
Report from Dagstuhl Seminar 13232

Indexes and Computation over Compressed Structured
Data
Edited by
Sebastian Maneth1 and Gonzalo Navarro2

1 Universität Leipzig, DE, sebastian.maneth@gmail.com
2 University of Chile – Santiago, CL, gnavarro@dcc.uchile.cl

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13232 “Indexes and
Computation over Compressed Structured Data”.

Seminar 3.–7. June, 2013 – www.dagstuhl.de/13232
1998 ACM Subject Classification E.1 Data Structures, E.2 Data storage representations,

E.4 Coding and Information Theory: data compaction and compression
Keywords and phrases Compression, Indexes, Data Structures
Digital Object Identifier 10.4230/DagRep.3.6.22
Edited in cooperation with Patrick Nicholson

1 Executive Summary

Sebastian Maneth
Gonzalo Navarro

License Creative Commons BY 3.0 Unported license
© Sebastian Maneth and Gonzalo Navarro

The Dagstuhl Seminar “Indexes and Computation over Compressed Structured Data” took
place from June 2nd to 7th, 2013. The aim was to bring together researchers from various
research directions of compression and indexing of structured data. Compression, and the
ability to compute directly over compressed structures, is a topic that is gaining importance
as digitally stored data volumes are increasing at unprecedented speeds. Of particular
interest is the combination of compression schemes with indexes that give fast access to
particular operations. The seminar was meant to inspire the exchange of theoretical results
and practical requirements related compression and indexing. These points were addressed
in particular

Tractability versus Intractability for Algorithmic Problems on Compressed Data
Compression Algorithms for Strings, Trees, and Graphs
Indexes for Compressed Data
Algorithms for Compressed Data
Better Search Results: Ranking and TF/IDF
Applications of Structure Compression to other Areas

The seminar fully satisfied our expectations. The 34 participants from 11 countries
(Canada, Chile, Denmark, Finland, Germany, Great Britain, Italy, Israel, Japan, Spain, and
US) had been invited by the organizers to give survey talks about their recent research
related to the topic of the seminar. The talks covered topics related to compression (e.g.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Indexes and Computation over Compressed Structured Data, Dagstuhl Reports, Vol. 3, Issue 6, pp. 22–37
Editors: Sebastian Maneth and Gonzalo Navarro

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13232
http://dx.doi.org/10.4230/DagRep.3.6.22
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Sebastian Maneth and Gonzalo Navarro 23

grammar-based string compression) databases (e.g., XML, and top-k query answering), data
structures (e.g. wavelet tries), string matching, and ranged to broad application areas such
as biology. Most talks were followed by lively discussions. Smaller groups formed naturally
which continued these discussions later.

We thank Schloss Dagstuhl for the professional and inspiring atmosphere. Such an intense
research seminar is possible because Dagstuhl so perfectly meets all researchers’ needs. For
instance, elaborate research discussions in the evening were followed by local wine tasting or
by heated sauna sessions.

13232

24 13232 – Indexes and Computation over Compressed Structured Data

2 Table of Contents

Executive Summary
Sebastian Maneth and Gonzalo Navarro . 22

Overview of Talks
Tree Compression with Top Trees
Philip Bille . 26

Updates in compressed text and compressed XML
Stefan Boettcher . 26

Grammar Indexes and Document Listing
Francisco Claude . 27

LZ-Compressed String Dictionaries
Johannes Fischer . 27

A Faster Grammar-Based Self-Index
Travis Gagie . 28

(Approximate) Pattern matching in LZW-compressed texts
Paweł Gawrychowski . 28

Algorithms on grammar based strings
Shunsuke Inenaga . 29

Local recompression for compressed text
Artur Jeż . 29

List Update for Data Compression
Alejandro López-Ortiz . 30

Indexing Graphs for Path Queries with Applications in Genome Research
Veli Maekinen . 30

XML Compression via DAGs Unranked trees can be represented using their minimal
dag (directed acyclic graph)
Sebastian Maneth . 31

Succinct Data Structures
J. Ian Munro . 31

Indexing Highly Repetitive Collections
Gonzalo Navarro . 32

Categorical Range Reporting
Yakov Nekrich . 32

How to Cook a Poset
Patrick K. Nicholson . 32

Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and
Phylogenetic Reconstruction
Enno Ohlebusch . 33

Wavelet Tries
Giuseppe Ottaviano . 33

Sebastian Maneth and Gonzalo Navarro 25

Lightweight Lempel-Ziv Parsing
Simon J. Puglisi . 33

Encoding Top-k Queries
Rajeev Raman . 34

Compressed Pattern Matching on Terms
Manfred Schmidt-Schauss . 34

Top-k Document Retrieval
Rahul Shah . 34

Semi-local LCS: Superglue for string comparison
Alexander Tiskin . 35

Distributed String Mining
Niko Vaelimaeki . 35

Participants . 37

13232

26 13232 – Indexes and Computation over Compressed Structured Data

3 Overview of Talks

3.1 Tree Compression with Top Trees
Philip Bille (Technical University of Denmark – Lyngby, DK)

License Creative Commons BY 3.0 Unported license
© Philip Bille

Joint work of Bille, Philip; Gørtz, Inge Li; Landau, Gad M.; Weimann, Oren
Main reference P. Bille, I.L. Gørtz, G.M. Landau, O. Weimann, “Tree Compression with Top Trees,” in Proc. of

the 40th Int’l Colloquium on Automata, Languages, and Programming (ICALP’13), LNCS,
Vol. 7965, pp. 160–171, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-39206-1_14
URL http://arxiv.org/abs/1304.5702

We introduce a new compression scheme for labeled trees based on top trees. Our compression
scheme is the first to simultaneously take advantage of internal repeats in the tree (as
opposed to the classical DAG compression that only exploits rooted subtree repeats) while
also supporting fast navigational queries directly on the compressed representation. We
show that the new compression scheme achieves close to optimal worst-case compression,
can compress exponentially better than DAG compression, is never much worse than DAG
compression, and supports navigational queries in logarithmic time.

3.2 Updates in compressed text and compressed XML
Stefan Boettcher (Universität Paderborn, DE)

License Creative Commons BY 3.0 Unported license
© Stefan Boettcher

Joint work of Boettcher, Stefan; Bueltmann, Alexander; Hartel, Rita; Schluessler, Jonathan
URL http://www.cs.uni-paderborn.de/fileadmin/Informatik/AG-

Boettcher/Papers_for_Download/dagstuhl2013-3.pdf

Compressed XML files and compressed column-oriented main memory text databases require
to support insert and delete operations of the Nth word of the represented text T on a
compressed version C(T) of T without full decompression of C(T). We present IRT (=Indexed
Reversable Transformation), a block-sorting technique that differs from BWT by sorting word
delimiters according to their occurence in the given text T, and we present a compression
technique for IRT transformed text, such that both techniques together transform a given
text T into a compressed form C(T) that allows to delete the Nth word of T from C(T) and
to insert a word as the Nth word of T into C(T) without full decompression of C(T). Thereby,
we enable faster delete and insert operations on compressed XML files and on compressed
main memory text databases. This talk is based on a conference paper [1].

References
1 Stefan Böttcher, Alexander Bültmann, Rita Hartel, Jonathan Schlüßler: Implementing

efficient up-dates in compressed big text databases. In Proc. 24th International Conference
on Data-base and Expert Systems Applications (DEXA 2013), Prague, Czech Republic,
(2013).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-39206-1_14
http://dx.doi.org/10.1007/978-3-642-39206-1_14
http://dx.doi.org/10.1007/978-3-642-39206-1_14
http://dx.doi.org/10.1007/978-3-642-39206-1_14
http://arxiv.org/abs/1304.5702
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.cs.uni-paderborn.de/fileadmin/Informatik/AG-Boettcher/Papers_for_Download/dagstuhl2013-3.pdf
http://www.cs.uni-paderborn.de/fileadmin/Informatik/AG-Boettcher/Papers_for_Download/dagstuhl2013-3.pdf

Sebastian Maneth and Gonzalo Navarro 27

3.3 Grammar Indexes and Document Listing
Francisco Claude (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Francisco Claude

Joint work of Munro, J. Ian; Navarro, Gonzalo;

We introduce the first grammar-compressed representation of a sequence that supports
searches in time that depends only logarithmically on the size of the grammar. Given a
text T [1..u] that is represented by a (context-free) grammar of n (terminal and nonterminal)
symbols and size N (measured as the sum of the lengths of the right hands of the rules),
a basic grammar-based representation of T takes N lgn bits of space. Our representation
requires 2N lgn+N lg u+ε(n lgn)+o(N lgn) bits of space, for any 0 < ε ≤ 1. It can find the
positions of the occ occurrences of a pattern of length m in T in O((m2/ε) lg((lg u)/(lgn)) +
(m + occ) lgn) time, and extract any substring of length l of T in time O(l + h lg(N/h)),
where h is the height of the grammar tree.

We also show a practical version of this index adapted to solve the document listing
problem on versioned documents. Our index is the first one based on grammar-compression.
This allows for good results on repetitive collections, whereas classical techniques cannot
achieve competitive space for solving the same problem. As a result of this, our index is
about 16 times smaller when compared to the state of the art for document listing [Navarro,
Puglisi, and Valenzuela, SEA2011]. Our query times are competitive with the state of the
art.

3.4 LZ-Compressed String Dictionaries
Johannes Fischer (KIT – Karlsruhe Institute of Technology, DE)

License Creative Commons BY 3.0 Unported license
© Johannes Fischer

Joint work of Arz, Julian; Fischer, Johannes
Main reference J. Arz, J. Fischer, “LZ-Compressed String Dictionaries,” arXiv:1305.0674v1 [cs.DS], 2013.

URL http://arxiv.org/abs/1305.0674v1

We review existing compressed string dictionaries (see bibliography) and further show how
to compress string dictionaries using the Lempel-Ziv (LZ78) data compression algorithm.
Our approach is validated experimentally on dictionaries of up to 1.5 GB of uncompressed
text. We achieve compression ratios often outperforming the existing alternatives, especially
on dictionaries containing many repeated substrings. Our query times remain competitive.

Presenting the paper at Dagstuhl proved to be very fruitful, because several participants
noted that if our LZ-parsing is done in reverse direction and the resulting phrases are
subsequently reversed again, then it is possible to relate the size of the resulting data
structures to the number of phrases in the original LZ78 parsing. Thanks a lot!

13232

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1305.0674v1
http://arxiv.org/abs/1305.0674v1

28 13232 – Indexes and Computation over Compressed Structured Data

3.5 A Faster Grammar-Based Self-Index
Travis Gagie (University of Helsinki, FI)

License Creative Commons BY 3.0 Unported license
© Travis Gagie

Joint work of Gagie, Travis; Gawrychowski, Paweł; Karkkainen, Juha; Nekrich, Yakov; Puglisi, Simon
Main reference T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, S.J. Puglisi, “A Faster Grammar-Based

Self-Index,” arXiv:1109.3954v6 [cs.DS], 2013; randomized version submitted to “Information and
Computation”.

URL http://arxiv.org/abs/1109.3954v6

To store and search genomic databases efficiently, researchers have recently started building
compressed self-indexes based on grammars and LZ77. We show how, given a text S[1..n]
whose LZ77 parse consists of z phrases, we can build an O(z logn)-space deterministic index
for S such that later, given a pattern P [1..m], we can find all occ occurrences of P in S in
O(m logm+ occ log logn) time.

3.6 (Approximate) Pattern matching in LZW-compressed texts
Paweł Gawrychowski (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Paweł Gawrychowski

Pattern matching is the most basic problem concerning processing text data. Its complexity
seems rather well-understood, and there are quite a few very efficient algorithms that can
be used to solve it. What seems not that well-understood is its compressed variant, where
instead of the text (or the pattern) we are given its compressed representation, and the goal
is to achieve running time depending on the size of this representation and not the original
length. I will present a number of results concerning LZW-compressed pattern matching,
which is pattern matching for texts compressed using Lempel-Ziv-Welch-like methods. Such
methods are simple to implement, so they are used in practice, and on the other hand they
are complicated enough to be interesting from the theoretical point of view. It turns out
that even when both the text and the pattern are LZW-compressed, it is possible to solve
pattern matching in linear time, where linear means linear in the size of the compressed
representation. I will present some ideas used to prove this. Of course in practice we are more
interested in approximate pattern matching, meaning pattern matching with errors or with
mismatches. The previous results for approximate LZW-compressed pattern matching were
based on a more or less blackbox application of some uncompressed approximate pattern
matching tools, and hence took at least O(nm) time even when the bound on the number
or mismatches/errors was very small. I will discuss a recent result with Straszak where we
achieve O(n

√
m) for constant k.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1109.3954v6
http://arxiv.org/abs/1109.3954v6
http://arxiv.org/abs/1109.3954v6
http://arxiv.org/abs/1109.3954v6
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sebastian Maneth and Gonzalo Navarro 29

3.7 Algorithms on grammar based strings
Shunsuke Inenaga (Kyushu University, JP)

License Creative Commons BY 3.0 Unported license
© Shunsuke Inenaga

Joint work of Inenaga, Shunsuke; Bannai, Hideo; Masayuki, Takeda; I, Tomohiro; Gawrychowski, Paweł;
Shinohara, Ayumi; Narisawa, Kazuyuki; Gagie, Travis; Lewenstein, Moshe; Landau, Gad; Goto,
Keisuke; Yamamoto, Takanori; Tanaka, Toshiya; Matsubara, Wataru

Straight-line programs (SLPs) are widely accepted abstract model of outputs of grammar-
based text compression algorithms. In this survey talk, I introduce our recent results on
algorithms that process given SLPs efficiently. Our methods allow various operations on
SLPs, such as computing q-gram frequencies, finding palindromes, squares, runs, etc. All of
our algorithms do not explicitly decompress given SLPs, and run in time polynomial in the
input size.

3.8 Local recompression for compressed text
Artur Jeż (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Artur Jeż

Main reference A. Jeż, “Faster Fully Compressed Pattern Matching by Recompression,” in Proc. of the 39th Int’l
Colloquium on Automata, Languages, and Programming (ICALP’12), LNCS, Vol. 7391,
pp. 533–544, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-31594-7_45
URL http://arxiv.org/abs/1111.3244

In this talk we present a simple and natural local recompression technique that is applicable
to implicit representations of text, such as grammars, compressed representations or word
equations. In essence the method aims at having all the strings in the instance compressed in
the same way. The compression is achieved by two simple rewriting rules: pair compression
that replaces all appearances of a pair of different letters ab with a fresh letter c and block
compression which replaces maximal block of the form ak with a fresh letter ak, for all
possible k. The crucial part of the method is that we can apply those rules directly to the
implicit representation, however, in order to do this we may need to change this representation
a bit. Our changes are local and boil down to replacement of a nonterminal (variable , piece
of compressed data etc.) X with bX or Xa. With appropriate choice of pairs to compress it
can be shown that the length of the strings in the instance drop by a constant factor in each
phase and on the other hand the size of the instance remains linear in the input size. The
method finds application in checking the equivalence of two SLPs, fully compressed pattern
matching (for SLPs), word equations and approximation of the smallest grammar. In all
those cases the algorithm based on recompression matches or improves the currently best
known.

13232

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-31594-7_45
http://dx.doi.org/10.1007/978-3-642-31594-7_45
http://dx.doi.org/10.1007/978-3-642-31594-7_45
http://dx.doi.org/10.1007/978-3-642-31594-7_45
http://arxiv.org/abs/1111.3244

30 13232 – Indexes and Computation over Compressed Structured Data

3.9 List Update for Data Compression
Alejandro López-Ortiz (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Alejandro López-Ortiz

Joint work of López-Ortiz, Alejandro; Kamali, Shahin; Ladra, Susana; Seco, Diego; Dorrigiv, Reza

From inception, list update (LU) has been used as a means to compress data. In this talk we
review the main practical results on the use of list update algorithms for data compression. We
discuss the theoretical foundations of these results, then we present an LU-based compressing
scheme which is superior to BWT. Interestingly enough this compression-inspired strategy
also proves superior to MTF in the MRM cost model of Martinez, Roura and Munro in
practice.

3.10 Indexing Graphs for Path Queries with Applications in Genome
Research

Veli Maekinen (University of Helsinki, FI)

License Creative Commons BY 3.0 Unported license
© Veli Maekinen

Joint work of Sirén, Jouni; Vaelimaeki, Niko; Maekinen, Veli
Main reference J. Sirén, N. Välimäki, V. Mäkinen, “Indexing Finite Language Representation of Population

Genotypes,” in Proc. of the 11th Int’l Workshop on Algorithms in Bioinformatics, LNCS,
Vol. 6833, pp. 270–281, Springer, 2011.

URL http://dx.doi.org/10.1007/978-3-642-23038-7_23

We propose a generic approach to replace the canonical sequence representation of genomes
with graph representations, and study several applications of such extensions. The technical
tool is to extend Burrows- Wheeler transform (BWT) of strings to acyclic directed labeled
graphs, to support path queries as an extension to substring searching. We develop, apply,
and tailor this technique to the following applications: a) read alignment on an extended
BWT index of a graph representing reference genome and known variants of it; b) split-read
alignment on an extended BWT index of a splicing graph; c) read alignment on an extended
BWT index of a phylogenetic tree of partial-order graphs. Other possible applications include
probe/primer design and alignments to assembly graphs. The main focus in this article is
on a), for which several technical and compatibility issues had to be resolved to make the
approach practical. For index construction we develop a space-efficient algorithm that scales
to human genome data. For queries we extend an efficient search-space pruning technique to
enable approximate searches. For compatability we tailor the approach so that alignments to
paths can be projected back to the reference genome, so that the results can be seamlesly
plugged inside widely adopted workflows for variation calling. Finally, we report several
experiments on the feasibility of the approach to these applications. This talk is based on
journal version (under preparation) of our work in WABI 2011 [1].

References
1 Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing Finite Language Representation

of Population Genotypes. In Proc. WABI, LNCS 6833, pp. 270–281, Springer, 2011.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-23038-7_23
http://dx.doi.org/10.1007/978-3-642-23038-7_23
http://dx.doi.org/10.1007/978-3-642-23038-7_23
http://dx.doi.org/10.1007/978-3-642-23038-7_23

Sebastian Maneth and Gonzalo Navarro 31

3.11 XML Compression via DAGs Unranked trees can be represented
using their minimal dag (directed acyclic graph)

Sebastian Maneth (University of Oxford, UK)

License Creative Commons BY 3.0 Unported license
© Sebastian Maneth

Joint work of Markus Lohrey; Sebastian Maneth; Mireille Bousquet-Mélou; Eric Noeth
Main reference M. Lohrey, S. Maneth, E. Noeth, “XML compression via DAGs,” in Proc. of the 16th Int’l Conf.

on Database Theory (ICDT’13), pp. 69–80, ACM, 2013.
URL http://dx.doi.org/10.1145/2448496.2448506

For XML this achieves high compression ratios due to their repetitive mark up. Unranked
trees are often represented through first child/next sibling (fcns) encoded binary trees. We
study the difference in size (i.e., number of edges) of minimal dag versus minimal dag of the
fcns encoded binary tree. One main finding is that the size of the dag of the binary tree can
never be smaller than the square root of the size of the minimal dag, and that there are
examples that match this bound. We introduce a new combined structure, the “hybrid dag”,
which is guaranteed to be smaller than (or equal in size to) both dags. Interestingly, we find
through experiments that last child/previous sibling encodings are much better for XML
compression via dags, than fcns encodings. This is because optional elements are more likely
to appear towards the end of child sequences. The talk is based on an ICDT’2013 paper with
title “XML Compression via DAGs” coauthored with Eric Noeth and Markus Lohrey.

At the end of the talk we present some new results about the expected sizes of unranked
and binary DAGs. The new results can be found in the long version of the above ICDT
paper, authored by Lohrey, Maneth, Noeth, and Mireille Bousquet-Mélou.

3.12 Succinct Data Structures
J. Ian Munro (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© J. Ian Munro

Main reference J.I. Munro, S.S. Rao, “Succinct Representations of Data Structures,” Chapter 37 in Mehta and
Sahni (eds.), Handbook of Data Structures and Applications, Chapman & Hall/CRC, 2005.

In this talk we give and overview of the historical development of succinct data structures for
the representation of graphs from the late 1980’s to the present. Early work focused on trees
and planar graphs in space roughly the information theoretic minimum while supporting an
increasing array of navigation operations in constant time. A variety of tree representation
protocols was developed to support these operations. Much, perhaps even most, of the work
was motivated by applications to text indexing. Later work on trees led to some unification
of the representation protocols. Other work led to succinct representations of combinatorial
structures such as groups, functions, permutations and partial orders. These ideas fed back
into applications to tree representations and graph representations in general. Other aspects
dealt with lower bounds and time space tradeoffs.

13232

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2448496.2448506
http://dx.doi.org/10.1145/2448496.2448506
http://dx.doi.org/10.1145/2448496.2448506
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
J.I. Munro, S.S. Rao, ``Succinct Representations of Data Structures,'' Chapter~37 in Mehta and Sahni (eds.), Handbook of Data Structures and Applications, Chapman & Hall/CRC, 2005.
J.I. Munro, S.S. Rao, ``Succinct Representations of Data Structures,'' Chapter~37 in Mehta and Sahni (eds.), Handbook of Data Structures and Applications, Chapman & Hall/CRC, 2005.

32 13232 – Indexes and Computation over Compressed Structured Data

3.13 Indexing Highly Repetitive Collections
Gonzalo Navarro (University of Chile, CL)

License Creative Commons BY 3.0 Unported license
© Gonzalo Navarro

Main reference G. Navarro, “Indexing Highly Repetitive Collections,” in Proc. of the 23rd Int’l Workshop on
Combinatorial Algorithms (IWOCA’12), LNCS, Vol. 7643, pp. 274–279, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-35926-2_29

The need to index and search huge highly repetitive sequence collections is rapidly arising in
various fields, including computational biology, software repositories, versioned collections,
and others. In this talk we describe the progress made along three research lines to address the
problem: compressed suffix arrays, grammar compressed indexes, and Lempel-Ziv compressed
indexes. Those lines offer progressively better compression but less search efficiency, which
raises the challenge of achieving the best in both aspects. Other extended problems, such as
searching in a range of versions, document listing, searching for complex patterns, etc. are
outlined at the end.

3.14 Categorical Range Reporting
Yakov Nekrich (University of Kansas, US)

License Creative Commons BY 3.0 Unported license
© Yakov Nekrich

In colored range reporting problem a set of colored points is stored in a data structure. For
a query rectangle Q, we must enumerate all distinct colors of points in Q. In this talk we
give an overview of previous and new results and techniques for this important problem.

3.15 How to Cook a Poset
Patrick K. Nicholson (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Patrick K. Nicholson

Joint work of Munro, J. Ian; Nicholson, Patrick K.
Main reference J. Ian Munro, P.K. Nicholson, “Succinct Posets,” in Proc. of the 20th Annual European Symp. on

Algorithms (ESA’12), LNCS, Vol. 7501, pp. 743–754, Springer, 2012.
URL http://dx.doi.org/10.1007/978-3-642-33090-2_64

In this talk we survey data structures for representing partially ordered sets, or posets. The
first part of the talk provides definitions of terminology related to posets. The second part
is a survey of data structure results. Our main focus are the recent results of Farzan and
Fischer (ISAAC 2011), and Munro and Nicholson (ESA 2012), which apply techniques from
the area of succinct data structures.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-35926-2_29
http://dx.doi.org/10.1007/978-3-642-35926-2_29
http://dx.doi.org/10.1007/978-3-642-35926-2_29
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33090-2_64
http://dx.doi.org/10.1007/978-3-642-33090-2_64
http://dx.doi.org/10.1007/978-3-642-33090-2_64

Sebastian Maneth and Gonzalo Navarro 33

3.16 Bioinformatics Algorithms: Sequence Analysis, Genome
Rearrangements, and Phylogenetic Reconstruction

Enno Ohlebusch (Universität Ulm, DE)

License Creative Commons BY 3.0 Unported license
© Enno Ohlebusch

Powerful new techniques have revolutionized the field of molecular biology. The vast amount
of DNA sequence information produced by next-generation sequencers demands new bioin-
formatics algorithms to analyze the data.

This book provides an introduction to algorithms and data structures that operate
efficiently on strings (especially those used to represent long DNA sequences). It focuses on
algorithms for sequence analysis (string algorithms), but also covers genome rearrangement
problems and phylogenetic reconstruction methods.

3.17 Wavelet Tries
Giuseppe Ottaviano (University of Pisa, IT)

License Creative Commons BY 3.0 Unported license
© Giuseppe Ottaviano

Joint work of Grossi, Roberto; Ottaviano, Giuseppe
Main reference R. Grossi, G. Ottaviano, “The Wavelet Trie: Maintaining an Indexed Sequence of Strings in

Compressed Space,” arXiv:1204.3581v1 [cs.DS] , 2012.
URL http://arxiv.org/abs/1204.3581v1

We introduce and study the problem of compressed indexed sequence of strings, i.e. repres-
enting indexed sequences of strings in nearly-optimal compressed space, while preserving
provably good performance for the supported operations. We present a new data structure
for this problem, the Wavelet Trie, which combines the classical Patricia trie with the wavelet
tree, a succinct data structure for storing compressed sequences. The resulting Wavelet
Trie smoothly adapts to a sequence of strings that changes over time. It improves on the
state-of-the-art compressed data structures by supporting a dynamic alphabet (i.e., the
set of distinct strings) and prefix queries, both crucial requirements in the aforementioned
applications, and on traditional indexes by reducing space occupancy to close to the entropy
of the sequence.

3.18 Lightweight Lempel-Ziv Parsing
Simon J. Puglisi (University of Helsinki, FI)

License Creative Commons BY 3.0 Unported license
© Simon J. Puglisi

Joint work of Puglisi, Simon J.; Kempa, Dominik; Kärkkäinen, Juha
Main reference J. Kärkkäinen, D. Kempa, S. J. Puglisi, “Lightweight Lempel-Ziv Parsing,” in Proc. of the 12th

Int’l Symp. on Experimental Algorithms (SEA’13), LNCS, Vol. 7933, pp. 139–150, Springer, 2013.
URL http://dx.doi.org/10.1007/978-3-642-38527-8_14

We introduce a new approach to LZ77 factorization that uses O(n/d) words of working space
and O(dn) time for any d ≥ 1 (for polylogarithmic alphabet sizes). We also describe carefully
engineered implementations of alternative approaches to lightweight LZ77 factorization.
Extensive experiments show that the new algorithm is superior, and particularly so at the
lowest memory levels and for highly repetitive data. As a part of the algorithm, we describe
new methods for computing matching statistics which may be of independent interest.

13232

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1204.3581v1
http://arxiv.org/abs/1204.3581v1
http://arxiv.org/abs/1204.3581v1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-38527-8_14
http://dx.doi.org/10.1007/978-3-642-38527-8_14
http://dx.doi.org/10.1007/978-3-642-38527-8_14

34 13232 – Indexes and Computation over Compressed Structured Data

3.19 Encoding Top-k Queries
Rajeev Raman (University of Leicester, UK)

License Creative Commons BY 3.0 Unported license
© Rajeev Raman

Main reference R. Grossi, J. Iacono, G. Navarro, R. Raman, S. Rao Ratti, “Encodings for Range Selection and
Top-k Queries,” in Proc. of the 21st Annual European Symp. on Algorithms (ESA’13), LNCS,
Vol. 8125, pp. 553–564, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-40450-4_47

We study the problem of encoding the positions the top-k elements of an array A[1..n] for a
given parameter 1 ≤ k ≤ n. Specifically, for any i and j, we wish create a data structure that
reports the positions of the largest k elements in A[i..j] in decreasing order, without accessing
A at query time. This is a natural extension of the well-known encoding range-maxima query
problem, where only the position of the maximum in A[i..j] is sought, and finds applications
in document retrieval and ranking. We give (sometimes tight) upper and lower bounds for
this problem and some variants thereof for general k [1], and a solution for the specific case
of k = 2 that has better constants than the general solution above [2].

References
1 Roberto Grossi, John Iacono, Gonzalo Navarro, Rajeev Raman and S. Srinivasa Rao. En-

codings for Range Selection and Top-k Queries. In Proc. ESA, LNCS 8125, pp. 553-564,
Springer, 2013.

2 Pooya Davoodi, Gonzalo Navarro, Rajeev Raman and S. Srinivasa Rao. Encoding Range
Minimum Queries. Manuscript, 2013.

3.20 Compressed Pattern Matching on Terms
Manfred Schmidt-Schauss (Goethe-Universität Frankfurt am Main, DE)

License Creative Commons BY 3.0 Unported license
© Manfred Schmidt-Schauss

Terms that are compressed with a singleton tree grammar are considered. The fully com-
pressed pattern (sub-)match within a compressed term is analysed, trying to find the special
cases which permit a polynomial time algorithm. Such cases are: (i) where compressed
patterns contain every variable at most once; (ii) the pattern is DAG-compressed. It is open
whether there exists a polynomial time algorithm for the general case.

3.21 Top-k Document Retrieval
Rahul Shah (Louisiana State University, US)

License Creative Commons BY 3.0 Unported license
© Rahul Shah

Joint work of Hon, Wing-Kai; Shah, Rahul; Thankachan, Sharma T.; Vitter, Jeffrey S.

Document retrieval is a special type of pattern matching that is closely related to information
retrieval and web searching. In this problem, the data consist of a collection of text
documents, and given a query pattern P , we are required to report all the documents (not
all the occurrences) in which this pattern occurs. In addition, the notion of relevance is
commonly applied to rank all the documents that satisfy the query, and only those documents

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-40450-4_47
http://dx.doi.org/10.1007/978-3-642-40450-4_47
http://dx.doi.org/10.1007/978-3-642-40450-4_47
http://dx.doi.org/10.1007/978-3-642-40450-4_47
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sebastian Maneth and Gonzalo Navarro 35

with the highest relevance are returned. Such a concept of relevance has been central in
the effectiveness and usability of present day search engines like Google, Bing, Yahoo, or
Ask. When relevance is considered, the query has an additional input parameter k, and the
task is to report only the k documents with the highest relevance to P , instead of finding
all the documents that contain P . For example, one such relevance function could be the
frequency of the query pattern in the document. In the information retrieval literature, this
task is best achieved by using inverted indexes. However, if the query consists of an arbitrary
string—which can be a partial word, multiword phrase, or more generally any sequence
of characters—we cannot take advantages of the word boundaries and we need a different
approach. This leads to one of the active research topics in string matching and text indexing
community in recent years, and various aspects of the problem have been studied, such as
space-time tradeoffs, practical solutions, multipattern queries, and I/O-efficiency. In this
talk, we review some of the initial frameworks for designing such indexes and also summarize
more recent developments in this area.

3.22 Semi-local LCS: Superglue for string comparison
Alexander Tiskin (University of Warwick, UK)

License Creative Commons BY 3.0 Unported license
© Alexander Tiskin

The computation of a longest common subsequence (LCS) between two strings is a classical
algorithmic problem. A generalisation of this problem, which we call semi-local LCS, asks
for the LCS between a string and all substrings of another string, and/or the LCS between
all prefixes of one string and all suffixes of another. This generalised problem turns out to be
fundamental whenever a solution to a sting comparison or approximate matching problem has
to be “glued together” from its solutions on substrings: for example, approximate matching
in a compressed string; comparing strings in parallel; dynamic support of a string comparison
score. The semi-local LCS problem has an elegant algebraic structure, expressed by the
monoid of “seaweed braids” (i.e., the 0-Hecke monoid of the symmetric group). It also has
surprising connections with computational geometry, planar graph algorithms, comparison
networks, as well as practical applications in computational molecular biology. We discuss
efficient algorithms for the semi-local LCS problem, and survey some related results and
applications.

3.23 Distributed String Mining
Niko Vaelimaeki (University of Helsinki, FI)

License Creative Commons BY 3.0 Unported license
© Niko Vaelimaeki

Joint work of Vaelimaeki, Niko; Puglisi, Simon J.
Main reference N. Välimäki, S.J. Puglisi, “Distributed String Mining for High-Throughput Sequencing Data,” in

Proc. of the 12th Int’l Workshop on Algorithms in Bioinformatics (WABI’12), LNCS, Vol. 7534,
pp. 441–452, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-33122-0_35

The goal of frequency constrained string mining is to extract substrings that discriminate two
(or more) datasets. Known solutions to the problem range from an optimal time algorithm

13232

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33122-0_35
http://dx.doi.org/10.1007/978-3-642-33122-0_35
http://dx.doi.org/10.1007/978-3-642-33122-0_35
http://dx.doi.org/10.1007/978-3-642-33122-0_35

36 13232 – Indexes and Computation over Compressed Structured Data

to different time-space tradeoffs. However, all of the existing algorithms have been designed
to be run in a sequential manner and require that the whole input fits the main memory.
Due to these limitations, the existing algorithms are practical only up to a few gigabytes of
input. We introduce a distributed algorithm that has a novel time-space tradeoff and, in
practice, achieves a significant reduction in both memory and time compared to state-of-
the-art methods. To demonstrate the feasibility of the new algorithm, our study includes
comprehensive tests on large-scale metagenomics data. We also study the cost of renting the
required infrastructure from, e.g. Amazon EC2. Our distributed algorithm is shown to be
practical on terabyte-scale inputs and affordable on rented infrastructure.

References
1 Nieves R. Brisaboa, Rodrigo Canovas, Francisco Claude, Miguel A. Martinez-Prieto and

Gonzalo Navarro. Compressed String Dictionaries. In: Proc. SEA, LNCS 6630, pp. 136–147.
Springer, 2011.

2 Roberto Grossi and Giuseppe Ottaviano. Fast Compressed Tries through Path Decompos-
itions. In: Proc. ALENEX, pp. 65–74, SIAM, 2012.

Sebastian Maneth and Gonzalo Navarro 37

Participants

Djamal Belazzougui
University of Helsinki, FI

Philip Bille
Technical University of Denmark
– Lyngby, DK

Stefan Böttcher
Universität Paderborn, DE

Francisco Claude
University of Waterloo, CA

Henning Fernau
Universität Trier, DE

Johannes Fischer
KIT – Karlsruhe Institute of
Technology, DE

Travis Gagie
University of Helsinki, FI

Paweł Gawrychowski
MPI für Informatik –
Saarbrücken, DE

Roberto Grossi
University of Pisa, IT

Shunsuke Inenaga
Kyushu University, JP

Artur Jeż
MPI für Informatik –
Saarbrücken, DE

Juha Kärkkäinen
University of Helsinki, FI

Susana Ladra Gonzalez
University of La Coruna, ES

Alejandro Lopez-Ortiz
University of Waterloo, CA

Veli Mäkinen
University of Helsinki, FI

Sebastian Maneth
University of Oxford, GB

J. Ian Munro
University of Waterloo, CA

Gonzalo Navarro
University of Chile, CL

Yakov Nekrich
Univ. of Kansas – Lawrence, US

Patrick K. Nicholson
University of Waterloo, CA

Enno Ohlebusch
Universität Ulm, DE

Giuseppe Ottaviano
University of Pisa, IT

Simon J. Puglisi
University of Helsinki, FI

Rajeev Raman
University of Leicester, GB

Manfred Schmidt-Schauss
Goethe-Universität Frankfurt am
Main, DE

Diego Seco
University of Conception, CL

Rahul Shah
Louisiana State University, US

Yasuo Tabei
Hokkaido University, JP

Sharma V. Thankachan
Louisiana State University, US

Alexander Tiskin
University of Warwick, GB

Koji Tsuda
CBRC – Tokyo, JP

Niko Välimäki
University of Helsinki, FI

Rossano Venturini
University of Pisa, IT

Oren Weimann
Haifa University, IL

13232

	Executive Summary Sebastian Maneth and Gonzalo Navarro
	Table of Contents
	Overview of Talks
	Tree Compression with Top Trees Philip Bille
	Updates in compressed text and compressed XML Stefan Boettcher
	Grammar Indexes and Document Listing Francisco Claude
	LZ-Compressed String Dictionaries Johannes Fischer
	A Faster Grammar-Based Self-Index Travis Gagie
	(Approximate) Pattern matching in LZW-compressed texts Paweł Gawrychowski
	Algorithms on grammar based strings Shunsuke Inenaga
	Local recompression for compressed text Artur Jez
	 List Update for Data Compression Alejandro López-Ortiz
	Indexing Graphs for Path Queries with Applications in Genome Research Veli Maekinen
	XML Compression via DAGs Unranked trees can be represented using their minimal dag (directed acyclic graph) Sebastian Maneth
	Succinct Data Structures J. Ian Munro
	Indexing Highly Repetitive Collections Gonzalo Navarro
	Categorical Range Reporting Yakov Nekrich
	How to Cook a Poset Patrick K. Nicholson
	Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic Reconstruction Enno Ohlebusch
	Wavelet Tries Giuseppe Ottaviano
	Lightweight Lempel-Ziv Parsing Simon J. Puglisi
	Encoding Top-k Queries Rajeev Raman
	Compressed Pattern Matching on Terms Manfred Schmidt-Schauss
	Top-k Document Retrieval Rahul Shah
	Semi-local LCS: Superglue for string comparison Alexander Tiskin
	Distributed String Mining Niko Vaelimaeki

	Participants

