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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13212 “Computational
Methods Aiding Early-Stage Drug Design”. The aim of the seminar was to bring scientists
working on various aspects of drug discovery, genomic technologies and computational science
(e.g., bioinformatics, chemoinformatics, machine learning, and statistics) together to explore
how high dimensional data sets created by genomic technologies can be integrated to identify
functional manifestations of drug actions on living cells early in the drug discovery process.
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Besides discussing scientific findings enabled by computational approaches, the seminar
successfully stimulated discussions between scientists from different disciplines and provided
an exceptional opportunity to create mutual understanding of the various challenges and
opportunities. It created understanding for technical terms and concepts and served as a
catalyst to explore new ideas.

As a concrete example, it challenged the feasibility of utilizing chemical structure informa-
tion for identifying correlations with biological data. Rather than attempting to define a most
suitable way of translating chemical structure information into computer understandable
form (e.g., via fingerprinting algorithms such as ECFP), the notion of utilizing functional
readouts such as gene expression profiles was favored for prioritizing candidate drugs that
demonstrate a favorable balance of desired and undesired compound effects.
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3 Overview of Talks

3.1 Enriched methods for analysis of high-dimensional data
Dhammika Amaratunga (Johnson & Johnson, US)

License Creative Commons BY 3.0 Unported license
© Dhammika Amaratunga

High-dimensional data are characterized as having an enormous number of features and
relatively few samples. Exploration and classification of such data is an important aspect of
bioinformatics and cheminformatics work. One of the challenges presented by such situations
is that only a very small percentage of the features actually carries classification information;
the other features add noise or carry secondary signals that could seriously obscure the true
signal. In such situations, it is helpful to use methods that highlight features of the data that
are most likely to be informative. We refer to such methods as enriched methods. Enriched
methods have been developed for single-run procedures, such as SVD, as well for multiple-run
(ensemble) procedures, such as Random Forest. Here we will discuss many issues that arise
in this context and demonstrate the value of enriched methods in analyzing high-dimensional
data.

3.2 Similarity-Based Clustering of Compounds and its Application to
Knowledge Discovery from Kernel-based QSAR Models

Ulrich Bodenhofer (University of Linz, AT)

License Creative Commons BY 3.0 Unported license
© Ulrich Bodenhofer

Joint work of Bodenhofer, Ulrich; Klambauer, Günter; Palme, Johannes; Kothmeier, Andreas; Hochreiter, Sepp
Main reference U. Bodenhofer, A. Kothmeier, S. Hochreiter, “APCluster: an R package for affinity propagation

clustering,” Bioinformatics, 27:2463–2464, 2011.
URL http://dx.doi.org/10.1093/bioinformatics/btr406

Quantitative structure-activity relationships (QSAR) have become a standard methodology in
computational pharmacology and computer-aided drug design. In recent years, kernel-based
approaches have been established as an alternative to traditional feature-based approaches
using chemical descriptors or structural descriptors like ECFP fingerprints. Kernels can
incorporate virtually any kind of chemical or structural information, as far as 3D structures.
Many common kernels even facilitate good model interpretability similarly to feature- based
approaches. This can be accomplished by the extraction of explicit feature weights and the
superimposition of feature weights on given chemical structures to highlight sub-structures
that are particulary relevant for the given modeling task. The only painful drawback of
kernel approaches is their poor ability to scale to larger data sets.

In this contribution, we advocate the use of affinity propagation (AP) clustering for
selecting representative samples/compounds, the so-called exemplars, with the following
two possible applications: (1) If a set of exemplars is available, the kernel matrix can be
compacted by removing all columns that do not correspond to exemplars. The Potential
Support Vector Machine (P-SVM), for example, can process such non-quadratic kernel
matrices and, thereby, leverage the scaling problem mentioned above. (2) As mentioned
above, the superimposition of feature weights on chemical structures to highlight relevant
sub-structures is an excellent tool for knowledge acquisition, but it can only be applied to a
very limited number of samples. It seems natural to priorize samples/compounds that are
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known — on the basis of an objective procedure — to be most representative for the entire
data set of compounds.

It is worth to note that the use of AP clustering is essential for these two applications.
Firstly, AP is similarity-based, therefore, it is not limited to explicit feature representations,
but can be used for all kinds of kernels as well. Secondly, AP is able to compute exemplars
that are members of the original data sets (as opposed to hypothetical averages used by
k-means clustering). Last but not least, AP is efficient and, with appropriate computational
strategies, it scales to large data sets.

3.3 Protein family focused, structure enabled chemical probes, to
accelerate the discovery of new targets

Chas Bountra (University of Oxford – Nuffield College, GB)

License Creative Commons BY 3.0 Unported license
© Chas Bountra

The discovery of “pioneer medicines” (i.e. those acting via novel molecular targets) has
proven to be an immensely complex, long term, expensive and high risk endeavour. During
my presentation, I will discuss

our focus on novel human epigenetic protein families,
the generation of freely available inhibitors, and
the partnership with many academic and industrial labs

I will describe progress with novel inhibitors for bromodomain and demethylase proteins, and
their use in identifying new targets in can cer, inflammatory and neuro-psychiatric diseases.

3.4 Combining transcriptomics, bioassays and chemistry to aid drug
discovery

Hinrich Göhlmann (Janssen Pharmaceutica – Beerse, BE)

License Creative Commons BY 3.0 Unported license
© Hinrich Göhlmann

Joint work of QSTAR Consortium

The joint talk introduced the participants of the seminar to the steps and challenges of the
drug discovery and development process. Janssen has collaborated over the past years with
several universities to explore how transcriptomic data can be used to aid and overcome
these challenges. With the financial support of the flemish IWT we have initially developed
algorithms and approaches for defining and prioritizing compound clusters of equipotent
compounds that were active in a phenotypic screen. In the second research and development
project (QSTAR) we are attempting to combine transcriptomic data with data of bioassays
and chemical structure information. Modelling either two of the three data types or jointly
modelling all data we investigate what correlations are present in the data. As an essential
tool for facilitating the collaboration between the different partners we have developed data
processing pipelines that generate robust data structures that link all three data types via
unified compound identifiers (InChIKey). By jointly creating R packages for data access as
well as data analysis we hope to create the foundation that will allow us and other interested
research teams to investigate what connections are present in the data and how we can use
the information to aid drug discovery in the future.
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3.5 False discovery proportions of gene lists prioritized by the user
Jelle J. Goeman (Leiden University Medical Center, NL)

License Creative Commons BY 3.0 Unported license
© Jelle J. Goeman

Joint work of Goeman, Jelle J.; Solari, Aldo
Main reference J. J. Goeman, A. Solari, “Multiple Testing for Exploratory Research,” Statistical Science,

26(4):584–597, 2011.
URL http://dx.doi.org/doi:10.1214/11-STS356

Motivated by the practice of exploratory research, we formulate an approach to multiple
testing that reverses the conventional roles of the user and the multiple testing procedure.
Traditionally, the user chooses the error criterion, and the procedure the resulting rejected
set. Instead, we propose to let the user choose the rejected set freely, and to let the multiple
testing procedure return a confidence statement on the number of false rejections incurred.
In our approach, such confidence statements are simultaneous for all choices of the rejected
set, so that post hoc selection of the rejected set does not compromise their validity. The
proposed reversal of roles requires nothing more than a review of the familiar closed testing
procedure, but with a focus on the non-consonant rejections that this procedure makes. We
suggest several shortcuts to avoid the computational problems associated with closed testing.

3.6 Systematic mapping of synthetic genetic interactions with
combinatorial RNAi

Wolfgang Huber (EMBL Heidelberg, DE)

License Creative Commons BY 3.0 Unported license
© Wolfgang Huber

Biological systems are able to buffer the effects of individual mutations, and disease outcomes
often depend on the combination of multiple genetic variants. Genetic interactions have been
systematically measured in yeast and enabled the placement of genes into functional modules
and the delineation of networks between modules at unprecedented coverage. However,
such approaches have not been feasible for higher organisms. In this talk, I will report on
our high-resolution genetic interaction maps of chromatin-related genes in Drosophila and
human cells, obtained by combinatorial perturbation via RNA interference and single-cell
phenotyping by automated imaging. Genetic interaction profiles were obtained by measuring
multiple, non-redundant cellular phenotypes. The analysis of profiles revealed functional
modules, among them many conserved protein complexes. Comparison with yeast showed a
consistent, evolutionarily conserved pattern of genetic interactions for the substructures of
the mediator complex, but also revealed the functional divergence of the kinase module Cdk8
and CycC in Drosophila. Genetic epistasis is an unresolved frontier of cancer genetics, as
sequencing projects found that combinations of multiple, partially alternative and individually
rare mutations lead to equivalent phenotypes. To dissect such interdependencies, we mapped
recently reported recurrent cancer mutations onto our network and grouped them into clusters
of putatively equivalent network functions.
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3.7 Drug-induced transcriptional modules in mammalian biology:
implications for drug repositioning and resistance

Murat Iskar (EMBL Heidelberg, DE)

License Creative Commons BY 3.0 Unported license
© Murat Iskar

Joint work of Iskar, Murat; Zeller, Georg; Blattmann, Peter; Campillos, Monica; Kuhn, Michael; Kaminska,
Katarzyna; Runz, Heiko; Gavin, Anne-Claude; Pepperkok, Rainer; van Noort, Vera; Bork, Peer

Main reference M. Iskar, G. Zeller, P. Blattmann, M. Campillos, M. Kuhn, K.H. Kaminska, H. Runz, A.-C. Gavin,
R. Pepperkok, V. van Noort, P. Bork, “Characterization of drug-induced transcriptional modules:
towards drug repositioning and functional understanding,” Molecular Systems Biology, 9:662, 2013.

URL http://dx.doi.org/10.1038/msb.2013.20

In recent years, the publicly available data on small molecules has increased dramatically.
Integrative analysis of these heterogeneous resources enables us to gain a better understanding
of drug action in biological systems. Genome-wide expression profiling of cells treated with
drugs summarizes the pharmacological and toxicological effects of these perturbations at the
molecular level and further help us to bridge between the molecular basis of drug action
and their phenotypic consequences. To systematically explore the biological responses of
mammalian cells to a diverse set of chemical perturbations, we generated a comprehensive
collection of drug-induced transcriptional modules from existing microarray data on drug-
treated human cell lines and rat liver. More than 70% of these modules were identified
in multiple human cell lines and 15% were conserved across organisms of human and rat,
representing a lower limit. We systematically characterized these modules and could link
antipsychotic drugs to sterol and cholesterol biosynthesis, providing an explanation for the
metabolic side effects reported for these drugs. Moreover, we could identify novel functional
roles for hypothetical genes, e.g. ten new modulators of cellular cholesterol levels and novel
therapeutic roles for several drugs, e.g. new cell cycle blockers and modulators of alpha-
adrenergic, PPAR and estrogen receptors. Our work not only quantifies the conservation
of transcriptional responses across biological systems, but also identifies novel associations
between drug-induced transcriptional modules, drug targets and side effects.

3.8 Semi-supervised investigation of association of gene expression
with structural fingerprints of chemical compounds

Adetayo Kasim (Durham University, GB)

License Creative Commons BY 3.0 Unported license
© Adetayo Kasim

Main reference Y. Li, K. Tu, S. Zheng, J. Wang, Y. Li, P. Hao, X. Li, “Association of feature gene expression with
structural fingerprints of chemical compounds,” Journal of Bioinformatics and Computational
Biology, 9(4): 503–519, 2011.

URL http://dx.doi.org/10.1142/S0219720011005446

Exploring the relationship between a chemical structure and its biological function is of great
importance for drug discovery. Whilst many studies attempt to introduce transcriptomics
data into chemical function, little effort has been made to link structural fingerprints of
compounds with defined intracellular functions such as target related pathways or expression
of particular set of genes. Li et al. (2011) propose an approach to associate structural
differences between compounds with the expression level of a defined set of genes by performing
clustering on chemical structures to find differentially expressed genes between adjacent
clusters of compounds from the same node. The identified set of genes were further subjected
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to compounds re-classification to evaluate the accuracy of the prediction based on gene
expression and chemical structures.

We propose a semi-supervised approach for investigation of association of gene expression
with structural finger prints. Our approach starts with unsupervised biclustering of gene
expression to identify subset of genes and compound with target related pathways. The
expression levels of the relevant genes are used to weight structural fingerprints of chemical
compounds to obtain clusters of compounds with a common set of structural fingerprints
and similar level of gene expression. A similar approach was also applied to identify clusters
of compounds with a common set of fingerprints and similar bioassay level.

3.9 Multi-view learning for drug sensitivity prediction
Samuel Kaski (Aalto University, FI)

License Creative Commons BY 3.0 Unported license
© Samuel Kaski

We are developing machine learning methods for integrating multiple high- dimensional data
sources. In the unsupervised task of decomposing the sources into shared and source-specific
components, the new Bayesian Canonical Correlation Analyses and Group Factor Analyses
can be applied to study omics- wide effects of chemical structures. The supervised personalized
medicine task of predicting drug sensitivity based on multiple genomic measurement sources,
can be addressed by a combination of multi-view and multi-task learning. This is joint work
with several people from my group, and collaborators from Institute for Molecular Medicine
Finland FIMM. For more details and code see http://research.ics.aalto.fi/mi.

3.10 Detecting differentially expressed genes in RNA-Seq drug design
studies

Guenter Klambauer (University of Linz, AT)

License Creative Commons BY 3.0 Unported license
© Guenter Klambauer

Joint work of Klambauer, Guenter; Unterhiner, Thomas; Hochreiter, Sepp
URL http://www.bioinf.jku.at/software/dexus/

Detection of differential expression in RNA-Seq data is currently limited to studies in which
two or more sample conditions are known a priori. However, these biological conditions
are typically unknown in drug design studies. We present DEXUS for detecting differential
expression in RNA-Seq data for which the sample conditions are unknown. DEXUS models
read counts as a finite mixture of negative binomial distributions in which each mixture
component corresponds to a condition. A transcript is considered differentially expressed if
modeling of its read counts requires more than one condition. DEXUS decomposes read count
variation into variation due to noise and variation due to differential expression. Evidence of
differential expression is measured by the informative/non-informative (I/NI) value, which
allows differentially expressed transcripts to be extracted at a desired specificity (significance
level) or sensitivity (power). DEXUS performed excellently in identifying differentially
expressed transcripts in data with unknown conditions. On 2,400 simulated data sets, I/NI
value thresholds of 0.025, 0.05, and 0.1 yielded average specificities of 92%, 97%, and 99%

13212

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://research.ics.aalto.fi/mi
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.bioinf.jku.at/software/dexus/


86 13212 – Computational Methods Aiding Early-Stage Drug Design

at sensitivities of 76%, 61%, and 38% respectively. On real-world data sets, DEXUS was
able to detect differentially expressed transcripts related to sex, species, tissue, structural
variants, or eQTLs.

3.11 Intestinal microbiota, individuality and health
Leo Lahti (Wageningen University, NL)

License Creative Commons BY 3.0 Unported license
© Leo Lahti

Joint work of Lahti, Leo; Jarkko Salojärvi; Anne Salonen; Marten Scheffer; Willem M de Vos
URL http://microbiome.github.com

Diverse microbial communities inhabit the human gastrointestinal tract, where hundreds
of distinct bacterial phylotypes and a trillion bacterial cells per gram in a healthy adult
individual can be encountered. This ecosystem constitutes a virtual metabolic organ that
has a central role in nutrition, immune system and other bodily functions, and a profound
impact on our well-being.

Recent accumulation of high-throughput profiling data sets is now for the first time
enabling global characterization of the overall composition and variability of this intestinal
microbiota. Integration of phylogenetic profiling data of a thousand phylotypes across
thousands of human individuals scales up the current analyses by an order of magnitude
based on the Human Intestinal Tract chip (HITChip), a phylogenetic microarray has enabled
standardized data collection of over one thousand gut-specific bacterial phylotypes including
many less abundant species that cannot be cultivated in a laboratory and whose functional
role is less well known.

The analysis reveals huge inter-individual variability in microbial diversity as well as
alternative ecosystem states that are associated with personal environmental and phenotypic
factors such as ageing, overweight, host metabolism, and health status. We will discuss how
these recent observations provide new insights into the role of our co-evolved microbial partners
in individual health and well-being, as well as guidance for the design and interpretation of
future studies.

3.12 Library-Scale Gene-Expression Profiling and Digital Open
Innovation

Justin Lamb (Genometry Inc – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Justin Lamb

The Broad Institute’s Connectivity Map project (www.broadinstitute.org/cmap) has demon-
strated the value of a database of gene-expression profiles derived from cultured cells treated
with a large collection of bioactive small molecules for drug discovery and development
applications. It has also shown how exposing these data and allied search algorithms to the
global biomedical-research community through a simple self-service webtool can successfully
digitize and democratize the small-molecule screening process. The talk will review this
earlier work then describe our efforts to greatly expand the Connectivity Map using a novel
high-throughput low-cost gene-expression profiling technology we have developed. The idea
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that a comparable system populated with expression profiles of a pharmaceutical company’s
proprietary chemical matter could serve as an efficient open-innovation platform will also be
discussed.

3.13 A Maximum Common Subgraph Kernel Method for Predicting
the Chromosome Aberration Test

Johannes Mohr (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Johannes Mohr

Joint work of Mohr, Johannes; Jain, B. ; Sutter, A.; Ter Laak, A.; Steger-Hartmann, T.; Heinrich, H.;
Obermayer, K.

Main reference J. Mohr, B. Jain, A. Sutter, A. Ter Laak, T. Steger-Hartmann, N. Heinrich, K. Obermayer,
“Maximum Common Subgraph Kernel Method for Predicting the Chromosome Aberration Test,” J.
Chem. Inf. Modeling, 50(10), pp. 1821–1838, 2010.

URL http://dx.doi.org/10.1021/ci900367j

The chromosome aberration test is frequently used for the assessment of the potential of
chemicals and drugs to elicit genetic damage in mammalian cells in vitro. Due to the
limitations of experimental genotoxicity testing in early drug discovery phases, a model to
predict the chromosome aberration test yielding high accuracy and providing guidance for
structure optimization is urgently needed. In this talk I will present a machine learning
approach for predicting the outcome of this assay based on the structure of the investigated
compound. It combines a maximum common subgraph kernel for measuring the similarity
of two chemical graphs with the potential support vector machine for classification. The
approach allows visualizing structural elements with high positive or negative contribution
to the class decision.

3.14 Recursive Neural Networks for Undirected Graphs and Neural
Network Pairwise Interaction Fields for annotating 2D and 3D
small molecules

Gianluca Pollastri (University College Dublin, IE)

License Creative Commons BY 3.0 Unported license
© Gianluca Pollastri

Joint work of Pollastri, Gianluca; Lusci, Alessandro; Baldi, Pierre
Main reference A.Lusci, G.Pollastri, P. Baldi, “Deep architectures and deep learning in chemoinformatics: the

prediction of aqueous solubility for drug-like molecules,” Journal of Chemical Information and
Modeling, 53(7), pp. 1563–1575, 2013

URL http://pubs.acs.org/doi/abs/10.1021/ci400187y

I introduced two ways of “wiring” Artificial Neural Networks, that we have developed in my
group, which can deal with structured data in the form of graphs. The first one, UG-RNN
(Recursive Neural Networks for Undirected Graphs) factorises an undirected graph into a
number of directed graphs that are used to transfer contextual information, and compresses
this contextual information into a feature vector which can be mapped into a desired target
property. The second model, NN-PIF (Neural Network Pairwise Interaction Field), subdivides
a graph into all the pairwise interactions between its nodes (each, potentially, represented
alongside a context of neighbours) and maps these pairwise interactions into a feature vector,
which is then mapped into a target property. In both cases the feature vector is automatically
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generated, and is effectively a fixed-size property-driven adaptive representation of the input.
We have tested both models on a number of problems in the space of small molecules, in
their 2D representation (in the case of UG-RNN) and 3D representation (for NN-PIF). I
described the results we have obtained in these tests, which are generally comparable, and
often superior, to those obtained by state of the art 2D and 3D kernels on the same sets. I
also speculated on the feature vectors produced by both models, and on how they may be
used for mapping the input space.

3.15 The nature of gene signature development
Willem Talloen (Janssen Pharmaceutica – Beerse, BE)

License Creative Commons BY 3.0 Unported license
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We now have entered the post-genomic era with much hope to harvest some of the fruits
hidden in the genomic text. At the same time, the current difficulties faced by pharma research
to discover generally applicable block-buster drugs have lead to think in terms of personalized
medicine. Consequently, high hopes are on clinical opportunities for gene expression-based
prediction of illness or drug response discovered using high-content technologies such as
microarrays or RNAseq.

The ’omics revolution was also warmly welcomed by data analysts as its data properties
imposed new and interesting statistical challenges. For example, the quest for biomarkers in
the context of personalized medicine has made many statisticians and bioinformaticians think
about classification models that are robust against overfitting for generation of molecular
signatures.

Here, we will challenge that this enthusiasm made many researchers forget to think about
the practical applicability and the biological nature, and hence clinical relevance of these
developed classification algorithms. For example, the rationale behind signatures consisting
out of many genes is generally overlooked. How these genes should be aggregated into one
composite index (i.e., the marker) so as to reflect the underlying biology as well as to remain
generalizable will be discussed in this presentation.

3.16 Scaling bioinformatics algorithms
Oswaldo Trelles (University of Malaga, ES)
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Large scale genomics projects exploiting high throughput leading technology have produced
and continue to produce massive data sets with exponential growing rates. So far, only a
small part of this data can be abstracted, managed and processed, giving an incomplete
understanding of the biological process being observed. The lack of processing power is a
bottle neck in acquiring results.

A promising approach to address the processing of such massive data sets is the creation
of new computer software that makes effective use of parallel and cloud computing.
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Comparative genomics is a good example since it includes all the ingredients: huge and
ever growing datasets, complex applications that demands large computational resources and
new mathematical and statistical models for analysing and synthetizing genomic information.

This talk will provide an overview of cloud computing -from the user perspective- and
the ways to exploit it with a real implementation in the framework of the Mr.SYmbiomath
project

3.17 Minor Variant Detection In Virology with Model Based Clustering
Bie Verbist (Ghent University, BE)

License Creative Commons BY 3.0 Unported license
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Deep-sequencing is one of the applications of the new massively parallel sequencing (MPS)
technologies allowing for an in-depth characterization of sequence variation in more complex
populations, including low-frequency viral strains. However, MPS technology-associated
errors in the resulting DNA sequences may occur up to equal or even higher frequency than
the truly present mutations in the biological sample, impeding a powerful assessment of
low- frequency virus mutations. As there are no obvious solutions to reduce the technical
noise by further improvements of the technology platform, we believe that the search for
statistical algorithms that can better correct the technical noise can be pivotal. Therefore
algorithms that increase detection power in presence of technical noise and quantify base-call
reliability are required. Phred-like quality scores, provided with the base-calls are such a
quantification of the base-call reliability. These quality scores together with other covariates
determine the multinomial model structure in a model-based clustering approach which will
allow identification of viral quasi-species. This research program was granted by IWT, a
governmental agency for Innovation by Science and Technology in Flanders, Belgium.

4 Scientific Background

(Written by Andreas Bender, Hinrich Göhlmann, Sepp Hochreiter, Ziv Shkedy)

4.1 Motivation
The efficiency and effectiveness of drug discovery has been challenged over the past years as
increasing numbers of drug candidates failed to reach the market and patients. Accordingly,
many efforts are underway to increase the productivity of the R&D process and avoid
expensive late-stage clinical failures. A key concept is to de-risk drug candidates during the
early preclinical stages. Toward this end, it is essential to reduce the time gap between the
selection of promising candidate compounds (chemotypes) and the identification of potential
side effects in later toxicity studies. In other words, relevant biologically data on the various
desired and undesired effects of compounds need to be acquired early on in the research
process.

At the same time various modern molecular biology technologies (e.g., next-generation
sequencing, microarrays, high content screening) have advanced our understanding of the
molecular basis of diseases and drug actions. One approach to increase the productivity
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of drug discovery is to complement traditional pharmacology approaches by using modern
molecular biology technologies together with computational techniques, e.g., studying the
effects of drugs on a cell line. These new opportunities, in particular, the integration of
gene expression data on a large scale, complement the established methods in computational
chemistry that are focused on the chemical structures. Consequently, drug designers have
to become able to interrelate and interpret transciptomic, genetic, proteomic, metabolomic,
and assay data.

The aim of the seminar “Computational Methods Aiding Early-Stage Drug Design”
was to bring scientists working on various aspects of drug discovery, genomic technologies
and computational science (e.g., bioinformatics, chemoinformatics, machine learning, and
statistics) together to explore how high dimensional data sets created by genomic technologies
can be integrated to identify functional manifestations of drug actions on living cells early in
the drug discovery process.

4.2 Previous Work and State-of-the-Art
The focus of the seminar is on utilizing computational methods in early-stage drug design.
Pharmaceutical companies have large libraries of compounds at their disposal which they
investigate for their potential medical applicability. In the early stage, compounds that seem
promising to become drugs are selected for subsequent drug development phases.

Currently, two main branches to drug design are employed. On the one hand, structure-
based drug design is based on predicting which compound binds to a specific target under
investigation. Standard methods for target-compound docking are only feasible for screening
a small set of compounds and include docking algorithms, molecular dynamics (force fields),
and even simulations of quantum mechanics effects, which are all based on the 3D structure
of the target. For screening many compounds simultaneously, specific features of the 3D
structure of the target are incorporated into computational methods that predict whether a
compound binds to the target.

On the other hand, the current practice in many pharmaceutical companies is to apply
ligand-based drug design, i.e. to screen their huge compound libraries for possible drug
candidates. Ligand-based drug design is often based on “analoging”, where the activity of
compounds that are similar to known active compounds is predicted by means of computa-
tional models. These analoging models are generated on the basis of similarity of compounds
whose biological activity or target specificity has been verified experimentally. Analoging is
mostly based on pharmacophores (target-specific functional groups in the compounds) and
structure-activity relationship (QSAR) models which are used to represent the relationship
between compound properties and the biological activity of the compound.

Ligand-based drug design typically consists of the following steps (see Fig. 1):
1. Compound filtering: From a large library of chemical compounds, a sub-selection of

feasible compounds is chosen. Criteria for this filtering include, but need not be limited
to, the following: solubility, permeability, (non-)toxicity, chemical feasibility, costs, and
patent issues.

2. Compound selection: From the set of feasible compounds, those are chosen that seem
to have the desired effect related to the disease under investigation. This selection may
be based on phenotypic screens, disease-specific bioassays, or other techniques. Analoging
is an approach to identify new active (having the desired effect) candidates, which are
found by their similarity to existing active compounds.
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Figure 1 Overview of the steps during ligand-based drug design.

3. Bioassay measurements: A large set of bioassays and various ’omics technologies (e.g.
gene expression measurements) are used to assess on-target and off-target effects of the
selected compounds.

4. Compound optimization: a small set of so-called lead compounds is selected; poten-
tially promising modifications of these lead compounds are considered in order to maximize
target effects and minimize off-target effects. The most promising lead compounds are
fed back into steps 1, 2, or 3 to verify their expected properties experimentally.

That only a limited number of modifications can be studied experimentally is the central
bottleneck of this procedure. Computational methods provide a powerful tool set to avoid
this bottleneck. They are predominantly applied in the design-make-test cycle for compound
optimization to screen large sets of compound modifications for the most promising candidates
(analoging) that can then be tested experimentally. Secondly, computational methods are
also highly relevant for predicting the solubility, permeability and toxicity of the compounds
which further reduces the number of compounds which need to be tested experimentally.

For compound optimization, ideally, three kinds of data sets are available for each
compound (see Fig. 2):
1. chemical structure and properties
2. ’omics data, e.g. transcriptome (in one condition/cell line or in several conditions/cell

lines)
3. phenotypic data (biological assays)

Using these data, compounds are optimized for being more effective (on-target) and, at
the same time, for having less side effects (off-target). On-target and off-target effects are
determined by bioassays and by ’omics technologies.
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Figure 2 Available data for compound optimization.

The activity of a compound related to a (desired or undesired) target is predicted by
classification or regression models (see arrow B in Fig. 2), where structural descriptions of
compounds or, alternatively, similarities between compounds are used to predict the outcome
of a phenotypic screen or a specific bioassay. Using these classification and regression models,
new compounds can be found or existing compounds can be modified such that off-target
effects are minimized while on-target effects are maximized. In practice, an objective has
to be defined which trades on-target against off-target effects (it is common to speak of
“Multifactorial Compound Optimization”).

Biological activity including on-target and off-target effects can be measured by ’omics
technologies. Again classification and regression models are constructed which now predict
biological activity given by ’omics data from the structural description or similarities of
compounds (see arrow A in Fig. 2).

To summarize, by interrelating chemistry, phenotype, and ’omics data, on-target and
off-target effects can be predicted for a large set of candidate compounds in the compound
optimization step, of which only the most promising ones need to undergo experimental
validation.

All the data mentioned above (see Fig. 2) are typically high-dimensional, noisy, and
technically biased, while only few samples or cell lines are available. These properties of the
data entail the demand for advanced machine learning techniques and cutting-edge statistics.
Data analysis starts with quality control and preprocessing. Then filtering techniques are
needed to reduce dimensionality and finally structures in the data have to be identified. In a
next level, these different data sources have to be combined and dependencies have to be
recognized.

Summarizing, new computer science tools are required to tackle the computational
challenges in early drug design. The more advanced those methods are, the more they are
robust to data deficiencies, and the better the interplay between the different steps, the more
helpful the results will be for early-stage drug development.

4.3 Conclusions
Combining high dimensional data from genomic technologies with chemical information
of structures and classical measurements of compound effects in biological assays (e.g.,
biochemical or phenotypic assays) the seminar participants discussed various ways of how
these data could complement established methods in computational chemistry. See Fig. 3 for
topics covered in the seminar.
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Figure 3 Summary of the topics covered in the seminar.

Being able to discover and utilize connections between the three data types has also
been the focus of the QSTAR project (IWT-funded project of Janssen and academia). Some
success stories of using transcriptomics in early drug design were presented by members of
the QSTAR consortium. Examples of methodology being explored has been presented were
transcriptomics was related to chemistry and to biological assays.
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