk, we discuss theoretical and practical issues with comparing points-to analyses
and we suggest a methodology on how to benchmark them. We then and argue for a Gold
Standard, i.e., a set of benchmark programs with known exact analysis results. Such a Gold
Standard would allow assessing the exact accuracy of points-to analysis. Since such a Gold
Standard cannot be computed automatically, it needs to be created semi-automatically by
the research community. We suggest a methodology on how this could be achieved.

3.14 Towards a Quantitative Understanding of Heap Structure and
Application to Analysis Design

Mark Marron (Microsoft Research, Redmond, USA)

License Creative Commons BY 3.0 Unported license
© Mark Marron

This talk looks at two related questions (1) what kinds of heap structures and sharing
relations appear in object-oriented programs and (2) how can this information be used to
guide the design of a heap analysis. I will show results which indicate that in practice the
heap is a relatively simple structure where the vast majority of sharing (aliasing) and shapes
that are present can be described by a small number of simple concepts that are closely
related to standard programming idioms. I will also outline a hybrid shape/points-to analysis,
which is both precise and computationally lightweight, that was designed based on these
quantitative results. These initial results demonstrate the potential for leveraging empirical
data during the design, or evaluation, of a heap analysis and demonstrate the potential for
further work on the quantitative characterization of the heaps that appear in real-world
programs.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 103

3.15 Control-flow analysis of higher-order programs
Matt Might (University of Utah, US)

License Creative Commons BY 3.0 Unported license
© Matt Might

URL http://matt.might.net/

Control-flow analysis of higher-order programs and pointer analysis share much in common
with each other. This talk serves as a tutorial on the basic method in higher-order control-flow
analysis–the modern formulation of Shivers k-CFA. It discusses one common enhancement–
abstract garbage collection. The talk concludes with cultural differences between the
control-flow analysis and pointer analysis communities, noting the years- or decades-long lag
between problem discovery, decidability, tractability, feasibility and evaluation in the CFA
community.

3.16 Inference and Checking of Context-sensitive Pluggable Types
Ana Milanova (Rensselaer Polytechnic, US)

License Creative Commons BY 3.0 Unported license
© Ana Milanova

Joint work of Milanova, Ana; Huang, Wei

We develop a framework for inference and checking of pluggable types, also known as type
qualifiers. The framework allows us to formulate context-sensitive pluggable type systems
(e.g., Ownership, Immutability, Taint, others) and infer and check types on large Java codes.
The key novelty is 1) support for context sensitivity, and 2) a scalable inference engine, which
allows type inference with zero or small number of user annotations. We formulate two
analyses, traditionally powered by pointer analysis: 1) purity inference and 2) taint analysis,
as type inference problems in our framework, and discuss our results.

3.17 Pointer Analysis for Refactoring JavaScript Programs
Anders Møller (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Anders Møller

Joint work of Møller, Anders; Feldthaus, Asger; Millstein, Todd; Schäfer, Max; Tip, Frank

Modern IDEs support automated refactoring for many programming languages, but for
dynamic languages, such as JavaScript, the tools are still primitive. This talk presents two
approaches toward tool supported renaming refactoring for JavaScript: 1) using (almost
sound) pointer-analysis for fully automatic refactorings, and 2) using a pragmatic variant of
Steensgaard-style analysis for semi-automatic refactorings.

13162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://matt.might.net/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

104 13162 – Pointer Analysis

3.18 New Search Techniques for Query-Driven Dataflow Analysis
Mayur Naik (Georgia Institute of Technology)

License Creative Commons BY 3.0 Unported license
© Mayur Naik

A central problem in static analysis concerns how to balance its precision and cost. A
query-driven analysis seeks to address this problem by searching for an abstraction that
discards program details that are unnecessary for proving an individual query. I will describe
our results and experience over the past four years addressing this problem in the context of
query-driven dataflow analyses that are parametric in the abstraction. The abstraction is
chosen from a large family that allow abstracting different parts of a program with varying
precision. A large number of fine-grained abstractions enables an analysis to specialize to a
query but poses a hard search problem in practice. Our main result is a set of new search
techniques (black-box and white-box approaches, deterministic and randomized approaches,
purely static and hybrid dynamic-static approaches) for new problems (minimal abstractions,
necessary conditions, impossibility results) that show promise for realistic pointer-related
analyses on medium-to-large Java programs from the Dacapo suite.

3.19 Sparse Analysis Framework
Hakjoo Oh (Seoul National University, KR)

License Creative Commons BY 3.0 Unported license
© Hakjoo Oh

Joint work of Oh, Hakjoo; Heo, Kihong; Lee, Wonchan; Lee, Woosuk; Yi, Kwangkeun
Main reference H. Oh, K. Heo, W. Lee, W. Lee, K. Yi, “Design and Implementation of Sparse Global Analyses for

C-like Languages,” in Proc. of the ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI’12), pp. 229–238, ACM, 2012.

URL http://dx.doi.org/10.1145/2254064.2254092

In this talk, I present a general method for achieving global static analyzers that are precise,
sound, yet also scalable. Our method, on top of the abstract interpretation framework, is a
general sparse analysis technique that supports relational as well as non-relational semantics
properties for various programming languages. Analysis designers first use the abstract
interpretation framework to have a global and correct static analyzer whose scalability
is unattended. Upon this underlying sound static analyzer, analysis designers add our
generalized sparse analysis techniques to improve its scalability while preserving the precision
of the underlying analysis. Our method prescribes what to prove to guarantee that the
resulting sparse version should preserve the precision of the underlying analyzer.

3.20 Empirical Evaluation of Points-To Analyses
Erhard Plödereder (Universität Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Erhard Plödereder

Joint work of Frohn, Simon; Staiger-Stoehr, Stefan; Plödereder, Erhard

Over the years, we have run several experiments to evaluate the performance and precision
of various points-to analyses in the context of global program analyses. The results have

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2254064.2254092
http://dx.doi.org/10.1145/2254064.2254092
http://dx.doi.org/10.1145/2254064.2254092
http://dx.doi.org/10.1145/2254064.2254092
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 105

significantly influenced the approach taken towards points-to analyses in the Bauhaus program
analysis framework. In a first part, this talk reports on the results of a comparative study
(work by Simon Frohn) of the three well-known algorithms by Andersen, Das, and Steensgaard.
The evaluation showed that the Das algorithm ran in near-linear time and was hardly more
expensive than Steensgaard’s but produced considerably more precise results. The Anderson
algorithm lived up to its worst-case cubic performance, while not improving precision by
much over the Das algorithm. Field sensitivity added considerable precision but also added a
(small) factor to the execution time. An important insight was that the size of the points-to
sets clearly correlated with the size of the test programs, refuting the hypothesis that locality
would put constant bounds on the size of these sets. Quantitative results are shown in
comparative charts both on execution time and performance metrics of the three algorithms
including some variations. The second part of the talk describes the principles of our best-yet
algorithm developed by Stefan Staiger-Stoehr in his Ph.D. thesis partly in response to the
findings of Simon Frohn. As a flow-sensitive analysis it combines control flow analysis, call
graph construction, SSA-construction and points-to analysis. It starts out presuming no
data-flow effects from dereferenced pointers and then iterates towards a conservative fix-point
using the gradually constructed points-to sets. Strong indirect updates are recognized and
exploited. Proven to be of cubic complexity in MOP-accuracy and of bi-quadratic complexity
in MOVP-accuracy, the algorithm is efficient enough to allow the analysis of programs of a
quarter of a million lines of code in less than one hour, and often in less than 10 minutes.
Again, empirical data on execution time and precision are presented, comparing variants that
are flow-insensitive, flow-sensitive, and flow-sensitive with strong indirect updates. The data
shows considerable reduction of the average size of points-to sets by flow-sensitive analysis
but only marginalreductions from strong indirect updates. Execution time measurements
were not entirely conclusive between linear and quadratic behavior for tests with up to
250.000 lines of code. Surprisingly, the strong indirect updates make a significant difference
on the number of SSA-nodes generated (the algorithm uses Phi-nodes to represent weak
updates). Compared to flow-insensitive analysis, up to 25% of SSA-nodes are avoided by
flow-sensitive analysis, and up to 40% of strong indirect updates are recognized. A factor of
5 in execution time between the least and the most discriminating analyses makes the added
effort well worthwhile, as the SSA-form is subsequently processed by various user-oriented
program analyses.

References
1 Simon Frohn. Konzeption und Implementierung einer Zeigeranalyse für C und C++. Dip-

loma thesis, University of Stuttgart, Stuttgart, Germany, 2006
2 Stefan Staiger-Stoehr. Kombinierte statische Ermittlung von Zeigerzielen, Kontroll- und

Datenfluss. doctoral dissertation, University of Stuttgart, Stuttgart, Germany, 2009
3 Stefan Staiger-Stoehr. Practical Integrated Analysis of Pointers, Dataflow and Control

Flow. ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article
5, April 2013

13162

106 13162 – Pointer Analysis

3.21 Set-Based Pre-Processing for Points-To Analysis
Yannis Smaragdakis (University of Athens, GR)

License Creative Commons BY 3.0 Unported license
© Yannis Smaragdakis

Joint work of Smaragdakis, Yannis; Balatsouras, George; Kastrinis, George
Main reference Y. Smaragdakis, G. Balatsouras, G. Kastrinis, “Set-Based Pre-Processing for Points-To Analysis,”

in Proc. of the 28th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’13), to appear.

We present set-based pre-analysis: a virtually universal optimization technique for flow-
insensitive points-to analysis. Points-to analysis computes a static abstraction of how object
values flow through a program’s variables. Set-based pre-analysis relies on the observation that
much of this reasoning can take place at the set level rather than the value level. Computing
constraints at the set level results in significant optimization opportunities: we can rewrite the
input program into a simplified form with the same essential points-to properties. This rewrite
results in removing both local variables and instructions, thus simplifying the subsequent
value-based points-to computation. Effectively, set-based pre-analysis puts the program in a
normal form optimized for points-to analysis.

Compared to other techniques for off-line optimization of points-to analyses in the
literature, the new elements of our approach are the ability to eliminate statements, and
not just variables, as well as its modularity: set-based pre-analysis can be performed on
the input just once, e.g., allowing the pre-optimization of libraries that are subsequently
reused many times and for different analyses. In experiments with Java programs, set-based
pre-analysis eliminates 30% of the program’s local variables and 30% or more of computed
context-sensitive points-to facts, over a wide set of benchmarks and analyses, resulting in an
over 20% average speedup.

3.22 Pointer Analysis for Probabilistic Noninterference
Gregor Snelting (KIT – Karlsruhe Institute of Technology, DE)

License Creative Commons BY 3.0 Unported license
© Gregor Snelting

Joint work of Dennis Giffhorn; Gregor Snelting
Main reference D. Giffhorn, G. Snelting, “A New Algorithm for Low-Deterministic Security,” Karlsruhe Reports in

Informatics 06/2012, revised 2013.
URL http://pp.info.uni-karlsruhe.de/publication.php?id=giffhorn13lsod

Information Flow Control (IFC) analyses program source or machine code to discover possible
violations of confidentiality (i.e. secret information is leaked to public ports) or integrity (i.e.
critical computations are manipulated from outside). IFC algorithms must handle realistic
programs in e.g. full Java; they must be provably sound (discover all potential leaks) and
precise (produce no false alarms). For full Java, this not only requires flow- context- object-
and field-sensitive analysis of explicit and implicit information flow, but also a precise pointer
analysis, in particular for nested objects and exception handling. For concurrent programs,
all potential leaks exploiting scheduling or interleaving effects must be discovered.

Probabilistic noninterference (PN) is the established technical criterion for IFC of con-
current programs operating on shared memory. IFC and PN algorithms can be based on
non-standard type systems, or on program dependence graphs (PDGs). In any case, PN
requires precise May-Happen-in-Parallel (MHP) information, which in turn requires precise
pointer and alias analysis.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Y. Smaragdakis, G. Balatsouras, G. Kastrinis, ``Set-Based Pre-Processing for Points-To Analysis,'' in Proc. of the 28th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'13), to appear.
Y. Smaragdakis, G. Balatsouras, G. Kastrinis, ``Set-Based Pre-Processing for Points-To Analysis,'' in Proc. of the 28th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'13), to appear.
Y. Smaragdakis, G. Balatsouras, G. Kastrinis, ``Set-Based Pre-Processing for Points-To Analysis,'' in Proc. of the 28th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'13), to appear.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://pp.info.uni-karlsruhe.de/publication.php?id=giffhorn13lsod
http://pp.info.uni-karlsruhe.de/publication.php?id=giffhorn13lsod
http://pp.info.uni-karlsruhe.de/publication.php?id=giffhorn13lsod

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 107

The talk presents basic examples for IFC and precision issues, and sketches PDG-based
PN, as recently introduced by Giffhorn & Snelting. It then discusses challenges for pointer
analysis in PN and MHP. It is shown that dynamic pushdown networks, as introduced by
Müller-Olm et al., allow for lock-sensitive IFC and PN analysis, but require precise must-alias
information.

References
1 C. Hammer, G. Snelting: Flow-Sensitive, Context-Sensitive, and Object-sensitive Informa-

tion Flow Control Based on Program Dependence Graphs. International Journal of Inform-
ation Security, Vol. 8 No. 6, 2009, pp. 399–422.

2 D. Giffhorn, G. Snelting: A New Algorithm for Low-Deterministic Security. Karlsruhe
Reports in Informatics 06/2012, revised 2013, submitted for publication.

3.23 Pointer Analysis and Reflection
Manu Sridharan (IBM TJ Watson Research Center – Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Manu Sridharan

Joint work of Sridharan, Manu; Dolby, Julian; Fink, Stephen J.; Chandra, Satish; Schaefer, Max; Tip, Frank

Over the last several years, our group at IBM Research has put considerable effort into
building industrial-strength pointer analyses for Java and JavaScript programs. For both
languages, one of the biggest challenges we faced was handling reflective code, particularly
in libraries and frameworks. In my talk, I presented some of the problems we have faced,
approaches we have tried, the strengths and weaknesses of these approaches, and some ideas
on how to make progress going forward.

References
1 Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Dynamic determinacy analysis.

In PLDI, 2013.
2 Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, and Ryan

Berg. F4F: taint analysis of framework-based web applications. In OOPSLA, 2011.
3 Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation

tracking for points-to analysis of JavaScript. In ECOOP, 2012.
4 Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. TAJ:

effective taint analysis of web applications. In PLDI, 2009.

3.24 Modular combination of shape abstraction with numeric
abstraction

Xavier Rival (ENS, Paris)

License Creative Commons BY 3.0 Unported license
© Xavier Rival

In this talk, we will discuss techniques to combine in a single static analysis pointer abstract
domains with value abstract domains. Such combinations are required whenever pointer
information is required in order to discover value (numeric, boolean...) properties and vice
versa. We will show an abstract domain combination technique, which allows to build static
analyzers in a modular manner, and let domains that abstract different kinds of elements
exchange information.

13162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

108 13162 – Pointer Analysis

3.25 Scaling flow analysis using big-step semantics
Dimitris Vardoulakis (Google Inc. – Mountain View, US)

License Creative Commons BY 3.0 Unported license
© Dimitris Vardoulakis

Joint work of Vardoulakis, Dimitris; Shivers, Olin
Main reference CFA2: a Context-Free Approach to Control-Flow Analysis, ESOP 2010.

URL http://www.ccs.neu.edu/home/dimvar/papers/cfa2-lmcs11.pdf

Traditional flow analyses for higher-order languages, such as k-CFA, approximate programs
as control-flow graphs. This approximation does not allow precise analysis of function calls
and returns; during the analysis, a function may be called from one program point and return
to a different one.

I will argue that call/return mismatch is undesirable in a flow analysis, especially in a
higher-order setting, where function call and return is the central mechanism for control-flow
transfer. Pushdown flow analyses, such as CFA2, offer greater precision than traditional
analyses because they can match an unbounded number of calls and returns.

The increased precision of CFA2 is not obtained at the expense of scalability. I will discuss
how to implement CFA2 as an abstract interpretation of a big-step operational semantics.
The use of big-step semantics minimizes caching of abstract states (and thus memory usage)
because it does not require one to remember the analysis results for each sub-expression in
the program. It also makes the analysis faster because it requires fewer comparisons between
abstract states than summarization-based analyses. I have implemented this analysis for
JavaScript and used it to analyze all Firefox add-ons, with promising results.

References
1 Dimitrios Vardoulakis. CFA2: Pushdown Flow Analysis for Higher-Order Languages. PhD

dissertation, Northeastern University, August 2012.

4 Breakout Sessions

4.1 Better APIs for Clients
José Nelson Amaral (University of Alberta, CA)

License Creative Commons BY 3.0 Unported license
© José Nelson Amaral

This breakout session was motivated by the observation that it is difficult for a single
person/group to design and implement a significant pointer/alias/reference analysis and then
also implement meaningful clients to use the analysis and test its effectiveness on creating
new opportunities for optimization based on the analysis results.

The initial idea is that if an interface could be defined between the analyses and the
clients, then a new analysis could be tested on several existing clients and a new client could
try to use several existing analyses.

However, after discussing the initial idea, we realised that we would need not a single
interface, but rather two interfaces and a query system as shown in Fig. 1:

Client API: interfaces with the clients and answers the questions that a client may ask
Analyzer API: provides the fact that are generated by the analysis to the query system
Query System: translate analysis facts into answers to client queries.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.ccs.neu.edu/home/dimvar/papers/cfa2-lmcs11.pdf
http://www.ccs.neu.edu/home/dimvar/papers/cfa2-lmcs11.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 109

Query

System

Client API

Analyzer API

Analyzer A Analyzer B Analyzer K

Client 1 Client 2 Client N

Figure 1 Interfaces and the Query System for Pointer Analysis Clients.

The ensuing discussion made it obvious that the problem is significantly more complicated
than the motivation and initial idea implied: both the analyzer and the client representations
are usually tied to some intermediate representation of the code.

Client API: Examples of Possible Functions

must_alias(x, y, pi, cj)
must_not_alias(x, y, pi, cj)
points_to_set(x,pi, cj)

where:
x, y: variables in the program (how to represent abstraction of heap locations?)
pi: a point in the program (can we represent a point in a program without tying it to a

specific intermediate representation?)
cj: a context (how should contexts be represented?)

This simple notation does not address either path sensitivity or field sensitivity.

Analyzer API

The analyzer API seems to need to be more complex than the client API and we did not
look into it in detail.

Fairness

While such a system could potentially be built to measure the effect of an analysis outcome
on clients, it would probably be unwise to use it to measure how fast an analysis works with

13162

110 13162 – Pointer Analysis

a client. For instance, if the client specifies a point in the program but the analyzer is flow
insensitive, there is an overhead incurred by the framework that would not exist in a direct
connection of the client with the analyzer without going through the APIs.

4.2 Pointer analyses for open programs (libraries/frameworks)
Eric Bodden (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Eric Bodden

We talked about two possible problem cases, one being the situation where one wants to
summarize library information for speeding up client analyses, effectively preventing the
library from being analyzed over and over again. The question is how to pre-analyze a library
as much as possible, even though nothing is known about possible clients. One idea was to
use Class Hierarchy Analysis (CHA) but it was noted that even this would be unsound, as
types may be missing. Regular allocation-site-based analyses yield similar problems, also
causing call edges to be missed. It was hence suggested to simply proceed as follows:

perform a points-to analysis on a best-effort basis, persisting the points-to information
that can be computed without any client code
then, as the client code is analyzed, simply load the persisted analysis facts and continue
the fixed point iteration from there

We also noted that summaries for points-to analyses might be hard to store and interpret,
as they would probably need to involve specifications with complex access paths. Summaries
for client analyses may make more sense but to date there is no efficient system for computing
such summaries. Another problem with summaries in general is that callbacks create holes
which the summary must accommodate for.

The second application scenario was analyzing a library for internal code vulnerabilities
that could be exploited by malicious client code. Interestingly, in this scenario any sound
analysis must make worst-case assumptions; so if there is a callback that could execute client
code then the analysis better assume that this code could call any library code it has a handle
to because that’s exactly what an attacker could do. A correct but imprecise assumption
would hence be that the callback could call any method at all in the library. Of course, this
would not lead one anywhere. The art is hence to find out what object handles the client
could get access to, and based on this information what functions the client could possibly
call. An interesting observation was that in turn the library itself can only call methods it
knows about, i.e., methods that are defined in some interface that is part of the library itself
(unless the library uses reflection, that is).

4.3 Shape Analysis and Pointer Analysis: Working Together
Bor-Yuh Evan Chang (University of Colorado – Boulder, US)

License Creative Commons BY 3.0 Unported license
© Bor-Yuh Evan Chang

This session focused on identifying the characteristics that would typically define an analysis
as either a shape analysis or a pointer analysis. While both are static program analyses that

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 111

infer relationships about memory addresses, they are mostly considered distinct sub-areas
today. The intent of this session was first to better understand the technical and cultural
differences between these two kinds of memory analyses and then by doing so to explore how
to leverage the two perspectives together.

We first summarize the discussion about defining these two kinds of memory analyses.
In the following, we try to speak in general terms, as certainly there are specific analysis
algorithms that blend characteristics.

An initial, strawman definition of the difference was raised that is oversimplifying but still
informative. Pointer analysis infers relationships about “stack pointers.” Or more precisely,
it infers relationships about static, named addresses (e.g., global and local variables). Shape
analysis infers relationships about “heap pointers.” Or more precisely, it infers relationships
about dynamic, unnamed addresses (e.g., malloced addresses).

Of course, both kinds of analyses can derive relationships about both stack and heap
pointers, and the most significant challenges for both arise from dynamically-allocated
addresses.

Pointer analysis abstracts the heap of dynamically-allocated memory cells with an up-
front, static partitioning. For a standard context-insensitive allocation site-based abstraction,
the partitioning is clear: every dynamically-allocated address is bucketed into its allocation
site and every partition is named by its allocation site. Adding context-sensitivity still fits
this definition even though it seems a bit less clear: the partitions are more refined and not
all partitions are necessarily named during the course of the analysis, but the partition to
which a concrete memory cell belongs does not change during the course of the analysis.
Overall, we called the pointer analysis approach “staticifying the dynamic.”

Shape analyses typically vary the heap abstraction during the course of the analysis (e.g.,
the partitioning of the heap may vary across program points). Though not necessarily a
prerequisite, materialization and summarization operations that change the heap partitioning
arise from this perspective. Materialization decides how a heap partition should be split,
while summarization decides how heap partitions should be merged.

An important point raised was that the differences described above are orthogonal to the
distinction between store-based versus store-less abstractions, even though some combinations
are less represented in the literature than others.

We identified some cultural differences. A sub-area, often tied to shape analysis, tends to
focus on what’s possible with no or little loss of precision. For example, it is not uncommon
for such analyses to simply halt when a strong update is not possible (i.e., the concrete cell
being updated cannot be identified). Another sub-area, often tied to pointer analysis, tends
to focus on handling all programs and all language features with a best-effort approach to
precision: weak updates must be supported even if we wish to avoid them. An important
observation is that these perspectives need not be tied to whether an analysis is deriving
shape or pointer information.

In summary, it is oversimplifying to say that “shape analysis is more precise pointer
analysis” or “pointer analysis is more scalable shape analysis.” These clichés have a kernel of
truth, but it seems likely that further advances can be made by borrowing perspectives and
ideas from each sub-area.

13162

112 13162 – Pointer Analysis

4.4 Practical Aspects of Pointer Analysis
Manu Sridharan (IBM TJ Watson Research Center - Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Manu Sridharan

This breakout session focused on discussion of aspects of pointer analysis typically not
discussed in conference papers, such as negative results and low-level details. A number of
interesting topics were covered, as summarized below:

For Java points-to analysis, differences in reflection handling can make a dramatic impact
on scalability, which can be non-obvious just from reading a paper.
Although BDDs are essential in making some straightforward analysis specifications
scalable, the participants could find no compelling case for using BDDs in highly tuned
points-to analysis, at the present time. (This is a delicate balance that may shift in the
future, however.) BDDs have high constant-factor overheads that can have a significant
performance impact, and other techniques, such as careful writing of Datalog rules or
a shared bit-vector repository, can be as effective in eliminating redundancy from the
results.
Cycle elimination seems to yield little to no benefit for Java points-to analysis, as type
filters lead to many fewer cycles than for large C programs. However, other opportunities
for compression of the constraint graph remain, as discussed, e.g., by Hardekopf and
Lin [1].
The topic of debugging point-to analysis implementations and tracking down the root
cause of imprecision was discussed. Suggestions included:

standard practices for good software engineering (unit tests and assertions)
comparing analysis variants with well-known precision relationships, e.g., ensuring that
a context-sensitive analysis is strictly more precise than the context-insensitive version.
comparing results from different analysis frameworks; while this may involve significant
work due to differing handling of language constructs, the work can be worthwhile.
Additionally, it was suggested that a good fuzz testing harness for pointer analyses
would be highly useful. For tracking down imprecision, delta debugging was suggested,
though this becomes tricky in the presence of multiple files.

For points-to analysis of JavaScript and other dynamic languages, differing string handling
was identified as another obscure source of very large differences in analysis precision and
performance.
Finally, participants listed known production systems making use of sophisticated points-
to analysis. Examples included link-time optimization in some commercial compilers,
the JavaScript JIT compiler in Mozilla Firefox,2 Veracode’s analysis engine,3 JavaScript
taint analysis in IBM Security AppScan Source Edition,4 and in an architecture analysis
system.

References
1 Ben Hardekopf and Calvin Lin. Exploiting Pointer and Location Equivalence to Optimize

Pointer Analysis. In SAS, 2007.

2 https://wiki.mozilla.org/IonMonkey
3 http://www.veracode.com
4 http://www-03.ibm.com/software/products/us/en/appscan-source/

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://wiki.mozilla.org/IonMonkey
http://www.veracode.com
http://www-03.ibm.com/software/products/us/en/appscan-source/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 113

Participants

Jose Nelson Amaral
University of Alberta, CA

Gogul Balakrishnan
NEC Lab. America, Inc. –
Princeton, US

Eric Bodden
TU Darmstadt, DE

Bor-Yuh Evan Chang
University of Colorado –
Boulder, US

Isil Dillig
College of William and Mary, US

Thomas Dillig
College of William and Mary, US

Julian Dolby
IBM TJ Watson Res. Center –
Hawthorne, US

Samuel Z. Guyer
Tufts University, US

Christian Hammer
Universität des Saarlandes, DE

Laurie J. Hendren
McGill University, CA

Uday Khedker
Indian Institute of Technology –
Mumbai, IN

Ondrej Lhotak
University of Waterloo, CA

Benjamin Livshits
Microsoft Res. – Redmond, US

Welf Löwe
Linnaeus University – Växjö, SE

Mark Marron
Microsoft Res. – Redmond, US

Matt Might
University of Utah, US

Ana Milanova
Rensselaer Polytechnic, US

Anders Moeller
Aarhus University, DK

Mayur Naik
Georgia Inst. of Technology, US

Hakjoo Oh
Seoul National University, KR

Erhard Plödereder
Universität Stuttgart, DE

Xavier Rival
ENS – Paris, FR

Yannis Smaragdakis
University of Athens, GR

Gregor Snelting
KIT – Karlsruhe Institute of
Technology, DE

Manu Sridharan
IBM TJ Watson Research Center
– Yorktown Heights, US

Bjarne Steensgaard
Microsoft Res. – Redmond, US

Dimitris Vardoulakis
Google Inc. –
Mountain View, US

13162

	Executive Summary Ondrej Lhoták, Yannis Smaragdakis, Manu Sridharan
	Table of Contents
	Overview of Talks
	Does it have to be so hard? José Nelson Amaral
	Scalable and Precise Program Analysis at NEC Gogul Balakrishnan
	Challenges in vulnerability detection for the Java runtime library Eric Bodden
	Precise Heap Reachability by Refutation Analysis Bor-Yuh Evan Chang
	Precise and Fully-Automatic Verification of Container-Manipulating Programs Isil Dillig and Thomas Dillig
	The End of Pointer Analysis? Julian Dolby
	The Business of Pointer Analysis Samuel Z. Guyer
	Pointer analysis for dynamic information flow control Christian Hammer
	Pointer Analysis Meets MATLAB Laurie J. Hendren
	The Approximations vs. Abstractions Dilemma in Pointer Analysis Uday Khedker
	Incomplete Program Analysis Ondrej Lhoták
	Challenges in Pointer Analysis of JavaScript Benjamin Livshits
	Comparing Different Points-To Analyses Welf Löwe
	Towards a Quantitative Understanding of Heap Structure and Application to Analysis Design Mark Marron
	Control-flow analysis of higher-order programs Matt Might
	Inference and Checking of Context-sensitive Pluggable Types Ana Milanova
	Pointer Analysis for Refactoring JavaScript Programs Anders Møller
	New Search Techniques for Query-Driven Dataflow Analysis Mayur Naik
	Sparse Analysis Framework Hakjoo Oh
	Empirical Evaluation of Points-To Analyses Erhard Plödereder
	Set-Based Pre-Processing for Points-To Analysis Yannis Smaragdakis
	Pointer Analysis for Probabilistic Noninterference Gregor Snelting
	Pointer Analysis and Reflection Manu Sridharan
	Modular combination of shape abstraction with numeric abstraction Xavier Rival
	Scaling flow analysis using big-step semantics Dimitris Vardoulakis

	Breakout Sessions
	Better APIs for Clients José Nelson Amaral
	Pointer analyses for open programs (libraries/frameworks) Eric Bodden
	Shape Analysis and Pointer Analysis: Working Together Bor-Yuh Evan Chang
	Practical Aspects of Pointer Analysis Manu Sridharan

	Participants

